Alteration of nitrous oxide emissions from floodplain soils by 1

aggregate size, litter accumulation and plant-soil interactions 2

Martin Ley^{1,2}, Moritz F. Lehmann², Pascal A. Niklaus³, and Jörg Luster¹ 3

4 5 6 7 8 ¹Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland

²Department of Environmental Sciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland

³Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

9 Correspondence to: Martin Ley (martin.ley@wsl.ch)

10 Abstract. Semi-terrestrial soils such as floodplain soils are considered potential hotspots of nitrous oxide (N₂O) 11 emissions. Microhabitats in the soil, such as within and outside of aggregates, in the detritusphere, and/or in the 12 rhizosphere, are considered to promote and preserve specific redox conditions. Yet, our understanding of the 13 relative effects of such microhabitats and their interactions on N₂O production and consumption in soils is still 14 incomplete. Therefore, we assessed the effect of aggregate size, buried leaf litter, and plant-soil interactions on 15 the occurrence of enhanced N₂O emissions under simulated flooding/drying conditions in a mesocosm 16 experiment. We used two model soils with equivalent structure and texture, comprising macroaggregates (4000-17 250 µm) or microaggregates (< 250 µm) from a N-rich floodplain soil. These model soils were planted either 18 with basket willow (Salix viminalis L.), mixed with leaf litter, or left unamended. After 48 hours of flooding, a 19 period of enhanced N₂O emissions occurred in all treatments. The unamended model soils with macroaggregates 20 emitted significantly more N₂O during this period than those with microaggregates. Litter addition modulated the 21 temporal pattern of the N_2O emission, leading to short-term peaks of high N_2O fluxes at the beginning of the 22 period of enhanced N_2O emissions. The presence of S. viminalis strongly suppressed the N_2O emission from the 23 macroaggregated model soil, masking any aggregate-size effect. Integration of the flux data with data on soil 24 bulk density, moisture, redox potential and soil solution composition suggest that macroaggregates provided 25 more favorable conditions for spatially coupled nitrification-denitrification, which are particularly conducive to 26 net N_2O production, than microaggregates. The local increase in organic carbon in the detritusphere appears to 27 first stimulate N₂O emissions, but ultimately, respiration of the surplus organic matter shifts the system towards 28 redox conditions where N₂O reduction to N₂ dominates. Similarly, the low emission rates in the planted soils can 29 be best explained by root exudation of low-molecular weight organic substances supporting complete 30 denitrification in the anoxic zones, but also by the inhibition of denitrification in the zone, where rhizosphere 31 aeration takes place. Together, our experiments highlight the importance of microhabitat formation in regulating 32 oxygen (O_2) content and the completeness of denitrification in soils during drying after saturation. Moreover, 33 they will help to better predict the conditions under which hotspots, and moments, of enhanced N₂O emissions 34 are most likely to occur in hydrologically dynamic soil systems like floodplain soils.

36 1. Introduction

- 37 Nitrous oxide (N_2O) is a potent greenhouse gas with a global warming potential over a 100 year time horizon
- 38 298 times higher than the one of carbon dioxide (Forster et al., 2007). Given its role as climate-relevant gas and
- in the depletion of stratospheric ozone (Ravishankara et al., 2009), the steady increase of its average atmospheric
- 40 concentration of 0.75ppb yr⁻¹ (Hartmann et al., 2013) asks for a quantitative understanding of its sources and the
- 41 factors that control its production. On a global scale, vegetated soils are the main natural terrestrial sources of
- 42 N_2O . Agriculture is the main anthropogenic source and the main driver of increasing atmosphere N_2O
- 43 concentrations (Ciais et al., 2013).
- 44 In soils, several biological nitrogen (N) transformation processes produce N_2O either as a mandatory 45 intermediate or as a by-product (Spott et al., 2011). Under oxic conditions, the most important process is obligate 46 aerobic nitrification that yields N₂O as by-product when hydroxylamine decomposes (Zhu et al., 2013). Under 47 low oxygen (O_2) availability, nitrifier denitrification and heterotrophic denitrification with N₂O as intermediate 48 become more relevant (Philippot et al., 2009). At stably anoxic conditions and low concentrations of nitrate 49 (NO_3) , complete denitrification consumes substantial amounts of previously produced N_2O by further reduction 50 to N_2 (Baggs, 2008; Vieten et al., 2009). In environments that do not sustain stable anoxia, but undergo sporadic 51 transitions between oxic and anoxic conditions, the activity of certain N2O reductases can be suppressed by
- 52 transiently elevated O_2 concentration and thus can lead to the accumulation of N_2O (Morley et al., 2008).
- Nitrous oxide emissions from soils depend on the availability of carbon (C) and N substrates that fuel the involved microbial processes. On the other hand, given its dependency on O_2 , N_2O production is also governed by the diffusive supply of O_2 through soils. Similarly, soil N_2O emissions are modulated by diffusive N_2O transport from the site of production to the soil surface (e.g. Böttcher et al., 2011; Heincke and Kaupenjohann, 1999). Substrate availability, gas diffusivity, and the distribution of soil organisms are highly heterogeneous in soils at a small scale, with micro-niches in particular within soil aggregates, within the detritusphere, and within the rhizosphere. These can result in "hot spots" with high denitrification activity (Kuzyakov and Blagodatskaya,
- **60** 2015).
- 61 Soil aggregate formation is a key process in building soil structure and pore space. Soil aggregates undergo 62 different stages in their development, depending on the degradability of the main binding agent (Tisdall and 63 Oades, 1982). Initially, highly persistent primary organo-mineral clusters (20-250 µm) are held together by root 64 hairs and hyphae, thus forming macroaggregates (> 250μ m). Upon decomposition of these temporary binding 65 agents and the subsequent disruption of the macroaggregates, microaggregates (< 250 µm) are released (Elliott 66 and Coleman, 1988; Oades, 1984; Six et al., 2004). These consist of clay-encrusted fragments of organic debris 67 coated with polysaccharides and proteins. This multi-stage development leads to a complex relationship between 68 aggregate size, intra-aggregate structure and soil structure (Ball, 2013; Totsche et al., 2017), which influences 69 soil aeration, substrate distribution and pore water dynamics (Six et al., 2004). Often, micro-site heterogeneity 70 increases with aggregate size, thus fostering the simultaneous activity of different N₂O producing microbial 71 communities with distinct functional traits (Bateman and Baggs, 2005). Aggregate size effects on N_2O 72 production and consumption have generally been studied in static batch incubation experiments with a 73 comparatively small number of isolated aggregates of uniform size, at constant levels of water saturation (Diba 74 et al., 2011; Drury et al., 2004; Jahangir et al., 2011; Khalil et al., 2005; Sey et al., 2008), and through modelling 75 approaches (Renault and Stengel, 1994; Stolk et al., 2011). Previous work provided partially inconsistent results, 76 which led to an ongoing discourse about the interplay of physicochemical properties and different aggregate

77 sizes in controlling N₂O emission. Such inconsistencies may in parts be attributed to the use of different

- aggregate size classes, changes in soil structure by aggregate separation, other methodological constraints (water
- saturation, redox potential), and differences in microbial communities. The effects of specific aggregate sizes
- 80 within a simulated soil structure, in combination with fluctuating water saturation, on soil N₂O emissions have,

to our knowledge, not been addressed specifically.

82 Similar to soil aggregates, the detritusphere and the rhizosphere (the zone of the soil that is affected by root 83 activity) (Baggs, 2011; Luster et al., 2009), can be considered biogeochemical hot spots (Kuzyakov and 84 Blagodatskaya, 2015; Myrold et al., 2011). Here, carbon availability is much higher than in the bulk soil and 85 thus rarely limiting microbial process rates. The detritusphere consists of dead organic material, which spans a 86 wide range of recalcitrance to microbial decomposition. Spatially confined accumulations of variably labile soil 87 litter form microhabitats that are often colonized by highly active microbial communities (Parkin, 1987). 88 Aggregation of litter particles has been shown to affect N₂O emissions (Loecke and Robertson, 2009). Hill 89 (2011) identified buried organic-rich litter horizons in a stream riparian zone as hot spots of N cycling. Similarly, 90 in the rhizosphere, root exudates and exfoliated root cells provide ample degradable organic substrate for soil 91 microbes (Robertson and Groffman, 2015). Yet, plant growth may also affect soil microbial communities 92 through competition for water and nutrients (e.g., fixed N) (Bender et al., 2014; Myrold et al., 2011). The 93 combined effects of these plant-soil interactions on N₂O production have been reviewed by Philippot et al. 94 (2009). Root-derived bioavailable organic compounds can stimulate heterotrophic microbial activity, specifically 95 N mineralization and denitrification. Nitrification in turn can be enhanced by the elevated N turnover and 96 mineralization rates, but may also be negatively affected by specific inhibitors released from the root or through 97 plant-driven ammonium depletion. The ability of some plants adapted to water-saturated conditions to 98 ",pump" air into the rhizosphere via aerenchyma (gas conductive channels in the root) leads to an improved 99 oxygenation of the rhizosphere and a stimulation of nitrification (Philippot et al., 2009). Surrounded by 100 otherwise anoxic sediments, such aerated micro-environments may create optimal conditions for coupled 101 nitrification-denitrification (Baldwin and Mitchell, 2000; Koschorreck and Darwich, 1998). On the other hand, 102 transport of N₂O produced in the soil to the atmosphere is may be facilitated via these plant-internal channels, 103 bypassing diffusive transport barriers and enhancing soil-atmosphere gas fluxes (Jørgensen et al., 2012).

