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1 Estimating carbon-use and Carbon-storage efficiencies 

1.1 Leaves 

Leaves are responsible for fixing atmospheric CO2, thereby representing the entry points of C into terrestrial 

ecosystems. By measuring net photosynthesis and respiration, CUE at the leaf level can be defined as the ratio of 10 

net to gross photosynthetic rates, 

CUE௟௘௔௙ ൌ
ே௘௧	௣௛௢௧௢௦௬௡௧௛௘௦௜௦

ீ௥௢௦௦	௣௛௢௧௢௦௬௡௧௛௘௦௜௦
ൌ

஺೙೐೟
஺೙೐೟ାோ೏ೌೝೖାோ೛೓೚೟೚

, (1) 

where the net photosynthetic rate (ܣ௡௘௧, also referred to as net CO2 assimilation) is the difference between gross 

photosynthesis and the sum of photorespiration (ܴ௣௛௢௧௢) and mitochondrial respiration (ܴௗ௔௥௞). Photorespiration 

releases CO2, and occurs when the photosynthetic enzyme Rubisco (which fixes CO2) experiences non-saturating 

CO2 conditions in the presence of O2, as is the case for most plants in our current atmosphere. We therefore include 15 

photorespiration costs in the term gross photosynthesis in Eq. (1), as done in other studies (Way and Sage, 2008), 

although we will not be able to account for that in our calculations due to data limitations. In leaves, mitochondrial 

respiration proceeds in both the dark and in the light, although respiration rates are often lower in the light than in 

the dark. As the phenomenon of light-suppression of respiration is poorly understood and leaf respiration in the 

light is difficult to measure (Tcherkez et al., 2017), we use dark respiration rates and assume that they represent 20 

respiration rates over a 24-hour period. Moreover, photorespiration is neglected in our calculations, because the 

compensation point was not reported in the dataset we used (Atkin et al., 2015), so that our estimates of leaf CUE 

are slightly overestimated. 

1.2 Individual organisms (autotrophs and heterotrophs) 

When egestion is neglected, the balance of growth and respiration plus exudation defines the CUE (or GGE, Eq. 25 

(6) in the main text) of individual organisms, 

CUE௢௥௚௔௡௜௦௠ ൌ
ே௘௧	௕௜௢௠௔௦௦	௣௥௢ௗ௨௖௧௜௢௡

஼ ௨௣௧௔௞௘
ൌ

ீ

௎
ൌ 1 െ

ோାா௑

௎
ൌ

ீ

ீାோାா௑
, (2) 

where ܴ includes all respiration components shown in Eq. (7) in the main text. The equalities in Eq. (2) show how 

CUE can be estimated from different combinations of observations: net biomass accretion (ܩ), C consumption 

from the resource pool (ܷ – organic C for heterotrophs or CO2 for autotrophs), and respiration rate (ܴ) (Geyer et 

al., 2016; Slansky and Feeny, 1977; Gifford, 2003). While ܺܧ should be included in these calculations, it is 30 

generally neglected or implicitly considered as autotrophic respiration. For all organisms, when net biomass 
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production and respiration are measured, cell turnover and other organic C losses during the incubation time are 

not accounted for. This can be challenging when incubation times are long. Moreover, unless CUE is calculated 

as ܩ ܷ⁄ , exudation is not accounted for, resulting in inflated CUE. For plants, gross rates of C uptake are estimated 

by summing up net photosynthesis measured during the day to the respiration rate obtained assuming that night 35 

and day respiration are comparable; if heterotrophic respiration is included in the measurements, it needs to be 

subtracted to isolate the autotrophic component (Wang et al., 2015) (see also Sect. 1.3). CUE of non-vascular 

vegetation, such as mosses and lichens, is defined in the same way as CUE of vascular plants with empirical 

estimates typically adopting similar approaches. Consequently, they share the same limitations. Only few studies 

traced how much of newly acquired C is incorporated into biomass using isotopes (Street et al., 2013; Woodin et 40 

al., 2009; Lotscher et al., 2004). 

