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Abstract. The Eastern Tropical South Pacific (ETSP) hosts the Peruvian upwelling system, which represents one of the most 

productive areas in the world ocean. High primary production followed by rapid heterotrophic utilization of organic matter 

supports the formation of one of the most intense oxygen minimum zones (OMZ) in the world ocean, where dissolved 

oxygen (O2) concentrations reach less than 1 µmol kg-1. The high productivity leads to an accumulation of dissolved organic 10 
matter (DOM) in the surface layers that may serve as a substrate for heterotrophic respiration. However, the importance of 

DOM utilization for O2 respiration in the Peruvian upwelling system in general and for shaping the upper oxycline in 

particular remains unclear so far. This study reports the first estimates of diapycnal fluxes and supply of O2, dissolved 

organic carbon (DOC), dissolved organic nitrogen, dissolved hydrolysable amino acids (DHAA) and dissolved combined 

carbohydrates (DCCHO) for the ETSP off Peru. Diapycnal flux and supply estimates were obtained by combining measured 15 
vertical diffusivities and solute concentration gradients. They were analysed together with the molecular composition of 

DCCHO and DHAA to infer the transport of labile DOM into the upper OMZ and the potential role of DOM utilization for 

the attenuation of the diapycnal O2 flux that ventilates the OMZ. The observed diapycnal O2 flux (50 mmol O2 m-2 day-1 at 

max) was limited to the upper 80 m of the water column, the O2 supply of ~1 µmol kg-1 day-1, was comparable to previously 

published O2 consumption rates for the North and South Pacific OMZs. The diapycnal DOM flux (31mmol C m-2 day-1 at 20 
max) was limited to ~30 m water depth, suggesting that the labile DOM is extensively consumed within the upper part of the 

shallow oxycline off Peru. The analyses of DCCHO and DHAA composition support this finding, suggesting that DOM 

undergoes comprehensive remineralization within the upper part of the oxycline, as the DOM within the core of the OMZ 

was found to be largely altered. Estimated by a simple equation for carbon combustion, aerobic respiration of DCCHO and 

DHAA, supplied by diapycnal mixing (0.46 µmol kg-1 day-1 at max), could account for up to 38% of the diapycnal O2 supply 25 
in the upper oxycline, which suggests that DOM utilization plays a significant role for shaping the upper oxycline in the 

ETSP.  

1 Introduction 
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Dissolved oxygen (O2) plays a key role for biological production and cycling of elements in marine ecosystems as well as for 

the spatial distribution of marine organisms (Ekau et al., 2010, Gilly et al., 2013). The majority of catabolic processes in 

organisms are conducted by oxidation with O2 (e.g. Bender and Heggie 1984). The eastern tropical South Pacific (ETSP) 

embodies one of the largest oxygen minimum zones (OMZ) in the world ocean (Karstensen et al., 2008; Paulmier and Ruiz-

Pino, 2009). The core of the Peruvian OMZ is considered to be fully anoxic (e.g. Ulloa et al. 2012), as O2 concentrations 5 
below the detection limit (DL) of ~0.01 µmol kg-1 were observed between 20 and 400 m depth by high precision STOX 

sensor measurements (Revsbech et al., 2009; Kalvelage et al., 2013; Thomsen et al., 2016a). Those low O2 concentrations 

are due to a sluggish ventilation by ocean currents, carrying low-O2 waters to the ETSP and microbial respiration attributed 

to utilization of organic matter (OM) originating from the upper water column (e.g. Czeschel et al., 2011; Brandt et al., 2015; 

Kalvelage et al., 2015).  10 
Elevated primary production in the Peruvian upwelling region above the OMZ (Pennington et al., 2006) leads to an 

accumulation of both particulate (POM) (Franz et al., 2012a) and dissolved (DOM) organic matter (Romankevich and 

Ljutsarev 1990; Franz et al., 2012a; Letscher et al., 2013; Loginova et al., 2016) in the euphotic zone at the continental 

margin. POM was recognized to be an important source of carbon (C) for microbial OM mineralization (e.g. Dale et al., 

2015), utilization of O2 (Kalvelage et al.,2015), and anaerobic processes, such as nitrogen (N) loss via denitrification 15 
(Kalvelage et al., 2013; Chang et al., 2014), in the area. However, the cycling of DOM in the Peruvian upwelling system has 

been little studied.  

DOM that originates in the euphotic zone, as a result of extracellular release by phytoplankton, cell lysis, particle 

degradation and sloppy zooplankton feeding (Benner, 2002) is commonly enriched in labile and semi-labile DOM. Those are 

mainly composed of carbohydrates (CHO) and amino acids (AA) (e.g. Ogawa and Tanoue, 2003). CHO and AA are 20 
preferentially utilized during microbial decomposition of OM as they serve as energy sources and “building blocks” for 

microbes to respire and grow (Skoog and Benner, 1997; Lee et al., 2000; Amon et al., 2001). Thus, the rapid microbial 

decomposition of labile organic matter in the euphotic zone is commonly followed by slower decomposition of less 

bioavailable semi-labile DOM and very slow decomposition of extensively reworked refractory DOM deeper in the water 

column (e.g. Hansell, 2013). Therefore, the composition of DOM reflects its diagenetic history, and the contribution of CHO 25 
and AA to DOM may be used as a measure of DOM bioavailability (Davis et al, 2007; 2009; Kaiser and Benner, 2009).  