104 The dynamics of N_2O emissions are strongly coupled to the dynamics of pore water. Re-wetting of previously 105 dried soil can lead to strong N₂O emissions (Goldberg et al., 2010; Ruser et al., 2006), likely fostered by a 106 wetting-induced flush in N mineralization (Baldwin and Mitchell, 2000). On the other hand, the drying-phase 107 after water saturation of sediments and soils can lead to a period of enhanced N₂O emissions (e.g. Baldwin and 108 Mitchell, 2000; Groffman and Tiedje, 1988; Rabot et al., 2014; Shrestha et al., 2012) when water-filled pore 109 space (WFPS) exceeds 60% (Beare et al., 2009; Rabot et al., 2014). The increased N₂O production has been 110 attributed to enhanced coupled nitrification-denitrification (Baldwin and Mitchell, 2000). Depending on the 111 spatial distribution of water films around soil particles and tortuosity (which is a function of aggregate size and 112 soil structure), the uneven drying of the soil after full saturation may generate conditions that are conducive to 113 the formation of anaerobic zones in otherwise oxic environments (Young and Ritz, 2000). Pore water thereby 114 acts as a diffusion barrier for gas exchange, limiting the O_2 availability in the soil pore space (Butterbach-Bahl et 115 al., 2013). Moreover, pore water serves as a medium for the diffusive dispersal of dissolved C and N substrates, 116 e.g. from the site of litter decomposition to spatially separated N₂O producing microbial communities (Hu et al., 117 2015). Therefore, fluctuations in water saturation efficiently promote the development of hot spots and hot

- 118 moments of N₂O emissions in floodplain soils and other semi-terrestrial soils (Hefting et al., 2004; Shrestha et al.,
- **119** 2012).
- 120 The main objective of the present experimental study was to assess both the relative and combined effects of soil 121 microhabitats associated with soil aggregates, the detritusphere and plant-soil interactions on N_2O emissions 122 from floodplain soils under changing pore-space saturation. We simulated a flooding event in mesocosm 123 experiments with main focus on the dynamics of N₂O emissions during hot moments in the drying phase after 124 flooding. To isolate the effect of aggregate-size and to minimize confounding effects of differences in soil 125 structure, we prepared model soils by mixing aggregate size fractions of a floodplain soil with suitable inert 126 material. The combined effects of soil aggregate size and plant detritus or plant-soil interactions were addressed 127 by mixing the model soils with leaf litter or by planting them with willow cuttings (Salix viminalis L.).
- 128 We demonstrate that the level of soil aggregation significantly affects N₂O emission rates from floodplain soils
- through its modulating control on the model soil's physicochemical properties. We further show that these
- 130 effects can be modified by the presence of a detritusphere and by root-soil interactions, changing carbon and N
- 131 substrate availability and redox conditions.

132 2. Material and methods

133 2.1 Model soils

134 In February 2014, material from the uppermost 20 cm of a N-rich gleyic Fluvisol (calcaric, humic siltic) with 135 20% sand and 18% clay (Samaritani et al., 2011) was collected in the restored Thur River floodplain near 136 Niederneunforn (NE Switzerland 47°35' N, 8°46' E, 453 m.a.s.l.; MAT 9.1 °C; MAP 1015 mm). After removing 137 plant residues such as roots, twigs and leaves, the soil was mixed and air-dried to a gravimetric water content of 138 24.7 ± 0.4 %. In the next step, the original floodplain soil material, consisting of 18.5 ± 4.6 % aggregates smaller 139 than 250 μ m and 81.5 \pm 4.6 % macroaggregates (mean \pm SD; n = 10), was separated into a macroaggregate 140 fraction (250–4000 μ m) and a microaggregate fraction (< 250 μ m) by dry sieving. The threshold of 250 μ m 141 between macroaggregates and microaggregates was chosen based on Tisdall and Oades (1982). Soil aggregate 142 fractions were then used to re-compose model soils. In order to preserve soil structure, the remaining aggregate 143 size fractions were complemented with an inert matrix replacing the removed aggregate size fraction of the 144 original soil. Model Soil 1 (LA) was composed of soil macroaggregates mixed in a 1:1 (w/w) ratio with glass 145 beads of 150–250 µm size serving as inert matrix material replacing the microaggregates of the original soil. 146 Similarly, Model Soil 2 (SA) was composed of soil microaggregates mixed at the same ratio with fine quartz 147 gravel of 2000-3200 µm size. To generate an even mixture of original soil aggregates and the respective inert 148 matrix a Turbula mixer (Willy A. Bachofen AG, Muttenz, Switzerland) was used. The proportions of the 149 aggregate size fractions in the model soils were different from the original soil, and 50% microaggregates may 150 be more than what is found in most natural or agricultural soils (often less than 10%). Nevertheless, we chose to 151 use equal amounts of micro- and macroaggregates, in order to be able to separate the effects of aggregate size 152 from effects of aggregate amount (soil mass). These proportions were still well in the range of common top soils 153 (e.g. Cantón et al., 2009; Gajić et al., 2010; Six et al., 2000). The physicochemical properties of the two soils 154 were determined by analysing three random samples of each model soil. Texture of the complete model soils 155 was determined using the pipette method (Gee and Bauder, 1986) and pH was measured potentiometrically in a 156 stirred slurry of 10 g soil in 20 ml of 0.01 M CaCl₂, as recommended in Hendershot et al. (2007). Additionaly

- 157 organic carbon (Corg) and total nitrogen (TN) were analysed in both aggregate size fractions without the inert
- 158 material, using the method described by Walthert et al. (2010). The two model soils displayed very similar
- 159 physicochemical properties (Table 1), except for the C:N ratio that was lower in macroaggregates than in
- 160 microaggregates. The latter was due to the slightly lower organic carbon content in concert with slightly higher
- 161 TN values in the macroaggregates. The high calcium carbonate (CaCO₃) content of the source material of our 162 model soils (390 ± 3 g CaCO₃ kg⁻¹; Samaritani et al., 2011) buffered the systems at an alkaline pH of 8.00 \pm 0.02
- 163 for LA and 7.56 \pm 0.01 for SA respectively (Table 1), ensuring that the activity of key N-transforming enzymes
- 164 was not hampered by too low pH, and that the potential for simultaneous production and consumption of N_2O in
- - 165 our experiment was fully intact (Blum et al., 2018; Frame et al., 2017).

166 2.2 Mesocosms

167 For the mesocosm experiments, transparent polyvinyl chloride (PVC) cylinders with polymethyl methacrylate 168 (PMMA) couplings were used. A mesocosm comprised a bottom column section, containing the soil material 169 and a drainage layer as described below, and the upper headspace section with a detachable headspace chamber 170 (Fig. 1). Each column section was equipped with two suction cups (Rhizon MOM Soil Moisture Samplers, 171 Rhizosphere Research Products, Netherlands; pore size 0.15 µm) for soil solution sampling. The suction cups 172 were horizontally inserted at 5 cm and 20 cm below soil surface. For redox potential measurements, two custom-173 made Pt electrodes (tip with diameter of 1 mm and contact length of 5 mm) were placed horizontally at a 90° 174 angle to the suction cups at the same depths, with the sensor tip being located 5 cm from the column wall. A 175 Ag/AgCl reference electrode (B 2820, SI Analytics, Germany) was installed as shown in Fig. 1. A volumetric 176 water content (VWC) sensor (EC-5, Decagon, USA) was installed 15 cm below the soil surface. To avoid 177 undesired waterlogging, each column section contained a 5 cm thick drainage layer composed of quartz sand 178 with the grain size decreasing with depth from 1 mm to 5.6 mm (Fig. 1). The upper cylinder section was 179 equipped with three way valves for gas sampling, and an additional vent for pressure compensation.