1.3 Primary producer communities 

CUE of plant communities can be defined as for individual plants, but using data at a larger scale (~100-1000 m) 

and covering the whole range of species and age classes in a certain community. In this case, the control volume 

conceptually comprises all plant organs including roots; it is thus virtually impossible to accurately measure all C 45 

fluxes and major assumptions on the contribution of autotrophs to measured net C fluxes have to be made. At this 

scale, production is defined by the net primary productivity (NPP) and C uptake by the gross primary productivity 

(GPP), so that (DeLucia et al., 2007; Zhang et al., 2009), 

CUE௣௟௔௡௧	௖௢௠௠௨௡௜௧௬ ൌ
ே௘௧	௣௥௜௠௔௥௬	௣௥௢ௗ௨௖௧௜௩௜௧௬

ீ௥௢௦௦	௣௥௜௠௔௥௬	௣௥௢ௗ௨௖௧௜௩௜௧௬
ൌ

୒୔୔

ୋ୔୔
. (3) 

An extensive database containing both stand-scale GPP and NPP is available for forest sites globally, including 

direct measurements, indirect estimates (derived from measurements of other C fluxes) and model results 50 

(Luyssaert et al., 2007). In general, GPP is obtained by flux partitioning from eddy covariance measurements of 

net ecosystem exchange (NEE) (Lasslop et al., 2010; Reichstein et al., 2005). NPP can be derived from the 

increase in biomass of the different biomass compartments (stem, branches, foliage, roots), but may also include 

the C allocated to understory, herbivory, reproductive organs, root exudates, volatile organic compounds and CH4 

emissions (Luyssaert et al., 2007). However, below-ground NPP as well as these latter C fluxes are extremely 55 

difficult to capture and thus often either ignored or very uncertain (Clark et al., 2001). At the global scale, 

observation-based GPP products rely on either spatial extrapolation of diagnostic models relating site-level eddy 

covariance derived GPP to climate, vegetation type and remote sensing indices (Beer et al., 2010), or on relations 

to the fraction of absorbed photosynthetic active radiation measured by satellite remote sensing (e.g., MODIS, 

with resolution ~1000 m) (Zhao et al., 2005). Global observation-based NPP products in turn are solely available 60 

from combining satellite based GPP estimates with model assumptions on biomass allometry and autotrophic 

respiration (Tum et al., 2016; Zhao and Running, 2010).  

In addition to the existing dataset by Luyssaert et al. (2007), we also estimated CUE for non-vascular 

vegetation. In productive forest and grassland ecosystems, non-vascular vegetation usually contributes only a 

small part to total carbon uptake. Exceptions are high values of up to 60% at high latitudes (Turetsky et al., 2010). 65 

Because of this small contribution, it is impractical to estimate CUE of non-vascular vegetation by methods such 

as eddy covariance. In less productive drylands where non-vascular vegetation may be the main primary 
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producers, samples of complete crusts can be collected in the field and the CUE of these communities can be 

derived from measured net photosynthesis and dark respiration in the laboratory (see references in Table S2). 

1.4 Microbial communities 70 

While conceptually similar to the definition for individual organisms, interpreting CUE at the whole microbial 

community level (in either terrestrial or aquatic systems) is complicated by the presence of inactive organisms 

and by the co-occurrence of a range of life history strategies with their potentially different CUE (Geyer et al., 

2016; del Giorgio and Cole, 1998). CUE is estimated typically by measuring (at least) two among the C fluxes 

relevant for microbial C budgets: substrate consumption (assumed to be equal to C uptake; i.e., neglecting losses 75 

of depolymerized C before uptake by microorganisms), net microbial growth, and respiration rates. These C 

exchanges are generally measured under controlled conditions in relatively small incubation systems (<1 L 

volume) and in transient conditions. A substrate (often isotopically-labelled) is generally added to trace C uptake 

into biomass and thus determine the changes in C pools required to estimate CUE. The concentration and choice 

of substrate (more or less similar to compounds used in natural conditions) and the length of the incubation period 80 

