

Spring phenology and phenology-climate links inferred from two remotely sensed vegetation indices across regions and biomes

Xiyan Xu¹, William J. Riley², Charles D. Koven², Gensuo Jia^{1*}

¹Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute

of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

²Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory,

Berkeley, California, USA

*Corresponding Author:

Dr. Gensuo Jia

Key Laboratory of Regional Climate-Environment for Temperate East Asia,

Institute of Atmospheric Physics, Chinese Academy of Sciences,

Beijing 100029, China

Email address: jiong@tea.ac.cn

Phone number: 86-10-82995314

1	Abstract
2	The timing of spring greenup (SG) as inferred by remotely sensed vegetation
3	indices have showed contrasting dynamics across the same region and periods.
4	Assessing the uncertainty in SG associated with different Normalized Difference
5	Vegetation Index (NDVI) products is essential for robustly interpreting the links
6	between climate and phenological dynamics. We compare SG inferred from two
7	NDVI products over the period 2001-2013: (1) Terra Moderate Resolution Imaging
8	Spectroradiometer (MODIS) and (2) National Oceanic and Atmospheric
9	Administration's (NOAA's) Advanced Very High Resolution Radiometer (AVHRR)
10	instruments processed by the Global Inventory Monitoring and Modeling Studies
11	(GIMMS) to explore confidence and uncertainty in the NDVI-inferred SG trend and
12	its links to climate variability. Both MODIS and GIMMS agreed in showing an
13	advancement of SG in northern Canada, the eastern United States, and Russia, as well
14	as a delay in SG in western North America, parts of Baltic Europe and East Asia. In
15	the regions with advanced SG, GIMMS inferred much weaker advancement whereas
16	in the regions with delayed SG, GIMMS inferred much stronger delay than MODIS.
17	This resulted in a GIMMS SG delay in both North America and Eurasia. MODIS data
18	show no significant SG shift in North American for spatial heterogeneity in SG shift,
19	but dominant SG advancement in Eurasia. The SG advancement inferred from
20	MODIS is associated with a stronger coupling between SG and temperature and a
21	stronger sensitivity across biomes as compared to GIMMS. The main uncertainty in
22	the SG trend and SG-temperature sensitivity are in northern high latitudes (>50°N)
23	where GIMMS and MODIS show different magnitude and sign of the annual SG
24	anomalies. Compared to 1988-2000, inter-biome GIMMS SG-temperature sensitivity

- 25 is stable and the SG-temperature sensitivity increased in the boreal and Arctic biomes
- 26 despite a slight reduction in the SG-temperature coupling over the period 2001-2013.
- 27 The explanation for the increased SG-temperature sensitivity remains unclear and
- 28 requires further investigation. We suggest broader evaluation of the NDVI products
- 29 against field measurements and inter-validation for robust assessment of vegetation
- 30 dynamics.
- 31 Keywords: NDVI, MODIS, GIMMS, phenology, spring greenup, sensitivity

32 **1. Introduction**

33	Vegetation phenology plays an important role in regulating land-atmosphere
34	energy, water, and trace-gas exchanges. As the time spanned by satellite-based
35	Normalized Difference Vegetation Index (NDVI) products has increased to longer
36	periods, several studies have used NDVI to derive spring greenup time (SG) at
37	regional and global scales. Several changes in SG have been documented in the past
38	half-century in response to ongoing climate change. The Northern Hemisphere SG has
39	advanced in the range of 0-12 days per decade as inferred by NDVI (Table 1). The
40	wide range of SG shifts stem from studies covering different periods and regions, and
41	different methods and datasets that have been applied to derive phenology metrics.
42	Many factors associated with the obtaining of satellite data—e. g. drift of
43	satellite orbits, calibration uncertainties, inter-satellite sensor differences, bidirectional
44	and atmospheric effects-may cause uncertainties in satellite derived data time series
45	and thereby the uncertainties in interpreting the vegetation dynamics. Four NDVI
46	products have been published based on radiances collected by the Advanced Very
47	High Resolution Radiometer (AVHRR) instruments carried by programs of
48	NOAA/NASA Pathfinder (PAL): Global Inventory Monitoring and Modeling Studies
49	(GIMMS), Land Long Term Data Record (LTDR) version 3 (V3) and Fourier-
50	Adjustment, Solar zenith angle corrected, Interpolated Reconstructed (FASIR). Each
51	of these records extends back to the year 1981. Because of their long time span, the
52	AVHRR NDVI products have been applied in numerous regional to global vegetation
53	phenology studies (Table 1). Advantages are recognized for GIMMS NDVI over the
54	other AVHRR NDVI products to represent the temporal variation of NDVI (Beck et
55	al., 2011). The more recent NDVI products retrieved from Terra Moderate Resolution
56	Imaging Spectroradiometer (MODIS) and Système Pour l'Observation de la Terre

81

- 57 (SPOT) VEGETATION mission (1 km)(e.g., Durpaire et al., 1995) are considered an
- 58 improvement over AVHRR for improved calibration and atmospheric corrections, and
- 59 higher spatial resolution (Zhang et al., 2003).
- 60 Several inter-comparisons have been conducted to evaluate the quality of 61 different NDVI products. Yet broad validation of NDVI products by using field 62 measurements is limited. The SPOT-4 VGT was used to evaluate the AVHRR PAL 63 (1998-2000) and AVHRR GIMMS (1998-2004) NDVI time series for African 64 continent. The dynamic range of SPOT-4 VGT NDVI is generally higher than the 65 AVHRR PAL NDVI, but matched GIMMS NDVI, implying an improvement of 66 GIMMS over PAL (Fensholt et al., 2006), however, the growing season GIMMS 67 NDVI is lower than MODIS NDVI in African semi-arid environment (Fensholt and 68 Sandholt, 2005). The annual average trend of GIMMS NDVI is consistent with 69 MODIS NDVI in the semi-arid Sahel zone, but higher discrepancies in the more 70 humid regions (Fensholt et al., 2009). In the north 50°N, four NDVI products 71 (GIMMS3g, GIMMSg, SeaWiFS, SPOT) except MODIS showed consistent greening 72 trend over overlapping period although differences in growing season NDVI and 73 magnitude of greening trend pose uncertainties in satellite vegetation dynamics (Guay 74 et al., 2014). In mixed grassland in the Grasslands National Park of Canada, both 75 MODIS and AVHRR NDVI cannot quantify the spatial variation in ground based leaf 76 area index measurements (Tong and He, 2013). 77 Despite inconsistencies and uncertainties among these NDVI products, 78 GIMMS NDVI has been combined with other NDVI products to explore a longer 79 period vegetation dynamics or to constrain potential data quality issue. Zhang et al. 80 (2013) merged GIMMS NDVI over 1982-2000 with SPOT-VGT NDVI over 2001-

2011 to investigate the SG in the Tibetan Plateau. GIMMS SG over 2001-2006 was

82	discarded for its delayed SG trend, in contrast to SPOT-VGT and MODIS SG trend,
83	which was considered as a potential GIMMS NDVI data quality issue in the western
84	Plateau. SG trend in Tibetan Plateau advanced by about 10.4 days decade ⁻¹ over 2001-
85	2012 inferred from merged GIMMS and SPOT-VGT NDVI (Zhang et al., 2013), in
86	contrast to the insignificant SG trend over 2000-2011 inferred from single GIMMS
87	NDVI (Ding et al., 2016). The differences between GIMMS SG and SPOT-VGT and
88	MODIS SG were also found after 2000s in western Arctic Russia where values and
89	trends of MODIS and SPOT-VGT SG agreed very well (Zeng et al., 2013). When
90	GIMMS NDVI was stitched with MODIS NDVI, the advancing trend of spring
91	greenup in Northern Hemisphere over 2002-2012 that was inferred from MODIS
92	NDVI is almost 3 times larger than the trend over the period 1982-2002 inferred using
93	the GIMMS NDVI (Wang et al., 2016). However, a similar study using the GIMMS
94	NDVI time series over 1982-2008 revealed an insignificant advancing trend in
95	Northern Hemisphere over 2000-2008 in relative to 1980-1999 (Jeong et al., 2011).
96	As the different methods in determining SG may not lead to such a high difference in
97	SG trend (Cong et al., 2013), we hypothesize the different NDVI products may lead to
98	the contradictory SG trend.
99	In this study, we attempt to better understand the causes of the differing findings
100	of SG trend in previous studies. We compared SG as inferred by GIMMS and MODIS
101	NDVI and their respective sensitivities to climate over the period 2000-2013, in
102	which both the AVHRR and MODIS instruments were active. We used an
103	independent climate reanalysis dataset to analyze the preseason, the period preceding
104	SG during which the climate drivers regulate SG, and the sensitivity between
105	preseason climate and SG. Data and methods are described in section 2. The results of

