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Abstract 1	
The timing of spring greenup (SG) as inferred by remotely sensed vegetation 2	

indices have showed contrasting dynamics across the same region and periods. 3	

Assessing the uncertainty in SG associated with different Normalized Difference 4	

Vegetation Index (NDVI) products is essential for robustly interpreting the links 5	

between climate and phenological dynamics. We compare SG inferred from two 6	

NDVI products over the period 2001-2013: (1) Terra Moderate Resolution Imaging 7	

Spectroradiometer (MODIS) and (2) National Oceanic and Atmospheric 8	

Administration's (NOAA's) Advanced Very High Resolution Radiometer (AVHRR) 9	

instruments processed by the Global Inventory Monitoring and Modeling Studies 10	

(GIMMS) to explore confidence and uncertainty in the NDVI-inferred SG trend and 11	

its links to climate variability. Both MODIS and GIMMS agreed in showing an 12	

advancement of SG in northern Canada, the eastern United States, and Russia, as well 13	

as a delay in SG in western North America, parts of Baltic Europe and East Asia. In 14	

the regions with advanced SG, GIMMS inferred much weaker advancement whereas 15	

in the regions with delayed SG, GIMMS inferred much stronger delay than MODIS. 16	

This resulted in a GIMMS SG delay in both North America and Eurasia. MODIS data 17	

show no significant SG shift in North American for spatial heterogeneity in SG shift, 18	

but dominant SG advancement in Eurasia. The SG advancement inferred from 19	

MODIS is associated with a stronger coupling between SG and temperature and a 20	

stronger sensitivity across biomes as compared to GIMMS. The main uncertainty in 21	

the SG trend and SG-temperature sensitivity are in northern high latitudes (>50°N) 22	

where GIMMS and MODIS show different magnitude and sign of the annual SG 23	

anomalies. Compared to 1988-2000, inter-biome GIMMS SG-temperature sensitivity 24	

is stable and the SG-temperature sensitivity increased in the boreal and Arctic biomes 25	

despite a slight reduction in the SG-temperature coupling over the period 2001-2013. 26	
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The explanation for the increased SG-temperature sensitivity remains unclear and 27	

requires further investigation. We suggest broader evaluation of the NDVI products 28	

against field measurements and inter-validation for robust assessment of vegetation 29	

dynamics. 30	

Keywords: NDVI, MODIS, GIMMS, phenology, spring greenup, sensitivity  31	
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1. Introduction 32	

Vegetation phenology plays an important role in regulating land-atmosphere 33	

energy, water, and trace-gas exchanges. As the time spanned by satellite-based 34	

Normalized Difference Vegetation Index (NDVI) products has increased to longer 35	

periods, many studies have applied NDVI products to derive spring greenup time (SG) 36	

at regional and global scales. Changes in SG have been documented in the past three 37	

decades in response to ongoing climate change (Myneni et al., 1997; Jeong et al., 38	

2011; Zhang et al., 2013; Wang et al., 2016). The Northern Hemisphere SG has 39	

advanced in a range of 0-12 days per decade as inferred by NDVI (Table S1). The 40	

wide range of SG shifts stem from studies covering different periods and regions, and 41	

different methods and datasets that have been applied to derive phenology metrics. 42	

Many factors associated with the obtaining of satellite data—e. g. drift of 43	

satellite orbits, calibration uncertainties, inter-satellite sensor differences, bidirectional 44	

and atmospheric effects—may cause uncertainties in satellite derived data time series 45	

and thereby the uncertainties in interpreting the vegetation dynamics. Four NDVI 46	

products have been published based on radiances collected by the Advanced Very 47	

High Resolution Radiometer (AVHRR) instruments carried by programs of 48	

NOAA/NASA Pathfinder  (PAL): Global Inventory Monitoring and Modeling Studies 49	

(GIMMS), Land Long Term Data Record (LTDR) version 3 (V3) and Fourier-50	

Adjustment, Solar zenith angle corrected, Interpolated Reconstructed (FASIR). Each 51	

of these records extends back to the year 1981. Because of their long time span, the 52	

AVHRR NDVI products have been applied in numerous regional to global vegetation 53	

phenology studies (Table 1). Advantages are recognized for GIMMS NDVI over the 54	

other AVHRR NDVI products to represent the temporal variation of NDVI (Beck et 55	

al., 2011). The more recent NDVI products retrieved from Terra Moderate Resolution 56	
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Imaging Spectroradiometer (MODIS) and Système Pour l’Observation de la Terre 57	

(SPOT) VEGETATION mission (1 km)(e.g., Durpaire et al., 1995) are considered an 58	

improvement over AVHRR for improved calibration and atmospheric corrections, and 59	

higher spatial resolution (Zhang et al., 2003).  60	

Several inter-comparisons have been conducted to evaluate the quality of 61	

different NDVI products. Yet broad validation of NDVI products by using field 62	

measurements is limited. The SPOT-4 VGT was used to evaluate the AVHRR PAL 63	

(1998-2000) and AVHRR GIMMS (1998-2004) NDVI time series for African 64	

continent. The dynamic range of SPOT-4 VGT NDVI is generally higher than the 65	

AVHRR PAL NDVI, but matched GIMMS NDVI, implying an improvement of 66	

GIMMS over PAL (Fensholt et al., 2006), however, the growing season GIMMS 67	

NDVI is lower than MODIS NDVI in African semi-arid environment (Fensholt and 68	

Sandholt, 2005). The annual average trend of GIMMS NDVI is consistent with 69	

MODIS NDVI in the semi-arid Sahel zone, but higher discrepancies in the more 70	

humid regions (Fensholt et al., 2009).  In the north 50°N, four NDVI products 71	

(GIMMS3g, GIMMSg, SeaWiFS, SPOT) except MODIS showed consistent greening 72	

trend over overlapping period although differences in growing season NDVI and 73	

magnitude of greening trend pose uncertainties in satellite vegetation dynamics (Guay 74	

et al., 2014). In mixed grassland in the Grasslands National Park of Canada, both 75	

MODIS and AVHRR NDVI cannot quantify the spatial variation in ground based leaf 76	

area index measurements (Tong and He, 2013). In Europe, SG trend inferred from 77	

GIMMS NDVI conflicted with in situ observations (Fu et al., 2015). 78	

Despite inconsistencies and uncertainties among these NDVI products, 79	

GIMMS NDVI has been combined with other NDVI products to explore a longer 80	

period vegetation dynamics or to constrain potential data quality issue. Zhang et al. 81	
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(2013) merged GIMMS NDVI over 1982-2000 with SPOT-VGT NDVI over 2001-82	