affect the obtained CUE (see Sect. 4.1 in the main text). In marine sediments, 3H, 14C, or 13C-uptake experiments 

are conducted to estimate microbial growth rates, but application of this technique in sediments is challenging, 

and the contribution of biomass turnover is poorly constrained (an issue shared with measurements in soil). Labile 

substrates and more generally higher C concentrations result in higher CUE values (Frey et al., 2013; Öquist et 

al., 2017; del Giorgio and Cole, 1998; Bolscher et al., 2017), while increasing incubation time from a day to a 85 

week or more results in lower apparent CUE, as necromass is recirculated and used (Ladd et al., 1992; Öquist et 

al., 2017). Previous reviews discuss these methodological issues in depth (Geyer et al., 2016; Sinsabaugh et al., 

2013; del Giorgio and Cole, 1998).  

1.5 Food webs 

The efficiency of C (and energy) transfer in terrestrial and aquatic food webs has been defined as the ratio of C 90 

used at a certain trophic level and the C produced at a lower level (Dickman et al., 2008; Downing et al., 1990; 

Lindeman, 1942; McNaughton et al., 1989). These transfer efficiencies are not defined as for individual organisms 

because they consider inputs to a food web and biomass increments in a single component of the food web, but 

we include them here for completeness. The scale at which C transfer efficiencies are calculated varies widely, 

ranging from small-scale laboratory to broad-scale field studies (Fig. 3). In terrestrial systems, where NPP is the 95 

main C input to food-webs, the efficiency of herbivore production is evaluated with respect to NPP (McNaughton 

et al., 1989). In aquatic systems, allochtonous C inputs have been typically neglected, and the efficiency of 

herbivore or predator production is also estimated with respect to primary productivity (Table S2).  

1.6 Soils and sediments 

The efficiency of C storage in soils has been studied in the context of climate change mitigation strategies, aiming 100 

to understand how much of the C added to a soil can be stored there and potentially sequestered (Stewart et al., 

2007). The C storage efficiency of soils (CSE௦௢௜௟) is defined as the ratio of the net soil C balance and the total C 

inputs from vegetation (~NPP) and soil amendments. As such, CSE௦௢௜௟ can be positive when soils accumulate C 

or negative when C losses are larger than inputs. C fluxes to quantify CSE௦௢௜௟ are measured at the plot- to field-
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scale, analogous to CUE௘௖௢௦௬௦௧௘௠, but because soil organic matter changes slowly, CSE௦௢௜௟ is generally defined 105 

over decades in specifically designed long-term experiments set up in agricultural systems where vertical C inputs 

are controlled and manipulated (but again lateral C fluxes are neglected; see references in Table S2). In these 

experiments, annual C inputs are measured and long-term C storage changes are estimated from repeated SOC 

measurements – thus, this method implicitly requires a (long) time frame over which a time-integrated CSE is 

calculated.  110 

A conceptually similar CSE can be defined for lake and marine sediments and is often referred to as 

organic C burial efficiency (or preservation efficiency), as the ratio between the rates of C burial and of deposition 

at the sediment surface (CSE௦௘ௗ௜௠௘௡௧) (Alin and Johnson, 2007; Canfield, 1994; Hedges and Keil, 1995). In 

sediment CSE calculations, benthic photosynthesis is ignored in most environments (despite shallow-water 

ecosystems being among the most productive in the world), assuming that the export of C from the photic zone 115 

dominates C accumulation. Organic C accumulation in sediments is often only measurable over multi-year time-

scales by 210Pb dating, which fails to account for the initial rapid degradation of organic material at the sediment 

surface. As for soils, this method yields a time-integrated CSE (rather than instantaneous). An alternative 

definition involves primary productivity instead of C deposition, which underestimates CSE because it neglects 

C removal via respiration in the photic zone and during sedimentation (Azam and Malfatti, 2007; Ducklow et al., 120 

2001). An instantaneous burial efficiency can be determined by measurements of 210Pb-based C accumulation 

rates minus respiration rates measured through oxygen consumption. Moreover, all these methods share similar 

issues; primarily, they focus on vertical fluxes and tend to neglect lateral transport of C, in particular as DOC 

(Seiter et al., 2005; Alperin et al., 1994). 