Microbial decomposition of organic matter has previously been suggested to be limited under anoxia (Harvey et al., 1995; 

Nguyen and Harvey, 1997). Following this suggestion, one may assume that, if labile DOM is mixed into the OMZ, it would 

not be reworked as rapidly as in oxygenated waters. Recent studies in the upwelling area and the corresponding OMZ off 

Chile found, however, that even under anoxia the ability of microbes to decompose labile DOM (Leucine-incorporation rate) 30 
did not differ from the oxygenated waters (Sempéré et al., 2008, Pantoja et al., 2009). These studies suggest that slower 

remineralization of DOM in OMZ might rather be caused by lack of bioavailable organic matter supply into the OMZ than 

by low-O2 conditions. Herewith, measured concentrations of bioavailable components of DOM over the water column in the 

ETSP are yet controversial. For instance, Pantoja et al. (2009) reported relatively high concentrations of free and combined 
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AA in the OMZ off Chile. Sempere et al. (2008) reported low concentrations of neutral CHO in the corresponding upwelling 

area, compared to the open Pacific Ocean. 

 

 

 5 
Contrary to POM, DOM does not obtain its own buoyancy and DOM’s transport is exclusively due to advective and 

diffusive physical transport processes (e.g. Löscher et al. 2016). In upwelling regimes, turbulent mixing processes are often 

enhanced at the continental margin resulting in high diapycnal fluxes of various solutes (e.g. Schafstall et al., 2010; Kock et 

al., 2012; Brandt et al., 2015; Steinfeldt et al., 2015). On the other hand, the downward fluxes of DOM, or other solutes, may 

be reduced or even predominated by upwelling fluxes due to Ekman divergence in the coastal upwelling region (e.g. 10 
Steinfeldt et al., 2015). Machadevan (2014) suggested that transport of OM (via eddy fluxes) into the OMZ should be 

accompanied by O2 in an amount that is sufficient for full remineralization of the subducted OM. Therefore, this physical 

transport of OM and O2 should stimulate heterotrophic aerobic respiration in the OMZ that was suggested to be the main 

pathway of OM remineralization in the upper OMZs by Kalvelage et al. (2015). However, so far, no direct O2 and DOM 

supply estimates exist for the Peruvian OMZ. 15 
Here, we combined physical and biogeochemical observational data that were collected during the R/V METEOR “M93” 

(M93) research cruise to the ETSP off Peru in February-March 2013. Specifically, we directly estimated the diapycnal O2 

and DOM supply into the upper oxycline off Peru. Additionally, we analyzed diapycnal fluxes and the composition of 

dissolved combined carbohydrates (DCCHO) and dissolved hydrolysable amino acids (DHAA) to learn whether DOM and 

its labile and semi-labile constituents may be supplied to the upper OMZ and the potential contribution of DOM based 20 
respiration to O2 flux attenuation. 

2 Methods 

2.1 Study area 

The observational data were acquired during the research cruise “M93” that took place from 7th of February to 9th of March 

2013 between 12°S and 14°S and 76°W and 79°W off Peru (Fig. 1). During the measurement program, the study area was 25 
affected by moderate southeasterly winds (1-9 m/s) (Thomsen et al., 2016a). The water column was highly stratified during 

the cruise (Fig. 2a,b). High concentrations of inorganic nutrients (~30 µmol L-1 NO3
-, ~3 µmol L-1 PO4

3-) just below the 

surface (Thomsen et al., 2016a) collocated with highest chlorophyll a (chl a) concentrations near the surface (5-80 m depth; 

Fig. 2c) (Loginova et al., 2016). The oxycline was located at upper 5-80 m depth, where oxygen concentrations dropped 

from >200 µmol kg-1 to <1µmol kg-1 (Fig. 2d) (Thomsen et al., 2016a). In summary, our observations were carried out 30 
during a period that corresponds to typical summer conditions off Peru. 
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2.2 Discrete water sampling and analyses 

Seawater was sampled with a rosette (GO; General Oceanics, USA) equipped with a conductivity, temperature and depth 

profiler (CTD; Sea-Bird (SBE) 9-plus, Sea-Bird Electronics Inc., USA), an O2 optode (SBE43, Sea-Bird Electronics Inc., 

USA), a WETStar chl a fluorometer (WET Labs, USA) and 24 x 10 L Niskin bottles. Additional water samples were taken 

with a PUMP-CTD-System (an integrated measurement device, which was developed in collaboration between Leibniz 5 
Institute for Baltic Research (IOW) and the Max Planck Institute for Marine Microbiology (MPI) Bremen: PUMP-CTD; 

Strady et al., 2008). In general, samples were collected at 3 to 8 sampling depths from 2 to 70 m at the onshore stations 

(~10km offshore) and from 2 to 200 m at stations offshore (~100 km offshore). DOC/DON analyses were performed for 49 

CTD stations, and for 8 PUMP-CTD stations. DHAA and DCCHO analyses were performed only for samples from the GO 

rosette. CTD, O2 and chl a recordings were taken at 172 profiles (Fig. 1a).  10 
The CTD was calibrated with discrete seawater samples measured with a Guildline Autosal 8 model 8400B salinometer. The 

O2 optode was calibrated by Winkler titration above the oxycline (Winkler, 1888; Hansen, 1999). The STOX sensor 

measurements, which revealed O2 concentrations of 0.01-0.05 µmol kg-1 within the OMZ (Revsbech et al., 2009; Thomsen et 

al., 2016a), were used for O2 optode calibration at low O2 levels. The salinity and O2 measurements had precision of 0.002 g 

kg-1 and ~ 1 µmol kg-1, respectively. More details on the salinity and O2 calibrations can be found in Thomsen et al. (2016a). 15 
Apparent oxygen utilization (AOU) was then calculated as a difference of measured O2 concentrations and its equilibrium 

saturation using Gibbs-Sea Water Oceanographic Toolbox (McDougall and Barker, 2011) for MatLab (MathWorks, USA) 

for analyses of potential relationship between DOM reworking and the utilization of O2. 

