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Abstract

The timing of spring greenup (SG) as inferred by remotely sensed vegetation
indices have showed contrasting dynamics across the same region and periods.
Assessing the uncertainty in SG associated with different Normalized Difference
Vegetation Index (NDVI) products is essential for robustly interpreting the links
between climate and phenological dynamics. We compare SG inferred from two
NDVI products over the period 2001-2013: (1) Terra Moderate Resolution Imaging
Spectroradiometer (MODIS) and (2) National Oceanic and Atmospheric
Administration's (NOAA's) Advanced Very High Resolution Radiometer (AVHRR)
instruments processed by the Global Inventory Monitoring and Modeling Studies
(GIMMS) to explore confidence and uncertainty in the NDVI-inferred SG trend and
its links to climate variability. Both MODIS and GIMMS agreed in showing an
advancement of SG in northern Canada, the eastern United States, and Russia, as well
as a delay in SG in western North America, parts of Baltic Europe and East Asia. In
the regions with advanced SG, GIMMS inferred much weaker advancement whereas
in the regions with delayed SG, GIMMS inferred much stronger delay than MODIS.
This resulted in a GIMMS SG delay in both North America and Eurasia. MODIS data
show no significant SG shift in North American for spatial heterogeneity in SG shift,
but dominant SG advancement in Eurasia. The SG advancement inferred from
MODIS is associated with a stronger coupling between SG and temperature and a
stronger sensitivity across biomes as compared to GIMMS. The main uncertainty in
the SG trend and SG-temperature sensitivity are in northern high latitudes (>50°N)
where GIMMS and MODIS show different magnitude and sign of the annual SG
anomalies. Compared to 1988-2000, inter-biome GIMMS SG-temperature sensitivity
is stable and the SG-temperature sensitivity increased in the boreal and Arctic biomes

despite a slight reduction in the SG-temperature coupling over the period 2001-2013.
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The explanation for the increased SG-temperature sensitivity remains unclear and
requires further investigation. We suggest broader evaluation of the NDVI products
against field measurements and inter-validation for robust assessment of vegetation

dynamics.
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1. Introduction

Vegetation phenology plays an important role in regulating land-atmosphere
energy, water, and trace-gas exchanges. As the time spanned by satellite-based
Normalized Difference Vegetation Index (NDVI) products has increased to longer
periods, many studies have applied NDVI products to derive spring greenup time (SG)
at regional and global scales. Changes in SG have been documented in the past three
decades in response to ongoing climate change (Myneni et al., 1997; Jeong et al.,
2011; Zhang et al., 2013; Wang et al., 2016). The Northern Hemisphere SG has
advanced in a range of 0-12 days per decade as inferred by NDVI (Table S1). The
wide range of SG shifts stem from studies covering different periods and regions, and

different methods and datasets that have been applied to derive phenology metrics.

Many factors associated with the obtaining of satellite data—e. g. drift of
satellite orbits, calibration uncertainties, inter-satellite sensor differences, bidirectional
and atmospheric effects—may cause uncertainties in satellite derived data time series
and thereby the uncertainties in interpreting the vegetation dynamics. Four NDVI
products have been published based on radiances collected by the Advanced Very
High Resolution Radiometer (AVHRR) instruments carried by programs of
NOAA/NASA Pathfinder (PAL): Global Inventory Monitoring and Modeling Studies
(GIMMS), Land Long Term Data Record (LTDR) version 3 (V3) and Fourier-
Adjustment, Solar zenith angle corrected, Interpolated Reconstructed (FASIR). Each
of these records extends back to the year 1981. Because of their long time span, the
AVHRR NDVI products have been applied in numerous regional to global vegetation
phenology studies (Table 1). Advantages are recognized for GIMMS NDVI over the
other AVHRR NDVI products to represent the temporal variation of NDVI (Beck et

al., 2011). The more recent NDVI products retrieved from Terra Moderate Resolution



57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

Imaging Spectroradiometer (MODIS) and Systéme Pour I’Observation de la Terre
(SPOT) VEGETATION mission (1 km)(e.g., Durpaire et al., 1995) are considered an
improvement over AVHRR for improved calibration and atmospheric corrections, and

higher spatial resolution (Zhang et al., 2003).

Several inter-comparisons have been conducted to evaluate the quality of
different NDVI products. Yet broad validation of NDVI products by using field
measurements is limited. The SPOT-4 VGT was used to evaluate the AVHRR PAL
(1998-2000) and AVHRR GIMMS (1998-2004) NDVI time series for African
continent. The dynamic range of SPOT-4 VGT NDVI is generally higher than the
AVHRR PAL NDVI, but matched GIMMS NDVI, implying an improvement of
GIMMS over PAL (Fensholt et al., 2006), however, the growing season GIMMS
NDVI is lower than MODIS NDVI in African semi-arid environment (Fensholt and
Sandholt, 2005). The annual average trend of GIMMS NDVI is consistent with
MODIS NDVI in the semi-arid Sahel zone, but higher discrepancies in the more
humid regions (Fensholt et al., 2009). In the north 50°N, four NDVI products
(GIMMS3g, GIMMSg, SeaWiFS, SPOT) except MODIS showed consistent greening
trend over overlapping period although differences in growing season NDVI and
magnitude of greening trend pose uncertainties in satellite vegetation dynamics (Guay
et al., 2014). In mixed grassland in the Grasslands National Park of Canada, both
MODIS and AVHRR NDVI cannot quantify the spatial variation in ground based leaf
area index measurements (Tong and He, 2013). In Europe, SG trend inferred from

GIMMS NDVI conflicted with in situ observations (Fu et al., 2015).