1.7 Ecosystems 125 

At the ecosystem level, both CUE of the biotic components and CSE can be defined. When focusing on the biotic 

components, the only input ܷ ൌ GPP and the only output is respiration (assuming exudates are re-cycled), which 

comprises autotrophic and heterotrophic terms. Net ecosystem productivity (NEP) is thus defined as the difference 

between GPP and the total respiration (ܴ ൌ ܴ௔ ൅ ܴ௛), and ecosystem CUE can be written as, 

CUE௘௖௢௦௬௦௧௘௠ ൌ
ே௘௧	௘௖௢௦௬௦௧௘௠	௣௥௢ௗ௨௖௧௜௩௜௧௬

ீ௥௢௦௦	௣௥௜௠௔௥௬	௣௥௢ௗ௨௖௧௜௩௜௧௬
ൌ

୒୉୔

ୋ୔୔
ൌ 1 െ

ோ

ୋ୔୔
ൌ 1 െ

ோೌାோ೓
ீ௉௉

ൌ ௖௢௠௠௨௡௜௧௬	௣௟௔௡௧ܧܷܥ െ
ோ೓
ீ௉௉

, (4) 

where the first equality is used for empirical estimation of ecosystem CUE (Fernandez-Martinez et al., 2014), 130 

whereas the last equality links ecosystem CUE to the vegetation CUE (=NPP/GPP) and the heterotrophic 

respiration to GPP ratio. When including abiotic components and thus lateral abiotic fluxes, Eq. (10) in the main 

text can be used to obtain, 

CSE௘௖௢௦௬௦௧௘௠ ൌ 1 െ
ோೌାோ೓ାி೚ೠ೟
ୋ୔୔ାி೔೙

. (5) 

The scale at which terrestrial ecosystem-level C fluxes are measured as for plant communities (~100-1000 m), 

but the control volume extends to include soils (generally down to the rooting depth) (Chapin et al., 2006). C 135 

fluxes are generally obtained from eddy covariance systems that measure vertical net CO2 exchanges (NEE); GPP 

is then inferred by adding total ecosystem respiration (based on night-time C exchanges) to the day-time C fluxes. 

While the eddy covariance approach provides fluxes at sub-daily time scales, often these are aggregated at the 

annual time scale in ecosystem-level CUE and CSE estimates. Because this approach measures vertical CO2 
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exchanges, it neglects lateral transfer of C in both the atmosphere and the water bodies (see Sect. 1.8), and 140 

exchanges occurring in gaseous forms other than CO2 (Chapin et al., 2006).  

In aquatic systems, net oxygen fluxes are often used to infer C fluxes and CUE (Hoellein et al., 2013; 

Glud, 2008). Measurements are conducted on small samples (~0.1-1 L), but averaged spatially to have 

representative values for the water body under investigation, or by eddy covariance (over spatial scales ~100-

1000 m) (Berg et al., 2003). Respiration is calculated from oxygen consumption at night, which is then used to 145 

correct the daytime net oxygen production to estimate gross primary productivity. Moreover, as for terrestrial 

ecosystems, this approach neglects allochthonous CO2 contributions; e.g., from groundwater (Hall and Tank, 

2005). Most coastal aquatic ecosystems are prevalently heterotrophic, because of large allochthonous inputs of 

organic C that is decomposed locally (Duarte and Prairie, 2005; Hoellein et al., 2013). As a consequence, NEP is 

often strongly negative (large 
ோ೓
ୋ୔୔

 in Eq. (4)), leading to negative values of CUE௘௖௢௦௬௦௧௘௠, despite all organisms 150 

having positive CUE values. When accounting for C transport in and out of the system (Eq. (5)), estimated CSE 

increases because ܨ௢௨௧ ൏  .௜௡, which reduces the numerator with respect to the denominator in the last term of Eqܨ

(5). As a result, CSE௘௖௢௦௬௦௧௘௠ ൐ CUE௘௖௢௦௬௦௧௘௠, although CSE௘௖௢௦௬௦௧௘௠ remains negative as long as the ecosystem 

is a net source of C. 

