- The reviewer No 1 positively evaluated our work but issued a number of constructive and pertinent 1
- 2 comments.
- Comment: "Because one of the major objectives of the manuscript is to relate RSM flux and 3
- 4 composition to watershed characteristics I strongly suggest including a more detailed description of the
- watershed characteristics in the region, rather than referring to 4 different references. It would be good 5
- to include estimates on biomass or carbon stores in the different regions if available. 6
- 7 Answer: Following this recommendation, we added a big deal of description to the revised manuscript
- (L 121-137). Note that full inventory of each individual river watersheds in terms of landscape 8
- parameters is given in Supplementary table S1. Unfortunately, it is not yet possible to quantify the 9
- 10 biomass and carbon stores of individual river watersheds; this task requires through, GIS-based
- assessment of terrestrial biomes coupled with soil inventory, clearly outside the scope of this work. 11
- 12

13 **Comment:** RSM transport is strongly linked to hydrological conditions, however, the current

- manuscript includes no metric to relate hydrology/discharge to RSM transport. This needs to be 14 addressed before other controlling factors for RSM transport can be identified with any degree of 15 16 certainty.
- **Answer:** The reviewer has made an important point here. In the revised version, we included thorough 17
- hydrological analysis and we presented the open water-period fluxes of C, N and P in WSL rivers (new 18
- section 3.3, L282-299 and relevant new figures 6 and S4). This analysis takes into account the spatial 19
- and temporal variability of river discharge, performed using various hydrological approaches as 20
- described in previous works of our group on the dissolved ($< 0.45 \,\mu$ m) fraction of the river water 21
- (Pokrovsky et al., 2015, 2016). The seasonal fluxes of C, N, P and RSM export by WSL rivers were 22
- calculated separately for spring (May and June), summer (July, August and September) and autumn 23
- period (September-October) for each 2° wide latitudinal belt of the full WSL territory, following the 24
- approach developed for C and major and trace elements in the river water (Pokrovsky et al., 2015 25 26 Biogeosciences Discussion; Pokrovsky et al., 2016).
- 27

28

29 Fig. R1. Seasonally-resolved export fluxes of particulate C, N, P and RSM from WSL rivers during spring (May 30 and June), summer (July and August) and autumn (September and October) for permafrost-free and 4 distinct permafrost zones. This 3 seasons of open-water period represent by far the largest contribution to overall annual 31 32 element and RSM yield, following the results for other Artic rivers (MacClelland et al., 2016).

Based on results of 3 main seasons, an open-water period export fluxes of C, N, P and RSM were calculated as shown in **Fig. R2** below.

35

Fig. R2. Total open-water seasons fluxes of particulate C, N, P and suspended matter in 5 permafrost-free and 4
 distinct permafrost zones of WSL. There is a clear maximum of C and N export at the beginning of permafrost
 appearance, in isolated to sporadic permafrost zone.

The obtained fluxes are in fair agreement with values assessed for terminal gauging station of the ObRiver by PARTNERS (ArcticGRO) program (MacClelland et al., 2016).

41

42 Comment: The authors identified a relationship of carbon concentrations to the watershed size, how 43 much of this relationship is caused by the fact that smaller watersheds have a faster flow than larger 44 rivers, which allow for settlement of RSM? Could it be a matter of different sedimentation rates? 45 Answer: No, we do not believe that there is a sedimentation in large rivers compared to small rivers.

First, due to extremely flat context of the WSL and the runoff which is between 100 and 250 mm y^{-1} ,

the flow rate of small rivers is not sizably different from that of the large rivers; moreover the small
rivers have lower water velocity than the large ones, which is opposite to what is known from mineral
soils and mountainous region of the other regions of Arctic.

50 Second, the large rivers are strongly enriched in mineral particles (lower in C and N than the small 51 ones, see Fig 2A of the manuscript). Because mineral particles are heavier, they settle faster than the

- 52 organic particles. This clearly indicates that there is no impact of sedimentation rates on C
- 53 concentration in WSL rivers particulate loads.
- 54

Comment: The authors describe a process by which particles are transported within the soil (supra permafrost). This process is not commonly known, and should be described in more detail in the new "study site description section".