2011 to investigate the SG in the Tibetan Plateau. GIMMS SG over 2001-2006 was 83	

discarded for its delayed SG trend, in contrast to SPOT-VGT and MODIS SG trend, 84	

which was considered as a potential GIMMS NDVI data quality issue in the western 85	

Plateau. SG trend in Tibetan Plateau advanced by about 10.4 days decade-1 over 2001-86	

2012 inferred from merged GIMMS and SPOT-VGT NDVI (Zhang et al., 2013), in 87	

contrast to the insignificant SG trend over 2000-2011 inferred from single GIMMS 88	

NDVI (Ding et al., 2016).  The differences between GIMMS SG and SPOT-VGT and 89	

MODIS SG were also found after 2000s in western Arctic Russia where values and 90	

trends of MODIS and SPOT-VGT SG agreed very well (Zeng et al., 2013a).  When 91	

GIMMS NDVI was stitched with MODIS NDVI, the advancing trend of spring 92	

greenup in Northern Hemisphere over 2002-2012 that was inferred from MODIS 93	

NDVI is almost 3 times larger than the trend over the period 1982-2002 inferred using 94	

the GIMMS NDVI (Wang et al., 2016). However, a similar study using the GIMMS 95	

NDVI time series over 1982-2008 revealed an insignificant advancing trend in 96	

Northern Hemisphere over 2000-2008 in relative to 1980-1999 (Jeong et al., 2011). 97	

As the different methods, when applied to the same NDVI products over the same 98	

period, can lead to consistent SG trend across regions and vegetation types (Cong et 99	

al., 2013), we hypothesize that the contradictory SG trend is due to the different 100	

NDVI products.  101	

In this study, we attempt to (1) better understand the causes of the conflicted SG 102	

trend in previous studies, (2) analyze how much of the conflicts were contributed by 103	

the NDVI products and (3) explore how did the conflicts propagate uncertainties in 104	

understanding the vegetation dynamics and climate drivers. We compared SG as 105	

inferred by GIMMS and MODIS NDVI and their respective sensitivities to climate 106	
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over the period 2000-2013, in which both the AVHRR and MODIS instruments were 107	

active. We used an independent climate reanalysis dataset to analyze the preseason, 108	

the period preceding SG during which the climate drivers regulate SG, and the 109	

sensitivity between preseason climate and SG. Data and methods are described in 110	

section 2. The results of comparison of GIMMS and MODIS SG, the preseason 111	

climate that regulates the SG and sensitivities of the SG to preseason climate are 112	

presented in section 3. Discussion and conclusions are given in section 4 and 5, 113	

respectively.  114	

2. Data and Method  115	
	116	
2.1 Study area and biomes 117	

We restricted our analysis to north of 30°N, since that is the region where 118	

temperate and boreal vegetation dominates and phenology is expected to be most 119	

strongly controlled by the annual cycle of temperature  (Linderholm, 2006; Fu et  al. 120	

2014; Shen et al., 2015; Güsewell et al., 2017), and regulated by water availability 121	

(Peñuelas et al., 2004; Shen et al., 2011) and photoperiod (Way and Montgomery, 122	

2015; Singh et al., 2017) . In order to analyze the phenology and its response to 123	

climate across biomes, we used global mosaics of collection 6 MODIS data products 124	

(MCD12Q1) in the IGBP classification of land cover types with spatial resolution of 125	

0.5° x 0.5° to mask the satellite-based SG results. The global mosaics of MCD12Q1 126	

with geographic coordinates of latitude and longitude on the WGS 1984 coordinate 127	

reference system (EPSG: 4326) (Channan et al., 2014) were re-projected from 128	

standard MCD12Q1 with 500m resolutions (Friedl et al., 2010). We used the IGBP 129	

land cover classification for 9 biomes in 2012 (Table S1): Evergreen Needleleaf 130	

Forest (ENF), Deciduous Needleleaf Forest (DNF), Deciduous Broadleaf forest 131	

(DBF), Mixed Forest (MF), Open Shrublands (OS), Woody Savannas (WS), 132	
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Grassland (GL), Permanent Wetland (PW), and Cropland (CP). We distinguish the 133	

grassland to the north of 60°N (GLN), which is more likely to be tundra, from 134	

grassland in the temperate south (GLS) due to their expected differences in climate 135	

and its controls on phenology.  136	

 137	

2.2 Climate reanalysis 138	

We calculated daily mean air temperature (Tm) and cumulative precipitation 139	

(Pc) from 6-hourly, half-degree resolution CRU-NCEP (Climate Research Unit-140	

National Centers for Environmental Prediction) v6 reanalysis to identify the preseason 141	

climate associated with SG. The CRU-NCEP v6 dataset extended to 2014, is a 142	

combination of CRU TS v3.2 0.5° x 0.5° monthly climatology and NCEP reanalysis 143	

2.5° x 2.5° with six hours time step available in near real time 144	

(http://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/Forcings). 145	

2.3 NDVI products 146	

We used the latest version NDVI time series (GIMMS NDVI3g) derived from 147	

the AVHRR instrument on board the NOAA satellite series. This dataset spans the 148	

period from July 1981 to December 2013 with spatial resolution of 1/12° and 149	

bimonthly temporal resolution (Pinzon and Tucker, 2014).  150	

We also used the 16-day MODIS NDVI composites (MOD13C1, collection 6) 151	

at 0.05° spatial resolution, and further performed data quality control. We regridded 152	

both GIMMS and MODIS NDVI data to 0.5° x 0.5° resolution by taking the mean 153	

value in a 0.5° x 0.5° pixel to match the spatial resolution of the CRU-NCEP 154	

reanalysis. We screened the pixels with annual maximum NDVI <0 to exclude the 155	

non-vegetated pixels. For GIMMS NDVI3g, the algorithm has improved snow-melt 156	
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detection and the pixels recognized with snow or ice were filled with average seasonal 157	

profile or spline interpolation (Pinzon and Tucker, 2014).  The pixels flagged with 158	

snow/ice were given the NDVI values with the values from the previous nearest 159	

period without snow influence. Even though, the filled values are very close to zero in 160	

the dormant season and the near-zero values are smoothed by the double logistic 161	

method or piecewise logistic method described in section 2.3. SGs were derived from 162	

GIMMS NDVI 2001-2013 to fit the time period of MOD13C1 NDVI product. 163	

2.4 Determination of SG and preseason climate 164	

We determined the preseason duration following the method of Shen et al. 165	

(2014), but with a different climate reanalysis product and a different method for 166	

calculating SG. The common used regression methods to reconstruct NDVI time 167	

series and derive SG include Savitzky-Golay fitting method, spline smoothing, 168	

asymmetric Gaussian functions, double logistic function, and harmonic analysis of 169	

times series. These methods are valid in fitting NDVI gaps and reducing noise (Cai et 170	

al. 2017), however, can make differences in estimating phonological stages (Cong et 171	

al., 2013).   In order to reduce the mixed uncertainty of reconstruction methods and 172	

NDVI products, here we used one regression method to reconstruct the NDVI series. 173	

The double logistic method uses least-square fitting to half growing season (Zhang et 174	

al., 2003). It is more robust than other methods in reducing noise (Hird and 175	

McDermid, 2009) and estimating the vegetation seasonal dynamics, when there is no 176	

local calibration (Cai et al., 2013). As we applied the double logistic method to a 177	

single growth cycle, it is reliable to smooth noise (Atkinson et al., 2012).   178	

Day of SG and mean day of SG 179	

We first applied double logistic method (Zhang et al., 2003) to fit and smooth 180	

the temporal variation of NDVI to vegetation growth：  181	
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𝑦 𝑡 = !
!!!!!!"