The original fluorometer calibration provided by the sensor manufacturer (WET Labs, USA) was used throughout the cruise 

resulting in chl a concentrations in µg L-1. More detail on the recalibration of the chl a fluorimeter one can find in Loginova 20 
et al. (2016).  

Net primary production (NPP) was estimated for the study area off Peru (12°S-14°S and 76°W-79°W) and the corresponding 

time period (February 2013) after the model of Behrenfeld and Falkowski (1997a) with Ocean Productivity toolbox (Oregon 

State University). 

DOC/DON duplicate samples (20 mL) were collected into combusted glass ampoules (8 h, 450° C) after filtration with 25 
combusted GF/F filters (5 h, 450°C). Samples were acidified (80mL of 85% H3PO4), sealed with flame and stored at 4°C in 

the dark until analysis. DOC samples were analysed by the high-temperature catalytic oxidation method (TOC -VCSH, 

Shimadzu) using the protocol from Engel and Galgani (2016) The detection limit (DL) was 1 µmol L-1. Total dissolved 

nitrogen (TDN) was determined simultaneously to DOC with DL of 2 µmol L-1 using the TNM-1 detector of a Shimadzu 

analyser (Dickson et al., 2007). DON concentrations were calculated by subtracting inorganic nitrogen concentrations from 30 
concentrations of TDN. The description of the instrument calibration and measurements may be also found in Loginova et al. 

(2015). 
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Duplicate samples (~16ml) for DCCHO were collected into combusted (8hrs, 450°C) 25ml-glass vials after passing through 

0.45 µm syringe filters (GHP membrane, Acrodisk, Pall Corporation) and immediately frozen at -20°C until analyses. 

Analyses were conducted by high performance anion exchange chromatography (HPAEC) coupled with pulsed 

amperometric detection following Engel and Händel (2011). Prior to analyses samples were thawed at room temperature and 

desalinated by membrane dialysis (1 kDa MWCO, Spectra Por, 5 h at 1°C). Desalinated duplicate subsamples (2 mL) were 5 
hydrolyzed using 1.6mL of 1M HCl (for each) for 20 h at 100°C. The hydrolyzed samples were neutralized through acid 

evaporation under N2 atmosphere and an addition of miliQ water (20mL). DCCHO monomers were determined from 17.5 

mL subsamples on a Dionex ICS 3000 system. More detailed method and calibration descriptions are given in Engel and 

Händel (2011). The method precision was 2% with a DL ~10 nmol L-1. During our study, three classes of polysaccharides 

were measured. Those were neutral sugars (fucose (Fuc), rhamnose (Rha), arabinose (Ara), galactose (Gal), glucose (Glc), 10 
mannose (Man) and xylose (Xyl)), amino sugars (glucosamine (GlcN) and galactosamine (GalN)), and acidic sugars 

including gluconic acid (GluA)) and the uronic acids galacturonic acid (GalUA) and glucuronic acid (GlcUA). Man and Xyl 

were quantified as a mixture due to co-elution, and, therefore, reported together (ManXyl). Concentrations of DCCHO after 

hydrolysis are given as monomer equivalents. 

Duplicate samples (~3ml) for DHAA were filtered with 0.45 µm syringe filters (GHP membrane, Acrodisk, Pall 15 
Corporation) and stored frozen (-20°C) in combusted (8hrs, 450°C) 4ml-glass vials until analyses. Samples were thawed and 

hydrolyzed with 6 N HCl at 100°C for 20 h prior to analysis. DHAA were determined by HPLC after ortho-phthaldialdehyde 

derivatization (Lindroth and Mopper, 1979; Dittmar et al., 2009) with DL of 2 nmol L-1 and precision of <5%. The following 

amino acids were analyzed during the study: α-amino acids: aspartic acid (Asp), glutamic acid (Glu), serine (Ser), arginine 

(Arg), glycine (Gly), threonine (Thr), alanine (Ala), tyrosine (Tyr), valine (Val), phenylalanine (Phe), isoleucine (Ileu), 20 

leucine (Leu) and 𝛾-amino acid: 𝛾-aminobutyric acid (GABA). The amino acids asparagine and glutamine likely contributed 

to the measured Asp and Glu concentrations, respectively, due to deamination during hydrolysis. Alpha aminobutyric acid 

was used as an internal standard to account for losses during handling. Concentrations of DHAA after hydrolysis are given 

as monomer equivalents. More in-detail description of the method may be found in (Engel and Galgani, 2016). 