Despite inconsistencies and uncertainties among these NDVI products,
GIMMS NDVI has been combined with other NDVI products to explore a longer

period vegetation dynamics or to constrain potential data quality issue. Zhang et al.
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(2013) merged GIMMS NDVI over 1982-2000 with SPOT-VGT NDVI over 2001-
2011 to investigate the SG in the Tibetan Plateau. GIMMS SG over 2001-2006 was
discarded for its delayed SG trend, in contrast to SPOT-VGT and MODIS SG trend,
which was considered as a potential GIMMS NDVI data quality issue in the western
Plateau. SG trend in Tibetan Plateau advanced by about 10.4 days decade™ over 2001-
2012 inferred from merged GIMMS and SPOT-VGT NDVI (Zhang et al., 2013), in
contrast to the insignificant SG trend over 2000-2011 inferred from single GIMMS
NDVI (Ding et al., 2016). The differences between GIMMS SG and SPOT-VGT and
MODIS SG were also found after 2000s in western Arctic Russia where values and
trends of MODIS and SPOT-VGT SG agreed very well (Zeng et al., 2013a). When
GIMMS NDVI was stitched with MODIS NDVI, the advancing trend of spring
greenup in Northern Hemisphere over 2002-2012 that was inferred from MODIS
NDVI is almost 3 times larger than the trend over the period 1982-2002 inferred using
the GIMMS NDVI (Wang et al., 2016). However, a similar study using the GIMMS
NDVI time series over 1982-2008 revealed an insignificant advancing trend in
Northern Hemisphere over 2000-2008 in relative to 1980-1999 (Jeong et al., 2011).
As the different methods, when applied to the same NDVI products over the same
period, can lead to consistent SG trend across regions and vegetation types (Cong et
al., 2013), we hypothesize that the contradictory SG trend is due to the different

NDVI products.

In this study, we attempt to (1) better understand the causes of the conflicted SG
trend in previous studies, (2) analyze how much of the conflicts were contributed by
the NDVI products and (3) explore how did the conflicts propagate uncertainties in
understanding the vegetation dynamics and climate drivers. We compared SG as

inferred by GIMMS and MODIS NDVT and their respective sensitivities to climate



107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

over the period 2000-2013, in which both the AVHRR and MODIS instruments were
active. We used an independent climate reanalysis dataset to analyze the preseason,
the period preceding SG during which the climate drivers regulate SG, and the
sensitivity between preseason climate and SG. Data and methods are described in
section 2. The results of comparison of GIMMS and MODIS SG, the preseason
climate that regulates the SG and sensitivities of the SG to preseason climate are
presented in section 3. Discussion and conclusions are given in section 4 and 5,

respectively.

2. Data and Method
2.1 Study area and biomes

We restricted our analysis to north of 30°N, since that is the region where
temperate and boreal vegetation dominates and phenology is expected to be most
strongly controlled by the annual cycle of temperature (Linderholm, 2006; Fu et al.
2014; Shen et al., 2015; Giisewell et al., 2017), and regulated by water availability
(Pefiuelas et al., 2004; Shen et al., 2011) and photoperiod (Way and Montgomery,
2015; Singh et al., 2017) . In order to analyze the phenology and its response to
climate across biomes, we used global mosaics of collection 6 MODIS data products
(MCD12Q1) in the IGBP classification of land cover types with spatial resolution of
0.5° x 0.5° to mask the satellite-based SG results. The global mosaics of MCD12Q1
with geographic coordinates of latitude and longitude on the WGS 1984 coordinate
reference system (EPSG: 4326) (Channan et al., 2014) were re-projected from
standard MCD12Q1 with 500m resolutions (Friedl et al., 2010). We used the IGBP
land cover classification for 9 biomes in 2012 (Table S1): Evergreen Needleleaf
Forest (ENF), Deciduous Needleleaf Forest (DNF), Deciduous Broadleaf forest

(DBF), Mixed Forest (MF), Open Shrublands (OS), Woody Savannas (WS),
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Grassland (GL), Permanent Wetland (PW), and Cropland (CP). We distinguish the
grassland to the north of 60°N (GLN), which is more likely to be tundra, from
grassland in the temperate south (GLS) due to their expected differences in climate

and its controls on phenology.

2.2 Climate reanalysis

We calculated daily mean air temperature (7,,) and cumulative precipitation
(P.) from 6-hourly, half-degree resolution CRU-NCEP (Climate Research Unit-
National Centers for Environmental Prediction) v6 reanalysis to identify the preseason
climate associated with SG. The CRU-NCEP v6 dataset extended to 2014, is a
combination of CRU TS v3.2 0.5° x 0.5° monthly climatology and NCEP reanalysis
2.5° x 2.5° with six hours time step available in near real time

(http://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/Forcings).

2.3 NDVI products

We used the latest version NDVI time series (GIMMS NDVI3g) derived from
the AVHRR instrument on board the NOAA satellite series. This dataset spans the
period from July 1981 to December 2013 with spatial resolution of 1/12° and

bimonthly temporal resolution (Pinzon and Tucker, 2014).

We also used the 16-day MODIS NDVI composites (MOD13Cl1, collection 6)
at 0.05° spatial resolution, and further performed data quality control. We regridded
both GIMMS and MODIS NDVI data to 0.5° x 0.5° resolution by taking the mean
value in a 0.5° x 0.5° pixel to match the spatial resolution of the CRU-NCEP
reanalysis. We screened the pixels with annual maximum NDVI <0 to exclude the

non-vegetated pixels. For GIMMS NDVI3g, the algorithm has improved snow-melt
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detection and the pixels recognized with snow or ice were filled with average seasonal
profile or spline interpolation (Pinzon and Tucker, 2014). The pixels flagged with
snow/ice were given the NDVI values with the values from the previous nearest
period without snow influence. Even though, the filled values are very close to zero in
the dormant season and the near-zero values are smoothed by the double logistic
method or piecewise logistic method described in section 2.3. SGs were derived from

GIMMS NDVI 2001-2013 to fit the time period of MOD13C1 NDVI product.