58 Answer: The main factor controlling elemental behavior during accelerating thaw in permafrost and

- release of soil carbon and metals to surrounding aquatic landscapes is the connectivity between soils
- and rivers or lakes, which occurs via water and solute transport along the permafrost table ("supra-
- 61 permafrost flow"). The supra-permafrost (shallow subsurface) water occurs in the active layer,

- 62 typically at the border between the thawed and frozen part of the soil profile (Woo, M.-K., 2012. Permafrost
- 63 Hydrology, Springer, Heidelberg Dordrecht London N.Y., doi 10.1007/978-3-642-23462-0.). In the permafrost regions
- 64 having no groundwater discharge, this water represents a major source of solutes, and, possibly,
- 65 particles, to rivers or lakes from surrounding soils. In the frozen peatbogs of WSL, the active
- 66 (unfrozen) layer thickens (ALT) is maximal at the end of seasons, which is typically end of September
- 67 beginning of October (Raudina et al., 2018).
- 68 We added requested description in L 152-160.
- 69
- 70 **Comment:** "The current manuscript does not make use of the source information contained in the
- elemental composition of RSM. C/N ratios have the potential to constrain different sources of RSM.
- 72 For example if DOM coagulation or flocculation is an important source of RSM in this system the C/N
- ratio should be quite high (typically >40), however, the C/N ratios reported in the study are all between
- 10 and 23, more common for soil derived organic matter or microbial derived organic matter. The
 authors should use the C/N ratio to discuss sources in the manuscript.
- Answer: We thank the reviewer for this valuable comment and added a new box plot (Fig. R3 below,
- now Fig 3 G of revised ms) of C : N ratio versus permafrost type, as requested.
- 78

79

Fig. R3. A plot of C:N ratio in particulate matter of WSL rivers for three seasons, as a function of type of
 permafrost distribution.

As it is stated in the Abstract, « The C:N ratio in the RSM reflected the source from deep rather than surface soil horizon, similar to that of other Arctic rivers." We did perform the detailed analysis and pertinent discussion of C:N parameter. The C:N ratio of RSM was independent on the watershed size in spring but decreased 2-3 times with S_{watershed} increase ($R^2 = 0.4$) in summer and autumn (Fig. 2D of the manuscript).

The decrease of C:N in the RSM from small to large rivers likely reflected a shift in main origin 87 of suspended matter, from peat in small rivers to more lithogenic (deep soil) in large rivers. This was 88 mostly visible in summer and autumn; in spring the rivers exhibit a very homogeneous C:N signature 89 which may be linked to a dominant source of RSM from bank abrasion and sediment transport as well 90 as deposition within the riparian zone. In fact, the flood plain of the Ob river and other rivers of the WSL 91 92 extend more than 10 times the width of the main channel (Vorobyev et al., 2015). Note that the C:N ratio in large rivers (>100,000 km²) approach that of average sedimentary rocks (8.1; Houlton et al., 2018). In 93 this regard, highly homogeneous C:N ratios in particulate load of Arctic rivers (7 to 18 for Mackenzie, 94 Yukon, Kolyma, Lena, Yenisey and Ob regardless of season; McClelland et al., 2016) are interpreted as 95 the mixture of deep soil sources where C:N < 10 (Schädel et al., 2014) and upper organic-rich horizons 96 of soils with elevated C:N (Gentsch et al., 2015). The Ob River demonstrates the youngest POC of all 97 Arctic Rivers (-203 to -220 $\&\Delta^{14}$ C; McClelland et al., 2016) which certainly indicates a relatively fresh 98 (ca. 1,000-2,000 years old) origin of particulate carbon that is presumably from intermediate peat 99 horizons. 100

We believe that the variation in C:N in RSM may reflect different sources of organic material 101 feeding the river depending on seasons and latitudes. A compilation of C:N ratios in peat and mineral 102 horizons as well as in thermokarst lake sediments for four main sites of latitudinal transect considered in 103 this study is given in Fig. S4 of Supplement of the manuscript (see below). The range of C:N values in 104 105 RSM rivers (10 to 20) is closer to that in sediments of thermokarst lakes (20 to 30). Note that the resuspension of sediments may be an important source of water column POC (Yang et al., 2016). The 106 minerotrophic bogs, which are mostly linked to rivers via hydrological networks, have a C:N ratio in 107 upper peat horizons ranging from 24 to 28. In mineral soils of the region, the C:N range is between 10 108 and 15 regardless of latitude, from the tundra situated Taz River riparian zone to the taiga situated middle 109 channel of the Ob River. For upper organic horizons the C:N is always higher than the bottom mineral 110 horizons. The old alluvial deposits of the Pyakopur River (discontinuous permafrost zone) had only 0.2% 111 of POC with C:N equal to 6. Overall, there is an enrichment in N relative to C in the course of water 112 transport of organic and organo-mineral solid particles from soils and riparian deposits to the river water. 113 114