+ 𝑑      (1) 182	

where t is time in days, y(t) is the vegetation index at time t, a and b are fitting 183	

parameters, c+d is the maximum vegetation index value,  and d is the initial 184	

background vegetation index, usually the minimum vegetation index value preceding 185	

the growing season. 𝐷!"  is identified as the Julian date at which the rate of change in 186	

the vegetation growth (y(t)) is maximum. 𝐷!"  is the maximum of the curvature and 187	

derived as the second derivative of equation (1) . The mean 𝐷!"  (𝐷!") in each pixel is 188	

averaged over the analysis years. For the pixels with multiple growth cycles in a year, 189	

we applied this double logistic method to the first cycle, so that 𝐷!"is the Julian date 190	

at which the second derivative of y(t) is maximum for the first time in a year.  191	

Preseason period and preseason climate 192	

We calculated the preseason period separately for temperature and 193	

precipitation. To do this, we first calculated Tm and Pc during the respective preseason 194	

periods. We defined the preseason climate (Tm and Pc) in each pixel over the period 195	

preceding 𝐷!"  from 15 to 120 days with an increment of 3 days. We expect the 196	

relative variation in precipitation to be more relevant than absolute values in 197	

determining phenology, thus we used the relative variation of cumulative precipitation 198	

in percentage (%) of precipitation change instead of the absolute cumulative 199	

precipitation variation in millimeter (mm). We detrended the calculated Tm and Pc 200	

over the historical period. For each period preceding 𝐷!"  for a given pixel, we 201	

calculated the Pearson’s correlation coefficients (PCC) between 𝐷!"  and Tm (and Pc ). 202	

We screened the data to remove pixels where we found a positive interannual 203	

correlation between (1) preseason temperature and 𝐷!"  and (2) preseason 204	

precipitation and 𝐷!" , respectively. We defined the period with the most negative 205	
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correlation between 𝐷!"  and Tm (and Pc) as the preseason PT (and PP). The length of 206	

preseason (days) for temperature and precipitation control is defined as 𝐿!" and 𝐿!!, 207	

respectively. The superscript of G and M represents the variables derived from 208	

GIMMS and MODIS, respectively (e.g. 𝐷!"!  and 𝐿!"!  are 𝐷!"  and 𝐿!"  derived from 209	

MODIS, respectively.). 210	

SG response to preseason climate 211	

We calculated the response of SG to preseason climate by calculating linear 212	

regressions between 𝐷!"  and Tm (and Pc). We excluded the 𝑆𝐺 response to preseason 213	

climate in pixels where no significant relationship was found (i.e., p-value > 0.1).  214	

3. Results 215	

3.1 MODIS and GIMMS SG comparison    216	

The spatial pattern of GIMMS-inferred mean  𝐷!"  (𝐷!"! ) and MODIS-inferred 217	

𝐷!"  (𝐷!"! ) is consistent (r = 0.83, p < 0.01). The regions with evident difference 218	

between 𝐷!"!  and 𝐷!"!  are in the circumpolar Arctic and Asia high-altitudes where 219	

correlations between the time series of 𝐷!"!  and 𝐷!"!  are relatively low (Figure 1a and 220	

b). About 47% of the pixels in the north of 30°N have the inter-annual correlation 221	

above 0.5 (p < 0.1), 86% of which are located between 45-90°N. The better 222	

correlated 𝐷!"!  and 𝐷!"!  time series to the north of 45°N than in lower latitudes implies 223	

agreed inter-annual variation of 𝐷!"!  and 𝐷!"!  in this region. In the regions with well-224	

correlated inter-annual variation, 𝐷!"  differences between MODIS and GIMMS still 225	

show significant latitudinal characteristics (Figure 1b). In the northern mid-latitudes, 226	

we inferred a later 𝐷!"  using MODIS (9±16days) in 67% of the pixels, and an 227	

earlier 𝐷!"  (5± 4 days) in the remaining pixels, as compared to GIMMS. We also 228	

inferred a later 𝐷!"  using MODIS in southern Asia and the eastern United States as 229	
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compared to 𝐷!"  using GIMMS (Figure S1). The 𝐷!"!  and 𝐷!"!  inter-annual variation 230	

are weakly correlated in the southern mid-latitudes, especially in the Eurasia. For 231	

those pixels in the south of mid-latitude, where inter-annual variation of 𝐷!"!  and 𝐷!"!  232	

are well correlated, 𝐷!"!  advanced 𝐷!"!  by 6±5 days (Figure 1b).  233	

Both MODIS and GIMMS agreed in showing that 𝐷!"  advanced in Northern 234	

Canada, Eastern United States, and Russia, and that 𝐷!"  delayed in western North 235	

America, parts of Baltic Europe and East Asia (Figure 1c and 1d). In the regions 236	

where 𝐷!"  advanced, 𝐷!"!  advancement was much weaker than 𝐷!"! . In the regions 237	

where 𝐷!"  delayed, the 𝐷!"!  delay is much stronger than 𝐷!"! . Together, these 238	

differences lead to a delayed continental-scale 𝐷!"!  trend in both North America (0.85 239	

days yr-1) and Eurasia (0.33 days yr-1) at 95% confidence level. MODIS implied a 240	

slight delay of 0.18 days yr-1in North American but a significant advanced SG trend 241	

of 1.00 days yr-1 in Eurasia at 90% confidence level. The differences in 𝐷!"!  and 𝐷!"!  242	

trend are mainly in the northwest of North America and east-to-central Eurasia north 243	

of 50°N. The inter-annual variability of 𝐷!"  anomalies in relative to 𝐷!"  over 2001-244	

2013 indicated consistent anomaly signs of 𝐷!"  between MODIS and GIMMS over 245	

30-50°N (Figure 2a, c and e). The most remarkable difference in 𝐷!"  anomaly 246	

between MODIS and GIMMS is in the north of 50°N (Figure 2b). It is mainly due to 247	

negative 𝐷!"!  anomalies over 2001-2008 and positive 𝐷!"!  anomalies thereafter in 248	