106 comparison of GIMMS and MODIS SG, the preseason climate that regulates the SG

- 107 and sensitivities of the SG to preseason climate are presented in section 3. Discussion
- and conclusions are given in section 4 and 5, respectively.
- 109 2. Data and Method
- 110

111 **2.1 Study area and biomes**

112 We restricted our analysis to north of 30°N, where temperate and boreal

113 vegetation dominate, since that is the region where phenology is expected to be most

strongly controlled by the annual cycle of temperature and moisture availability. In

order to analyze the phenology and its response to climate across biomes, we used

116 global mosaics of collection 6 MODIS data products (MCD12Q1) in the IGBP

117 classification of land cover types with spatial resolution of $0.5^{\circ} \ge 0.5^{\circ}$ to mask the

118 satellite-based SG results. The global mosaics of MCD12Q1 with geographic

119 coordinates of latitude and longitude on the WGS 1984 coordinate reference system

120 (EPSG: 4326) (Channan et al., 2014) were re-projected from standard MCD12Q1

121 with 500m resolutions (Friedl et al., 2010). We used the IGBP land cover

122 classification for 9 biomes in 2012 (Table 1): Evergreen Needleleaf Forest (ENF),

123 Deciduous Needleleaf Forest (DNF), Deciduous Broadleaf forest (DBF), Mixed

124 Forest (MF), Open Shrublands (OS), Woody Savannas (WS), Grassland (GL),

125 Permanent Wetland (PW), and Cropland (CP). We distinguish the grassland to the

126 north of 60°N (GLN), which is more likely to be tundra, from grassland in the

127 temperate south (GLS) due to their expected differences in climate and controls on

128 phenology.

129

130 2.2 Climate reanalysis

- 131 We calculated daily mean air temperature (T_m) and cumulative precipitation
- 132 (P_c) from 6-hourly, half-degree resolution CRU-NCEP (Climate Research Unit-
- 133 National Centers for Environmental Prediction) v6 reanalysis to identify the preseason
- 134 climate associated with SG. The CRU-NCEP v6 dataset, recently extended to 2014, is
- a combination of CRU TS v3.2 0.5° x 0.5° monthly climatology and NCEP reanalysis
- 136 $2.5^{\circ} \ge 2.5^{\circ}$ with six hours time step available in near real time
- 137 (http://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation/Forcings).

138 2.3 NDVI products

- 139 We used the latest version NDVI time series (GIMMS NDVI3g) derived from
- 140 the AVHRR instrument on board the NOAA satellite series. This dataset spans the
- 141 period from July 1981 to December 2013 with spatial resolution of 1/12° and
- 142 bimonthly temporal resolution (Pinzon and Tucker, 2014).

143 We also used the 16-day MODIS NDVI composites (MOD13C1, collection 6)

- 144 at 0.05° spatial resolution, and further performed data quality control. We regridded
- both GIMMS and MODIS NDVI data to $0.5^{\circ} \ge 0.5^{\circ}$ resolution by taking the mean
- value in a 0.5° x 0.5° pixel to match the spatial resolution of the CRU-NCEP

147 reanalysis. For GIMMS NDVI3g, the algorithm has improved snow-melt detection

- 148 and the pixels recognized with snow or ice were filled with average seasonal profile
- 149 or spline interpolation (Pinzon and Tucker, 2014). The pixels flagged with snow/ice
- 150 were given the NDVI values with the values from the previous nearest period without
- 151 snow influence. Even though, the filled values are very close to zero in the dormant
- season and the near-zero values are smoothed by the piecewise logistic method
- described in section 2.3. SGs were derived from GIMMS NDVI 2001-2013 to fit the

time period of MOD13C1.

2.4 Determination of SG and preseason climate

- 156 We determined the preseason duration following the method of Shen et al.
- 157 (2014), but with a different climate reanalysis product and method for calculating SG.
- 158 We restrict our analysis to north of 30°N, where temperate and boreal vegetation
- dominate, since that is the region where phenology is expected to be most strongly
- 160 controlled by the annual cycle.

161 Day SG and mean day of SG

- 162 We first applied piecewise logistic method (Zhang et al., 2003) to fit and
- 163 smooth the temporal variation of vegetation index data (NDVI) to vegetation growth:

164
$$y(t) = \frac{c}{1+e^{a+bt}} + d$$
 (1)

165 where t is time in days, y(t) is the vegetation index at time t, a and b are fitting parameters, c+d is the maximum vegetation index value, and d is the initial 166 167 background vegetation index, usually the minimum vegetation index value preceding 168 the growing season. D_{SG} is identified as the Julian date at which the rate of change in 169 the vegetation growth (y(t)) is maximum. D_{SG} is the maximum of the curvature and 170 derived as the second derivative of equation (1). The mean $D_{SG}(\overline{D}_{SG})$ in each pixel is 171 averaged over the analysis years. For the pixels with multiple growth cycles in a year, 172 we applied this piecewise logistic method to the first cycle, so that D_{SG} is the Julian 173 date at which the second derivative of y(t) is maximum for the first time in a year. 174 Preseason period and preseason climate

- 175 We calculated the preseason period separately for temperature and
- 176 precipitation. To do this, we first calculated T_m and P_c during the respective preseason

- 177 periods. We defined the preseason climate ($T_{\rm m}$ and $P_{\rm c}$) in each pixel over the period
- 178 preceding \overline{D}_{SG} from 15 to 120 days with an increment of 3 days. We expect the
- 179 relative variation in precipitation to be more relevant than absolute values in
- 180 determining phenology, thus we used the relative variation of cumulative precipitation
- 181 in percentage (%) of precipitation change instead of the absolute cumulative
- 182 precipitation variation in millimeter (mm). We detrended the calculated $T_{\rm m}$ and $P_{\rm c}$
- 183 over the historical period. For each period preceding \overline{D}_{SG} for a given pixel, we
- 184 calculated the Pearson's correlation coefficients (PCC) between D_{SG} and $T_{\rm m}$ (and $P_{\rm c}$).
- 185 We screened the data to remove pixels where we found a positive interannual
- 186 correlation between (1) preseason temperature and D_{SG} and (2) preseason
- 187 precipitation and D_{SG} , respectively. We defined the period with the most negative
- 188 correlation between D_{SG} and T_m (and P_c) as the preseason P_T (and P_P). The length of
- 189 preseason (days) for temperature and precipitation control is defined as L_{PT} and L_{PP} ,
- 190 respectively. The superscript of G and M represents the variables derived from
- 191 GIMMS and MODIS, respectively (e.g. D_{SG}^{M} and L_{PT}^{M} are D_{SG} and L_{PT} derived from
- 192 MODIS, respectively.).

SG response to preseason climate

- 194 We calculated the response of SG to preseason climate by calculating linear
- regressions between D_{SG} and T_m (and P_c). We excluded the SG response to preseason
- 196 climate in pixels where no significant relationship was found (i.e., p-value > 0.1).