180 2.3. Experimental setup

181 The mesocosm experiment had a factorial experimental design consisting of two factors (MODEL SOIL and 182 TREATMENT), with the first factor containing two levels (macroaggregates, microaggregates) and the second 183 factor containing three levels (unamended, litter added, plant presence). This experimental design resulted in six 184 treatments, each replicated six times (Table 2). As basic material, each mesocosm contained 8.5 kg of either of 185 the two model soils. Unamended model soils were used to investigate exclusively the effect of aggregate size, 186 abbreviated as LAU (large aggregates, unamended) and SAU (small aggregates, unamended), respectively. In 187 order to specifically assess the effect of enhanced availability of labile C in the detritusphere for the N₂O 188 producing or consuming soil microbial community, two sets of mesocosms were amended with freshly collected 189 leaves of Basket Willow (Salix viminalis L.). Those leaves were cut into small pieces, autoclaved, and then 190 added to the model soil components (8 g kg⁻¹ model soil) during the mixing procedure to create treatments LAL 191 (large aggregates, litter) and SAL (small aggregates, litter), respectively. The sterilization step was included to 192 create equal starting conditions in all litter treatments by reducing any potential effect of, and interaction with, 193 the phyllosphere microbial community even though a direct involvement of the phyllosphere community in N_2O 194 production was unlikely according to the literature (Bringel and Couée, 2015). A third set of mesocosms was 195 planted with cuttings collected from the same Salix viminalis creating treatments LAP (large aggregates, plant)

- 196 and SAP (small aggregates, plant), respectively to evaluate the effects of root-soil interactions in the respective
- 197 model soils. For each mesocosm one cutting was inserted 10 cm into the soil, protruding from the surface about 198 3 cm.
- 199 The addition of leaf litter to the model soils led to an increase of $C_{\rm org}$ and TN in LAL relative to LAU by 41 %
- 200 and 35 %, respectively, and in SAL relative to SAU by 58 % and 44 % respectively. The bulk density of the 201 unamended model soil SAU (1.27 \pm 0.01 g cm⁻³) was slightly higher than the one of LAU (1.22 \pm 0.01 g cm⁻³;
- 202 adj. P: < 0.0001). Regarding the litter addition treatments, the bulk density of LAL (1.13 ± 0.01 g cm⁻³) was
- 203 significantly smaller than the one of LAU (adj. P: < 0.0001), whereas the bulk density of SAL (1.27 ± 0.02 g cm⁻¹)
- 204 ³) did not differ significantly from the one of SAU. The soils in the treatments with plants exhibited a similar
- 205 bulk density (LAP: 1.23 ± 0.02 g cm⁻³; SAP: 1.24 ± 0.01 g cm⁻³) as in the respective unamended treatments.
- 206 The experiments were conducted inside a climate chamber set to constant temperature (20 ± 1 °C) and relative
- 207 air humidity (60 \pm 10%), with a light/dark cycle of 14/10 h (PAR 116.2 \pm 13.7 µmol m⁻² s⁻¹). The experimental 208 period was divided into four consecutive phases: The conditioning phase (Phase 1) lasted for 15 weeks and
- 209 allowed the model soils to equilibrate and the plants to develop a root system. This was followed by the first
- 210 experimental phase of nine days (Phase 2), serving as a reference period under steady-state conditions. During
- 211 Phases 1 and 2, the soils were continuously irrigated with artificial river water (Na⁺: 0.43 μ M; K⁺: 0.06 μ M;
- Ca²⁺: 1.72 μM; Mg²⁺: 0.49 μM; Cl⁻: 4.04 μM; NO₃⁻: 0.16 μM; HCO₃⁻: 0.5 μM; SO₄⁻²⁻: 0.11 μM; pH: 7.92) via 212
- 213 suction cups, to maintain a volumetric water content of 35 ± 5 %. In Phase 3, the mesocosms were flooded by
- 214 pumping artificial river water through the drainage vent at the bottom into the cylinder (10 mL min⁻¹, using a
- 215 peristaltic pump; IPC-N-24, Ismatec, Germany) until the water level was 1 cm above the soil surface. After 48 h
- 216 of flooding, the water was allowed to drain and the soil to dry for 18 days without further irrigation (Phase 4).

217 2.4 Sampling and analyses

- 218 During the entire experiment, water content and redox potential were automatically logged every 5 minutes 219 (EM5b, Decagon, USA and CR1000, Campbell scientific, USA, respectively).
- 220 At selected time points during the experiment, soil-emitted gas and soil solution were sampled. For N₂O flux 221 measurements, 20, 40 and 60 minutes after closing the mesocosms, headspace gas samples (20 mL) were 222 collected using a syringe and transferred to pre-evacuated exetainers. The samples were analyzed for their N₂O 223 concentration using a gas chromatograph (Agilent 6890, Santa Clara, USA; Porapak Q column, Ar/CH₄ carrier 224 gas, micro-ECD detector). Measured headspace N₂O concentrations were converted to moles using the ideal gas
- 225 law and headspace volume. The N_2O efflux rates were calculated as the slope of the linear regression of the N_2O
- 226 amounts at the three sampling times, relative to the exposed soil surface area (Fig. 1, Shrestha et al., 2012).
- 227 For soil water sampling, 20 mL of soil solution were collected using the suction cups. Water samples were
- analyzed for dissolved organic carbon (DOC) and TN concentrations with an elemental analyzer (Formacs^{HT/TN}, 228
- 229 Skalar, The Netherlands). Nitrate and ammonium concentrations were measured by ion chromatography (IC 940,
- 230 Metrohm, Switzerland), and nitrite (NO₂) concentrations were determined photometrically (DR 3900, Hach
- 231 Lange, Germany).

232 2.5 Data analyses

- 233 We were interested in effects on cumulated N_2O emissions during hot moments following flooding. We
- 234 therefore analyzed data aggregated over this period rather than the raw full time series data. This procedure also

avoided potential issues with small shifts in the timing of emissions that might have been significant but which were irrelevant for the total fluxes we focused on. The total amount of N_2O emitted during the period of enhanced N_2O fluxes in Phase 4, Q_{tot} , was calculated by integrating the N_2O fluxes between day 11 and 25 of the experiment as follows:

$$Q_{tot} = \frac{1}{2} \sum_{n=1}^{n_{max}} [\Delta_n \times (q_n + q_{n+1})]$$
(1)

where Δ_n is the time period between the nth and the n+1th measurement, and q_n and q_{n+1} the mean flux on the nth 239 240 and n+1th measurement day, respectively. "n=1" refers to day 11, and n_{max} to day 25 of Phase 4. The integrated 241 N₂O fluxes, as well as the average DOC and N-species concentrations in the soil solution during this period were 242 analyzed by performing two-way ANOVAs with the fixed terms TREATMENT and MODEL SOIL including their 243 interaction. In case of significant MODEL SOIL, TREATMENT or MODEL SOIL × TREATMENT effects, their causes 244 were inspected with the Tukey's honestly significant difference (HSD) post hoc test. For all data, the residuals of 245 the ANOVA models were inspected, and the Shapiro-Wilk normality test was applied to ensure that the values 246 follow a Gaussian distribution. In case that this requirement for ANOVA was not met, the respective data set 247 was log-transformed. Significance and confidence levels were set at $\alpha < 0.05$. The results of the performed 248 ANOVAs are summarized in Table 3. For the statistical analyses we used GraphPad Prism (GraphPad Software

249 Inc., 2017) and R (R Core Team, 2018).

250 **3. Results**

251 **3.1 Soil moisture and redox potential**

252 During Phase 1 and 2, saturation levels stabilized at $53.0 \pm 2.1\%$ WFPS (water filled pore space) in the 253 treatments with LA soils, and were slightly higher in SA treatments (57.8 \pm 2.0%) (Fig. 2). The flooding of the 254 mesocosms for 48 h with artificial river water raised the WFPS for all LA soils to $87.8 \pm 0.1\%$, significantly 255 exceeding the increase of WFPS in SA soils (80.6 \pm 0.1%). The water release from the system after the 256 simulated flood resulted in an immediate drop of the WFPS, except for the LAU treatment (Fig. 2). This was 257 followed by slow drying for 1 week, and a more marked decrease in WFPS during the second week after the 258 flood. During the latter period, the plant treatments dried faster than the other treatments. As a result, at the end 259 of the experiment, WFPS was still above pre-flood values in unamended and litter treatments, while WFPS 260 levels in the treatments with plants were lower than before the flooding.

The time course of the redox potential measured in 5 cm and 20 cm depth exhibited distinct patterns depending on the respective model soil (Fig. 3). In all treatments, flooding induced a rapid decrease of the redox potential to values below 250 mV within 36 hours. Upon water release, the redox potential returned rapidly to pre-flood values at both measurement depths only in SA soils. In the LA treatments (most pronounced in LAL), soils at 20 cm depth underwent a prolonged phase of continued reduced redox condition, returning to the initial redox levels only towards the end of the experiment.

267 **3.2 Hydrochemistry of soil solutions**

Considering individual treatments, DOC concentrations varied only little with time. Yet, the DOC concentrations
 were generally much higher in treatments with LA than with SA soils. This main effect of MODEL SOIL was

270 highly significant, as was the interaction with TREATMENTS due to a smaller difference in the litter addition 271 treatments than in the unamended and plant treatments (Table 3). Nitrate was the most abundant dissolved 272 reactive N species in the soil solution, with pre-flood concentrations of 1 to 5 mM (Fig. 4d-f). In the unamended 273 and plant treatments, NO₃⁻ concentrations were markedly higher in SA than in LA soils, whereas they were 274 similar in both litter addition treatments. Two distinct temporal patterns in the evolution of NO_3^- concentration 275 could be discerned. In the unamended and litter-addition treatments, NO₃⁻ concentrations decreased after the 276 flooding, consistently reaching a minimum on day 19, in the case of the litter treatments below the detection 277 limit of 0.2 µM, before increasing again during the latter drying phase (Fig. 4d,e). In contrast, in the treatments 278 with plants, NO_3^- concentrations steadily declined from concentrations of 1–2 mM to around 0.5 mM at the end 279 of the experiment (Fig. 4f). Nitrite was found at significant concentrations only in LA soils, with highest 280 concentrations in the LAU treatment right after the flooding (33.6 μ M) and decreasing concentrations throughout 281 the remainder of the experiment (Fig. 4g–i). In SA soils NO_2^- concentration was always < 5 μ M, without much 282 variation. Similarly, in most treatments except SAL, ammonium (NH_4^+) concentrations were < 10 μ M, and 283 particularly towards the end of the experiment very close to the detection limit (Fig. 4j, 4l). In the SAL treatment, 284 NH_4^+ concentrations peaked 5 days after the flood with concentrations of around 70 μ M (Fig. 4k). This deviation 285 from the other temporal patterns prompted a significant interaction effect between MODEL SOIL and TREATMENTS.