2.4 Determination of SG and preseason climate

We determined the preseason duration following the method of Shen et al.
(2014), but with a different climate reanalysis product and a different method for
calculating SG. The common used regression methods to reconstruct NDVI time
series and derive SG include Savitzky-Golay fitting method, spline smoothing,
asymmetric Gaussian functions, double logistic function, and harmonic analysis of
times series. These methods are valid in fitting NDVI gaps and reducing noise (Cai et
al. 2017), however, can make differences in estimating phonological stages (Cong et
al., 2013). In order to reduce the mixed uncertainty of reconstruction methods and
NDVI products, here we used one regression method to reconstruct the NDVI series.
The double logistic method uses least-square fitting to half growing season (Zhang et
al., 2003). It is more robust than other methods in reducing noise (Hird and
McDermid, 2009) and estimating the vegetation seasonal dynamics, when there is no
local calibration (Cai et al., 2013). As we applied the double logistic method to a

single growth cycle, it is reliable to smooth noise (Atkinson et al., 2012).
Day of SG and mean day of SG

We first applied double logistic method (Zhang et al., 2003) to fit and smooth

the temporal variation of NDVI to vegetation growth:
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where ¢ is time in days, y(?) is the vegetation index at time 7, a and b are fitting
parameters, c+d is the maximum vegetation index value, and d is the initial
background vegetation index, usually the minimum vegetation index value preceding
the growing season. D, is identified as the Julian date at which the rate of change in
the vegetation growth (3(¢)) is maximum. Dg is the maximum of the curvature and
derived as the second derivative of equation (1) . The mean Dg; (Dg;) in each pixel is
averaged over the analysis years. For the pixels with multiple growth cycles in a year,
we applied this double logistic method to the first cycle, so that Dgis the Julian date

at which the second derivative of y(¢) is maximum for the first time in a year.
Preseason period and preseason climate

We calculated the preseason period separately for temperature and
precipitation. To do this, we first calculated 7,, and P, during the respective preseason
periods. We defined the preseason climate (7, and P.) in each pixel over the period
preceding Dy from 15 to 120 days with an increment of 3 days. We expect the
relative variation in precipitation to be more relevant than absolute values in
determining phenology, thus we used the relative variation of cumulative precipitation
in percentage (%) of precipitation change instead of the absolute cumulative
precipitation variation in millimeter (mm). We detrended the calculated 71, and P,
over the historical period. For each period preceding D for a given pixel, we
calculated the Pearson’s correlation coefficients (PCC) between Dg; and T;, (and P, ).
We screened the data to remove pixels where we found a positive interannual
correlation between (1) preseason temperature and Dg; and (2) preseason

precipitation and Ds, respectively. We defined the period with the most negative

10



206  correlation between Dg; and T, (and P.) as the preseason Pr (and Pp). The length of
207  preseason (days) for temperature and precipitation control is defined as Lpr and Lpp,
208  respectively. The superscript of G and M represents the variables derived from

209  GIMMS and MODIS, respectively (e.g. D and LY, are Dg; and Lpy derived from

210  MODIS, respectively.).
211 SG response to preseason climate

212 We calculated the response of SG to preseason climate by calculating linear
213  regressions between Dg.; and Ty, (and P.). We excluded the SG response to preseason

214  climate in pixels where no significant relationship was found (i.e., p-value > 0.1).
215 3. Results
216 3.1 MODIS and GIMMS SG comparison

217 The spatial pattern of GIMMS-inferred mean Dg; (D&;) and MODIS-inferred
218 Dy (D) is consistent (r = 0.83, p < 0.01). The regions with evident difference

219  between D&; and DY are in the circumpolar Arctic and Asia high-altitudes where
220  correlations between the time series of D&, and DI are relatively low (Figure 1a and
221  b). About 47% of the pixels in the north of 30°N have the inter-annual correlation
222 above 0.5 (p <0.1), 86% of which are located between 45-90°N. The better

223 correlated D&; and DY time series to the north of 45°N than in lower latitudes implies
224  agreed inter-annual variation of D&; and D in this region. In the regions with well-
225  correlated inter-annual variation, Dy differences between MODIS and GIMMS still
226  show significant latitudinal characteristics (Figure 1b). In the northern mid-latitudes,
227  we inferred a later Dg; using MODIS (9+16days) in 67% of the pixels, and an

228  earlier Dg; (5 + 4 days) in the remaining pixels, as compared to GIMMS. We also

229  inferred a later Dg; using MODIS in southern Asia and the eastern United States as

11
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compared to Dg; using GIMMS (Figure S1). The D&, and DY inter-annual variation
are weakly correlated in the southern mid-latitudes, especially in the Eurasia. For
those pixels in the south of mid-latitude, where inter-annual variation of D&; and D2

are well correlated, DI advanced D&, by 6+5 days (Figure 1b).