197 **3. Results**

198 3.1 MODIS and GIMMS SG comparison

199 The spatial pattern of GIMMS-inferred mean D_{SG} (\overline{D}_{SG}^{G}) and MODIS-inferred 200 D_{SG} (\overline{D}_{SG}^{M}) is consistent (r = 0.83, p < 0.01). The regions with evident difference

201	between D_{SG}^G and D_{SG}^M are in the circumpolar Arctic and Asia high-altitudes (Figure 1a
202	and 1b) where correlations between the time series of D_{SG}^{G} and D_{SG}^{M} are relatively low
203	(Figure S1a). About 47% of the pixels in the north of 30°N have the inter-annual
204	correlation above 0.5 ($p < 0.1$), 86% of which are located between 45-90°N. The
205	better correlated D_{SG}^{G} and D_{SG}^{M} time series to the north of 45°N than in lower latitudes
206	implies agreed inter-annual variation of D_{SG}^{G} and D_{SG}^{M} in this region. In the regions
207	with well-correlated inter-annual variation, D_{SG} differences between MODIS and
208	GIMMS still show significant latitudinal characteristics (Figure S1b). In the northern
209	mid-latitudes, we inferred a later \overline{D}_{SG} using MODIS(9 ± 6 days) in 67% of the pixels,
210	and an earlier \overline{D}_{SG} (5 ± 4 days) in the remaining pixels, as compared to GIMMS. We
211	also inferred a later \overline{D}_{SG} using MODIS in southern Asia and the eastern United States
212	as compared to \overline{D}_{SG} using GIMMS. The D_{SG}^G and D_{SG}^M inter-annual variation are
213	weakly correlated in the southern mid-latitudes, especially in the Eurasia. For those
214	pixels in the south of mid-latitude, where inter-annual variation of D_{SG}^{G} and D_{SG}^{M} are
215	well correlated, D_{SG}^M advanced D_{SG}^G by 6±5 days (Figure S1b).
216	Both MODIS and GIMMS agreed in showing that D_{SG} advanced in Northern
217	Canada, Eastern United States, and Russia, and that D_{SG} delayed in western North
218	America, parts of Baltic Europe and East Asia (Figure 1c and 1d). In the regions
219	where D_{SG} advanced, D_{SG}^{G} advancement was much weaker than D_{SG}^{M} . In the regions
220	where D_{SG} delayed, the D_{SG}^{G} delay is much stronger than D_{SG}^{M} . Together, these
221	differences lead to a delayed continental-scale D_{SG}^G trend in both North America (0.80
222	days yr ⁻¹) and Eurasia (0.22 days yr ⁻¹) at 90% confidence level. MODIS implied no
223	significant SG shift trend in North American but advanced SG trend of 0.78 days yr ⁻¹
224	in Eurasia at 90% confidence level. The differences in D_{SG}^G and D_{SG}^M trend are mainly

225	in the northwest of North America and east-to-central Eurasia north of 50°N. The
226	inter-annual variability of D_{SG} anomalies in relative to \overline{D}_{SG} over 2001-2013 indicated
227	consistent anomaly signs of D_{SG} between MODIS and GIMMS over 30-50°N in North
228	America. The most remarkable difference in D_{SG} anomaly between MODIS and
229	GIMMS is in Northern North America (>50°N) where negative D_{SG}^{G} anomalies over
230	2001-2008 and positive D_{SG}^{G} anomalies thereafter in North America, in opposite to
231	D_{SG}^{M} anomalies (Figure 2d). In Eurasia, both MODIS and GIMMS indicated anomalies
232	of advanced D_{SG} in the north of 50°N after 2006 (Figure 2f). A large transition in the
233	D_{SG}^{G} anomaly occurred around 2000. The transition is particularly remarkable in North
234	America, which is due to a 5-6 days later mean D_{SG} (\overline{D}_{SG}^{G}) over 2001-2013 than that
235	over 1982-2000 in North America.

236 3.2 Preseason climate regulating SG

237	The preseason length of temperature control for GIMMS (L_{PT}^{G}) and MODIS
238	(L_{PT}^{M}) that we inferred from the correlation between T_{m} and D_{SG} differed due to the
239	differences between D_{SG}^{G} and D_{SG}^{M} (Figure 3a, 3b). The spatial pattern of L_{PT}^{G} shows
240	significant heterogeneity, with L_{PT}^{G} over two months in the regions from Russia to
241	central Asia in Eurasia and from Alaska to northwestern Canada in North America.
242	L_{PT}^{G} is 62±38 days for all the valid pixels, while L_{PT}^{M} is usually less than two months,
243	with the L_{PT}^{M} of 41±31days. Moreover, L_{PT}^{M} is better correlated to T_{m} during its
244	corresponding preseason (P_T^M) with North Hemisphere correlation of 0.6±0.2 in
245	comparison to the correlation between D_{SG}^G and T_m during its preseason (P_T^G) of
246	0.3±0.2 (Figure S2a, 2b).

247 The fraction of the northern mid- to high-latitude land surface with preseason 248 precipitation control is less than that for temperature control for both GIMMS and

249

250	MODIS (L_{PP}^{M} = 56±35 days) is longer than that of temperature control. In contrast,
251	GIMMS showed relatively shorter preseason length of precipitation control (L_{PP}^{G} =
252	45±32 days) than that of temperature control. Although GIMMS showed a larger
253	fraction of land surface where precipitation correlated to D_{SG} than MODIS, MODIS
254	and GIMMS showed consistent spatial pattern in both preseason length and
255	correlations between P_c and D_{SG} (Figure S2c and S2d). The mean PCC is -0.4±0.2 for
256	both MODIS and GIMMS.

MODIS (Figure 3 and Figure S2). The preseason length of precipitation control for

257	The spatial pattern of the temperature trend in P_T^M and P_T^G over 2001-2013 is
258	consistent ($r = 0.61, p < 0.01$) although the derived preseason length for temperature
259	control differed for GIMMS and MODIS derived D_{SG} (Figure S3a and S3b). The
260	majority of both North America and North Eurasia experienced warming of the SG
261	preseason, while Alaska, the eastern edge of Hudson Bay and the mid-latitudes of
262	Eurasia (40-60°N) experienced a preseason cooling. The preseason warming trend is
263	most significant in central Russia and eastern Canada and the cooling trend is most
264	significant in part of Central Asia and central to eastern China. The maximum
265	preseason warming trend is about 0.6 °C yr ⁻¹ in central Russia. The precipitation trend
266	in the preseason is insignificant and more heterogeneous as compared to the
267	temperature trend for both P_P^M and P_P^G (Figure S3c and S3d). The spatial pattern of
268	the precipitation trend in P_p^M and P_p^G are also less correlated ($r = 0.40, p < 0.01$) than
269	that of temperature trend. Wetting of the preseason occurred in mid to east of the
270	United States, Western Canada, Northern Norway and Northwestern Russia. The
271	largest value of the wetting trend is about 7 mm yr ⁻¹ . Drying preseason only occurred
272	remarkably in the southeastern the United States and scattered in Eurasia. The pixels
273	where the largest values of a preseason drying trend is about 4 mm yr ⁻¹ .