286 **3.3 Nitrous oxide emissions**

287 During Phase 2 (i.e., before the flooding), N₂O fluxes were generally low (< 1 μ mol m⁻² h⁻¹; Fig. 2), however, 288 fluxes in the LAL treatment were significantly higher than in the other treatments (adj. P = 0.002-0.039; Fig. 2). 289 The flooding triggered the onset of a "hot moment", defined here as period with strongly increased N₂O 290 emissions, which lasted for about one week independent of the treatment (Fig. 2). The maximum efflux was 291 observed immediately after the flood. The subsequent decline in N₂O emission rates followed different patterns 292 among the various treatments. Normalizing the N₂O flux to the maximum measured efflux for each replicated 293 treatment revealed a slower decrease with time for the unamended soils than for the litter and plant treatments 294 (Fig. S1). The strongest peak emissions were observed in the LAL treatment (91.6 \pm 14.0 μ mol m⁻² h⁻¹; mean \pm 295 SD). Throughout most of the drying phase, the LAU and LAL treatments exhibited higher N₂O emissions than 296 the corresponding SAU and SAL experiments. In contrast, there was no such difference in the treatments with 297 plant cuttings, and peak N_2O emissions were overall lower than in the other treatments. The integrated N_2O 298 fluxes during the hot moment (days 11 to 25 of the experiment) were significantly higher for the LAU and LAL 299 than for all other treatments (Fig. 5), and the aggregate size effect was also significant within the unamended (adj. 300 P = 0.045) and litter-addition treatments (adj. P = 0.008). The integrated N₂O emissions in the two plant 301 treatments did not differ significantly from each other, but were significantly smaller than in the LAU (adj. P =302 0.001), and the LAL (adj. P = 0.005) treatments. Overall, the effects of MODEL SOIL and TREATMENTS were 303 significant, as was the interaction between the two factors due to the different aggregate size effect in the plant

304 compared to the unamended and litter addition treatments (Table 3).

305 4. Discussion

306 In our experiment, we could confirm the occurrence of periods of enhanced N_2O emissions in the drying phase 307 shortly after flooding, as expected based on previous research (Baldwin and Mitchell, 2000; Groffman and 308 Tiedje, 1988; Rabot et al., 2014; Shrestha et al., 2012). We observed that the six treatments had a substantial 309 effect on the magnitude and temporal pattern of N₂O emissions that could only be captured by observations at 310 relatively high temporal resolution. The fast occurrence of strong N₂O fluxes over a comparatively short period 311 in the litter-amended treatment on the one side, and the relatively weak response to the flooding in the plant 312 treatment on the other, suggests complex interactive mechanisms related to distinct microhabitat effects leading 313 to characteristic periods of enhanced N_2O emission. Rabot et al. (2014) explained N_2O emission peaks during the 314 desaturation phase with the release of previously produced and entrapped N_2O . Such a mechanism may partly 315 contribute to high N₂O emissions in our experiment initially, but the continuing depletion of NO₃⁻ and NO₂⁻ 316 during the phase of high N₂O emissions indicates that the flooding and drying has strong effects on N 317 transformations mediated by microorganisms in the soil (e.g., the balance and overall rates of nitrification, 318 nitrifier-denitrification, and denitrification). Hence, physical controls alone clearly do not explain the observed 319 timing and extent of hot moments with regard to N_2O emission. In the following sections we will discuss how 320 the effect of flooding on microbial N₂O production is modulated by differential microhabitat formation (and 321 hence redox conditions) in the various treatments.

322 4.1 Effect of aggregate size on N₂O emissions

323 LA model soils exhibited both higher peak and total N₂O emissions during the hot moment in the drying phase 324 than SA model soils (Figs. 2 and 5). By contrast, in the presence of a growing willow, there was no detectable 325 effect of aggregate size on the overall N₂O emission (further discussion below). The aggregate size effects 326 observed in the unamended and litter treatments can be explained by factors controlling (i) gas diffusion (e.g. 327 water film distribution, tortuosity of the intra-aggregate pore space) and (ii) decomposition of encapsulated soil 328 organic matter (SOM) regulating the extent of N₂O formation (Neira et al., 2015). In order to isolate the effect of 329 aggregate size (i.e., to minimize the effect of other factors that are likely to influence gas diffusion), we created 330 model soils of similar soil structure and texture (see Materials and Methods). We thereby implicitly accepted that 331 potential interactions of the two size fractions with each other, or with soil structures larger than 4 mm could not 332 be assessed in this experiment. Although this approach thus represents only an approximation of real-world 333 conditions it was still an improvement compared to experiments where no attempts were made to conserve soil 334 structure. Similarly, the bulk soil chemical properties of the two aggregate size fractions, such as Core content 335 and TN, are essentially the same. Differences in the initial C:N ratio and pH, although statistically significant, 336 can be considered equivalent in the ecological context, e.g., in terms of organic matter degradability. Therefore, 337 we assume in the following that the differences in N₂O emissions among the treatments can mainly be attributed

- to size-related aggregate properties and their interactions with litter addition or rhizosphere effects.
- During Phase 3 with near-saturated conditions, no aggregate size effect was observed. High WFPS seem to have limited the gas diffusion (O_2 and N_2O) independent of the aggregate size, limiting soil-atmosphere gas exchange in both model soils equally (Neira et al., 2015; Thorbjørn et al., 2008). As a consequence of inhibited gas exchange/soil aeration, a sharp drop in the redox potential was observed in all treatments, indicating a rapid decline in O_2 availability to suboxic/anoxic conditions. Together with an incipient decrease in soil solution NO_3^- , this indicates that N_2O production is primarily driven by denitrification in this phase.
- The aggregate size effects on the formation of moments of enhanced N_2O emission became evident during the subsequent drying period. During the initial drying phase, when a heterogeneous distribution of water films
- a construction of the second second
- around soil particles/aggregates develops (Young and Ritz, 2000), the macroaggregates in the LA model soils

- 348 appear to foster micro-environmental conditions that are more beneficial to N₂O production. This could be 349 related to the longer diffusive distances for re-entering O_2 caused by the higher tortuosity of the intra-aggregate 350 pore space of macroaggregates, as reported by Ebrahimi and Or (2016). This may have helped to maintain, or 351 even extend, reducing conditions due to microbial activity inside the core of macroaggregates during drying. 352 Thus, on the one hand, large aggregates favor the emergence of anoxic microhabitats expanding the zones where 353 denitrification occurs. On the other hand, the overall higher porosity of the LA soils supports a better aeration in 354 drained parts of the soil (Sey et al., 2008), and aerobic processes (e.g., nitrification) are supported. As a result, 355 ideal conditions for spatially coupled nitrification-denitrification are created (Baldwin and Mitchell, 2000; 356 Koschorreck and Darwich, 1998). Indeed, the emergence of heterogeneously distributed, spatially confined 357 oxygen minimum zones during soil drying may be reflected by the high variability of the redox conditions 358 observed in replicate mesocosms and, on average, the tendency towards lower redox potentials for a prolonged 359 period of time in the subsoils of the LA model soils (Fig. 3 d-f). In this context, the relevance of water films for 360 the emergence of periods of enhanced N₂O emissions is further highlighted by the fact that elevated flux rates 361 were only observed as long as the WFPS was above 65%. This is consistent with work by Rabot et al. (2014) 362 and Balaine et al. (2013), who found similar soil water saturation thresholds for elevated N₂O emissions from 363 soils, attributing this phenomenon to suboptimal environmental conditions for both nitrification and 364 denitrification at lower saturation levels.
- 365 Given the arguments above, we assume that N_2O emissions during the drying phase originate to a large degree 366 from heterotrophic denitrification, and that they are governed mainly by the aggregate-size dependent redox 367 conditions within the semi-saturated soils. This conclusion stands in good agreement with findings from Drury et 368 al. (2004), who found higher production of N₂O due to enhanced denitrification with increasing size of intact 369 arable soil aggregates in a laboratory incubation study. In contrast, the much lower emissions from the SA 370 treatments can best be explained by a rapid return to pre-flood, i.e. oxic redox conditions in most of the pore 371 space, under which N_2O production driven by denitrification is inhibited. Enhanced reduction of N_2O to N_2 in 372 the SA versus LA treatments seems less likely as an explanation for lowered net N₂O emission rates, since the 373 relatively high redox potential represents an impediment to complete denitrification to N_2 . Furthermore, 374 according to Manucharova et al. (2001) and Renault and Stengel (1994), aggregates smaller than 200 µm are 375 simply not large (and reactive) enough (i.e., molecular diffusive distances for oxygen are too short) to develop 376 suboxic or anoxic conditions in the center, let alone denitrifying zones. Hence, only a relatively small fraction of 377 the total number of microaggregates in the SA soils would have been large enough (between 200 and 250 µm) to 378 host denitrification and act as site of anaerobic N2O production.
- 379 Under natural conditions, frequent hydrological disturbance in floodplains creates a highly dynamic and small-
- 380 scaled mosaic of different aggregate size distributions. In this regard, our results, demonstrating the effect
- 381 aggregate size has on N₂O emissions, may help to understand the seemingly erratic spatial and temporal
- distribution of enhanced N₂O emissions from floodplain areas. Moreover they imply that zones with a relatively
- 383 high percentage of macroaggregates would be particularly prone to high emissions of N₂O after a flood event.