2.3 Diapycnal flux calculations 25 

To estimate the diapycnal fluxes of various solutes, CTD sensor (O2) and bottle data (DOC, DON, DCCHO and DHAA) 

were combined with near-simultaneous measurements of turbulence in the water column. The turbulence measurements were 

performed with a microstructure profiling system (MSS) from the rear of the vessel. The loosely-tethered profiler (MSS90-

D, S/N 32, Sea & Sun Technology) was optimized to sink at a rate of 0.55 m s-1 and was equipped with three shear sensors 

and a fast-response temperature recorder, as well as an acceleration sensor, two tilt sensors and CTD, sampling with lower 30 
response time.  At each CTD station, 3-6 microstructure profiles were collected. Standard processing procedures were used 

to determine the rate of kinetic energy dissipation of turbulence in the water column (𝜀, m2s-3), as given in Schafstall et al. 

(2010). 



 

6 
 

Diapycnal diffusivities (𝐾𝜌, m2s-1) were determined at 14 m depth intervals, following Osborn (1980): 

𝐾𝜌 = Γ
𝜀
𝑁2 ,                                                                                                                                                                                                        (1) 

where 𝑁 is stratification (in s-1) and Γ is the mixing efficiency, for a which value of 0.2 was used. The diapycnal diffusivity 

of the solutes (O2, DOC, DON, DCCHO, and DHAA) - 𝐾𝑆 – was assumed to be equivalent to the diapycnal diffusivity of the 

mass 𝐾𝜌 (e.g. Schafstall et al., 2010; Fischer et al., 2013). 

The diapycnal fluxes (mmol m-2 day-1) of the different solutes listed above were estimated using Eq. 2, implicitly assuming 5 

equivalency of vertical and diapycnal diffusivities (𝐾𝑠 ≈ 𝐾𝜌). 

Ф𝑆 = −𝐾𝜌∇𝐶𝑆,                                                                                                                                                                                                 (2) 

where ∇𝐶𝑆 is the vertical gradient of the molar concentration of the solutes (mmol m-4).  

The mean diapycnal supply (−∇Φ𝑠������, µmol kg-1 day-1) of a solute was determined at 28 m depth intervals as an attenuation of 

the diapycnal solute flux profile over depth, according to the Eq. 3: 

  −∇Φ𝑠������ = −  
1
𝜌
𝜕
𝜕𝜕
Φ𝑆����,                                                                                                                                                                                     (3) 

where 𝜌 – is the in-situ density of the seawater (kg m-3), z - is depth (m) and Φ𝑆���� (mmol m-2 day-1) – is the estimated mean 10 
diapycnal flux profile of a solute. The mean diapycnal solute supply was interpreted to balance the amount of a solute that is 

lost per unit of time over a specific depth interval of the water column due to the microbial utilization of the solute. This 

interpretation assumes that sources other than turbulent mixing or sinks other than microbial consumption are negligible. 

For DCCHO and DHAA the diapycnal flux estimates were based on 14 combined CTD/MSS stations, while for DOC and 

DON fluxes 22 stations were available (Fig. 1b). The diapycnal O2 flux was determined from 50 combined stations. All 15 
combined data sets include stations from the continental slope, as well as stations in deeper waters, where bottom depth was 

larger than 4000m. 

For each combined CTD/MSS station a mean 𝐾𝜌 was estimated based on a 𝑁2 profile (CTD) and mean dissipation profile 

(turbulence probe) averaged over all MSS profiles conducted at the CTD station. In combination with the vertical solute 

gradient, a mean flux profile for each station was estimated. Only measurements below the mixed layer, which was defined 20 
by a threshold criterion of a 0.2°C temperature decrease below the maximum and a minimum depth of 10 m, were used. 

Measurements from different sensors and instruments were averaged in temperature space to reduce the impact of internal 

waves. 

The mean diapycnal flux (Ф�𝑆) was determined by arithmetically averaging all fluxes from individual stations in 14m depth 

intervals. The diapycnal solute supply was then determined from the divergence of the mean diapycnal flux (∇Ф����𝑆).  25 
The 95% confidence interval of the diapycnal flux was calculated following the procedure described by Schafstall et al. 

(2010). From this error estimate the uncertainty of the supply was derived by error propagation. 
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A simple equation of carbon combustion: 

1𝐶 + 1𝑂2 = 1𝐶𝑂2,                                                                                                                                                                                          (4) 

was used for a rough estimation of the percentage of diapycnal O2 supply that may be consumed by heterotrophic 

communities, if they use all the C, supplied by the diapycnal fluxes of DOC, DCCHO and DHAA. 

2.4 Statistical analyses of DOM composition 

Principal component analysis (PCA) was performed using environmental factors (temperature, salinity and AOU) and 5 
relative abundances of α-DHAA and neutral DCCHO (mol%) to examine “compositional trends” (i.e. changes in 

composition in response to an influence of an environmental parameter) in marine DOM in the studied area. The aim of the 

PCA was also to explore the potential interrelation between low-O2 and DOM composition. For this, temperature, salinity 

and AOU and relative abundances of labile organic matter from open Atlantic and Pacific Oceans (Kaiser and Benner, 2009) 

were included in the PCA for the representation of well oxygenated water column. The covariance between principle 10 
components and an individual parameter was considered significant when module of the coordinate of the parameter 

exceeded 0.5 on the “variables factor map”. The PCA was performed using “FactorMineR” package (Husson et al., 2010) for 

“R” (R Core Team, 2013). 