274 **3.3 SG sensitivity to preseason climate**

- 275 The fraction of areas in which D_{SG}^M sensitive to T_m and P_c are much larger than
- 276 D_{SG}^{G} (Table S1) and D_{SG}^{M} are more sensitive to T_{m} and P_{c} in relative to D_{SG}^{G} (Figure 4).
- About 43% of the land fraction shows significant sensitivity of D_{SG}^{M} to T_{m} (p < 0.1)
- compared with 13% of the land fraction with significant sensitivity of D_{SG}^{G} to T_{m} .
- About 11% of the land fraction shows significant sensitivity of D_{SG}^{M} to P_{c} (p < 0.1) as
- compared with 3% of the land fraction with significant sensitivity of D_{SG}^{G} to P_{c} . The
- 281 sensitivity of D_{SG}^{M} to T_{m} is most significant in the mid- to high-latitudes (Figure 4b)
- whereas the sensitivity of D_{SG}^{M} to P_{c} is scattered (Figure 4d). The sensitivity of
- 283 MODIS SG to precipitation is 0.23±0.18 days advancement per percent of
- 284 precipitation increase. Due to the weak SG-precipitation coupling and sensitivity, we
- only analyzed biome-scale D_{SG} to T_m sensitivity (Figure 5). The difference between
- the sensitivity of D_{SG} to T_m as inferred by MODIS versus GIMMS is less in forest
- 287 biomes, even though D_{SG}^M is more sensitive to T_m in all the biomes in relative to D_{SG}^G .
- 288 The differences in D_{SG} to T_m sensitivity are especially significant in northern biomes.
- 289 For example, sensitivity of D_{SG}^{M} to T_{m} in open shrublands, northern grasslands, and
- 290 permanent wetlands are 50% higher than sensitivity of D_{SG}^G to T_m in these biomes.
- As the GIMMS NDVI product extends as far back as the early 1980s, we also
- 292 performed the comparison of D_{SG}^G to T_m sensitivity over two periods. D_{SG}^G to T_m
- sensitivity was analyzed with the same method in section 2, but between the period
- spanning 1988 and 2000. This has the same length of time (13 years) as the later
- analysis period of 2001-2013. The fraction of area where D_{SG}^{G} shift in response to T_{m}
- and P_c is reduced in the period 2001-2013 as compared to the earlier 1988-2000
- 297 (Table S1). Most of the biomes show a slightly increased sensitivity of D_{SG}^{G} to T_{m} in
- the later period, as compared to that over 1988-2000, with the highest increase in the

- 299 northern grasslands (44.6%) and open shrublands (41.2%) (Figure 5a). The sensitivity
- 300 of D_{SG}^{G} to T_{m} is relatively stable in southern grasslands. Exceptionally, the sensitivity
- 301 of D_{SG}^{G} to T_{m} declined by 1.4 days °C⁻¹ for deciduous broadleaf forests and 0.1
- 302 days $^{\circ}C^{-1}$ for mixed forests; this represents a reduced sensitivity of 33.7% and 3.4%
- 303 respectively. The inter-biome variation of the sensitivity of D_{SG}^{G} to T_{m} is stable (r =
- 304 0.90, p < 0.001) over the two periods (Figure 5b).

305 4. Discussion

306 4.1 SG mean state and trend

307	We analyzed MODIS and GIMMS NDVI products to infer spring greenup dates
308	and their responses to preseason climate over the period 2000-2013. Inter-annual
309	variation of greenup date as inferred from MODIS and GIMMS are well correlated
310	north of 45°N (86% of the pixels with $r > 0.5$ and $p < 0.1$). But in these regions, we
311	tend to infer a later greenup time using MODIS than GIMMS NDVI. This may be
312	contributed by the evergreen vegetation and the influences of snow cover on the
313	pixels. The snow cover led to NDVI gaps during the dormancy season. As a result, the
314	time series of NDVI cannot be adequately fitted during the transitional snow melting
315	and vegetation greening season (Zhou et al., 2015). We filled the snow-flagged
316	MODIS NDVI with NDVI from previous period without snow contamination,
317	whereas GIMMS NDVI was filled with average seasonal profile or spline
318	interpolation (Pinzon and Tucker, 2014). Our MODIS filling potentially
319	underestimate the NDVI during the transition season. In high latitudes with
320	seasonal snowpack, the beginning of the growing season is often determined by
321	snowmelt rather than temperature (Semenchuk et al., 2016). The study over
322	Yamal Peninsula revealed that spring greenup date is almost the same as snow-end
323	date between 70.0-73.5°N (Zeng and Jia, 2013), so that the snow cover affects the

- 324 identification of vegetation greenup. In the northern high latitudes at the selected
- 325 locations in Canada and Sweden, even if the pixels influenced from snow cover are
- 326 excluded, MODIS NDVI is lower than GIMMS NDVI in the dormant season
- 327 (Fensholt and Proud, 2012). This can make an explanation to the late transition from
- dormant season to growing season by MODIS.

329 We inferred a heterogeneous trend in SG using both MODIS and GIMMS, but the 330 sign and magnitude of the SG shift varies between MODIS and GIMMS. The main 331 difference between the trend in SG as inferred by MODIS and GIMMS is in Alaska 332 and Siberia, which lead to the main uncertainties in the NDVI derived SG trend in the 333 northern high latitudes. The significant GIMMS SG delay in Alaska and mid-latitude 334 Eurasia lead in general to a delay in SG in North America and Eurasia. In contrast, we 335 inferred a delay in SG using MODIS in southern Alaska and eastern Canada offset SG 336 advancement in eastern the United States and Canada, resulting in insignificant SG 337 trend in North America. Significant SG advancement in Siberia resulted in strong SG 338 advance in Eurasia. Even so, MODIS and GIMMS showed large inter-annual 339 variability of SG anomalies in relative to the mean SG over 2001-2013 and the signs 340 of the anomalies are consistent in between 30°N and 50°N. MODIS NDVI inferred mean SG advancement of 0.96 days year⁻¹ between 52-75°N over 2001-2013 at 90% 341 confidence level in our results overwhelmed the MODIS snow-end date advancement 342 343 of 0.37 days year⁻¹ in this region over 2001-2014 (Chen et al., 2015). The lagged 344 snow phenology advancement implies that snow complication in determine SG in the 345 cold regions is still present at a warmer climate.

346 4.2 SG dates sensitivities to climate

347 The SG to preseason climate sensitivity by MODIS and GIMMS showed348 varied degree of vegetation-climate seasonal coupling. The higher correlation between

349	MODIS SG and preseason temperature indicates stronger MODIS SG-climate
350	relationships. The stronger MODIS NDVI to temperature correlation than GIMMS
351	NDVI was reported in central Europe, where the correlation between temperature and
352	August NDVI anomalies were analyzed (Kern et al., 2016). The stronger SG-
353	temperature coupling than precipitation is consistent with our previous study of SG to
354	climate sensitivity over 1982-2005 (Xu et al., 2018). MODIS inferred stronger SG-
355	temperature sensitivity in the northern boreal and Arctic biomes can be explained by
356	the site-level observation that temperature sensitivity of phenology is greater in colder,
357	higher latitude sites than in warmer regions (Prevéy et al., 2017). At the colder sites,
358	the small changes in temperature may constitute greater relative changes in thermal
359	budget (Oberbauer et al., 2013), so that the warming impacts on vegetation are
360	amplified. This explanation is not applicable to the GIMMS NDVI inferred SG
361	response to temperature that vegetation with earlier growing season is more sensitive
362	to temperature (Shen et al., 2014).
363	The sensitivity of GIMMS SG to temperature increased over 2001-2013 in
364	relative to that over 1988-2000. Our results showed SG to temperature sensitivity
365	increased most significantly in Arctic grassland (44.6%), followed by other boreal
366	biomes (open shrubland (41.2%), permanent wetland (35.9%), woody savanna (31.1%)
367	and deciduous needleleaf forest (17.6%)). The magnitudes of enhanced sensitivity are
368	even larger when we compare 2001-2013 SG-temperature sensitivity with a longer
369	period over 1982-2005 (Xu et al., 2018). Compare with the period 1982-2005, SG-
370	temperature sensitivity of the northern biomes (deciduous needleleaf forest, woody
371	savanna, open shrublands and permanent wetlands) all increased more than 50% over

372 2001-2013 with stable inter-biome sensitivity variation (r = 0.91, p < 0.01).