384 4.2 Litter effect on N₂O emissions

We expected that litter addition would increase N_2O emissions from model soils with both small and large aggregates, as was found earlier (e.g. Loecke and Robertson, 2009; Parkin, 1987). The addition of litter to the

387 model soils changed the temporal dynamics of the N₂O emission substantially, but its effect on the net integrated

388 N₂O emission was rather minor (Fig. 5). More precisely, highest peak emission rates of all treatments were 389 observed in the LAL treatment, but peak emission rates were followed by a faster return to low pre-flood 390 emission rates in the LAL and the SAL treatments relative to the unamended treatments (Fig 2). This confirms 391 that surplus organic carbon can, on short-term, boost N₂O emissions, particularly in the large-aggregate 392 treatment. The fast mid-term return to low N₂O emission suggests that N₂O production by heterotrophic 393 denitrification either becomes limited by substrates other than carbon, and/or that the carbon added to the soils 394 affects the redox-biogeochemistry in a way that shifts the balance between N₂O production and consumption in 395 favor of consumption. Loecke and Robertson (2009) reported similar temporal N₂O emission patterns in field 396 experiments with litter-amended soil, and attributed the observed dynamic of a rapid decline after peak emission 397 to an increased demand for terminal electron acceptors during denitrification shortly after the carbon addition. 398 Nitrate/nitrite limitation leads, under stable anoxic conditions, ultimately to the complete reduction of produced 399 N_2O to N_2 decreasing net N_2O emission. Indeed, the rapid decrease in N_2O emissions after the emission rate peak 400 in the litter addition treatments was accompanied by the complete depletion of NO_3^- in the soil solution at low 401 redox potential, suggesting nitrate limitation. The increased demand for electron acceptors can be attributed to 402 the increased availability of labile C compounds and nutrients provided by the mineralization of litter, and the 403 concomitant stimulation of aggregate-associated microbial communities during the flooding (Li et al., 2016). At 404 the same time, the litter-stimulated soil respiration increases the soil's oxygen demand, maintaining stable low 405 redox conditions for a longer period of time during the drying phase. Since high activity of N₂O reductase 406 requires very low O_2 concentrations (Morley et al., 2008), such conditions may be particularly favorable for 407 complete denitrification to N_2 , an additional, or alternative, explanation for the low N_2O emission rates shortly 408 after the N₂O emission peak.

409 4.3 Effects of Salix viminalis

410 Planted willow cuttings resulted in relatively low maximum N₂O emission rates (LAP: $19.75 \pm 9.31 \mu$ mol m⁻² h⁻ 411 ¹; SAP: 15.07 \pm 12.07 µmol m⁻² h⁻¹; mean \pm SD), independent of aggregate size. The high values for WFPS 412 throughout the hot moment, and a low redox potential in the subsoil, imply optimal conditions for denitrification 413 or nitrifier denitrification, but compared to unamended and litter-addition treatments, only little N₂O was emitted 414 (both during peak N₂O emission rates and with regards to the integrated N₂O flux). S. viminalis suppressed peak 415 N_2O emissions, overriding the positive effect of large aggregates on N_2O emissions observed otherwise. The 416 specific mechanisms involved are uncertain. Fender et al. (2013) found in laboratory experiments with soil from 417 a temperate broad-leaved forest planted with ash saplings (Fraxinus excelsior L.) N₂O fluxes and plant effects 418 very similar to the ones observed in our study. They attributed reduced N_2O emissions in presence of ash partly 419 to plant uptake of nutrients that reduced NO₃⁻ availability to denitrifiers. Fast-growing plant species like Salix are 420 particularly effective in removing soil inorganic N (Kowalik and Randerson, 1994). Such a causal link between 421 reduced N_2O emissions and plant growth is, however, not supported by our data. More precisely, the NO₃ 422 concentrations during the hot moment of N_2O emissions were always relatively high (> 0.5 mM) and above the 423 levels observed in the litter treatments.

- 424 An alternative explanation for the reduced N_2O emissions in the plant treatments could be rhizosphere aeration
- 425 by aerenchyma, a physiological trait of *Salix viminalis* roots, which prevents the formation of anoxia in their
- 426 close vicinity (Blom et al., 1990; Randerson et al., 2011), and thus inhibits anaerobic N_2O production. Indeed,
- 427 redox potentials in the topsoil were higher in SAP and LAP compared to the other treatments. By contrast, the

- 428 redox potential in the saturated subsoil below was even lower than observed for the unamended soils. This
- 429 indicates that the aeration effect by aerenchyma is constrained to the upper soil, or is, in the deeper soil portions,
- 430 compensated by respiratory rhizosphere processes. On the other hand, aerenchyma can also aid in the gas
- $431 \qquad \text{exchange between the soil and the atmosphere, leading to an accelerated transport of N_2O by bypassing the soil}$
- 432 matrix. This phenomenon is well documented for various grasses such as Oryza (Baruah et al., 2010), Triticum
- 433 (Smart and Bloom, 2001) or *Phalaris arundinacea* (Jørgensen et al., 2012). However, we are not aware of any
- 434 reports on enhanced N₂O emissions via aerenchyma by willows (Salix sp.), and indeed, our results do not
- $\label{eq:stars} 435 \qquad \text{indicate any increased N_2O emission via plants. In fact, we observed the lowest ecosystem flux rates and lowest \\$
- 436 total integrated N_2O emissions in the mesocosms with S. viminalis.
- 437 According to Fender et al. (2013), in vegetated soils, microbial respiration is stimulated by deposition of root 438 exudates, which in concert with root respiration in a highly saturated pore space, leads to severe and ongoing 439 oxygen depletion. Under such stable anoxic conditions complete denitrification would take place generating N_2 440 and not N_2O as the dominant final product and therefore N_2O emissions would be low.
- 441 While oxygen depletion by root-exudation-stimulated microbial respiration likely occurs in the rhizosphere of
- 442 any plant, rhizosphere aeration is restricted to plants possessing aerenchyma. However, the latter is a
- 443 characteristic of many plants adapted to temporary flooding, and has been described also for *Poaceae*, or for ash.
- 444 Furthermore, it is reasonable to expect this trait to be found in other Salicaceae like Populus sp. and other
- 445 species of softwood floodplain forests. In areas with monospecific stands of, for example Salix sp., which are
- 446 often found on restored river banks, this N₂O-emission reducing trait can be a welcome side effect.

447 **5.** Conclusions

448 In this study, we investigated the distinct effects of aggregate size, surplus organic carbon from litter and 449 vegetation on N2O emission from model soils after flooding. Flooding and drying were always associated with 450 hot moments of N₂O production, most likely due to heterotrophic denitrification as result of suboxic O₂ levels at 451 high WFPS. Our results demonstrate that aggregate size is a very important factor in modulating N₂O emission 452 from soils under changing pore space water saturation. Aggregates of a diameter > 250 µm appear to foster 453 suboxic microhabitats that favor denitrification and associated N₂O emission. This soil aggregate size effect may 454 be amplified in the presence of excess carbon substrate, as long as heterotrophic denitrification, as the main N_2O 455 producing process, is not electron-acceptor limited, and extremely reducing conditions in organic rich soils do 456 not promote complete denitrification leading to further reduction of N₂O to N₂. On the other hand, the higher 457 porosity of the soils with macroaggregates may aid in the formation of microsites at the surface of aggregates 458 where nitrification is re-initialized during drying, supporting favorable conditions for spatially coupled 459 nitrification-denitrification. The mechanisms by which processes in the rhizosphere of Salix viminalis effectively 460 suppress N₂O emissions, and thus mask any aggregate size effect, remain ambiguous. Distinct physiological 461 features of Salix viminalis, its root metabolism, in combination with microbial respiration can lead to the 462 simultaneous aeration of some parts of the rhizosphere, and the formation of strongly reducing zones in others. 463 In both cases, redox conditions seem to be impedimental for extensive net N₂O production. 464 Our results demonstrate the importance and complexity of the interplay between soil aggregate size, labile

- 465 organic C availability, respiratory processes in the rhizosphere, and plant-induced aeration of soils under
- 466 changing soil water content. Those interactions emerged as modulators of N₂O emissions by controlling the O₂

- 467 distribution in the soil matrix. Indeed, O_2 appears as the unifying master variable that ultimately sets the 468 boundary conditions for N₂O production and/or consumption.
- 469 The main scope of this work was to expand our knowledge on the controls on net N₂O emissions from floodplain 470 soils. The systematic relationships observed in this study are likely to help anticipating where and when hotspots
- 471 and hot moments of N₂O emissions are most likely to occur in hydrologically dynamic soil systems like
- 472 floodplain soils. Further understanding of the complex interaction between plants and soil microorganisms, the
- 473 detritusphere, and soil aggregation, as well as their influence on N turnover and N₂O accumulation in soils,
- 474 should focus on how the parameters tested affect the actual activity of the nitrifying and denitrifying
- 475 communities, with an in-depth investigation into the biogeochemical pathways involved.
- 476 Data availability. Data will be openly available at https://datadryad.org/
- 477 *Competing interests.* The authors declare that they have no conflict of interest.
- 478 Authors contributions. The initial concept of the experiment was developed by JL, MFL and PAN. ML planned
- 479 the experiment in detail, set it up and performed it. PAN supervised the measurement of N₂O gas concentrations,
- 480 whereas ML conducted all other measurements and data analyses. ML wrote the manuscript with major
- 481 contributions by JL, MFL and PAN.
- 482 Acknowledgements. The authors thank the Department of Evolutionary Biology and Environmental Studies of

the University of Zurich and René Husi for performing the GC measurements. We are also very grateful to the

- 484 Environmental Geoscience research group in the Department of Environmental Sciences of the University of
- 485 Basel and Judith Kobler-Waldis for helping us with the IC measurements. We thank the Central Laboratory and
- 486 Daniel Christen, Roger Köchli and Noureddine Hajjar of the Swiss Federal Institute for Forest, Snow and
- 487
- Landscape Research (WSL) for assistance with chemical analyses. This study was funded by the Swiss National
- 488 Science Foundation (SNSF) under the grant number 200021_147002 as well as by financial resources of WSL
- 489 and the University of Basel.