115 Comment: The conclusion section is way too speculative. The presented data do not support such wide 116 reaching conclusions. A closer look at the C/N ratios might help with this. Can the increased C and N 117 concentrations in the sporadic permafrost region be explained by differences in the vegetation or 118 biomass? "

- **Answer:** Note that the increase in C:N ratio in the sporadic permafrost zone is also observed but it is
- less significant than that of C and N concentration (Fig. 3 of the manuscript) and fluxes (see Fig. R2).
- 121 The most complete, ground-calibrated vegetation and ecosystem map of western Siberia (Frey and
- 122 Smith, 2007) does not allow to attribute any specific characteristics, capable to explain the elevated C,
- 123 N pattern, to the sporadic permafrost zone. Three major parameters changing along the permafrost
- transect are illustrated in **Fig. R4** graphs taken from Frey and Smith (2007) below.
- 125
- Frey, K. E. and Smith, L. C.: How well do we know northern land cover? Comparison of four global vegetation and wetland
 products with a new ground-truth database for West Siberia, Global Biogeochem. Cy., 21, GB1016,
 doi:10.1029/2006GB002706, 2007.
- 129

permafrost-free (south of 61°N),
 isolated (61 to 63.5°N); 3) sporadic (63.5 to 65°N); 4) discontinuous (65 to 66°N), and 5) continuous permafrost zones (north of 66°N).

130

Fig R4. Percentages of wetland, evergreen needleaf forest and deciduous needleleaf forest of the ground-truth sites (binned by latitude) identified in Frey and Smith (2007) and calculate dusing various remote sensing models. There

- is no particular feature of main vegetation distribution at the thawing front (sporadic to isolated permafrost zone)
- identified in the present study as the site of maximal mobilization of nutrients from the soil to the river.
- 135
- **136 Comment:** The conclusions also state that climate change will lead to the drainage of lakes and bogs.
- 137 This also needs to be explained, why do we expect the bogs to drain in the future?
- 138 Answer: The lakes drainage and bogs colonization by forest is very common scenario of landscape
- evolution in Western Siberia under on-going climate warming (Kirpotin et al., 2009; 2011).
- 140 Scenarios of thermokarst lake evolution under climate warming and permafrost thaw in western Siberia
- 141 include 1) draining of large thermokarst lakes into hydrological network, which is especially
- pronounced in discontinuous permafrost zone (Smith et al., 2005; Polishchuk et al., 2014) and 2)

- appearance of new depressions, subsidences and small thaw ponds (< 100-1000 m²), which is
- evidenced across all permafrost zones of this region (Shirokova et al., 2013; Bryksina and Polishchuk,
 2015).
- 146 There are two main scenarios of climate warming impact on western Siberian peatlands. According to
- the first scenario, the area of hollows and subsidences will increase and the coverage of palsa by
- mounds and polygons will be decreasing (Moskalenko, 2012; Pastukhov and Kaverin, 2016; Pastukhov
- et al., 2016). The decade to century period are reported to be needed for reorganization of vegetation,
- 150 water storage, and flow paths in the permafrost landscapes in peaty-silt lowlands (Jorgenson et al.,
- 151 2013).

152 In response to this comment, we added some text in L467-476 of Section 4.3, together with pertinent 153 references.

- Bryksina, N. A.; Polishchuk, Y. M. Analysis of changes in the number of thermokarst lakes in permafrost of Western Siberia
 on the basis of satellite images. Kriosfera Zemli (Earth's Cryosphere) 2015, 19 (2), 100–105. (in Russian).
- Kirpotin, S.N., Berezin A., Bazanov V. et al. (2009) Western Siberia wetlands as indicator and regulator of climate change
 on the global scale. Internat. J. Environ. Stud. 66(4), 409-421. DOI: 10.1080/00207230902753056
- Kirpotin S., Polishchuk Y., Bryksina N., et al. (2011) West Siberian palsa peatlands: distribution, typology, hydrology,
 cyclic development, present-day climate-driven changes and impact on CO2 cycle. Internat J Environ Stud, 68(5), 603-623,
 doi: 10.1080/00207233.2011.593901.
- Moskalenko, N.G., 2012. Cryogenic landscape changes in the West Siberian northern taiga in the conditions of climate
 change and human-induced disturbances. Earth's Cryosphere. 16 (2), 38–42.
- Pastukhov, A.V., Marchenko-Vagapova, T.I., Kaverin, D.A., Goncharova, N.N., 2016. Genesis and evolution of peat
 plateuas in the sporadic permafrost area in the European North-East (middle basin of the Kosyu river). Earth's Cryosphere.
 XX (1), 3–13.
- Pastukhov, A.V., Kaverin, D.A., 2016. Ecological state of peat plateaus in northeastern European Russia. Russian J.
 Ecology. 47 (2), 125–132. doi:10.1134/S1067413616010100.
- Polishchuk, Y.; et al. Remote study of thermokarst lakes dynamics in West-Siberian permafrost. In *Permafrost: Distribution*,
 Composition and Impacts on Infrastructure and Ecosystems; Pokrovsky, O.S., Ed.; Nova Science Publishers: New York 2014;
 pp 173–204.
- Shirokova, L. S.; Pokrovsky, O. S.; Kirpotin, S. N.; Desmukh, C.; Pokrovsky, B. G.; Audry, S.; Viers, J. Biogeochemistry
 of organic carbon, CO2, CH4, and trace elements in thermokarst water bodies in discontinuous permafrost zones of Western
 Siberia. Biogeochemistry 2013, 113, 573–593.
- 174 Smith, L.; Sheng, Y.; Macdonald, G.; Hinzman, L. Disappearing Arctic lakes. *Science* 2005, *308*, 1429.
- 175 176