373	The increased sensitivity of SG to temperature for boreal biomes has not been
374	well investigated. In the contrary, temperature sensitivity of spring greenup may
375	decline under warmer climate because (1) insufficient winter chilling may delay the
376	spring greenup in spite of continued spring warming (Yu et al., 2010), (2) when
377	spring greenup starts earlier, shorter photoperiod can limit the potential of leaf
378	development (Chmielewski & Götz, 2016), (3) greenup may respond nonlinearly to
379	temperature and be saturated at a high temperature (Caffarra & Donnelly, 2011), and
380	(4) under warmer condition, the preseason duration of thermal forcing can be reduced,
381	which declines the SG-temperature sensitivity (Güsewell et al., 2017). The vegetation
382	growth (represented by NDVI) to temperature sensitivity was reported declining in
383	the growing season (April-October) based on GIMMS NDVI over 1982-2012 linked
384	to water stress (Piao et al., 2014). In temperate ecosystems, the lower NDVI to
385	temperature sensitivity coincidently occurred with increased drought events. While in
386	the arctic ecosystem, the lowered sensitivity of NDVI to temperature may be
387	explained by increases in heat waves because the physiological response of
388	photosynthesis to temperature is nonlinear with lower sensitivity under warmer
389	conditions (Piao et al., 2014). The higher interannual temperature variability can also
390	cause higher variations in water supply, thus the declined coupling between
391	vegetation growth and interannual variability of growing season temperature,
392	generally in semiarid regions (Wu et al., 2017). The wetting preseason in mid to east
393	of the United States, Western Canada, Northern land along Norway and Northwestern
394	Russia may partly enhanced SG-temperature if the enhancement is validated.
395	4.3 Uncertainties in SG as derived by MODIS and GIMMS NDVI
396	With SG as inferred using GIMMS over the period 1988-2000 and as inferred
397	using MODIS over 2001-2013, we found that the trend is advanced continuously in

398	response to a continuing trend in preseason warming. The uncertainties in the SG
399	trend and its climatic sensitivity arise when SG as inferred using MODIS and GIMMS
400	are compared together over the period 2001-2013. Wang et al.(2016) and Zhang et al.
401	(2013) proposed that quality issues may present in GIMMS NDVI, which can bias
402	vegetation growth sensitivity and growth trend. Instead of using continuous GIMMS
403	SG over 1982-2011, Zhang et al. (2013) merged datasets of GIMMS SG over 1982-
404	2000 and SPOT-VGT SG over 2001-2011 to detect SG trend due to data quality
405	issues with GIMMS NDVI in most parts of western Tibetan Plateau, according to the
406	findings of opposite GIMMS SG trend to SPOT-VGT and MODIS SG trend over the
407	period 2001-2006. With this merged data record, the SG trend continuously advanced
408	in Tibetan Plateau over 1982-2011. This result is consistent with the SG trend derived
409	from tree-ring data (Yang et al., 2017). On the contrary, continuous GIMMS SG over
410	1982-2006 inferred delayed SG trend after mid-1990s over Tibetan Plateau (Yu et al.,
411	2010). At the North Hemisphere scale, GIMMS SG (1982-2008) showed significant
412	decadal variation and declining SG shift: advanced 5.2 days over 1982-1999, but only
413	advanced 0.2 days over 2000-2008 (Jeong et al., 2011). However, the merged
414	GIMMS (1982-2006) and MODIS (2002-2012) showed SG shift over 2002-2012 (-6
415	days decade ⁻¹) is about three times larger than that over 1982-2002 (-2 days decade ⁻¹),
416	which is interpreted as enhanced SG advancement and its response to temperature
417	over time (Wang et al., 2016). For the varied timing of SG derived from different
418	products, Zhang et al. (2017) suggested intersensor calibrations to reduce the
419	difference between vegetation index products and exclusion of the low quality
420	phonology timing.
421	These SG shift uncertainties after 2000 are more likely to be explained by the

422 differences in the NDVI products that implied the opposite SG trend, anomalies north

- 423 of 50°N and biome-scale SG-temperature sensitivities. The spectrum range difference
- 424 of MODIS and AVHRR sensor channels is a main contribute to the NDVI differences.
- 425 MODIS NDVI is derived from bands 1(620-670nm) and 2 (841-876nm) of the
- 426 MODIS on board NASA's Terra satellite whereas GIMMS NDVI is derived from
- 427 bands 1(580-680nm) and 2 (725-1100nm) of AVHRR. The large GIMMS SG
- 428 anomaly transition around 2000 may be associated with the sensor transition from
- 429 AVHRR/2 to AVHRR/3, although among-instrument AVHRR calibration were
- 430 conducted with NDVI data derived from Sea-Viewing Wide Field-of-view Sensor
- 431 (SeaWiFS) (Pinzon et al., 2014). The calibration with SeaWiFS is considered as an
- 432 improvement of GIMMS NDVI in the very northern latitudes (Marshall et al, 2016).
- 433 Even so, the data issues associated with sensor transition, such as (1) satellite signal
- 434 degradation through lifetime, (2) band design, (3) effect of maximum value composite
- 435 (MVC) and (4) replacement of satellites in NOAA series, potentially influence the
- 436 interpretation of the SG trend and its sensitivity to climate drivers.

437 5. Conclusions

438 We compare the MODIS and GIMMS NDVI inferred time of spring greenup 439 and its response to preseason climate over 2001-2013. We infer a spring greenup delay using GIMMS NDVI in both North America (0.80 days yr⁻¹) and Eurasia (0.22 440 days yr⁻¹), whereas, using MODIS NDVI, we infer no significant spring greenup shift 441 in North American and an advanced SG trend of 0.78 days yr⁻¹ in Eurasia. The 442 differences in MODIS and GIMMS inferred spring greenup trend are mainly in 443 northern high latitude (>50°N). The differences are implied by opposite anomalies in 444 445 the time of spring greenup in North America and a large GIMMS inferred spring 446 greenup transition around 2000 that maybe explained by data issues associated with the sensor transition from AVHRR/2 to AVHRR/3, including (1) satellite signal 447

- 448 degradation through lifetime, (2) band design, (3) effect of maximum value
- 449 composite (MVC) and (4) replacement of satellites in NOAA series. Temperature is
- 450 the primary climate driver of the time of spring greenup for both MODIS and GIMMS,
- 451 although MODIS inferred both a stronger sensitivity and correlation between SG and
- 452 temperature. The opposing trends of SG as inferred using MODIS and GIMMS
- 453 resulted in differing SG to temperature sensitivity across biomes (-3.6 \pm 0.7 days °C⁻¹
- for MODIS and 2.2 ± 0.8 days °C⁻¹ for GIMMS). Using GIMMS, we inferred that the
- sensitivity of greenup to temperature, which increases over time for Arctic and boreal
- 456 biomes, cannot be well explained by the mechanisms regulating the sensitivity of SG
- 457 under a warming climate. This result requires further investigation. Our results
- 458 suggest the importance of snow-vegetation interactions in high latitude vegetation
- 459 monitoring and inter-validation of multiple datasets to better assess vegetation
- 460 dynamics.
- 461

of

462 Acknowledgements

463	This study is funded by the Strategic Priority Research Program of the Chinese
464	Academy of Sciences, CASEarth (XDA19070203), grants from CAS Pioneer
465	Hundred Talents Program and Natural Science Foundation of China (NSFC
466	#41590853). We acknowledge support from the U.S. Department of Energy, Office
467	Science, Biological and Environmental Research, Regional and Global Climate
468	Modeling Program through the RUBISCO Scientific Focus Area under contract
469	DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory.
470	
471	
472	
473	The authors declare no conflicts of interest.
474	
475	Supplements
476	Figure S1
477	Figure S2