Both MODIS and GIMMS agreed in showing that Ds; advanced in Northern
Canada, Eastern United States, and Russia, and that Dg; delayed in western North
America, parts of Baltic Europe and East Asia (Figure 1c and 1d). In the regions
where Ds; advanced, D&, advancement was much weaker than D In the regions
where Ds. delayed, the D& delay is much stronger than D%, Together, these
differences lead to a delayed continental-scale D& trend in both North America (0.85
days yr") and Eurasia (0.33 days yr'') at 95% confidence level. MODIS implied a
slight delay of 0.18 days yr™'in North American but a significant advanced SG trend
of 1.00 days yr”' in Eurasia at 90% confidence level. The differences in DS and D2
trend are mainly in the northwest of North America and east-to-central Eurasia north
of 50°N. The inter-annual variability of Ds; anomalies in relative to Dg; over 2001-
2013 indicated consistent anomaly signs of Dg; between MODIS and GIMMS over
30-50°N (Figure 2a, ¢ and e). The most remarkable difference in Dg; anomaly
between MODIS and GIMMS is in the north of 50°N (Figure 2b). It is mainly due to
negative D&; anomalies over 2001-2008 and positive D&, anomalies thereafter in
North America, in opposite to D&% anomalies (Figure 2d). In Eurasia, both MODIS
and GIMMS indicated anomalies of advanced Dg in the north of 50°N after 2006
(Figure 2f). A large transition in the D&; anomaly occurred around 2000. The
transition is particularly remarkable in North America, which is due to a 5-6 days later

mean Dg; (DE) over 2001-2013 than that over 1982-2000 in North America.
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3.2 Preseason climate regulating SG

The preseason length of temperature control for GIMMS ( L$;) and MODIS
( L¥;) that we inferred from the correlation between T, and Ds differed due to the
differences between D&. and D2 (Figure S2a and S2b). The spatial pattern of LS,
shows significant heterogeneity, with L%, over two months in the regions from Russia
to central Asia in Eurasia and from Alaska to northwestern Canada in North America.
LS is 62+38 days for all the valid pixels, while LY} is usually less than two months,
with the LY. of 41+31days. Moreover, LY} is better correlated to 7, during its
corresponding preseason (PM) with North Hemisphere correlation of 0.6+0.2 in
comparison to the correlation between D&, and T, during its preseason (P§) of

0.3+0.2 (Figure 3a and 3b).

The fraction of the northern mid- to high-latitude land surface correlated with
preseason precipitation is less than that correlated with temperature for both GIMMS
and MODIS (Figure 3 and Figure S2). The preseason length of precipitation control
for MODIS ( L¥,= 56+35 days) is longer than that of temperature control. In contrast,
GIMMS showed relatively shorter preseason length of precipitation control (L$p =
45+32 days) than that of temperature control. Although GIMMS showed a larger
fraction of land surface where precipitation correlated to Dg; than MODIS, MODIS
and GIMMS showed consistent spatial pattern in both preseason length and
correlations between P, and D (Figure 3¢ and 3d). The mean PCC is -0.4+0.2 for

both MODIS and GIMMS.

The spatial pattern of the temperature trend in P} and P£ over 2001-2013 is
consistent (¥ =0.61, p < 0.01) although the derived preseason length for temperature

control differed for GIMMS and MODIS derived Dg; (Figure S3a and S3b). The
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majority of both North America and North Eurasia experienced warming of the SG
preseason, while Alaska, the eastern edge of Hudson Bay and the mid-latitudes of
Eurasia (40-60°N) experienced a preseason cooling. The preseason warming trend is
most significant in central Russia and eastern Canada and the cooling trend is most
significant in part of Central Asia and central to eastern China. The maximum
preseason warming trend is about 0.6 °C yr™' in central Russia. The precipitation trend
in the preseason is insignificant and more heterogeneous as compared to the
temperature trend for both P and P§ (Figure S3c and S3d). The spatial pattern of
the precipitation trend in P}! and P§ are also less correlated (7= 0.40, p <0.01) than
that of temperature trend. Wetting of the preseason occurred in mid to east of the
United States, Western Canada, Northern Norway and Northwestern Russia. The
largest value of the wetting trend is about 7 mm yr™'. Drying preseason only occurred
remarkably in the southeastern the United States and scattered in Eurasia. The pixels

where the largest values of a preseason drying trend is about 4 mm yr'.

3.3 SG sensitivity to preseason climate

The fraction of areas in which DI sensitive to 7,, and P, are much larger than
D& (Table S2) and D are more sensitive to 7,, and P, in relative to D& (Figure 4).
About 43% of the land fraction shows significant sensitivity of D&% to T, (p < 0.1)
compared with 13% of the land fraction with significant sensitivity of D&; to T,
About 11% of the land fraction shows significant sensitivity of D% to P. (p <0.1) as
compared with 3% of the land fraction with significant sensitivity of D& to P,. The
sensitivity of D to T, is most significant in the mid- to high-latitudes (Figure 4b)
whereas the sensitivity of DI to P, is scattered (Figure 4d). The mean sensitivity
of DI to temperature is about -3.58 days per °C warming in preseason, which

almost doubles the mean sensitivity of D& to temperature of -1.70 days °C™". The
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mean sensitivity of D to precipitation is about -0.16 days advancement per percent

of precipitation increase in relative to the mean P, over 2001-2013, which is close to

the mean sensitivity of DX to precipitation of about -0.13 days %'. Due to the weak
SG-precipitation coupling and sensitivity, we only analyzed biome-scale sensitivity of
Dg to T, sensitivity (Figure 5). The difference between the sensitivity of Dg; to 7, as
inferred by MODIS versus GIMMS is less in forest biomes, even though D2 is more
sensitive to T,, in all the biomes in relative to D&. The differences in Dgg to T,
sensitivity are especially significant in northern biomes. For example, sensitivity

of D to T,,in open shrublands, northern grasslands, and permanent wetlands are 50%

higher than sensitivity of D&; to T,, in these biomes.