3 Results  

3.1 Distribution of O2 and DOM 15 

In this section the horizontal and vertical distribution of O2 and the different DOM components including DOC, DON and 

their labile and semi-labile constituents, DCCHO and DHAA are described. The vertical gradients of the different solutes are 

crucial for estimating the associated diapycnal fluxes, as described in section 3.2. Near surface O2 concentrations were 

observed ranging between 100 µmol kg-1 at the coast and 240 µmol kg-1 further offshore (Fig.  2d). These values dropped to 

less than 1 µmol kg-1 at <50m depth near the coast (<40 km offshore) and ~80 m depth offshore (>40 km) (Fig.  2d).  20 
DOC concentrations ranged from more than 100 µmol L-1 near the surface to < 50 µmol L-1 below 40 m depth (Fig. 3a). 

Patches of isolated DOC maxima (up to 120 µmol L-1) were measured at a depth range from 20 to 120 m (Fig. 3a). DOC 

concentrations of >100 µmol L-1 had been reported previously for the water column off Peru (Romankevich and Ljutsarev, 

1990; Franz et al., 2012a). However, since concentrations >100 µmol L-1 were observed only sporadically, we cannot 

exclude a possible contamination of these samples. The main decrease of DOC occurred between 5 and 30 m. Thus, the main 25 
vertical DOC gradient was found at shallow depth, compared to the oxycline. This becomes even more apparent, when 

comparing the mean vertical profiles of O2 and DOC (Fig. 4a,b).  
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DON concentrations were also highest (~7-8 µmol L-1) near the surface (Fig. 3b) and varied from below detection to 4-5 

µmol L-1 at greater depth. The main decrease of DON concentrations occurred within the upper 10 m of the water column 

(Fig. 4c).   

DCCHO concentrations varied from 0.2 µmol L-1 to 4.2 µmol L-1 (Fig. 3c), with highest concentrations near the surface. C 

contained in DCCHO represented from 1 to max. 25 % of DOC in the studied depth range. Amino sugars were represented 5 
solely by GlcN, as GalN was below DL in most samples. Acidic sugars were mainly represented by uronic sugars, i.e.  

GluUA and GalUA (Table 1), while GlcA was detected only sporadically. Overall, amino sugars and acidic sugars 

comprised 0.04±0.03 µmol L-1 and 0.02±0.02 µmol L-1, contributing 6±3 % and 3±2 % to DCCHO, respectively. Thus, the 

major part of DCCHO was represented by neutral sugars (Table 1). DHAA concentrations varied from 0.075 µmol L-1 to 

1.39 µmol L-1 (Fig. 3d). Like for DCCHO, the highest DHAA concentrations were found above the oxycline, where C 10 
contained in DHAA represented 2±1 % DOC (max. 4 %) and nitrogen (N) contained in DHAA represented 15±14 % DON. 

Lowest DHAA concentrations were mainly found below 80 m depth and equivalent to ~1 %DOC and 6-8 %DON (Table 1). 

The major part of DHAA was represented by α-amino acids. The concentrations of GABA, which is commonly used as a 

signature of microbial activity (Davis et al., 2009), was very low in all samples and represented generally <1% of DHAA. In 

summary, the concentrations of all the DOM compounds were highest above the oxycline and the mean concentration 15 
gradients of the DOM compounds were restricted to a shallower depth compared to the mean gradient of O2 (Fig. 4). 

3.2 Diapycnal fluxes and supply 

As outlined in the previous section vertical gradients of O2, DOC, DON and their constituents were observed at 30 to 80 m 

depth in the study area. In this section we combine these vertical gradients with turbulence measurements to estimate the 

associated diapycnal fluxes and supply i.e. the diapycnal flux divergences. 20 

For O2, the mean diapycnal flux (∇Ф����O2) exhibited a maximum of 50 mmol O2 m-2 day-1 at ~20m depth. It decreased over 

depth and vanished at 80m depth due to lack of vertical concentration gradients. Onshore (<40 km) and offshore (>40 km) 

O2 fluxes did not differ statistically. This likely was due to the fact that while vertical oxygen gradients were enhanced in the 

offshore region (Fig.4a), the turbulence and, thus, eddy diffusivities were elevated in the onshore region. The mean 

diapycnal supply O2 (∇Ф����𝑂2), ranged from 1.2 µmol kg-1 day-1 at 10-24 m depth to near zero at 80 m depth (Table 2). Again, 25 
onshore (<40 km) and offshore (>40km) the diapycnal O2 supply was not statistically different. 

In contrast, mean diapycnal fluxes of DOC (Ф�𝐷𝑂𝐷) were limited to shallower depth. Near the surface, Ф�𝐷𝑂𝐷 was 31 mmol C 

m-2 day-1 and vanished already at ~50 m depth (Table 2). The diapycnal supply of DOC (∇Ф����𝐷𝑂𝐷) exhibited a maximum of 

1.8 µmol C kg-1day-1 at 10-38 m depth (1.5 times larger than∇Ф����𝑂2.) (Table 2, Eq. 4). Compared to NPP, estimated to 3.9 

(0.6-8.6) gC m-2 day-1 for our study area and period, the DOC flux represented from a maximum of ~10 %NPP at ~20 m 30 
depth to near zero %NPP at ~50 m depth. As it was mentioned in the section 3.1, we did not find a vertical DON gradient, 

resulting in very low diapycnal DON fluxes and supply estimates (Table 2). However, N fluxes were obtained from DHAA 
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transport. Mean C and N fluxes via DCCHO and DHAA ranged from near zero below 30-40 m depth to 6 mmol C m-2 day-1 