In the photic zone of marine ecosystems, a conceptually similar efficiency is defined – the biological 155 

pump efficiency, which represents the ratio of C exported outside the euphotic zone (operationally defined at 100 

m depth) over the net primary productivity (Ducklow et al., 2001; Volk and Hoffert, 1985). The biological pump 

efficiency is estimated from independent measurements of net primary productivity (phytoplankton uptake minus 

respiration over a 24-hour period) and C export either from sediment traps or 234Th flux-based measurements 

(Boyd and Trull, 2007; Giering et al., 2017; Le Moigne et al., 2015). This efficiency increases when less C is re-160 

mineralized in the euphotic zone via decomposition and consumption by the aquatic food web (Azam and Malfatti, 

2007; Ducklow et al., 2001). However, not all C exported below the euphotic zone is stored, because a potentially 

large fraction is re-mineralized in the upper mesopelagic zone (< 300 m water depth) (Buesseler and Boyd, 2009; 

Wakeham et al., 1997). A better measure of C storage efficiency for marine systems is therefore the organic carbon 

burial efficiency in sediment (Sect. 1.6). However, in particular in shelf systems, resuspension and lateral transport 165 

of deposited organic material to the continental slope constitute an important loss component (Inthorn et al., 2006).  

Figure S2a illustrates the relations between C export rates (either as litter production or C export below 

the euphotic zone) and net primary productivity in terrestrial and aquatic ecosystems. The ratios of these C export 

and NPP fluxes define C export efficiencies (or biological pump efficiency for oceanic systems), shown in Fig. 

S2b. Terrestrial systems have much higher efficiencies than aquatic systems in general and in particular than 170 

oceanic systems (p<0.05), indicating that herbivory or other C loss pathways are more effective in aquatic systems 

at removing biomass that would be otherwise exported to the decomposition pathway.  

1.8 Watersheds 

Watersheds represent naturally-defined control volumes for water fluxes and are convenient also for C budget 

calculations because they allow measuring lateral outputs of dissolved C at the watershed outlet. At the watershed 175 

scale, C inputs are given by terrestrial and aquatic GPP and atmospheric deposition (which we neglect for 

simplicity) and C outputs include heterotrophic and autotrophic respiration (as in Sect. 1.7), but also lateral abiotic 

losses via dissolved organic and inorganic C transport in rivers and groundwater (denoted by ܨ௢௨௧). Therefore, the 
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watershed-scale CSE can be defined as (from Eq. (10) in the main text and the definition of CUE௘௖௢௦௬௦௧௘௠ in Eq. 

(4)), 180 

CSE௪௔௧௘௥௦௛௘ௗ ൌ
୒୉େ୆

ୋ୔୔
ൌ 1 െ

ோାி೚ೠ೟
ୋ୔୔

ൌ CUE௘௖௢௦௬௦௧௘௠ െ
ி೚ೠ೟
ୋ୔୔

, (6) 

where the net ecosystem carbon balance is evaluated in the whole watershed and the last equality links the 

watershed CSE to the ecosystem CUE averaged over the whole watershed. Eq. (6) illustrates that increased abiotic 

losses of C always decrease CSE௪௔௧௘௥௦௛௘ௗ with respect to the efficiency of the biotic component of the system 

(CUE௘௖௢௦௬௦௧௘௠). Also, the lateral abiotic losses are particularly high at times when GPP is low, such as during high 

precipitation/low radiation events (Öquist et al., 2014) or during snow-melt in cold environments (Finlay et al., 185 

2006). There are only a few watersheds with long-term monitoring of both vegetation-atmosphere C exchanges 

and C transport in water bodies, in which CSE௪௔௧௘௥௦௛௘ௗ can be estimated (see references in Table S2). 
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Table S1. Definition of symbols and acronyms used in the Supplementary Information. Subscripts indicating the system 

under consideration are added to acronyms (leaf, organism, plant community, autotroph, ecosystem, soil, sediment), but 

are not included in this table. 