As the GIMMS NDVI product extends as far back as the early 1980s, we also
performed the comparison of D to T,, sensitivity over two periods. D& to Ty,
sensitivity was analyzed with the same method in section 2, but between the period
spanning 1988 and 2000. This has the same length of time (13 years) as the later
analysis period of 2001-2013. The fraction of area where D&, shift in response to 7,
and P. is reduced in the period 2001-2013 as compared to the earlier 1988-2000
(Table S2). Most of the biomes show a slightly increased sensitivity of D& to 7,,in
the later period, as compared to that over 1988-2000, with the highest increase in the
northern grasslands (44.6%) and open shrublands (41.2%) (Figure 5a). The sensitivity
of D& to T,, is relatively stable in southern grasslands. Exceptionally, the sensitivity
of D&, to T}, declined by 1.4 days °C"' for deciduous broadleaf forests and 0.1
days °C™' for mixed forests; this represents a reduced sensitivity of 33.7% and 3.4%
respectively. The inter-biome variation of the sensitivity of D&;to Ty, is stable (r =

0.90, p <0.001) over the two periods (Figure 5b).
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4. Discussion
4.1 SG mean state and trend
We analyzed MODIS and GIMMS NDVI products to infer spring greenup dates

and their responses to preseason climate over the period 2001-2013. Inter-annual
variation of greenup date as inferred from MODIS and GIMMS are well correlated
north of 45°N (86% of the pixels with »> 0.5 and p < 0.1). But in these regions, we
tend to infer a later greenup time using MODIS than GIMMS NDVI. This may be
contributed by the evergreen vegetation (Gamon et al., 2016) and the influences of
snow cover on the boreal pixels (Moulin et al., 1997). The foliage amount of
evergreen vegetation has little change through seasons, therefore the photosynthetic
phenology is difficult to detect by satellite remote sensing (Gamon et al., 2016). The
snow cover affects the greenup determination in two ways. On the one hand, the snow
cover led to NDVI gaps during the dormancy season. As a result, the time series of
NDVI cannot be adequately fitted during the transitional snow melting and vegetation
greening season (Zhou et al., 2015). We filled the snow-flagged MODIS NDVI with
NDVI from previous period without snow contamination, whereas GIMMS NDVI
was filled with average seasonal profile or spline interpolation (Pinzon and Tucker,
2014). Our MODIS filling potentially underestimate the NDVI during the transition
season. On the other hand, the overlapped time of snowmelt and greenup leads
complexity in greenup determination. In high latitudes with seasonal snowpack, the
beginning of the growing season is often determined by snowmelt rather than
temperature (Semenchuk et al., 2016). The study over Yamal Peninsula revealed that
spring greenup date is almost the same as snow-end date between 70.0-73.5°N (Zeng
and Jia, 2013), so that the snow cover affects the accuracy in identifying vegetation
greenup. In the northern high latitudes at the selected locations in Canada and

Sweden, even if the pixels influenced from snow cover are excluded, MODIS NDVI
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353  is lower than GIMMS NDVI in the dormant season (Fensholt and Proud, 2012). This
354  can make an explanation to the late transition from dormant season to growing season

355 by MODIS.

356 We inferred a heterogeneous trend in SG using both MODIS and GIMMS, but the
357  sign and magnitude of the SG shift varies between MODIS and GIMMS. The main
358 difference between the trend in SG as inferred by MODIS and GIMMS is in Alaska
359  and Siberia, which lead to the main uncertainties in the NDVI derived SG trend in the
360 northern high latitudes. The significant GIMMS SG delay in Alaska and mid-latitude
361 Eurasia lead to a general delay in SG in North America and Eurasia. In contrast, we
362 inferred a delay in SG using MODIS in southern Alaska and eastern Canada offset SG
363 advancement in eastern the United States and Canada, resulting in insignificant SG
364 trend in North America. Significant SG advancement in Siberia resulted in strong SG
365 advance in Eurasia. Even so, MODIS and GIMMS showed large inter-annual

366  variability of SG anomalies in relative to the mean SG over 2001-2013 and the signs
367  of the anomalies are consistent in between 30°N and 50°N. MODIS NDVI inferred
368 mean SG advancement of 0.96 days year" between 52-75°N over 2001-2013 at 90%
369 confidence level in our results, which overwhelmed the MODIS snow-end date

370  advancement of 0.37 days year™ in this region over 2001-2014 (Chen et al., 2015).
371  The lagged snow phenology advancement implies that snow complication in

372  determine SG in the cold regions is still present at a warmer climate. To reduce the
373  snow effect on spring phenology determination, the normalized difference water

374  index method (Delbart et al., 2004; Delbart et al., 2006), plant phenology index

375 method (Jin et al. 2017), normalized difference vegetation index- normalized

376  difference infrared index phase-space method (Thompson et al., 2015) are

377  alternatives to improve the NDVI-based phonological metrics.
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4.2 SG dates sensitivities to climate

The SG to preseason climate sensitivity by MODIS and GIMMS showed
varied degree of vegetation-climate seasonal coupling. The differences in MODIS and
GIMMS SG propagate the conflicts to the preseason length. However, the LY, is very
close to L%, (=43+30days) in an earlier longer period over 1982-2005 (Xu et al.,
2018). The higher correlation between MODIS SG and preseason temperature
indicates stronger MODIS SG-climate relationships. The consistent preseason length
inferred from MODIS over 2001-2013 and GIMMS over 1982-2005, and stronger
MODIS SG-temperature coupling indicate more reliable MODIS NDVI in the
available period and GIMMS NDVI data in the earlier period. The stronger MODIS
NDVI to temperature correlation than GIMMS NDVI was also reported in central
Europe, where the correlation between temperature and August NDVI anomalies were
analyzed (Kern et al., 2016). The stronger SG-temperature coupling than precipitation
is consistent with our previous study of SG to climate sensitivity over 1982-2005 (Xu
et al., 2018). MODIS inferred stronger SG-temperature sensitivity in the northern
boreal and Arctic biomes can be explained by the site-level observation that
temperature sensitivity of phenology is greater in colder, higher latitude sites than in
warmer regions (Prevéy et al., 2017). At the colder sites, the small changes in
temperature may constitute greater relative changes in thermal budget (Oberbauer
et al., 2013), so that the warming impacts on vegetation are amplified. This
explanation is not applicable to the GIMMS NDVI inferred SG response to
temperature that vegetation with earlier growing season is more sensitive to

temperature (Shen et al., 2014).