(Ф�𝐷𝐷𝐷𝐷𝑂(𝐷)), 0.9 mmol C m-2 day-1 (Ф�𝐷𝐷𝐷𝐷(𝐷)  )and 0.3 mmol N m-2 day-1 (Ф�𝐷𝐷𝐷𝐷(𝑁)) at 10-20m depth (Table 2). The 

diapycnal C and N supply via DCCHO and DHAA ranged from near zero to a maximum of 0.4 µmol C kg-1day-1 

(∇Ф����𝐷𝐷𝐷𝐷𝑂(𝐷)), 0.06 µmol C kg-1day-1(∇Ф����𝐷𝐷𝐷𝐷(𝐷)), and 0.02 µmol N kg-1day-1(∇Ф����𝐷𝐷𝐷𝐷(𝑁)) at 10-38 m depth. The diapycnal 

C supply via DCCHO and DHAA at its maximum comprised ~38% of ∇Ф����𝑂2, when estimated by Eq. (4). In summary, our 5 
diapycnal flux and supply calculation revealed that the diapycnal O2 supply reaches deeper into the oxycline than the 

diapycnal DOM supply. This is especially true for DCCHO and DHAA, representing the labile and semi-labile parts of 

DOM. 

3.3 Linking the DOM composition and the utilization of O2 

To understand whether low-O2 conditions of the OMZ may cause changes in DOM composition, we complement our 10 
quantitative estimates of the DOM and O2 supply with the analyses of DOM quality. For this, the composition of neutral 

DCCHO and DHAA via PCA was compared to environmental factors, i.e. temperature, AOU and salinity, and to organic 

matter composition from the well oxygenated water column as described in Kaiser and Benner (2009). The first principle 

component (Dim 1) (Fig. 5, “variables factor map”) of the PCA was strongly influenced by AOU, indicating the interrelation 

of the DOM composition and removal of O2. The utilization of O2 was accompanied by selective removal of Glu, Phe, Leu, 15 
ILeu and Ser, and Rha, Gal, and Fuc (Fig. 5, Table 1). Gly, Thr and Glc mol% were increasing along with increase in AOU 

(Fig. 5). In general, the composition of DOM from the surface samples from our study was similar to the composition of 

DOM from the samples, collected from well oxygenated open ocean sites by Kaiser and Benner (2009), as the individual 

scores of the samples cluster together on Dim.1 of the PCA (Fig. 5, “individuals factor map”). The samples, collected within 

the OMZ were much poorer in composition, even in comparison to the deepest open ocean samples (~4000m), as they 20 
grouped from the negative side of Dim. 1.  

The differences on the second dimension of PCA (Dim.2) were driven likely by regional differences in the DOM 

composition, i.e. by mol% of Ala, Arb, and Fuc, and distributions of mol% Asp, Phe, Val and Leu over depth (Fig. 5, Table 

1, Kaiser and Benner, 2009). 

4 Discussion 25 

The observed distributions of O2 and of DOC and DON components are the result of sinks and sources in the water column 

mainly due to microbial processes and isopycnal and diapycnal supply (i.e. flux divergences) controlled by physical 

processes. A quantification of each of those individual processes is essential for understanding of important mechanisms 

controlling O2 and organic matter cycling off Peru and, therefore, the formation and maintenance of the Peruvian OMZ. 
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Previous studies have shown that turbulent mixing processes in the eastern boundary upwelling systems (EBUS) are strongly 

enhanced and that the resulting diapycnal supply is often a leading term in the flux divergence balances of O2, nutrients and 

other solutes in the upper ocean (e.g. Schafstall et al., 2010; Kock et al., 2012; Brandt et al., 2015; Steinfeldt et al., 2015).  

The diapycnal O2 and DOM fluxes and supply determined in this study represent average values for the continental margin 

ranging from the shelf to about 100 km offshore. This spatial averaging is likely responsible for a lower near-surface 5 
diapycnal O2 flux (50 mmolO2 m-2 day-1) compared to other EBUS. For example, Brandt et al. (2015b) determined a near-

surface diapycnal O2 flux of 73 mmolO2 m-2 day-1 in the Mauritanian upwelling during the high productivity season in boreal 

winter. In their study, the diapycnal O2 flux was able to sustain benthic respiration on the continental shelf down to a bottom 

depth of 100 m. Herewith, the diapycnal O2 supply found in our study was of similar magnitude as the rates of O2 

consumption (~1 µmol kg-1 day-1) determined by in situ incubations at 50-80 m water depth during the Austral summer 10 
season in the ETSP off Peru (Kalvelage et al., 2015) and similar estimates for North and South Pacific OMZs (Revsbech et 

al., 2009 and Tiano et al., 2014).  