177 Specific comments

- 178 Line 37 should say "...the Western Siberian Lowland ..." Answer: Fixed
- Line 56: Why are high latitude rivers most vulnerable to a changing particulate nutrient regime? Whatare you trying to say?
- **Answer:** We intended to say "High-latitude rivers are most to on-going climate change via altering
- their hydrological regime (Bring et al., 2016) and widespread permafrost thaw that stimulates nutrient
 release (Vonk et al., 2015)", fixed accordingly (L 56-58)
- 184
- 185 Line 72-74. Awkward wording, change the sentence.
- **Answer:** We simplified as "Further, potentially increased transport of P and N may significantly
- 187 change primary productivity in riverine ecosystems (Wrona et al. 2016; McClelland et al. 2007),
- thereby impeding rigorous predictions of climate change impact on Arctic terrestrial-aquatic
 ecosystems." (L 71-73)
- 189 C
- 191 Line 108: should say "..on the permafrost-bearing zone"
- **192 Answer:** Yes, corrected accordingly.
- 193
- 194 Line 116: "mechanisms to predict change in..."?
- **Answer:** Yes, corrected accordingly.

- Line 138-140: Why is the late autumn the time when the soils are best connected to the rivers, this needs to be explained in the "study site description section" Answer: Good point. The late autumn (October) is the time of maximal altered layer thickness, which provides the maximal connection of soils to the rivers via suprapermafist flow. Explained in details in our response to the suprapermafrost flow (L152-160). Line 146: "... temperature was 4 and 2.7 degrees higher..." Answer: Fixed Line 202: What do you mean by "RSM did not depend on the open water season..." Answer: "Mean bulk RSM concentration in the WSL river waters did not depend on the season of open-water period of the year", corrected in L 221-222 Line 240:" ... in the watershed.." - Fixed. Line 260-262: Reword to clarify what you mean here. Answer: We modified as: "The share of particulate phosphorus versus total ranged from 10 to 90%. It did not demonstrate any link to size of river watershed...", L 278-279 Line 266: ... nutrients... is not the best term for this title line. Answer: Changed to "Concentrations of C, N and P in the RSM and impact of the watershed size", L Line 354: "...was also found in the isolated and sporadic..." - Fixed. Figure 3: Include C/N ratios to highlight potential shifts in organic matter sources. Answer: We added Fig 3 G in revised version of the ms. We thank reviewer # 1 for his/her valuable comments

Response to Reviewer No 2

This reviewer also positively evaluated our manuscript and issued only a few technical corrections:

3.1 I found one erratum on page 9, lines 219-221. "Generally, a 2 to 3-fold decrease (instead of increase) in Corg..."

We thank the reviewer for pointing this out and we corrected this misprint.

3.2 I should wish to include into the text the tables and figures that are given under index S (supplementary materials). I think the volume of the paper will not be much higher but the readers may have more simple access to the factual additional unpublished data

We agree with this proposition, which was also put forward by 1st reviewer. We incorporated part of Supplementary Information in the main text and added a big deal new figures. However, we would like to keep sizeable amount of auxiliary information as supplement. Including these supplementary data and images to the main text would disrupt the flow and, most important, will be interesting for only a small number of readers. Note that generally, the shorter the paper, the higher its impact, and the most high-profile journals in geoscience clearly demonstrate it by their relevant formats. Finally, the Biogeosciences offers rapid and very convenient access to the Supplementary Information.

Sincerely

Oleg S Pokrovsky