North America, in opposite to 𝐷!"!  anomalies (Figure 2d). In Eurasia, both MODIS 249	

and GIMMS indicated anomalies of advanced 𝐷!"  in the north of 50°N after 2006 250	

(Figure 2f). A large transition in the 𝐷!"!  anomaly occurred around 2000. The 251	

transition is particularly remarkable in North America, which is due to a 5-6 days later 252	

mean 𝐷!"  (𝐷!"! ) over 2001-2013 than that over 1982-2000 in North America. 253	
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3.2 Preseason climate regulating SG  254	

The preseason length of temperature control for GIMMS ( 𝐿!"! ) and MODIS 255	

( 𝐿!"! ) that we inferred from the correlation between Tm and  𝐷!"  differed due to the 256	

differences between 𝐷!"!  and 𝐷!"! (Figure S2a and S2b). The spatial pattern of 𝐿!"!  257	

shows significant heterogeneity, with 𝐿!"!  over two months in the regions from Russia 258	

to central Asia in Eurasia and from Alaska to northwestern Canada in North America. 259	

𝐿!"!  is 62±38 days for all the valid pixels, while 𝐿!"!  is usually less than two months, 260	

with the 𝐿!"!  of 41±31days. Moreover, 𝐿!"!  is better correlated to Tm during its 261	

corresponding preseason (𝑃!!) with North Hemisphere correlation of 0.6±0.2 in 262	

comparison to the correlation between 𝐷!"!  and Tm during its preseason (𝑃!!) of 263	

0.3±0.2 (Figure 3a and 3b).  264	

The fraction of the northern mid- to high-latitude land surface correlated with 265	

preseason precipitation is less than that correlated with temperature for both GIMMS 266	

and MODIS (Figure 3 and Figure S2). The preseason length of precipitation control 267	

for MODIS ( 𝐿!!! = 56±35 days) is longer than that of temperature control. In contrast, 268	

GIMMS showed relatively shorter preseason length of precipitation control (𝐿!!!  = 269	

45±32 days) than that of temperature control. Although GIMMS showed a larger 270	

fraction of land surface where precipitation correlated to 𝐷!"  than MODIS, MODIS 271	

and GIMMS showed consistent spatial pattern in both preseason length and 272	

correlations between Pc and 𝐷!"(Figure 3c and 3d). The mean PCC is -0.4±0.2 for 273	

both MODIS and GIMMS. 274	

The spatial pattern of the temperature trend in 𝑃!! and 𝑃!!  over 2001-2013 is 275	

consistent (r = 0.61, p < 0.01) although the derived preseason length for temperature 276	

control differed for GIMMS and MODIS derived 𝐷!"  (Figure S3a and S3b). The 277	
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majority of both North America and North Eurasia experienced warming of the SG 278	

preseason, while Alaska, the eastern edge of Hudson Bay and the mid-latitudes of 279	

Eurasia (40-60°N) experienced a preseason cooling. The preseason warming trend is 280	

most significant in central Russia and eastern Canada and the cooling trend is most 281	

significant in part of Central Asia and central to eastern China. The maximum 282	

preseason warming trend is about 0.6 °C yr-1 in central Russia. The precipitation trend 283	

in the preseason is insignificant and more heterogeneous as compared to the 284	

temperature trend for both 𝑃!! and 𝑃!!  (Figure S3c and S3d).  The spatial pattern of 285	

the precipitation trend in 𝑃!! and 𝑃!!  are also less correlated  (r = 0.40, p < 0.01) than 286	

that of temperature trend. Wetting of the preseason occurred in mid to east of the 287	

United States, Western Canada, Northern Norway and Northwestern Russia. The 288	

largest value of the wetting trend is about 7 mm yr-1. Drying preseason only occurred 289	

remarkably in the southeastern the United States and scattered in Eurasia. The pixels 290	

where the largest values of a preseason drying trend is about 4 mm yr-1.  291	

3.3 SG sensitivity to preseason climate  292	

The fraction of areas in which 𝐷!"!  sensitive to Tm and Pc are much larger than 293	

𝐷!"!  (Table S2) and 𝐷!"!  are more sensitive to Tm and Pc in relative to 𝐷!"!  (Figure 4). 294	

About 43% of the land fraction shows significant sensitivity of 𝐷!"!  to Tm (p < 0.1) 295	

compared with 13% of the land fraction with significant sensitivity of 𝐷!"!  to Tm. 296	

About 11% of the land fraction shows significant sensitivity of 𝐷!"!  to Pc (p < 0.1) as 297	

compared with 3% of the land fraction with significant sensitivity of 𝐷!"!  to Pc. The 298	

sensitivity of 𝐷!"!  to Tm is most significant in the mid- to high-latitudes (Figure 4b) 299	

whereas the sensitivity of 𝐷!"!  to Pc is scattered (Figure 4d). The mean sensitivity 300	

of  𝐷!"!   to temperature is about -3.58 days per °C warming in preseason, which 301	

almost doubles the mean sensitivity of 𝐷!"!   to temperature of -1.70 days °C-1. The 302	



	

	 15	

mean sensitivity of 𝐷!"!   to precipitation is about -0.16 days advancement per percent 303	

of precipitation increase in relative to the mean Pc over 2001-2013, which is close to 304	

the mean sensitivity of 𝐷!"!   to precipitation of  about -0.13 days %-1. Due to the weak 305	

SG-precipitation coupling and sensitivity, we only analyzed biome-scale sensitivity of 306	

𝐷!"  to Tm sensitivity (Figure 5). The difference between the sensitivity of 𝐷!"  to Tm as 307	

inferred by MODIS versus GIMMS is less in forest biomes, even though 𝐷!"!  is more 308	

sensitive to Tm in all the biomes in relative to 𝐷!"! . The differences in 𝐷!"  to Tm 309	

sensitivity are especially significant in northern biomes. For example, sensitivity 310	

of 𝐷!"!  to Tm in open shrublands, northern grasslands, and permanent wetlands are 50% 311	

higher than sensitivity of 𝐷!"!  to Tm  in these biomes.  312	

As the GIMMS NDVI product extends as far back as the early 1980s, we also 313	

performed the comparison of 𝐷!"!  to Tm  sensitivity over two periods. 𝐷!"!  to Tm 314	

sensitivity was analyzed with the same method in section 2, but between the period 315	

spanning 1988 and 2000.  This has the same length of time (13 years) as the later 316	

analysis period of 2001-2013. The fraction of area where 𝐷!"!  shift in response to Tm 317	

and Pc is reduced in the period 2001-2013 as compared to the earlier 1988-2000 318	