Other terms of the O2 transport budget such as isopycnal supply by meso- (Thomsen et al., 2016a) and submesoscale 

(Thomsen et al., 2016b) dynamics or fluxes due to upwelling (e.g. Steinfeldt et al., 2015) might play an important role for 

the distribution of O2 in the upper ocean, particularly in the region of the continental slope and the shelf. In turn, the deep chl 15 
a maximum formed by photosynthetic cyanobacteria, i.e. Prochlorococcus, that have been found in the ETSP (Lavin et al, 

2010; Ulloa et al., 2012; Meyer et al., 2017) may provide an additional O2 source at depth. Furthermore, the presented 

diapycnal fluxes and supply of O2 were determined from the data collected during ocean settings typical for the austral 

summer season of non-El Niño/ La Niña-year.  In the water column, O2 concentrations and background settings for the 

production of turbulence were shown to vary substantially on seasonal and interannual time scales (e.g. Graco et al., 2017). 20 
Thus, the diapycnal fluxes and supply of O2 shall vary on the same timescales. Therefore, our results should be considered as 

the first estimates of diapycnal O2 fluxes and supply in the ETSP off Peru during Austral summer season during non-El 

Niño/ La Niña regime. 

Like for O2, the transport of DOM through the water column is achieved by advective and diffusive transport processes. 

Therefore, along with turbulent mixing, other transport terms will also take their part in shaping the DOM distribution off 25 
Peru. For instance, vertical advection (i.e. upwelling) transports deep water, which is characterized by highly altered DOM 

and low DOC concentrations, into the upper ocean near the continental margins. The upwelling may counteract the turbulent 

downward flux of DOC and, therefore, contribute to a “compression” or sharpening of the vertical DOM concentration and 

composition profiles. This is unique to upwelling systems and different to the open ocean regions where low DOC 

concentration gradients and smaller changes in the DOM composition were observed at similar depth (Kaiser and Benner, 30 
2009). Additionally, meso- (Thomsen et al., 2016a) and submesoscale (Thomsen et al., 2016b) dynamics have been observed 

in the studied area. They were shown to modify nutrient and O2 distributions by stirring the water across continental slope 

and likely influence the DOM distribution off Peru too. However, no quantitative information on DOM fluxes, associated 

with upwelling, meso- or submesoscale dynamics off Peru are available to date. Seasonal and interannual variations in 
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physical dynamics may as well affect DOM distribution off Peru, e.g. deepening of the mixed layer during Austral winter 

(Echevin et al., 2008) or intense downwelling/upwelling during El Niño/La Niña events (e.g. Graco et al., 2017) may result 

in the diapycnal DOM supply to a different depth than during typical Austral summer season.  

DOM might also be transported to depth within particles. Thus, the “uncoupled” dissolution of large sinking aggregates as a 

result of bacterial enzymatic activity (Smith et al., 1992) or abiotically (Sempéré et al., 2000) may serve as an additional 5 
DOM source and, therefore, affect the distribution of DOM in the water column. The sporadic dissolution of particles may 

bias the diapycnal DOM flux estimates at individual stations. Therefore, the bias may be reduced by calculating the mean 

diapycnal flux over a large number of depth profiles. The continuous DOM release from POM over the water column (e.g. 

Lefèvre et al., 1996), in turn, may lead to an overestimation of diapycnal DOM fluxes and DOM based microbial respiration. 

However, no direct measurements of the DOM fraction resulting from particle dissolution exist so far in the studied area. 10 
Furthermore, DOM is affected by other abiotic or biological processes in the water column. For instance, the observed very 

low diapycnal DON flux may suggest a DON removal in the upper water column. Low concentrations of inorganic nutrients 

above 20 m depth (Thomsen et al., 2016a), and an overall nitrogen limitation that was found to be characteristic for the 

surface communities in the ETSP off Peru (Franz et al., 2012b), might force those communities to switch to organic nitrogen 

sources (e.g. Bradley et al., 2010), therefore reducing DON in the upper water column. Photoreactions could also reduce 15 
DON incorporated into large chromophoric molecules through production of volatile N compounds or inorganic N (Zepp et 

al., 1998). Thus, DOM composition was suggested to be affected by the photochemistry in our study area (Galgani and 

Engel, 2016, Loginova et al., 2016). Photochemical degradation to CO, CO2 and other volatile compounds (Zepp et al., 

1998) could lower the near surface diapycnal DOC flux, as well. 
Herewith, our data suggest that the diapycnal DOC flux in the upper 20m of the water column off Peru is in the same order 20 
of magnitude as the diapycnal O2 flux (Table 2). The annual diapycnal DOC flux (2.7 mol C m-2yr-1) into the upper OMZ, 

estimated from our results by averaging Ф�𝐷𝑂𝐷  above the mean depth of the oxycline (from below the mixed layer to 80 m 

depth) and integrating over a year, is in the same order of magnitude as previously reported data for the North Pacific 

Subtropical Gyre, where DOC export was estimated by a mass balance approach (1.6-2.7 molC m-2 yr-1; Emerson et al., 

1997) and by fitting an exponential decay function over depth (0.5±0.1 molC m-2 yr-1; Kaiser and Benner 2012). ). Compared 25 
to NPP, the diapycnal DOC flux (~10% NPP) was comparable to the POC export, previously reported for the upper water 

column in the ETSP off Chile (~12 %NPP (30 m depth), Pantoja et al., 2004), and in the ETSP off Peru (~6 %NPP (52 m 

depth); Gagosian et al., 1983; 16-42% NPP (near the surface); Kalvelage et al., 2013), advocating turbulent mixing of DOM 

to be an important C export mechanism in the upper oxycline. 