- 478 Figure S3
- 479 Table S1

Biogeosciences Discussions

480 **Reference**

481 Beck, H. E., T. R. McVicar, A. I. J. M. van Dijk, J. Schellekens, P. A. M. de Jeu, 482 L. A. Bruijnzeel (2011). Global evaluation of four AVHRR-NDVI data sets: intercomparison and assessment against Landsat imagery. Remote Sensing of 483 484 Environment, 115, 2547-2563. 485 Brown, M. E., J. E. Pinzón, K. Didan, J. T. Morisette, C. J. Tucker (2006). 486 Evaluation of the consistency of long-term NDVI time series derived from AVHRR, 487 SPT-Vegetation, SeaWiFS, MODIS, and LandSAT ETM+Sensors. IEEE 488 Transactions on Geosciences and Remote Sensing, 44, 1787-1793. 489 DOI:10.1109/TGRS.2005.860205 490 Caffarra, A., A. Donnelly, I. Chuine, M. B. Jones (2011). Modelling the timing 491 of Betula pubescens budburst. I. Temperature an photoperiod: A conceptual model. 492 Climate Research, 46, 147-157. 493 Channan, S., K. Collins, and W. R. Emanuel (2014). Global mosaics of the 494 standard MODIS land cover type data. University of Maryland and the Pacific 495 Northwest National Laboratory, College Park, Maryland, USA. 496 Chen, X., S. Liang, Y. Cao, T. He, D. Wang (2015). Observed contrast changes 497 in snow cover phenology in northern middle and high latitudes from 2001-2014. 498 Scientific Report, 5, 16820, DOI: 10.1038/srep16820. 499 Chmielewski, F. M., & Götz, K.-P. (2016). Performance of models for the 500 beginning of sweet cherry blossom under current and changed climate conditions. 501 Agricultural and Forest Meteorology, 218–219, 85–91. 502 Cong, N., T. Wang, H. Nan, Y. Ma, X. Wang, R. B. Myneni, S. Piao (2013). 503 Changes in satellite-derived spring vegetation green-up date and its linkage to climate 504 in China from 1982 to 2010: a multi-method analysis. Global Change Biology, 19, 505 881-891, doi:10.1111/gcb.12077. 506 De Beurs, K. M. and G. M. Henebry (2005) Land surface phenology and 507 temperature variation in the international geosphere-biosphere program high-latitude 508 transects. Global Change Biology, 11, 779-790. Doi: 10.1111/j.1365-509 2486.2005.00949.x 510 Ding, M., L. Li, Y. Nie, Q. Chen, Y. Zhang (2016) Spatio-temporal variation of 511 spring phenology in Tibetan Plateau and its linkage to climate change from 1982 to 512 2012. Journal of Mountain Science, 13, 83-94. 513 Durpaire, J. P., T. Gentet, T. Phulpin, and M. Arnaud (1995). "Spot-4 Vegetation Instrument: Vegetation Monitoring on a Global Scale." Acta Astronautica, 514 515 35, 453-459. 516 Fensholt, R. and I. Sandholt (2005). Evaluation of the MODIS and NOAA 517 AVHRR vegetation indices with in situ measurements in a semi-arid environment. 518 International Journal of Remote Sensing, 26, 2561-2594. 519 Fensholt, R., T.T. Nielsen, S. Stisen (2006). Evaluation of AVHRR PAL and 520 GIMMS 10-day composite NDVI time series products using SPOT-4 vegetation data 521 for the African continent. International Journal of Remote Sensing, 27, 13, 2719-2733, 522 DOI:10.1080/01431160600567761

523 Fensholt, R., K. Rasmussen, T. T. Nielsen, C. Mbow (2009). Evaluation of earth 524 observation based long term vegetation trends-intercomparing NDVI time series trend 525 analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT 526 data. Remote Sensing of Environment, 113, 1886-1898. 527 Fensholt, R. and S. R. Proud (2012). Evaluation of Earth Observation based 528 global long term vegetation trends- Comparing GIMMS and MODIS global NDVI 529 time series. Remoste Sensing of Environment, 119, 131-147. 530 Friedl, M.A., D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. 531 Sibley and X. Huang (2010). MODIS Collection 5 global land cover: Algorithm 532 refinements and characterization of new datasets, 2001-2012, Collection 5.1 IGBP 533 Land Cover, Boston University, Boston, MA, USA. 534 Gong, Z., K. Kawamura, N. Ishikawa, M. Goto, T. Wulan, D. Alateng, T. Yin, 535 Y. Ito (2015) MODIS normalized difference vegetation index (NDVI) and vegetation 536 phenology dynamics in the Inner Mongolia grassland. Solid Earth, 6, 1185-1194. Doi: 537 10.5194/se-6-1185-2015. 538 Høgda, K. A., H. Tømmervik, S. R. Karlsen (2013) Trends in the start of the 539 growing season in Fennoscandia 1982-2011. Remote Sensing, 5, 4304-4318. Doi: 540 10.3390/rs5094304. 541 Jeong, S.J., C. H. Ho, J. H. Jeong (2009) Increase in vegetation greenness and 542 decrease in spring time warming over East Asia. Geophysical Research Letters, 36, 543 L0270, doi: DOI: 10.1029/2008GL036583 544 Jeong, S.-J., C.-H. Ho, H.-J. Gim, M. E. Brown (2011). Phenology shifts at start 545 vs. end of growing season in temperate vegetation over the Northern Hemisphere for 546 the period 1982-2008. Global Change Biology, 17, 2385-2399, doi: 10.1111/j.1365-547 2486.2011.02397.x 548 Julien, Y., J. A. Sobrino (2009) Global land surface phenology trends from 549 GIMMS database. International Journal of Remote Sensing, 30, 3495-3513. 550 Karlsen, S.R., K. A. Høgda, F. E. Wielgolaski, A. Tolvanen, H. Tommervik, J. 551 Poikolainen, E. Kubin (2009) Growing-season trends in Fennoscandia 1982–2006, 552 determined from satellite and phenology data. Climate Research, 39, 275-286. 553 Keenan, T. F., B. Darby, E. Felts, O. Sonnentag, M. A. Friedl, K. Hufkens, J. 554 O'Keefe, S. Klosterman, J. W. Munger, M. Toomey, A. D. Richardson (2014) 555 Tracking forest phenology and seasonal physiology using digital repeat photography: 556 a critical assessment. Ecological Applications, 24, 1478-1489. Doi:10.1890/13-0652.1 557 Kern, A., H. Marjanović, Z. Barcza. (2016). Evaluation of the quality of 558 NDVI3g Dataset against collection 6 MODIS NDVI in central Europe between 2000 559 and 2013. Remote Sensing, 8, 955; doi:10.3390/rs8110955. 560 Lee, R., F. Yu, K. P. Price, J. Ellis, P. Shi (2002) Evaluating vegetation 561 phonological patterns in Inner Mongolia using NDVI time-series analysis. International Journal of Remote Sensing, 23, 2505-2512. 562 563 Doi:10.1080/01431160110106087 564 Marshall, M., E. Okuto, Y. Kang, E. Opiyo, M. Ahmed. (2016). Global 565 assessment of vegetation index and Phenology Lab (VIP) and Global Inventory 566 Modeling and Mapping Studies (GIMMS) version 3 products. Biogeosciences, 13, 567 625-639.