The sensitivity of GIMMS SG to temperature increased over 2001-2013 in

relative to that over 1988-2000. Our results showed SG to temperature sensitivity
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403  increased most significantly in Arctic grassland (44.6%), followed by other boreal

404  biomes (open shrubland (41.2%), permanent wetland (35.9%), woody savanna (31.1%)
405  and deciduous needleleaf forest (17.6%)). The magnitudes of enhanced sensitivity are
406  even larger when we compare 2001-2013 SG-temperature sensitivity with a longer
407  period over 1982-2005 (Xu et al., 2018). Compare with the period 1982-2005, SG-
408 temperature sensitivity of the northern biomes (deciduous needleleaf forest, woody
409  savanna, open shrublands and permanent wetlands) all increased more than 50% over

410  2001-2013 with stable inter-biome sensitivity variation (= 0.91, p <0.01).

411 The increased sensitivity of SG to temperature for boreal biomes has not been
412  well investigated. In the contrary, temperature sensitivity of spring greenup may

413  decline under warmer climate because (1) insufficient winter chilling may delay the
414  spring greenup in spite of continued spring warming (Yu et al., 2010), (2) when

415  spring greenup starts earlier, shorter photoperiod can limit the potential of leaf

416  development (Chmielewski & Gotz, 2016), (3) greenup may respond nonlinearly to
417  temperature and be saturated at a high temperature (Caffarra & Donnelly, 2011), and
418  (4) under warmer condition, the preseason duration of thermal forcing can be reduced,
419  which declines the SG-temperature sensitivity (Giisewell et al., 2017). The vegetation
420  growth (represented by NDVI) to temperature sensitivity was reported declining in
421  the growing season (April-October) based on GIMMS NDVI over 1982-2012 linked
422  to water stress (Piao et al., 2014). In temperate ecosystems, the lower NDVI to

423  temperature sensitivity coincidently occurred with increased drought events. While in
424  the arctic ecosystem, the lowered sensitivity of NDVI to temperature may be

425  explained by increases in heat waves because the physiological response of

426  photosynthesis to temperature is nonlinear with lower sensitivity under warmer

427  conditions (Piao et al., 2014). The higher interannual temperature variability can also
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cause higher variations in water supply, thus the declined coupling between
vegetation growth and interannual variability of growing season temperature,
generally in semiarid regions (Wu et al., 2017). The wetting preseason in mid to east
of the United States, Western Canada, Northern land along Norway and Northwestern

Russia may partly enhanced SG-temperature if the enhancement is validated.

4.3 Uncertainties in SG as derived by MODIS and GIMMS NDVI
With SG as inferred using GIMMS over the period 1988-2000 and as inferred

using MODIS over 2001-2013, we found that the trend is advanced continuously in
response to a continuing trend in preseason warming. The uncertainties in the SG
trend and its climatic sensitivity arise when SG as inferred using GIMMS, MODIS,
and other sensors and in situ observations are compared together over a similar period
after 2000, during which the main conflicts in SG trend were found. Our results
coincide with other studies that GIMMS NDVI inferred an opposite trend of SG
before and after 2000 in the circumpolar Arctic (Park et al., 2016). SPOT VGT
retrieved a continuously advanced SG trend over 1999-2013 in the circumpolar region
(>45 °N), in consistent with MODIS SG, although the magnitude and spatial
distribution of the advancement are different between SPOT and MODIS (Gonsamo
and Chen, 2016). Wang et al. (2016) and Zhang et al. (2013) proposed that quality
issues may present in GIMMS NDVI, which can bias vegetation growth sensitivity
and growth trend. Instead of using continuous GIMMS SG over 1982-2011, Zhang et
al. (2013) merged datasets of GIMMS SG over 1982-2000 and SPOT-VGT SG over
2001-2011 to detect SG trend due to data quality issues with GIMMS NDVI in most
parts of western Tibetan Plateau, according to the findings of opposite GIMMS SG
trend to SPOT-VGT and MODIS SG trend over the period 2001-2006. With this

merged data record, the SG trend continuously advanced in Tibetan Plateau over
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1982-2011. This result is consistent with the SG trend derived from tree-ring data
(Yang et al., 2017). On the contrary, continuous GIMMS SG over 1982-2006 inferred
delayed SG trend after mid-1990s over Tibetan Plateau (Yu et al., 2010). At the North
Hemisphere scale, GIMMS SG (1982-2008) showed significant decadal variation and
declining SG shift: advanced 5.2 days over 1982-1999, but only advanced 0.2 days
over 2000-2008 (Jeong et al., 2011). However, the merged GIMMS (1982-2006) and
MODIS (2002-2012) showed SG shift over 2002-2012 (-6 days decade™) is about
three times larger than that over 1982-2002 (-2 days decade™), which is interpreted as
enhanced SG advancement and its response to temperature over time (Wang et al.,
2016). For the varied timing of SG derived from different products, Zhang et al. (2017)
suggested intersensor calibrations to reduce the difference between vegetation index
products and exclusion of the low quality phonology timing. The ground observations
are solutions to validate the remote sensed phenology. However, in situ observations
and remote sensed phenology differed no matter how accurate they are retrieved

(Gonsamo and Chen, 2016), due to the scale and resolution issues.