490 References

- 491 Baggs, E. M.: A review of stable isotope techniques for N₂O source partitioning in soils: recent progress, 492 remaining challenges and future considerations, Rapid Commun. Mass Spectrom., 22(11), 1664-1672, 493 doi:10.1002/rcm.3456, 2008.
- 494 Baggs, E. M.: Soil microbial sources of nitrous oxide: Recent advances in knowledge, emerging challenges and 495 future direction, Curr. Opin. Environ. Sustain., 3(5), 321–327, doi:10.1016/j.cosust.2011.08.011, 2011.
- 496 Balaine, N., Clough, T. J., Beare, M. H., Thomas, S. M., Meenken, E. D. and Ross, J. G.: Changes in Relative
- 497 Gas Diffusivity Explain Soil Nitrous Oxide Flux Dynamics, Soil Sci. Soc. Am. J., 77(5), 1496-1505,
- 498 doi:10.2136/sssaj2013.04.0141, 2013.
- 499 Baldwin, D. S. and Mitchell, A. M.: The effects of drying and re-flooding on the sediment and soil nutrient
- 500 dynamics of lowland river-floodplain systems: a synthesis, Regul. Rivers Res. Manag., 16(5), 457-467,
- 501 doi:10.1002/1099-1646(200009/10)16:5<457::AID-RRR597>3.3.CO;2-2, 2000.

- 502 Ball, B. C.: Soil structure and greenhouse gas emissions: A synthesis of 20 years of experimentation, Eur. J. Soil
- 503 Sci., 64(3), 357-373, doi:10.1111/ejss.12013, 2013.
- 504 Baruah, K. K., Gogoi, B., Gogoi, P. and Gupta, P. K.: N₂O emission in relation to plant and soil properties and
- 505 yield of rice varieties, Agron. Sustain. Dev., 30(4), 733-742, doi:10.1051/agro/2010021, 2010.
- 506 Bateman, E. J. and Baggs, E. M.: Contributions of nitrification and denitrification to N₂O emissions from soils at 507 different water-filled pore space, Biol. Fertil. Soils, 41(6), 379-388, doi:10.1007/s00374-005-0858-3, 2005.
- 508 Beare, M. H., Gregorich, E. G. and St-Georges, P.: Compaction effects on CO₂ and N₂O production during
- 509 drying and rewetting of soil, Soil Biol. Biochem., 41(3), 611-621, doi:10.1016/j.soilbio.2008.12.024, 2009.
- 510 Bender, S. F., Plantenga, F., Neftel, A., Jocher, M., Oberholzer, H.-R., Köhl, L., Giles, M., Daniell, T. J. and van
- 511 der Heijden, M. G.: Symbiotic relationships between soil fungi and plants reduce N₂O emissions from soil,
- 512 ISME J., 8(6), 1336–1345, doi:10.1038/ismej.2013.224, 2014.
- 513 Blom, C. W. P. M., Bögemann, G. M., Laan, P., van der Sman, A. J. M., van de Steeg, H. M. and Voesenek, L.
- 514 A. C. J.: Adaptations to flooding in plants from river areas, Aquat. Bot., 38(1), 29-47, doi:10.1016/0304-515 3770(90)90097-5, 1990.
- 516 Blum, J. M., Su, Q., Ma, Y., Valverde-Pérez, B., Domingo-Félez, C., Jensen, M. M. and Smets, B. F.: The pH
- 517 dependency of N-converting enzymatic processes, pathways and microbes: Effect on net N₂O production,
- 518 Environ. Microbiol., doi:10.1111/1462-2920.14063, 2018.
- 519 Böttcher, J., Weymann, D., Well, R., Von Der Heide, C., Schwen, A., Flessa, H. and Duijnisveld, W. H. M.:
- 520 Emission of groundwater-derived nitrous oxide into the atmosphere: model simulations based on a ¹⁵N field 521 experiment, Eur. J. Soil Sci., 62(2), 216–225, doi:10.1111/j.1365-2389.2010.01311.x, 2011.
- 522 Bringel, F. and Couée, I.: Pivotal roles of phyllosphere microorganisms at the interface between plant 523 atmospheric dynamics., Front. Microbiol., 486, functioning and trace gas 6(MAY), 524 doi:10.3389/fmicb.2015.00486, 2015.
- 525 Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. and Zechmeister-Boltenstern, S.: Nitrous oxide
- 526 emissions from soils: how well do we understand the processes and their controls?, Philos. Trans. R. Soc. Lond. 527 B. Biol. Sci., 368(1621), 20130122, doi:10.1098/rstb.2013.0122, 2013.
- 528 Cantón, Y., Solé-Benet, A., Asensio, C., Chamizo, S. and Puigdefábregas, J.: Aggregate stability in range sandy
- 529 loam soils Relationships with runoff and erosion, CATENA, 77(3), 192-199, doi:10.1016/j.catena.2008.12.011, 530 2009.
- 531 Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., 532 Heimann, M., Jones, C., Quéré, C. Le, Myneni, R. B., Piao, S. and Thornton, P.: Carbon and Other 533 Biogeochemical Cycles, in Climate Change 2013 - The Physical Science Basis, edited by Intergovernmental
- 534 Panel on Climate Change, pp. 465–570, Cambridge University Press, Cambridge, 2013.
- 535 Diba, F., Shimizu, M. and Hatano, R.: Effects of soil aggregate size, moisture content and fertilizer management
- 536 on nitrous oxide production in a volcanic ash soil, Soil Sci. Plant Nutr., 57(5), 733-747, 537 doi:10.1080/00380768.2011.604767, 2011.
- 538 Drury, C. ., Yang, X. ., Reynolds, W. . and Tan, C. .: Influence of crop rotation and aggregate size on carbon 539 dioxide production and denitrification, Soil Tillage Res., 79(1), 87–100, doi:10.1016/j.still.2004.03.020, 2004.
- 540 Ebrahimi, A. and Or, D.: Microbial community dynamics in soil aggregates shape biogeochemical gas fluxes
- 541
- from soil profiles upscaling an aggregate biophysical model, Glob. Chang. Biol., 22(9), 3141-3156,
- 542 doi:10.1111/gcb.13345, 2016.