568 Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, R. R. Nemani (1997). 569 Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 570 698-702. 571 Oberbauer, S.F., S. C. Elmendorf, T. G. Troxler et al. (2013). Phenological 572 response of tundra plants to background climate variation tested using the 573 International Tundra Experiment. Philosophical Transactions of the Royal Society B: 574 Biological Sciences, 368, 20120481. DOI: 10.1098/rstb.2012.0481 575 Piao, S. L., J. Y. Fang, L. M. Zhou, P. Ciais, B. Zhu(2006) Variations in 576 satellite-derived phenology in China's temperate vegetation. Global Change Biology, 577 12, 672-685. 578 Piao, S., H. Nan, C. Huntingford, P. Ciais, P. Friedlingstein, S. Sitch, S. Peng, A. 579 Ahlshtröm, J. G. Canadell, N. Cong, S. Levis, P. E. Levy, L. Liu, M. R. Lomas, J. 580 Mao, R. B. Myneni, P. Peylin, B. Poulter, X. Shi, G. Yin, N. Viory, T. Wang, X. 581 Wang, S. Zaehle, N. Zeng, Z. Zeng, A. Chen (2014). Evidence for a weakening 582 relationship between interannual temperature variability and northern vegetation 583 activity. Nature Communications, doi:10.1038/ncomms6018. 584 Pinzon, J. E., C. J. Tucker (2014). A non-stationary 1981-2012 AVHRR 585 NDVI3g time series. Remote Sensing, 6, 6929-6960. doi:10.3390/rs6086929 586 Prevéy, J., M. Vellend, N. Rüger, R. D. Hollister, A. D. Bjorkman, I. H. Myers-587 Smith, S. C. Elmendorf, K. Clark, E. J. Cooper, B. Elberling, A. M. Fosaa, G. H. R. 588 Henry, T. T. Høye, I. S. Jónsdóttir, K. Klanderud, E. Lévesque, M. Mauritz, U. Molau, 589 S. M. Natali, S. F. Oberbauer, Z. A. Panchen, E. Post, S. B. Rumpf, N. M. Schmidt, E. 590 A. G. Schuur, P. R. Semenchuk, T. Troxler, J. M. Welker, C. Rixen (2017). Greater 591 temperature sensitivity of plant phenology at colder sites: implications for 592 convergence across northern latitudes. Global Change Biology, 23, 2660-2671, DOI: 593 10.1111/gcb.13619. 594 Semenchuk, P. R., M. A. K. Gillespie, S. B. Rumpf, N. Baggesen, B. Elberling, 595 E. J. Cooper (2016). High Arctic plant phenology is determined by snowmelt patterns 596 but duration of phonological periods is fixed: an example of periodicity. 597 Environmental Research Letters, 125006. DOI: 10.1088/1748-9326/11/12/125006. 598 Shen M., Y. Tang Y, J. Chen, X. Yang, C. Wang, X. Cui, Y. Yang, L. Han, L. 599 Li, J. Du, G. Zhang, N. C (2014). Earlier-Season Vegetation Has Greater Temperature 600 Sensitivity of Spring Phenology in Northern Hemisphere. PLoS ONE 9(2): e88178. 601 DOI:10.1371/journal.pone.0088178 602 Stöckli, R. and P. L. Vidale (2004) European plant phenology and climate as 603 seen in a 20-year AVHRR land-surface parameter dataset. International Journal of 604 Remote Sensing, 25, 3303-3330. Doi: 10.1080/01431160310001618149 605 Tang, G., J. A. Arnone III, P. S. J. Verburg, R. L. Jasoni, L. Sun (2015) Trends 606 and climatic sensitivities of vegetation phenology in semiarid and arid ecosystems in 607 the US Great Basin during 1982-2011. Biogeosciences, 12, 6985-6997. 608 Doi:10.5194/bg-12-6985-2015 609 Tong, A. and Y. He (2013). Comparative analysis of SPOT, Landsat, MODIS 610 and AVHRR normalized difference vegetation index data on the estimation of leaf 611 area index in a mixed grassland ecosystem. Journal of Applied Remote Sensing, 7, 612 073599-1-15.

613 Tucker, C. J., D. A. Slayback, J. E. Pinzon, S. O. Los, R. B. Myneni, M. G. 614 Taylor (2001) Higher northern latitude NDVI and growing season trends from 1982 to 615 1999. International Journal of Biometeorology, 45, 184-190. Doi: 10.1007/s00484-001-0109-9. 616 617 Wang, S., B. Yang, Q. Yang, L. Lu, X. Wang, Y. Peng (2016). Temporal trends 618 and spatial variability of vegetation phenology over the Northern Hemisphere during 619 1982-2012. PLoS ONE, 11, e0157134. doi:10.1371/journal.pone.0157134 620 Wu, X., H. Liu, X. Li, S. Piao, P. Ciais, W. Guo, Y. Yin, B. Poulter, C. Peng, N. 621 Viory, N. Vuichard, P. Wang, Y. Huang (2017). Higher temperature variability 622 reduces temperature sensisitivity of vegetation growth in Northern Hemisphere. 623 Geophysical Research Letters, Doi: 10.1002/2017GL073285 624 Xu, X., W.J. Riley, C. D. Koven, G. Jia (2018). Observed and simulated 625 sensitivities of spring greenup to preseason climate in northern temperate and boreal 626 regions. Journal of Geophysical Research: Biogeoscience, 123: 60-78. doi: 627 10.1002/2017jg004117 628 Yang, B., M. He, V. Shishov, I. Tychkov, E. Vaganov, S. Rossi, F. C. 629 Ljungqvist, A. Bräuning, J. Grießinger (2017). New perspective on spring vegetation 630 phenology and global climate change based on Tibetan Plateau tree-ring data. 631 Proceedings of the National Academy of Sciences of the United States of America, 632 114, 6966-6971. 633 Yu, H., E. Luedeling, J. Xu (2010). Winter and spring warming result in 634 delayed spring phenology on the Tibetan Plateau, Proceedings of the National 635 Academy of Sciences of the United States of America, 107, 22151-22156. 636 Zeng, H., G. Jia, H. Epstein (2011) Recent Changes in Phenology over the 637 northern high latitudes detected from multi-satellite data. Environmental Research 638 Letters, 045508. Doi: 10.1088/1748-9326/6/045508 639 Zeng, H., G. Jia, B. C. Forbes (2013). Shifts in Arctic phenology in response to 640 climate and anthropogenic factors as detected from multiple satellite time series. 641 Environmental Research Letters, 8, 035036. Doi:10.1088/1748-9326/8/3/035036. 642 Zeng, H. and G. Jia (2013). Impacts of snow cover on vegetation phenology in 643 the Arctic from satellite data. Advances in Atmospheric Sciences, 30, 1421-1432. 644 Zhang, X., Friedl, M.A., Schaaf, C.B., Strahler, A.H., Hodges, J.C.F., Gao, F., 645 Reed, B.C., Huete, A. (2003). Monitoring vegetation phenology using MODIS. 646 Remote Sensing of Environment, 84, 471–475. 647 Zhang, G., Y. Zhang, J. Dong, X. Xiao (2013). Green-up dates in the Tibetan 648 Plateau have continuously advanced from 1982-2011. Proceedings of the National 649 Academy of Sciences of the United States of America, 110, 4309-4314. 650 Zhang, X., L. Liu, D. Yan (2017). Comparisons of global land surface 651 seasonality and phenology derived from AVHRR, MODIS, and VIIRS data. Journal 652 of Geophysical Research: Biogeosciences, 122, 1506-1525. 653 Zhou, J., L. Jia, M. Menenti (2015). Reconstruction of global MODIS NDVI 654 time series: Performance of Harmonic ANalysis of Time Series (HANTS). Remote 655 Sensing of Environment, 163, 217-228. DOI: 10.1016/j.rse.2015.03.018

656 Figure Captions:

- Figure 1. The GIMMS (a) and MODIS (b) inferred mean Julian date of spring
- greenup (\overline{D}_{SG} , day of year) over 2001-2013 and GIMMS (c) and MODIS (d) inferred
- trend of spring greenup date (D_{SG}) over 2001-2013(days yr⁻¹).
- 660 Figure 2 Anomalies of spring greenup date for mid-latitude (30-50°N, a, c, e) and high

661 latitude (>50°N, b, d, f) in relative to mean D_{SG} over 2001-2013 for GIMMS and 662 MODIS.

- 663 Figure 3 Mean preseason length of temperature control corresponding to GIMMS
- spring greenup $(\overline{L}_{PT}^{G}, \text{days})$ and MODIS spring greenup $(\overline{L}_{PT}^{M}, \text{days})$ and mean
- preseason length of precipitation control corresponding to GIMMS spring greenup
- 666 (\overline{L}_{PP}^{G} , days) and MODIS greenup (\overline{L}_{PP}^{M} , days).

Figure 4 Spring greenup sensitivity to preseason temperature (days $^{\circ}$ C-1) for GIMMS (a) and MODIS (b) and spring greenup sensitivity to preseason precipitation (days $^{\circ}$ ⁻¹

of precipitation increases) for GIMMS (c) and MODIS (d).