These SG shift uncertainties after 2000 are more likely to be explained by the
differences in the NDVI products that implied the opposite SG trend, anomalies north
of 50°N and biome-scale SG-temperature sensitivities. The spectrum range difference
of MODIS and AVHRR sensor channels is a main contribute to the NDVI differences.
MODIS NDVI is derived from bands 1(620-670nm) and 2 (841-876nm) of the
MODIS on board NASA's Terra satellite whereas GIMMS NDVI is derived from
bands 1(580-680nm) and 2 (725-1100nm) of AVHRR. Furthermore, the NDVI by
MODIS and GIMMS were retrieved from a different spatial resolution. The retrieved
NDVI is a mixture of different vegetation species with diverse phenologies, bare soil

and even water bodies dependent on the spatial resolution (Helman, 2018). Both
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GIMMS NDVI3g and MOD13C1 were generated using daily surface reflectance product to a
similar composite interval. However, the MODIS applied the constrained-view angle-
maximum value composite while GIMMS applied maximum value composite. The
maximum value composite cannot completely remove atmospheric effect (Pinzo and
Tucker 2014) and the different composite technique can cause the value difference in

the same interval (Gallo et al., 2004).

The large GIMMS SG anomaly transition around 2000 may be associated with
the sensor transition from AVHRR/2 to AVHRR/3, although among-instrument
AVHRR calibration were conducted with NDVI data derived from Sea-Viewing Wide
Field-of-view Sensor (SeaWiFS) (Pinzon et al., 2014). The calibration with SeaWiFS
is considered as an improvement of GIMMS NDVI in the very northern latitudes
(Marshall et al, 2016). Even so, the data issues associated with sensor transition, such
as (1) satellite signal degradation through lifetime, (2) band design, (3) effect of
maximum value composite (MVC) and (4) replacement of satellites in NOAA series,
potentially influence the interpretation of the SG trend and its sensitivity to climate

drivers.

5. Conclusions
We compare the MODIS and GIMMS NDVI inferred time of spring greenup

and its response to preseason climate over 2001-2013. We infer a spring greenup
delay using GIMMS NDVI in both North America (0.80 days yr'') and Eurasia (0.22
days yr''), whereas, using MODIS NDVI, we infer no significant spring greenup shift
in North American and an advanced SG trend of 0.78 days yr”' in Eurasia. The
differences in MODIS and GIMMS inferred spring greenup trend are mainly in
northern high latitude (>50°N). The differences are implied by opposite anomalies in

the time of spring greenup in North America and a large GIMMS inferred spring
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greenup transition around 2000 that maybe explained by data issues associated with
the sensor transition from AVHRR/2 to AVHRR/3, including (1) satellite signal
degradation through lifetime, (2) band design, (3) effect of maximum value
composite (MVC) and (4) replacement of satellites in NOAA series. Temperature is
the primary climate driver of the time of spring greenup for both MODIS and GIMMS,
although MODIS inferred both a stronger sensitivity and correlation between SG and
temperature. The opposing trends of SG as inferred using MODIS and GIMMS
resulted in differing SG to temperature sensitivity across biomes (-3.6+0.7 days °C™'
for MODIS and 2.2 + 0.8 days °C™' for GIMMS). Using GIMMS, we inferred that the
sensitivity of greenup to temperature, which increases over time for Arctic and boreal
biomes, cannot be well explained by the mechanisms regulating the sensitivity of SG
under a warming climate. This result requires further investigation. Our results
suggest the importance of snow-vegetation interactions in high latitude vegetation
monitoring and inter-validation of multiple datasets to better assess vegetation

dynamics.
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Figure Captions:

Figure 1 (a) Correlation between MODIS and GIMMS inferred inter-annual Dg; over
2001-2013 (p < 0.1), (b) the difference between GIMMS and MODIS inferred Dy
(days, DI — D), and (c) GIMMS , (d) MODIS inferred trend of spring greenup
date (Ds¢) over 2001-2013(days yr').

Figure 2 Anomalies of spring greenup date for mid-latitude (30-50°N, a, c, ¢) and high
latitude (>50°N, b, d, f) in relative to mean Dg; over 2001-2013 for GIMMS and
MODIS.

Figure 3 Pearson correlation coefficient (PCC) between preseason temperature (Ty,)
and date of spring greenup ( Dg;) for GIMMS (a) and MODIS(b) and Pearson
correlation coefficient (PCC) between preseason precipitation (P;) and date of spring
greenup ( Dg;) for GIMMS (¢) and MODIS(d).

Figure 4 Spring greenup sensitivity to preseason temperature (days °C™") for GIMMS
(a) and MODIS (b) and spring greenup sensitivity to preseason precipitation (days %'
of precipitation increases) for GIMMS (c) and MODIS (d).

Figure 5 The comparison of inter-biome SG sensitivity to preseason temperature for
IGBP land cover types for GIMMS over 1982-2005 and 2001-2013 and MODIS over
2001-2013. We used the IGBP land cover classification for 9 biomes in 2012:
Evergreen Needleleaf Forest (ENF), Deciduous Needleleaf Forest (DNF), Deciduous
Broadleaf forest (DBF), Mixed Forest (MF), Open Shrublands (OS), Woody
Savannas (WS), Grassland (GL), Permanent Wetland (PW), and Cropland (CP). We
distinguish the Arctic grassland to the north of 60°N (GLN), from temperate grassland
in the south (GLS) due to their expected differences in climate and controls on
phenology.