- Elliott, A. E. T. and Coleman, D. C.: Let the soil work for us, Ecol. Bull., (39), 22–32, 1988.
- 544 Fender, A.-C., Leuschner, C., Schützenmeister, K., Gansert, D. and Jungkunst, H. F.: Rhizosphere effects of tree
- 545 species Large reduction of N₂O emission by saplings of ash, but not of beech, in temperate forest soil, Eur. J.
- 546 Soil Biol., 54, 7–15, doi:10.1016/j.ejsobi.2012.10.010, 2013.
- 547 Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W., Haywood, J., Lean, J., Lowe, D.
- 548 C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M. and Van Dorland, R.: Changes in Atmospheric
- 549 Constituents and in Radiative Forcing, in Climate Change 2007: The Physical Science Basis, edited by S.
- 550 Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, pp. 129–234,
- 551 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
- Frame, C. H., Lau, E., Joseph Nolan, E., Goepfert, T. J. and Lehmann, M. F.: Acidification enhances hybrid N₂O
 production associated with aquatic ammonia-oxidizing microorganisms, Front. Microbiol., 7(JAN), 1–23, doi:10.3389/fmicb.2016.02104, 2017.
- Gajić, B., Đurović, N. and Dugalić, G.: Composition and stability of soil aggregates in Fluvisols under forest,
 meadows, and 100 years of conventional tillage, J. Plant Nutr. Soil Sci., 173(4), 502–509,
 doi:10.1002/jpln.200700368, 2010.
- 558 Gee, G. W. and Bauder, J. W.: Particle-size Analysis, in Physical and Mineralogical Methods-Agronomy
- 559 Monograph no. 9, edited by A. Klute, pp. 383–411, American Society of Agronomy-Soil Science Society of 560 America, Madison, WI., 1986.
- 561 Goldberg, S. D., Knorr, K. H., Blodau, C., Lischeid, G. and Gebauer, G.: Impact of altering the water table
- height of an acidic fen on N_2O and NO fluxes and soil concentrations, Glob. Chang. Biol., 16(1), 220–233, doi:10.1111/j.1365-2486.2009.02015.x, 2010.
- 564 GraphPad Software Inc.: GraphPad Prism 7.04, La Jolla, CA, www.graphpad.com, 2017.
- 565 Groffman, P. M. and Tiedje, J. M.: Denitrification Hysteresis During Wetting and Drying Cycles in Soil, Soil Sci.
- 566 Soc. Am. J., 52(6), 1626, doi:10.2136/sssaj1988.03615995005200060022x, 1988.
- 567 Hartmann, D. J., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V, Brönnimann, S., Charabi, Y. A.-R.,
- 568 Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M. and
- 569 Zhai, P.: Observations: Atmosphere and Surface, in Climate Change 2013 The Physical Science Basis, edited
- 570 by Intergovernmental Panel on Climate Change, pp. 159–254, Cambridge University Press, Cambridge., 2013.
- 571 Hefting, M., Clément, J.-C., Dowrick, D., Cosandey, A. C., Bernal, S., Cimpian, C., Tatur, A., Burt, T. P. and
- 572 Pinay, G.: Water table elevation controls on soil nitrogen cycling in riparian wetlands along a European climatic
- 573 gradient, Biogeochemistry, 67(1), 113–134, doi:10.1023/B:BIOG.0000015320.69868.33, 2004.
- Heincke, M. and Kaupenjohann, M.: Effects of soil solution on the dynamics of N₂O emissions: a review, Nutr.
- 575 Cycl. Agroecosystems, 55(2), 133–157, doi:10.1023/A:1009842011599, 1999.
- 576 Hendershot, W. H., Lalande, H. and Duquette, M.: Soil Reaction and Exchangeable Acidity, in Soil Sampling
- and Methods of Analysis, edited by M. R. Carter and E. G. Gregorich, pp. 173–178, Crc Press Inc, Boca Raton,
 FL., 2007.
- 579 Hill, A. R.: Buried organic-rich horizons: their role as nitrogen sources in stream riparian zones,
 580 Biogeochemistry, 104(1-3), 347–363, doi:10.1007/s10533-010-9507-5, 2011.
- Hu, H.-W., Macdonald, C. A., Trivedi, P., Holmes, B., Bodrossy, L., He, J.-Z. and Singh, B. K.: Water addition
- 582 regulates the metabolic activity of ammonia oxidizers responding to environmental perturbations in dry
- 583 subhumid ecosystems, Environ. Microbiol., 17(2), 444–461, doi:10.1111/1462-2920.12481, 2015.

- 584 Jahangir, M. M. R., Roobroeck, D., Van Cleemput, O. and Boeckx, P.: Spatial variability and 585 biophysicochemical controls on N_2O emissions from differently tilled arable soils, Biol. Fertil. Soils, 47(7), 753– 586 766, doi:10.1007/s00374-011-0580-2, 2011.
- 587 Jørgensen, C. J., Struwe, S. and Elberling, B.: Temporal trends in N₂O flux dynamics in a Danish wetland -
- 588 effects of plant-mediated gas transport of N_2O and O_2 following changes in water level and soil mineral-N
- 589 availability, Glob. Chang. Biol., 18(1), 210–222, doi:10.1111/j.1365-2486.2011.02485.x, 2012.
- 590 Khalil, K., Renault, P. and Mary, B.: Effects of transient anaerobic conditions in the presence of acetylene on
- $\label{eq:subsequent} 591 \qquad \text{subsequent aerobic respiration and N_2O emission by soil aggregates, Soil Biol. Biochem., 37(7), 1333–1342, \\$
- 592 doi:10.1016/j.soilbio.2004.11.029, 2005.
- Koschorreck, M. and Darwich, A.: Nitrogen dynamics in sesonally flooded soils in the Amazon floodplain, Wetl.
 Ecol. Manag., 11, 317–330, 1998.
- 595 Kowalik, P. J. and Randerson, P. F.: Nitrogen and phosphorus removal by willow stands irrigated with municipal
- 596 waste water A review of the Polish experience, Biomass and Bioenergy, 6(1–2), 133–139, doi:10.1016/0961-
- **597** 9534(94)90092-2, 1994.
- 598 Kuzyakov, Y. and Blagodatskaya, E.: Microbial hotspots and hot moments in soil: Concept & review, Soil Biol.
- 599 Biochem., 83, 184–199, doi:10.1016/j.soilbio.2015.01.025, 2015.
- 600 Li, X., Sørensen, P., Olesen, J. E. and Petersen, S. O.: Evidence for denitrification as main source of N 2 O
- 601 emission from residue-amended soil, Soil Biol. Biochem., 92, 153–160, doi:10.1016/j.soilbio.2015.10.008, 2016.
- 602 Loecke, T. D. and Robertson, G. P.: Soil resource heterogeneity in terms of litter aggregation promotes nitrous
- 603 oxide fluxes and slows decomposition, Soil Biol. Biochem., 41(2), 228–235, doi:10.1016/j.soilbio.2008.10.017,
- **604** 2009.
- Luster, J., Göttlein, A., Nowack, B. and Sarret, G.: Sampling, defining, characterising and modeling the rhizosphere – the soil science tool box, Plant Soil, 321(1–2), 457–482, doi:10.1007/s11104-008-9781-3, 2009.
- $\frac{1}{1000} = \frac{1}{1000} = \frac{1$
- Manucharova, N. A., Stepanov, A. L. and Umarov, M. M.: Microbial transformation of nitrogen in water-stable
 aggregates of various soil types, EURASIAN SOIL Sci., 34(10), 1125–1131, 2001.
- Morley, N., Baggs, E. M., Dörsch, P. and Bakken, L.: Production of NO, N₂O and N₂ by extracted soil bacteria,
- 610 regulation by NO_2^- and O_2 concentrations, FEMS Microbiol. Ecol., 65(1), 102–112, doi:10.1111/j.1574-
- 611 6941.2008.00495.x, 2008.
- Myrold, D. D., Pett-Ridge, J. and Bottomley, P. J.: Nitrogen Mineralization and Assimilation at Millimeter
 Scales, in Methods in Enzymology, vol. 496, pp. 91–114, Elsevier Inc., 2011.
- 614 Neira, J., Ortiz, M., Morales, L. and Acevedo, E.: Oxygen diffusion in soils: Understanding the factors and
- 615 processes needed for modeling, Chil. J. Agric. Res., 75(August), 35–44, doi:10.4067/S0718-616 58392015000300005, 2015.
- 617 Oades, J. M.: Soil organic matter and structural stability: mechanisms and implications for management, Plant
- 618 Soil, 76(1–3), 319–337, doi:10.1007/BF02205590, 1984.
- Parkin, T. B.: Soil Microsites as a Source of Denitrification Variability, Soil Sci. Soc. Am. J., 51, 1194–1199,
 1987.
- 621 Philippot, L., Hallin, S., Börjesson, G. and Baggs, E. M.: Biochemical cycling in the rhizosphere having an
- 622 impact on global change, Plant Soil, 321(1–2), 61–81, doi:10.1007/s11104-008-9796-9, 2009.
- 623 R Core Team: R: A Language and Environment for Statistical Computing, R Found. Stat. Comput., Vienna,
- 624 https://www.R-project.org/, 2018.