670 Figure 5 The comparison of inter-biome SG sensitivity to preseason temperature for

671 IGBP land cover types for GIMMS over 1982-2005 and 2001-2013 and MODIS over

672 2001-2013. We used the IGBP land cover classification for 9 biomes in 2012:

673 Evergreen Needleleaf Forest (ENF), Deciduous Needleleaf Forest (DNF), Deciduous

- Broadleaf forest (DBF), Mixed Forest (MF), Open Shrublands (OS), Woody
- 675 Savannas (WS), Grassland (GL), Permanent Wetland (PW), and Cropland (CP). We
- distinguish the Arctic grassland to the north of 60°N (GLN), from temperate grassland

677 in the south (GLS) due to their expected differences in climate and controls on

- 678 phenology.
- 679

NDVI Data	Period	Region	Shift (days decade ⁻¹)	Reference
PAL	1981-1991	>=40N	-8	Myneni et al., 1997
GIMMS	1981-1999	Eurasia	-3.3	Zhou et al., 2001
GIMMS	1981-1999	N. America	-4.4	Zhou et al., 2001
AVHRR	1982-1991	45-75	-6.2	Tucker et al., 2001
AVHRR	1992-1999	45-75	-2.4	Tucker et al., 2001
AVHRR	1982-1990	Inner Mongolia	0	Lee et al., 2002
PAL	1982-2001	Europe	-5.4	Stockli and Vidale, 2004
PAL	1985-1999	N. America	-6.6	de Beurs and Henebry, 2005
PAL	1985-2000	Eurasia	-4.5	de Beurs and Henebry, 2005
GIMMS	1982-1999	Temperate China	-7.9	Piao et al., 2006
PAL	1982-1999	East Asia	-7	Jeong et al., 2009
GIMMS	1982-2003	Global	-3.8	Julien & Sobrino, 2009
GIMMS	1982-2006	Fennoscandia	-2.7	Karlsen et al., 2009
GIMMS	1982-1999	N. Hemisphere	-2.9	Jeong et al., 2011
GIMMS	2002-2008	N. Hemisphere	-0.3	Jeong et al., 2011
MODIS	2000-2010	>60N, Arctic	-4.7	Zeng et al., 2011
MODIS	2000-2010	>60N, N. America	-11.5	Zeng et al., 2011
MODIS	2000-2010	>60N, Eurasia	-2.7	Zeng et al., 2011
GIMMS	1982-2008	>60N, Arctic	-0.5	Zeng et al., 2011
GIMMS	1982-2008	>60N, N. America	-0.8	Zeng et al., 2011
GIMMS	1982-2008	>60N, Eurasia	-0.3	Zeng et al., 2011
GIMMS SPOT-VGT	1982-2011	Tibetan Plateau	-10.4	Zhang et al., 2013
GIMMS	1982-2011	Fennoscandia	-11.8	Høgda et al., 2013
MODIS	2001-2012	U.S.	-4.8	Keenan et al., 2014
MODIS	2002-2014	Inner Mongolia	-4.5	Gong et al., 2015
GIMMS	1982-2011	U.S. Great Basin	-0.1	Tang et al., 2015
GIMMS	1982-2002	N. Hemisphere	-1.9	Wang et al., 2016
MODIS	2002-2012	N. Hemisphere	-5.9	Wang et al., 2016
GIMMS	1982-2012	Tibetan Plateau	0	Ding et al., 2016

Table 1 The spring greenup shift (days per decade) as inferred from Normalized			
Difference Vegetation Index (NDVI) from satellite data			

MODIS: Moderate Resolution Imaging Spectroradiometer

AVHRR: Advanced Very High Resolution Radiometer

GIMMS: Global Inventory Modeling and Mapping Studies

PAL: Pathfinder AVHRR Land

GAC: Global area cover

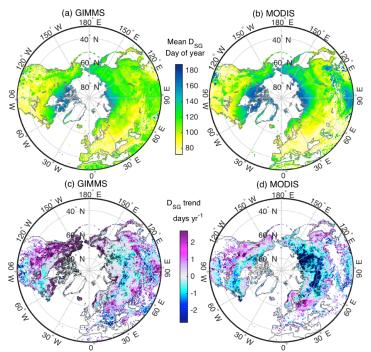


Figure 1. The GIMMS (a) and MODIS (b) inferred mean Julian date of spring greenup (\overline{D}_{SG} , day of year) over 2001-2013 and GIMMS (c) and MODIS (d) inferred trend of spring greenup date (D_{SG}) over 2001-2013(days yr⁻¹).

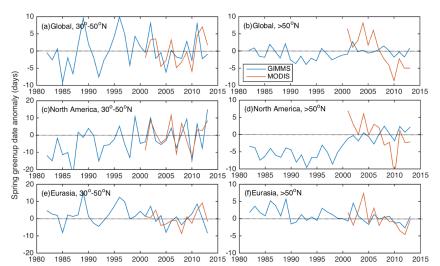


Figure 2 Anomalies of spring greenup date for mid-latitude ($30-50^{\circ}$ N, a, c, e) and high latitude ($>50^{\circ}$ N, b, d, f) in relative to mean D_{SG} over 2001-2013 for GIMMS and MODIS.

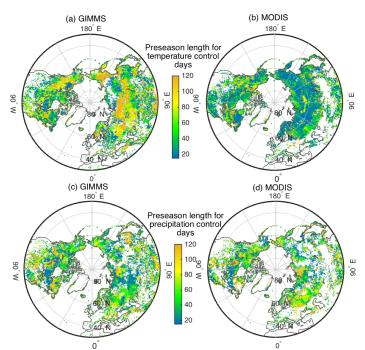


Figure 3 Mean preseason length of temperature control corresponding to GIMMS spring greenup (\overline{L}_{PT}^{G} , days) and MODIS spring greenup (\overline{L}_{PT}^{M} , days) and mean preseason length of precipitation control corresponding to GIMMS spring greenup (\overline{L}_{PP}^{G} , days) and MODIS greenup (\overline{L}_{PP}^{M} , days).

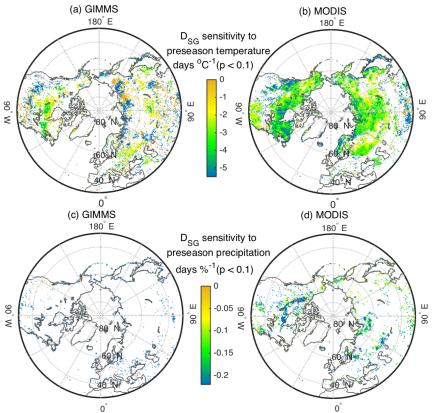


Figure 4 Spring greenup sensitivity to preseason temperature (days °C-1) for GIMMS (a) and MODIS (b) and spring greenup sensitivity to preseason precipitation (days $\%^{-1}$ of precipitation increases) for GIMMS (c) and MODIS (d).

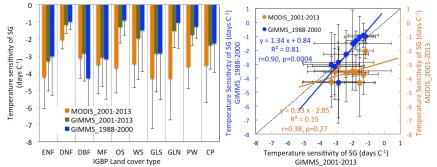


Figure 5 The comparison of inter-biome SG sensitivity to preseason temperature for IGBP land cover types for GIMMS over 1982-2005 and 2001-2013 and MODIS over 2001-2013. We used the IGBP land cover classification for 9 biomes in 2012: Evergreen Needleleaf Forest (ENF), Deciduous Needleleaf Forest (DNF), Deciduous Broadleaf forest (DBF), Mixed Forest (MF), Open Shrublands (OS), Woody Savannas (WS), Grassland (GL), Permanent Wetland (PW), and Cropland (CP). We distinguish the Arctic grassland to the north of 60°N (GLN), from temperate grassland in the south (GLS) due to their expected differences in climate and controls on phenology.