(Table S2). Most of the biomes show a slightly increased sensitivity of 𝐷!"!  to Tm in 319	

the later period, as compared to that over 1988-2000, with the highest increase in the 320	

northern grasslands (44.6%) and open shrublands (41.2%) (Figure 5a). The sensitivity 321	

of 𝐷!"!  to Tm is relatively stable in southern grasslands. Exceptionally, the sensitivity 322	

of 𝐷!"!  to Tm declined by 1.4 days °C-1 for deciduous broadleaf forests and 0.1 323	

days °C-1 for mixed forests; this represents a reduced sensitivity of 33.7% and 3.4% 324	

respectively. The inter-biome variation of the sensitivity of 𝐷!"! to Tm is stable (r = 325	

0.90, p < 0.001) over the two periods (Figure 5b).  326	
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4. Discussion  327	
4.1 SG mean state and trend 328	

We analyzed MODIS and GIMMS NDVI products to infer spring greenup dates 329	

and their responses to preseason climate over the period 2001-2013. Inter-annual 330	

variation of greenup date as inferred from MODIS and GIMMS are well correlated 331	

north of 45ºN (86% of the pixels with r > 0.5 and p < 0.1). But in these regions, we 332	

tend to infer a later greenup time using MODIS than GIMMS NDVI. This may be 333	

contributed by the evergreen vegetation (Gamon et al., 2016) and the influences of 334	

snow cover on the boreal pixels (Moulin et al., 1997). The foliage amount of 335	

evergreen vegetation has little change through seasons, therefore the photosynthetic 336	

phenology is difficult to detect by satellite remote sensing (Gamon et al., 2016). The 337	

snow cover affects the greenup determination in two ways. On the one hand, the snow 338	

cover led to NDVI gaps during the dormancy season. As a result, the time series of 339	

NDVI cannot be adequately fitted during the transitional snow melting and vegetation 340	

greening season (Zhou et al., 2015). We filled the snow-flagged MODIS NDVI with 341	

NDVI from previous period without snow contamination, whereas GIMMS NDVI 342	

was filled with average seasonal profile or spline interpolation (Pinzon and Tucker, 343	

2014).  Our MODIS filling potentially underestimate the NDVI during the transition 344	

season. On the other hand, the overlapped time of snowmelt and greenup leads 345	

complexity in greenup determination. In high latitudes with seasonal snowpack, the 346	

beginning of the growing season is often determined by snowmelt rather than 347	

temperature (Semenchuk et al., 2016).		The study over Yamal Peninsula revealed that 348	

spring greenup date is almost the same as snow-end date between 70.0-73.5ºN (Zeng 349	

and Jia, 2013), so that the snow cover affects the accuracy in identifying vegetation 350	

greenup. In the northern high latitudes at the selected locations in Canada and 351	

Sweden, even if the pixels influenced from snow cover are excluded, MODIS NDVI 352	
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is lower than GIMMS NDVI in the dormant season (Fensholt and Proud, 2012). This 353	

can make an explanation to the late transition from dormant season to growing season 354	

by MODIS.	355	

We inferred a heterogeneous trend in SG using both MODIS and GIMMS, but the 356	

sign and magnitude of the SG shift varies between MODIS and GIMMS. The main 357	

difference between the trend in SG as inferred by MODIS and GIMMS is in Alaska 358	

and Siberia, which lead to the main uncertainties in the NDVI derived SG trend in the 359	

northern high latitudes.  The significant GIMMS SG delay in Alaska and mid-latitude 360	

Eurasia lead to a general delay in SG in North America and Eurasia. In contrast, we 361	

inferred a delay in SG using MODIS in southern Alaska and eastern Canada offset SG 362	

advancement in eastern the United States and Canada, resulting in insignificant SG 363	

trend in North America. Significant SG advancement in Siberia resulted in strong SG 364	

advance in Eurasia. Even so, MODIS and GIMMS showed large inter-annual 365	

variability of SG anomalies in relative to the mean SG over 2001-2013 and the signs 366	

of the anomalies are consistent in between 30ºN and 50ºN. MODIS NDVI inferred 367	

mean SG advancement of 0.96 days year-1 between 52-75ºN over 2001-2013 at 90% 368	

confidence level in our results, which overwhelmed the MODIS snow-end date 369	

advancement of 0.37 days year-1 in this region over 2001-2014 (Chen et al., 2015). 370	

The lagged snow phenology advancement implies that snow complication in 371	

determine SG in the cold regions is still present at a warmer climate. To reduce the 372	

snow effect on spring phenology determination, the normalized difference water 373	

index method (Delbart et al., 2004; Delbart et al., 2006), plant phenology index 374	

method (Jin et al. 2017), normalized difference vegetation index-	normalized 375	

difference infrared index phase-space method (Thompson et al., 2015) are 376	

alternatives to improve the NDVI-based phonological metrics.   377	
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4.2 SG dates sensitivities to climate 378	

The SG to preseason climate sensitivity by MODIS and GIMMS showed 379	

varied degree of vegetation-climate seasonal coupling. The differences in MODIS and 380	

GIMMS SG propagate the conflicts to the preseason length. However, the 𝐿!"!  is very 381	

close to 𝐿!"!  (= 43±30days) in an earlier longer period over 1982-2005 (Xu et al., 382	

2018). The higher correlation between MODIS SG and preseason temperature 383	

indicates stronger MODIS SG-climate relationships. The consistent preseason length 384	

inferred from MODIS over 2001-2013 and GIMMS over 1982-2005, and stronger 385	

MODIS SG-temperature coupling indicate more reliable MODIS NDVI in the 386	

available period and GIMMS NDVI data in the earlier period. The stronger MODIS 387	

NDVI to temperature correlation than GIMMS NDVI was also reported in central 388	

Europe, where the correlation between temperature and August NDVI anomalies were 389	

analyzed (Kern et al., 2016). The stronger SG-temperature coupling than precipitation 390	

is consistent with our previous study of SG to climate sensitivity over 1982-2005 (Xu 391	

et al., 2018). MODIS inferred stronger SG-temperature sensitivity in the northern 392	

boreal and Arctic biomes can be explained by the site-level observation that 393	

temperature sensitivity of phenology is greater in colder, higher latitude sites than in 394	

warmer regions (Prevéy et al., 2017). At the colder sites, the small changes in 395	

temperature may constitute greater relative changes in thermal budget (Oberbauer 396	

et al., 2013), so that the warming impacts on vegetation are amplified. This 397	

explanation is not applicable to the GIMMS NDVI inferred SG response to 398	

temperature that vegetation with earlier growing season is more sensitive to 399	

temperature (Shen et al., 2014).  400	

The sensitivity of GIMMS SG to temperature increased over 2001-2013 in 401	

relative to that over 1988-2000. Our results showed SG to temperature sensitivity 402	
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increased most significantly in Arctic grassland (44.6%), followed by other boreal 403	

biomes (open shrubland (41.2%), permanent wetland (35.9%), woody savanna (31.1%) 404	

and deciduous needleleaf forest (17.6%)). The magnitudes of enhanced sensitivity are 405	

even larger when we compare 2001-2013 SG-temperature sensitivity with a longer 406	

period over 1982-2005 (Xu et al., 2018). Compare with the period 1982-2005, SG-407	

temperature sensitivity of the northern biomes (deciduous needleleaf forest, woody 408	

savanna, open shrublands and permanent wetlands) all increased more than 50% over 409	