Symbols and acronyms Description Dimensions * 

AE Assimilation efficiency - 

 ௡௘௧  Net photosynthesis M L-2 T-1ܣ

 Egestion M L-2 T-1 or M T-1  ܩܧ

 Exudation M L-2 T-1 or M T-1  ܺܧ

 ௜௡  Abiotic carbon input M L-2 T-1ܨ

 ௢௨௧  Abiotic carbon output M L-2 T-1ܨ

 Input M L-2 T-1  ܫ

 Carbon-mass M L-2 or M  ܥ

CSE Carbon-storage efficiency - 

CUE Carbon-use efficiency - 

CUE஺  Apparent carbon-use efficiency - 

GGE Gross growth efficiency - 

GPP Gross primary productivity M L-2 T-1 

NECB Net ecosystem carbon balance (ൌ ܥ݀ ⁄ݐ݀ ) M L-2 T-1 

NEP Net ecosystem productivity M L-2 T-1 

NGE Net growth efficiency - 

NPP Net primary productivity M L-2 T-1 

ܱ  Output M L-2 T-1 

ܴ  Respiration M L-2 T-1 or M T-1 

ܴ௔  Autotrophic respiration M L-2 T-1 or M T-1 

ܴௗ௔௥௞  Dark respiration M L-2 T-1 

ܴ௚௥௢௪௧௛  Growth respiration M L-2 T-1 or M T-1 

ܴ௛  Heterotrophic respiration M L-2 T-1 or M T-1 

ܴ௠௔௜௡௧௘௡௔௡௖௘  Maintenance respiration M L-2 T-1 or M T-1 

ܴ௢௩௘௥௙௟௢௪  Overflow respiration M L-2 T-1 or M T-1 

ܴ௣௛௢௧௢  Photorespiration M L-2 T-1 

ܶ  Biomass turnover M L-2 T-1 or M T-1 

ܷ  Carbon uptake M L-2 T-1 or M T-1 

* M: mass, L: length, T: time, -: non-dimensional quantity.605 
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Table S2. Data sources (online databases were last accessed on November 17th, 2017). 

System Figures Sources Dataset 

Leaves 6a (Atkin et al., 2015) Existing dataset (GlobResp 

database, https://www.try-

db.org/TryWeb/Data.php) 

Whole plants 5e, 6a (Wang et al., 2015; Atkin et al., 1996; Atkin et al., 2007; 

Dillaway and Kruger, 2014; Frantz and Bugbee, 2005; 

Frantz et al., 2004; Gifford, 1995; Loveys et al., 2002; 

Nemali and van Iersel, 2004; Tjoelker et al., 1999; van 

Iersel, 2000, 2003; Yamaguchi, 1978; Yokota and 

Hagihara, 1998; Ziska and Bunce, 1998; Gifford, 2003; 

Lotscher et al., 2004; Poorter et al., 1990) 

Original compilation 

Non-vascular 

plant 

communities 

6a (Green et al., 1998; Lange, 2002; Lange et al., 1998; 

Lange et al., 2000, 2004; Lange et al., 1977; Palmqvist 

and Sundberg, 2000; Pannewitz et al., 2005; Sundberg et 

al., 1997; Tretiach and Geletti, 1997; Uchida et al., 2006; 

Wagner et al., 2013; Uchida et al., 2002; Palmqvist, 2002; 

Kappen et al., 1989; Oechel and Collins, 1976; Brostoff et 

al., 2002, 2005; Goulden and Crill, 1997; Jeffries et al., 

1993; Lange et al., 1997a; Lange et al., 1993; Lange et al., 

2006; Lange et al., 1997b; Lange et al., 1992; Street et al., 

2013; Swanson and Flanagan, 2001; Woodin et al., 2009; 