- Rabot, E., Hénault, C. and Cousin, I.: Temporal Variability of Nitrous Oxide Emissionsby Soils as Affected by
 Hydric History, Soil Sci. Soc. Am. J., 78(2), 434, doi:10.2136/sssaj2013.07.0311, 2014.
- Randerson, P. F., Moran, C. and Bialowiec, A.: Oxygen transfer capacity of willow (Salix viminalis L.),
 Biomass and Bioenergy, 35(5), 2306–2309, doi:10.1016/j.biombioe.2011.02.018, 2011.
- 629 Ravishankara, A. R., Daniel, J. S. and Portmann, R. W.: Nitrous Oxide (N₂O): The Dominant Ozone-Depleting
- 630 Substance Emitted in the 21st Century, Science (80-.)., 326(5949), 123–125, doi:10.1126/science.1176985, 2009.
- 631 Renault, P. and Stengel, P.: Modeling Oxygen Diffusion in Aggregated Soils: I. Anaerobiosis inside the
- 632 Aggregates, Soil Sci. Soc. Am. J., 58(4), 1017, doi:10.2136/sssaj1994.03615995005800040004x, 1994.
- Robertson, G. P. and Groffman, P. M.: Nitrogen Transformations, in Soil Microbiology, Ecology and
 Biochemistry, pp. 421–446, Elsevier., 2015.
- Ruser, R., Flessa, H., Russow, R., Schmidt, G., Buegger, F. and Munch, J. C.: Emission of N₂O, N₂ and CO₂
- 636 from soil fertilized with nitrate: Effect of compaction, soil moisture and rewetting, Soil Biol. Biochem., 38(2),
- 637 263–274, doi:10.1016/j.soilbio.2005.05.005, 2006.
- 638 Samaritani, E., Shrestha, J., Fournier, B., Frossard, E., Gillet, F., Guenat, C., Niklaus, P. A., Pasquale, N.,
- 639 Tockner, K., Mitchell, E. A. D. and Luster, J.: Heterogeneity of soil carbon pools and fluxes in a channelized and
- 640 a restored floodplain section (Thur River, Switzerland), Hydrol. Earth Syst. Sci., 15(6), 1757-1769,
- 641 doi:10.5194/hess-15-1757-2011, 2011.
- 642 Sey, B. K., Manceur, A. M., Whalen, J. K., Gregorich, E. G. and Rochette, P.: Small-scale heterogeneity in
- 643 carbon dioxide, nitrous oxide and methane production from aggregates of a cultivated sandy-loam soil, Soil Biol.
 644 Biochem., 40(9), 2468–2473, doi:10.1016/j.soilbio.2008.05.012, 2008.
- 645 Shrestha, J., Niklaus, P. a, Frossard, E., Samaritani, E., Huber, B., Barnard, R. L., Schleppi, P., Tockner, K. and
- 646 Luster, J.: Soil nitrogen dynamics in a river floodplain mosaic., J. Environ. Qual., 41(6), 2033-45,
- 647 doi:10.2134/jeq2012.0059, 2012.
- 648 Six, J., Paustian, K., Elliott, E. T. and Combrink, C.: Soil Structure and Organic Matter, Soil Sci. Soc. Am. J.,
- 649 64(2), 681, doi:10.2136/sssaj2000.642681x, 2000.
- 650 Six, J., Bossuyt, H., Degryze, S. and Denef, K.: A history of research on the link between (micro)aggregates, soil
- biota, and soil organic matter dynamics, Soil Tillage Res., 79(1), 7–31, doi:10.1016/j.still.2004.03.008, 2004.
- 652 Smart, D. R. and Bloom, A. J.: Wheat leaves emit nitrous oxide during nitrate assimilation, Proc. Natl. Acad.
- 653 Sci., 98(14), 7875–7878, doi:10.1073/pnas.131572798, 2001.
- 654 Spott, O., Russow, R. and Stange, C. F.: Formation of hybrid N₂O and hybrid N₂ due to codenitrification: First
- review of a barely considered process of microbially mediated N-nitrosation, Soil Biol. Biochem., 43(10), 1995–
- 656 2011, doi:10.1016/j.soilbio.2011.06.014, 2011.
- 557 Stolk, P. C., Hendriks, R. F. A., Jacobs, C. M. J., Moors, E. J. and Kabat, P.: Modelling the effect of aggregates
- 658 on N_2O emission from denitrification in an agricultural peat soil, Biogeosciences, 8(9), 2649–2663, 659 doi:10.5194/bg-8-2649-2011, 2011.
- 660 Thorbjørn, A., Moldrup, P., Blendstrup, H., Komatsu, T. and Rolston, D. E.: A Gas Diffusivity Model Based on
- 661 Air-, Solid-, and Water-Phase Resistance in Variably Saturated Soil, Vadose Zo. J., 7(4), 1276,
- 662 doi:10.2136/vzj2008.0023, 2008.
- Tisdall, J. M. and Oades, J. M.: Organic matter and water-stable aggregates in soils, J. Soil Sci., 33(2), 141–163,
- 664 doi:10.1111/j.1365-2389.1982.tb01755.x, 1982.
- Totsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E.,

- 666 Mikutta, R., Peth, S., Prechtel, A., Ray, N. and Kögel-Knabner, I.: Microaggregates in soils, J. Plant Nutr. Soil
- 667 Sci., 1–33, doi:10.1002/jpln.201600451, 2017.
- Vieten, B., Conen, F., Neftel, A. and Alewell, C.: Respiration of nitrous oxide in suboxic soil, Eur. J. Soil Sci.,
- 669 60(3), 332–337, doi:10.1111/j.1365-2389.2009.01125.x, 2009.
- 670 Walthert, L., Graf, U., Kammer, A., Luster, J., Pezzotta, D., Zimmermann, S. and Hagedorn, F.: Determination
- of organic and inorganic carbon, δ^{13} C, and nitrogen in soils containing carbonates after acid fumigation with HCl,
- 672 J. Plant Nutr. Soil Sci., 173(2), 207–216, doi:10.1002/jpln.200900158, 2010.
- 673 Young, I. . and Ritz, K.: Tillage, habitat space and function of soil microbes, Soil Tillage Res., 53(3–4), 201–213,
- 674 doi:10.1016/S0167-1987(99)00106-3, 2000.
- 675 Zhu, X., Burger, M., Doane, T. a and Horwath, W. R.: Ammonia oxidation pathways and nitrifier denitrification
- 676 are significant sources of N_2O and NO under low oxygen availability, Pnas, 110(16), 6328–6333,
- 677 doi:10.1073/pnas.1219993110/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1219993110, 2013.

679Table 1: Physicochemical properties of the two aggregate size fractions (macroaggregates and microaggregates) and680added leaf litter. C_{org} and TN of the aggregates were measured in triplicates. The leaf litter was analyzed in681quadruplicates. Final pH and texture of model soil 1 and 2 were measured in duplicates (means \pm SD). Significant682differences in the t-tests (P < 0.05) are highlighted in bold.

		Macroaggregates	Macroaggregates Microaggregates Vs. Microaggregates		Litter (Salix v. L.)
C_{org}	g kg ⁻¹	$19.22 \hspace{0.2cm} \pm \hspace{0.2cm} 0.55$	$21.56 \hspace{0.2cm} \pm \hspace{0.2cm} 2.39$	P = 0.229	459.9 ± 2.55
Total N	g kg ⁻¹	1.58 ± 0.02	1.35 ± 0.14	P = 0.106	27.39 ± 0.15
C:N ratio		12.16 ± 0.22	15.99 ± 0.71	P = 0.007	16.79 ± 0.06
		Model soil 1	Model soil 2	Model soil 1 vs. Model soil 2	
pH (CaCl ₂)	_	8 ± 0.02	$7.56 \hspace{0.2cm} \pm \hspace{0.2cm} 0.01$	P = 0.009	
sand	%	$71.25 \pm 0.05 $	70.7 ± 0.50	P = 0.469	
silt	%	20 ± 0.30	21.1 ± 0.60	P = 0.285	
clay	%	$8.75 \hspace{0.2cm} \pm \hspace{0.2cm} 0.25$	8.2 ± 0.10	P = 0.240	

⁶⁸³

684Table 2: Overview of treatments in the flooding-drying experiment. Model Soil 1, containing soil macroaggregates is685abbreviated LA, whereas Model Soil 2 contains soil microaggregates and is abbreviated SA. The last character of each686abbreviation stands for unamended (U), litter addition (L) and plant presence (P). Each treatment was replicated six687times.

	LAU	SAU	LAL	SAL	LAP	SAP
Model Soil 1 (LA)	+	-	+	-	+	-
Model Soil 2 (SA)	-	+	-	+	-	+
Leaf litter (Salix v.)	-	-	+	+	-	-
Salix v.	-	-	-	-	+	+

688

689Table 3: Results of the two-way analysis of variance (ANOVA) of the integrated fluxes (Q_{tot}) and the mean690concentrations of chemical properties in soil solution (n=6) during the period of enhanced N₂O emissions (from day 11691to day 25). Shown are P values with significant differences (P < 0.05) highlighted in bold characters.

	Q _{tot}	DOC	NO ₃ ⁻	NO ₂ ⁻	${ m NH_4}^+$
TREATMENT	0.0003	0.0133	0.0988	< 0.0001	0.0007
MODEL SOIL	0.0002	< 0.0001	0.2181	< 0.0001	0.0004
$TREATMENT \times MODEL \ SOIL$	0.0145	< 0.0001	0.0668	0.1174	< 0.0001

692

694 **Figure Captions**

695 Figure 1: Schematic of a mesocosm with gas sampling valves (1), Ag/AgCl reference electrode (2), Pt redox electrodes 696 697 (3), suction cups (4), volumetric water content sensors (5), vent (6), and water inlet/outlet (7). The top part is only

attached during gas sampling.

698 699 Figure 2: Mean N₂O emission during the flooding-drying experiment from large-aggregate model soil (LA; filled circles) and small-aggregate model soil (SA, open circles). The corresponding water-filled pore space (WFPS) in LA 700 (filled triangles) and SA (open triangles) are depicted on the right Y-axis. Unamended soils (A), litter addition (B) and 701 plant treatment (C). Flooding phase indicated by the grey area. Symbols indicate means; error bars are SE; n= 6.

702 703 Figure 3: Redox potential relative to standard hydrogen electrode during the flooding-drying experiment in 5 cm and 20 cm depth (mean ± SE; n=6). Unamended soils (a and d, respectively), litter addition (b and e, respectively), plant 704 treatment (c and f, respectively). LA (filled circles) and SA (open circles); the dotted line at 250 mV marks the 705 threshold, below which denitrification is expected to occur.

706 707 Figure 4: DOC (circles), nitrate (squares), nitrite (diamonds) and ammonium (triangles) concentrations in pore water during the flooding-drying experiment. LA (filled symbols) and SA (empty symbols). Unamended soils (a, d, g and j, 708 respectively), litter addition (b, e, h and k, respectively) and plant treatment (c, f, j and l, respectively); (mean ± SE; 709 n=6).

Figure 5: Integrated N₂O fluxes over the 14 days period of elevated N₂O emissions in the drying phase of the flooding-

710 711 712 drying experiment (mean ± SE; n= 6). Black bars represent Model Soil 1 (macroaggregates 250-4000µm) whereas Model Soil 2 (microaggregates < 250µm) is depicted as white bars. Significant differences among the six treatments

713 are denoted by different lower case letters at adj. P < 0.05.

Figure 2