2001-2013 with stable inter-biome sensitivity variation  (r = 0.91, p < 0.01).  410	

The increased sensitivity of SG to temperature for boreal biomes has not been 411	

well investigated. In the contrary, temperature sensitivity of spring greenup may 412	

decline under warmer climate because (1) insufficient winter chilling may delay the 413	

spring greenup in spite of continued spring warming (Yu et al., 2010), (2) when 414	

spring greenup starts earlier, shorter photoperiod can limit the potential of leaf 415	

development (Chmielewski & Götz, 2016), (3) greenup may respond nonlinearly to 416	

temperature and be saturated at a high temperature (Caffarra & Donnelly, 2011), and 417	

(4) under warmer condition, the preseason duration of thermal forcing can be reduced, 418	

which declines the SG-temperature sensitivity (Güsewell et al., 2017). The vegetation 419	

growth (represented by NDVI) to temperature sensitivity was reported declining in 420	

the growing season (April-October) based on GIMMS NDVI over 1982-2012 linked 421	

to water stress (Piao et al., 2014). In temperate ecosystems, the lower NDVI to 422	

temperature sensitivity coincidently occurred with increased drought events.  While in 423	

the arctic ecosystem, the lowered sensitivity of NDVI to temperature may be 424	

explained by increases in heat waves because the physiological response of 425	

photosynthesis to temperature is nonlinear with lower sensitivity under warmer 426	

conditions (Piao et al., 2014). The higher interannual temperature variability can also 427	
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cause higher variations in water supply, thus the declined coupling between 428	

vegetation growth and interannual variability of growing season temperature, 429	

generally in semiarid regions (Wu et al., 2017). The wetting preseason in mid to east 430	

of the United States, Western Canada, Northern land along Norway and Northwestern 431	

Russia may partly enhanced SG-temperature if the enhancement is validated. 432	

4.3 Uncertainties in SG as derived by MODIS and GIMMS NDVI 	433	
With SG as inferred using GIMMS over the period 1988-2000 and as inferred 434	

using MODIS over 2001-2013, we found that the trend is advanced continuously in 435	

response to a continuing trend in preseason warming. The uncertainties in the SG 436	

trend and its climatic sensitivity arise when SG as inferred using GIMMS, MODIS, 437	

and other sensors and in situ observations are compared together over a similar period 438	

after 2000, during which the main conflicts in SG trend were found. Our results 439	

coincide with other studies that GIMMS NDVI inferred an opposite trend of SG 440	

before and after 2000 in the circumpolar Arctic (Park et al., 2016). SPOT VGT 441	

retrieved a continuously advanced SG trend over 1999-2013 in the circumpolar region 442	

(>45 °N), in consistent with MODIS SG, although the magnitude and spatial 443	

distribution of the advancement are different between SPOT and MODIS (Gonsamo 444	

and Chen, 2016). Wang et al. (2016) and Zhang et al. (2013) proposed that quality 445	

issues may present in GIMMS NDVI, which can bias vegetation growth sensitivity 446	

and growth trend. Instead of using continuous GIMMS SG over 1982-2011, Zhang et 447	

al. (2013) merged datasets of GIMMS SG over 1982-2000 and SPOT-VGT SG over 448	

2001-2011 to detect SG trend due to data quality issues with GIMMS NDVI in most 449	

parts of western Tibetan Plateau, according to the findings of opposite GIMMS SG 450	

trend to SPOT-VGT and MODIS SG trend over the period 2001-2006. With this 451	

merged data record, the SG trend continuously advanced in Tibetan Plateau over 452	



	

	 21	

1982-2011. This result is consistent with the SG trend derived from tree-ring data 453	

(Yang et al., 2017). On the contrary, continuous GIMMS SG over 1982-2006 inferred 454	

delayed SG trend after mid-1990s over Tibetan Plateau (Yu et al., 2010). At the North 455	

Hemisphere scale, GIMMS SG (1982-2008) showed significant decadal variation and 456	

declining SG shift: advanced 5.2 days over 1982-1999, but only advanced 0.2 days 457	

over 2000-2008 (Jeong et al., 2011). However, the merged GIMMS (1982-2006) and 458	

MODIS (2002-2012) showed SG shift over 2002-2012 (-6 days decade-1) is about 459	

three times larger than that over 1982-2002 (-2 days decade-1), which is interpreted as 460	

enhanced SG advancement and its response to temperature over time (Wang et al., 461	

2016). For the varied timing of SG derived from different products, Zhang et al. (2017) 462	

suggested intersensor calibrations to reduce the difference between vegetation index 463	

products and exclusion of the low quality phonology timing. The ground observations 464	

are solutions to validate the remote sensed phenology. However, in situ observations 465	

and remote sensed phenology differed no matter how accurate they are retrieved 466	

(Gonsamo and Chen, 2016), due to the scale and resolution issues. 467	

These SG shift uncertainties after 2000 are more likely to be explained by the 468	

differences in the NDVI products that implied the opposite SG trend, anomalies north 469	

of 50ºN and biome-scale SG-temperature sensitivities. The spectrum range difference 470	

of MODIS and AVHRR sensor channels is a main contribute to the NDVI differences. 471	

MODIS NDVI is derived from bands 1(620-670nm) and 2 (841-876nm) of the 472	

MODIS on board NASA's Terra satellite whereas GIMMS NDVI is derived from 473	

bands 1(580-680nm) and 2 (725-1100nm) of AVHRR. Furthermore, the NDVI by 474	

MODIS and GIMMS were retrieved from a different spatial resolution. The retrieved 475	

NDVI is a mixture of different vegetation species with diverse phenologies, bare soil 476	

and even water bodies dependent on the spatial resolution (Helman, 2018). Both 477	
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GIMMS NDVI3g and MOD13C1 were generated using daily surface reflectance product to a 478	

similar composite interval. However, the MODIS applied the constrained-view angle-479	

maximum value composite while GIMMS applied maximum value composite. The 480	

maximum value composite cannot completely remove atmospheric effect (Pinzo and 481	