Yoshitake et al., 2010; Zaady et al., 2000; Büdel et al., 

2013; Lange and Green, 2002, 2004; Street, 2011) 

Original compilation 

Vascular plant 

communities 

(forests) 

5f, 6a, 7 (Luyssaert et al., 2007; Luyssaert et al., 2009; Vicca et al., 

2012) 

Existing dataset 

(http://dx.doi.org/10.3334/ORN

LDAAC/949) 

Microbial 

isolates 

6b (Gommers et al., 1988; Lehmeier et al., 2016; Min et al., 

2016; Roels, 1980; Collado et al., 2014; Schmidt et al., 

2005; Wakelin and Forster, 1997) 

Original compilation including 

previous synthesis papers 

Terrestrial and 

aquatic 

microorganisms 

4b, 5c, 

5d, 6b 

(Manzoni et al., 2017) Existing dataset 

(http://bolin.su.se/data/Manzoni

-2017) 

Animals 6e (Manzoni et al., 2017) Existing dataset 

(http://bolin.su.se/data/Manzoni

-2017) 

Terrestrial 

ecosystems 

6c, 7 (Luyssaert et al., 2007; Luyssaert et al., 2009) Existing dataset 

(http://dx.doi.org/10.3334/ORN

LDAAC/949) 
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Aquatic 

ecosystems 

6c (Hoellein et al., 2013) Existing dataset 

(http://onlinelibrary.wiley.com/

doi/10.4319/lo.2013.58.6.2089/a

bstract) 

Terrestrial food 

chains 

6e, S2 (McNaughton et al., 1989; Cebrian and Lartigue, 2004) Previous synthesis papers 

Aquatic food 

chains 

6e, S2 (Adams et al., 1983; Dickman et al., 2008; Downing et al., 

1990; Iverson, 1990; Lefebure et al., 2013; Liang et al., 

1981; Rock et al., 2016; Rowland et al., 2015; Cebrian and 

Lartigue, 2004; Dunne et al., 2005) 

Original compilation including 

previous synthesis papers 

Soils 6d, 7 (Hua et al., 2014; Liang et al., 2016; Purakayastha et al., 

2008; Tan et al., 2014; Yan et al., 2013; Zhang et al., 2015; 

Zhang et al., 2010a; Zhang et al., 2012; Zhao et al., 2016; 

Poeplau et al., 2017; Poffenbarger et al., 2017; Zhang et 

al., 2017; Parton and Rasmussen, 1994; Paustian et al., 

1992) 

Original compilation 

Sediments 6d (Alin and Johnson, 2007; Ferland et al., 2014; Sobek et 

al., 2009; Canfield, 1994; Hartnett et al., 1998; Hedges 

and Keil, 1995) 

Original compilation including 

previous synthesis papers 

Catchments Results 

present

ed in 

the text 

(Gielen et al., 2011; Leach et al., 2016; Olefeldt et al., 

2012; Peichl et al., 2014; Waddington and Roulet, 2000; 

Öquist et al., 2014; Zhou et al., 2013; Dinsmore et al., 

2010; Helfter et al., 2015; Zhang et al., 2010b) 

Original compilation 
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Figure S1. Schematic illustration of the C balances of various components of a generic ecosystem. The ‘control volumes’ 610 

for each C balance are represented by colour-coded dashed boxes; C storages and exchange rates are respectively 

shown as rectangular shaded boxes and arrows. For each of this sub-systems, C-use and C-storage efficiencies can be 

calculated and are synthesized in Fig. 5. Colour codes are explained in the legend and are the same as in the figures of 

the main text. 

 615 
Figure S2. Comparison of the efficiencies of C export (exported C/primary production) among terrestrial and aquatic 

ecosystems. (a) Relation between C export rate and net primary productivity; (b) box plot of C-export efficiencies 

across ecosystem types. Data for terrestrial vegetation and algal beds/macrophytes is from Cebrian and Lartigue 

(2004); data for oceanic phytoplankton is from Dunne et al. (2005). 
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