30



Figure 1 (a) Correlation between MODIS and GIMMS inferred inter-
annual Dg; over 2001-2013 (p < 0.1), (b) the difference between
GIMMS and MODIS inferred Ds; (days, DI — D&-), and (c) GIMMS,
(d) MODIS inferred trend of spring greenup date (D) over 2001-
2013(days yr1).
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Figure 2 Anomalies of spring greenup date for mid-latitude (30-50°N, a, c, €)
and high latitude (>50°N, b, d, f) in relative to mean Dg; over 2001-2013 for
GIMMS and MODIS.
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Figure 3 Pearson correlation coefficient (PCC) between preseason
temperature (Tm) and date of spring greenup ( Ds;) for GIMMS (a) and
MODIS(b) and Pearson correlation coefficient (PCC) between preseason

precipitation (P¢) and date of spring greenup ( Ds;) for GIMMS (c) and
MODIS(d).
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Figure 4 Spring greenup sensitivity to preseason temperature (days °C1) for
GIMMS (a) and MODIS (b) and spring greenup sensitivity to preseason
precipitation (days %! of precipitation increases) for GIMMS (c) and MODIS
(d).
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temperature for IGBP land cover types for GIMMS over 1982-2005 and 2001-
2013 and MODIS over 2001-2013. We used the IGBP land cover classification

for 9 biomes in 2012: Evergreen Needleleaf Forest (ENF), Deciduous
Needleleaf Forest (DNF), Deciduous Broadleaf forest (DBF), Mixed Forest
(MF), Open Shrublands (0S), Woody Savannas (WS), Grassland (GL),
Permanent Wetland (PW), and Cropland (CP). We distinguish the Arctic

grassland to the north of 60°N (GLN), from temperate grassland in the south
(GLS) due to their expected differences in climate and controls on phenology.
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Figure S2 Mean preseason length of temperature control
corresponding to GIMMS spring greenup (L%, days) and MODIS
spring greenup (L%, days) and mean preseason length of
precipitation control corresponding to GIMMS spring greenup
(L% p, days) and MODIS greenup (L¥;, days).
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Figure S3 The preseason temperature trend (°C yr-1) calculated from
CRUNCEP correlated to spring greenup date inferred from GIMMS (a) and
MODIS (b) NDVI and precipitation trend (mm yr-1) calculated from CRUNCEP
correlated to spring greenup date inferred from GIMMS (c) and MODIS (d)
NDVI. The shaded regions indicate that the trend is significant (p < 0.1).
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Table S1 The spring greenup shift (days per decade) as inferred from Normalized
Difference Vegetation Index (NDVI) from satellite data

NDVI Data | Period Region Shift 1, | Reference

(days decade™)
PAL 1981-1991 | >=40N -8 Myneni et al., 1997
GIMMS 1981-1999 | Eurasia -3.3 Zhou et al., 2001
GIMMS 1981-1999 | N. America -4.4 Zhou et al., 2001
AVHRR 1982-1991 | 45-75 -6.2 Tucker et al., 2001
AVHRR 1992-1999 | 45-75 -2.4 Tucker et al., 2001
AVHRR 1982-1990 | Inner Mongolia 0 Lee et al., 2002
PAL 1982-2001 | Europe -5.4 Stockli and Vidale, 2004
PAL 1985-1999 | N. America -6.6 de Beurs and Henebry, 2005
PAL 1985-2000 | Eurasia -4.5 de Beurs and Henebry, 2005
GIMMS 1982-1999 | Temperate China | -7.9 Piao et al., 2006
PAL 1982-1999 | East Asia -7 Jeong et al., 2009
GIMMS 1982-2003 | Global -3.8 Julien & Sobrino, 2009
GIMMS 1982-2006 | Fennoscandia -2.7 Karlsen et al., 2009
GIMMS 1982-1999 | N. Hemisphere -2.9 Jeongetal., 2011
GIMMS 2002-2008 | N. Hemisphere -0.3 Jeongetal.,, 2011
MODIS 2000-2010 | >60N, Arctic -4.7 Zeng et al., 2011
MODIS 2000-2010 | >60N, N. America | -11.5 Zeng et al., 2011
MODIS 2000-2010 | >60N, Eurasia -2.7 Zeng et al., 2011
GIMMS 1982-2008 | >60N, Arctic -0.5 Zeng et al., 2011
GIMMS 1982-2008 | >60N, N. America | -0.8 Zeng et al., 2011
GIMMS 1982-2008 | >60N, Eurasia -0.3 Zeng et al., 2011
Slll\(;I'IM\iGT 1982-2011 | Tibetan Plateau -10.4 Zhang et al., 2013
GIMMS 1982-2011 | Fennoscandia -11.8 Hogda et al., 2013
MODIS 2001-2012 | U.S. -4.8 Keenan et al., 2014
MODIS 2002-2014 | Inner Mongolia -4.5 Gong et al., 2015
GIMMS 1982-2011 | U.S. Great Basin -0.1 Tang et al., 2015
GIMMS 1982-2002 | N. Hemisphere -1.9 Wang et al., 2016
MODIS 2002-2012 | N. Hemisphere -5.9 Wang et al., 2016
GIMMS 1982-2012 | Tibetan Plateau 0 Ding et al., 2016

MODIS: Moderate Resolution Imaging Spectroradiometer
AVHRR: Advanced Very High Resolution Radiometer
GIMMS: Global Inventory Modeling and Mapping Studies
PAL: Pathfinder AVHRR Land

GAC: Global area cover
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Table S2. The number of pixels for the calculation of Dsg sensitivity
to preseason temperature (p<0.1) for each biome

Veg. 1988-2000 2001-2013
Type* GIMMS GIMMS MODIS
ENF 1477 556 1677
DNF 356 202 339
DBF 119 26 96
MF 2700 966 2860
0OS 4691 616 5371
WS 1204 168 1397
GLS 2076 630 1273
GLN 874 143 545
PW 327 95 330
CcpP 1019 587 791

*We used the IGBP land cover classification for 9 biomes in
2012: Evergreen Needleleaf Forest (ENF), Deciduous Needleleaf
Forest (DNF), Deciduous Broadleaf forest (DBF), Mixed Forest
(MF), Open Shrublands (0S), Woody Savannas (WS), Grassland
(GL), Permanent Wetland (PW), and Cropland (CP). We
distinguish the Arctic grassland to the north of 60°N (GLN),
from temperate grassland in the south (GLS) due to their
expected differences in climate and controls on phenology.
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