Tucker 2014) and the different composite technique can cause the value difference in 482	

the same interval (Gallo et al., 2004).  483	

The large GIMMS SG anomaly transition around 2000 may be associated with 484	

the sensor transition from AVHRR/2 to AVHRR/3, although among-instrument 485	

AVHRR calibration were conducted with NDVI data derived from Sea-Viewing Wide 486	

Field-of-view Sensor (SeaWiFS) (Pinzon et al., 2014). The calibration with SeaWiFS 487	

is considered as an improvement of GIMMS NDVI in the very northern latitudes 488	

(Marshall et al, 2016). Even so, the data issues associated with sensor transition, such 489	

as (1) satellite signal degradation through lifetime, (2) band design, (3) effect of 490	

maximum value composite (MVC) and (4) replacement of satellites in NOAA series, 491	

potentially influence the interpretation of the SG trend and its sensitivity to climate 492	

drivers.  493	

5. Conclusions 494	
We compare the MODIS and GIMMS NDVI inferred time of spring greenup 495	

and its response to preseason climate over 2001-2013. We infer a spring greenup 496	

delay using GIMMS NDVI in both North America (0.80 days yr-1) and Eurasia (0.22 497	

days yr-1), whereas, using MODIS NDVI, we infer no significant spring greenup shift 498	

in North American and an advanced SG trend of 0.78 days yr-1 in Eurasia. The 499	

differences in MODIS and GIMMS inferred spring greenup trend are mainly in 500	

northern high latitude (>50ºN). The differences are implied by opposite anomalies in 501	

the time of spring greenup in North America and a large GIMMS inferred spring 502	
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greenup transition around 2000 that maybe explained by data issues associated with 503	

the sensor transition from AVHRR/2 to AVHRR/3, including (1) satellite	signal	504	

degradation	through	lifetime,	(2)	band	design,	(3)	effect	of	maximum	value	505	

composite	(MVC)	and	(4)	replacement	of	satellites	in	NOAA	series. Temperature is 506	

the primary climate driver of the time of spring greenup for both MODIS and GIMMS, 507	

although MODIS inferred both a stronger sensitivity and correlation between SG and 508	

temperature. The opposing trends of SG as inferred using MODIS and GIMMS 509	

resulted in differing SG to temperature sensitivity across biomes (-3.6±0.7 days °C-1 510	

for MODIS and 2.2 ± 0.8 days °C-1 for GIMMS). Using GIMMS, we inferred that the 511	

sensitivity of greenup to temperature, which increases over time for Arctic and boreal 512	

biomes, cannot be well explained by the mechanisms regulating the sensitivity of SG 513	

under a warming climate. This result requires further investigation. Our results 514	

suggest the importance of snow-vegetation interactions in high latitude vegetation 515	

monitoring and inter-validation of multiple datasets to better assess vegetation 516	

dynamics.  517	

518	
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Figure Captions: 739	
Figure 1 (a) Correlation between MODIS and GIMMS inferred inter-annual 𝐷!"  over 740	
2001-2013 (p < 0.1), (b) the difference between GIMMS and MODIS inferred 𝐷!"   741	
(days,  𝐷!"! − 𝐷!"! ), and  (c) GIMMS , (d) MODIS inferred trend of spring greenup 742	
date (𝐷!") over 2001-2013(days yr-1). 743	
Figure 2 Anomalies of spring greenup date for mid-latitude (30-50ºN, a, c, e) and high 744	
latitude (>50ºN, b, d, f) in relative to mean 𝐷!"  over 2001-2013 for GIMMS and 745	
MODIS.  746	
Figure 3 Pearson correlation coefficient (PCC) between preseason temperature (Tm) 747	
and date of spring greenup ( 𝐷!") for GIMMS (a) and MODIS(b) and Pearson 748	
correlation coefficient (PCC) between preseason precipitation (Pt) and date of spring 749	
greenup ( 𝐷!") for GIMMS (c) and MODIS(d). 750	
Figure 4 Spring greenup sensitivity to preseason temperature (days °C-1) for GIMMS 751	
(a) and MODIS (b) and spring greenup sensitivity to preseason precipitation (days %-1 752	
of precipitation increases) for GIMMS (c) and MODIS (d). 753	
Figure 5 The comparison of inter-biome SG sensitivity to preseason temperature for 754	
IGBP land cover types for GIMMS over 1982-2005 and 2001-2013 and MODIS over 755	
2001-2013. We used the IGBP land cover classification for 9 biomes in 2012: 756	
Evergreen Needleleaf Forest (ENF), Deciduous Needleleaf Forest (DNF), Deciduous 757	
Broadleaf forest (DBF), Mixed Forest (MF), Open Shrublands (OS), Woody 758	
Savannas (WS), Grassland (GL), Permanent Wetland (PW), and Cropland (CP). We 759	
distinguish the Arctic grassland to the north of 60°N (GLN), from temperate grassland 760	
in the south (GLS) due to their expected differences in climate and controls on 761	
phenology. 762	
  763	



	

  	

Figure	1	(a)	Correlation	between	MODIS	and	GIMMS	inferred	inter-
annual 𝐷!"  	over	2001-2013	(p	<	0.1),	(b)	the	difference	between	
GIMMS	and	MODIS	inferred	𝐷!!"		(days,	 𝐷!"! − 𝐷!"! ),	and		(c)	GIMMS	,	
(d)	MODIS	inferred	trend	of	spring	greenup	date	(𝐷!")	over	2001-
2013(days	yr-1).	
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Figure	2	Anomalies	of	spring	greenup	date	for	mid-latitude	(30-50ºN,	a,	c,	e)	
and	high	latitude	(>50ºN,	b,	d,	f)	in	relative	to	mean	𝐷!"	over	2001-2013	for	
GIMMS	and	MODIS.		
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Figure	3	Pearson	correlation	coefficient	(PCC)	between	preseason	
temperature	(Tm)	and	date	of	spring	greenup	(	𝐷!")	for	GIMMS	(a)	and	
MODIS(b)	and	Pearson	correlation	coefficient	(PCC)	between	preseason	
precipitation	(Pt)	and	date	of	spring	greenup	(	𝐷!")	for	GIMMS	(c)	and	
MODIS(d).	
	



	

	 34	

	
Figure	4	Spring	greenup	sensitivity	to	preseason	temperature	(days	°C-1)	for	
GIMMS	(a)	and	MODIS	(b)	and	spring	greenup	sensitivity	to	preseason	
precipitation	(days	%-1	of	precipitation	increases)	for	GIMMS	(c)	and	MODIS	
(d).	
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Figure	5	The	comparison	of	inter-biome	SG	sensitivity	to	preseason	
temperature	for	IGBP	land	cover	types	for	GIMMS	over	1982-2005	and	2001-
2013	and	MODIS	over	2001-2013.	We	used	the	IGBP	land	cover	classification	
for	9	biomes	in	2012:	Evergreen	Needleleaf	Forest	(ENF),	Deciduous	
Needleleaf	Forest	(DNF),	Deciduous	Broadleaf	forest	(DBF),	Mixed	Forest	
(MF),	Open	Shrublands	(OS),	Woody	Savannas	(WS),	Grassland	(GL),	
Permanent	Wetland	(PW),	and	Cropland	(CP).	We	distinguish	the	Arctic	
grassland	to	the	north	of	60°N	(GLN),	from	temperate	grassland	in	the	south	
(GLS)	due	to	their	expected	differences	in	climate	and	controls	on	phenology.	
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Figure	S1	GIMMS	(a)	and	MODIS	(b)	inferred	mean 𝐷!" 	over	2001-2013		
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Figure	S2	Mean	preseason	length	of	temperature	control	
corresponding	to	GIMMS	spring	greenup	(𝐿!!"! , days) and	MODIS	
spring	greenup	(𝐿!!"! , days)	and	mean	preseason	length	of	
precipitation	control	corresponding	to	GIMMS	spring	greenup	
(𝐿!!!! , days) and	MODIS	greenup	(𝐿!!!! , days).	
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Figure	S3	The	preseason	temperature	trend	(°C	yr-1)	calculated	from	
CRUNCEP	correlated	to	spring	greenup	date	inferred	from	GIMMS	(a)	and	
MODIS	(b)	NDVI	and	precipitation	trend	(mm	yr-1)	calculated	from	CRUNCEP	
correlated	to	spring	greenup	date	inferred	from	GIMMS	(c)	and	MODIS	(d)	
NDVI.	The	shaded	regions	indicate	that	the	trend	is	significant	(p	<	0.1).	
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	Table	S1		The	spring	greenup	shift	(days	per	decade)	as	inferred	from	Normalized	
Difference	Vegetation	Index	(NDVI)	from	satellite	data	

NDVI	Data	 Period	 Region	 Shift	
(days	decade-1)	

Reference	

PAL	 1981-1991	 >=40N	 -8	 Myneni	et	al.,	1997	
GIMMS	 1981-1999	 Eurasia	 -3.3	 Zhou	et	al.,	2001	
GIMMS	 1981-1999	 N.	America	 -4.4	 Zhou	et	al.,	2001	
AVHRR	 1982-1991	 45-75	 -6.2	 Tucker	et	al.,	2001	
AVHRR	 1992-1999	 45-75	 -2.4	 Tucker	et	al.,	2001	
AVHRR	 1982-1990	 Inner	Mongolia	 0	 Lee	et	al.,	2002	
PAL	 1982-2001	 Europe	 -5.4	 Stockli	and	Vidale,	2004	
PAL	 1985-1999	 N.	America	 -6.6	 de	Beurs	and	Henebry,	2005	
PAL	 1985-2000	 Eurasia	 -4.5	 de	Beurs	and	Henebry,	2005	
GIMMS		 1982-1999	 Temperate	China	 -7.9	 Piao	et	al.,	2006	
PAL	 1982-1999	 East	Asia	 -7	 Jeong	et	al.,	2009	
GIMMS	 1982-2003	 Global	 -3.8	 Julien	&	Sobrino,	2009	
GIMMS	 1982-2006	 Fennoscandia	 -2.7	 Karlsen	et	al.,	2009	
GIMMS	 1982-1999	 N.	Hemisphere	 -2.9	 Jeong	et	al.,	2011	
GIMMS	 2002-2008	 N.	Hemisphere	 -0.3	 Jeong	et	al.,	2011	
MODIS	 2000-2010	 >60N,	Arctic	 -4.7	 Zeng	et	al.,	2011	
MODIS	 2000-2010	 >60N,	N.	America	 -11.5	 Zeng	et	al.,	2011	
MODIS	 2000-2010	 >60N,	Eurasia	 -2.7	 Zeng	et	al.,	2011	
GIMMS	 1982-2008	 >60N,	Arctic	 -0.5	 Zeng	et	al.,	2011	
GIMMS	 1982-2008	 >60N,	N.	America	 -0.8	 Zeng	et	al.,	2011	
GIMMS	 1982-2008	 >60N,	Eurasia	 -0.3	 Zeng	et	al.,	2011	
GIMMS		
SPOT-VGT	 1982-2011	 Tibetan	Plateau	 -10.4	 Zhang	et	al.,	2013	

GIMMS	 1982-2011	 Fennoscandia	 -11.8	 Høgda	et	al.,	2013	
MODIS	 2001-2012	 U.S.	 -4.8	 Keenan	et	al.,	2014	

MODIS	 2002-2014	 Inner	Mongolia	 -4.5	 Gong	et	al.,	2015	

GIMMS		 1982-2011	 U.S.	Great	Basin	 -0.1	 Tang	et	al.,	2015	

GIMMS	 1982-2002	 N.	Hemisphere	 -1.9	 Wang	et	al.,	2016	
MODIS	 2002-2012	 N.	Hemisphere	 -5.9	 Wang	et	al.,	2016	
GIMMS	 1982-2012	 Tibetan	Plateau	 0	 Ding	et	al.,	2016	
MODIS:	Moderate Resolution Imaging Spectroradiometer	
AVHRR:	Advanced Very High Resolution Radiometer	
GIMMS:	Global	Inventory	Modeling	and	Mapping	Studies	
PAL:	Pathfinder	AVHRR	Land	
GAC:	Global	area	cover	
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Table S2. The number of pixels for the calculation of DSG sensitivity 
to preseason temperature (p<0.1) for each biome 
 

Veg.	
Type*	

1988-2000	 2001-2013	
GIMMS	 GIMMS	 MODIS	

ENF	 1477	 556	 1677	
DNF	 356	 202	 339	
DBF	 119	 26	 96	
MF	 2700	 966	 2860	
OS	 4691	 616	 5371	
WS	 1204	 168	 1397	
GLS	 2076	 630	 1273	
GLN	 874	 143	 545	
PW	 327	 95	 330	
CP	 1019	 587	 791	

	
*We	used	the	IGBP	land	cover	classification	for	9	biomes	in	
2012:	Evergreen	Needleleaf	Forest	(ENF),	Deciduous	Needleleaf	
Forest	(DNF),	Deciduous	Broadleaf	forest	(DBF),	Mixed	Forest	
(MF),	Open	Shrublands	(OS),	Woody	Savannas	(WS),	Grassland	
(GL),	Permanent	Wetland	(PW),	and	Cropland	(CP).	We	
distinguish	the	Arctic	grassland	to	the	north	of	60°N	(GLN),	
from	temperate	grassland	in	the	south	(GLS)	due	to	their	
expected	differences	in	climate	and	controls	on	phenology.	
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