Furthermore, in the upper water column (from below the mixed layer to 38 m water depth), the diapycnal DOC supply was 30 
higher, than the diapycnal O2 supply, suggesting that DOC respiration could exhaust all O2. However, the vanishing of DOC 

flux above the upper oxycline suggests that the bioavailable fraction of DOM is respired well before entering the upper 

OMZ. This is even more apparent, when considering diapycnal DHAA and DCCHO fluxes, which decayed more rapidly 

compared to the diapycnal DOC flux, suggesting preferential uptake of DHAA and DCCHO in the water column. The 
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diapycnal supply of DHAA and DCCHO could not fully explain the diapycnal supply of DOC, as those were responsible for 

only ~26% of ∇Ф����𝐷𝑂𝐷 when summed up together. This may hint to a presence of an additional bioavailable DOM component 

that was respired in the water column, and/or to other DOM removal mechanisms in the near-surface waters. For instance, 

DOM may form marine microgels and hence POM (Chin et al., 1998; Engel et al., 2004, Verdugo et al., 2004) or be trapped 

in the pore space of already existing particles (e.g. Benner, 2002).  5 
As DHAA and DCCHO are preferentially utilized during microbial decomposition of organic matter (Skoog and Benner, 

1997; Lee et al., 2000; Amon et al., 2001), their carbon yield (%DOC) and composition may serve as indicators of diagenetic 

history of DOM (e.g. Kaiser and Benner, 2009; Davis et al., 2009). Thus, the relatively high carbon yield of DHAA and 

DCCHO (Table 1), found near the surface during our study, suggests that DOM in surface waters off Peru is more 

bioavailable, compared to the open ocean (Davis and Benner, 2007; Kaiser and Benner, 2009). It is, however, rapidly altered 10 
at shallow depth. Applying the classification of Davis and Benner (2007), that implies that carbon yields of DHAA above 1.6 

%DOC and 1.09 %DOC are corresponding to labile and semi-labile DOM, respectively, to our data suggests that the labile 

and semi-labile DOM off Peru was restricted upper 50 m of the water column.  

The compositional analyses of DHAA and DCCHO suggested preferential microbial uptake of Glu, Phe, Ser, Leu and Rha, 

Gal, Fuc, Ara in the near surface waters, as below 50 m depth, the composition of DHAA and DCCHO were dominated by 15 
Gly and Glc, respectively (Fig. 5, Table 1). Glc was previously suggested to be less susceptible to microbial degradation 

compared to preferentially removed Fuc, Gal, and Ara (Ittekot et al., 1981; Sempere et al., 2008; Goldberg et al., 2010; 

Engel et al., 2012). Enrichment in Gly with depth has also been proposed to reflect the low nutritional value of Gly in anoxic 

sediments off Chile (Pantoja and Lee, 2003) and in sediments of the North Sea (Dauwe and Middelburg, 1998). Therewith, 

our data suggest that DOM in the shallow OMZ off Peru was characterized by stronger alteration compared to open ocean 20 
samples (Kaiser and Benner, 2009) at even much greater depths (up to 4000m). This may be due to both, an upwelling of 

altered DOM from the deep and a rapid and very extensive heterotrophic DOM utilization in the ETSP. The upwelling may 

“compress” labile and semi-labile DOM towards the surface, while the rapid microbial utilization of DOM shall prevent 

labile and semi-labile DOM export into the OMZ, and also would imply a pronounced heterotrophic respiration. The latter 

was suggested by our PCA analyses, as DOM composition was highly interrelated to AOU. Herewith, the diapycnal supply 25 

of DHAA and DCCHO could explain up to 38% of ∇Ф����𝑂2. This suggest, that despite the diapycnal fluxes of labile and semi-

labile fractions of DOM may not reach deep into the core of the OMZ, DOM based microbial respiration above the OMZ 

may substantially attenuate the diapycnal O2 flux that ventilates the upper oxycline. In other words, DOM may alter the 

shape of the upper oxycline and, therefore, contribute to the formation and maintenance of the OMZ. 

5 Conclusions 30 

Our results suggest that DOM, i.e. DCCHO and DHAA, is significantly consumed and altered above the upper oxycline in 

the ETSP off Peru. Thus, despite the presence of high DOC concentrations in the euphotic zone, DOM may enter the OMZ 
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in an already highly reworked stage. Herewith, DOM respiration may contribute substantially (~38%) to O2 reduction in the 

upper water column potentially controlling the shape of the upper oxycline of the OMZ. The elevated diapycnal supply of 

DOC to the upper oxycline, which cannot be explained by microbial processes solely, hint to the presence of an additional 

DOM removal mechanism, such as microgel formation or adsorption onto particles.  

6 Data availability 5 

The microstructure profiles are available at https:/doi.org/10.1594/PANGAEA.868400. The O2, temperature, salinity, chl a 

fluorescence and nutrients were published at https:/doi.org/10.1594/PANGAEA.860727. The DOC, TDN, DCCHO and 

DHAA concentrations are available at https://doi.pangaea.de/10.1594/PANGAEA.900929. 
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Table 1: Relative composition (mol%) of dissolved hydrolysable amino acids (DHAA) and dissolved combined carbohydrates 
(DCCHO) in the water column, “n.d.” - not detectable. Abbreviations “nS”, “SN” and “SA” stand for neutral sugars, amino 
sugars and acidic sugars, respectively. The number of samples at each depth interval, used for calculation of the average value, is 
given as “n”. The mean values for DHAA and DCCHO composition below the mixed layer (10 to 122 m) are reported for similar 
depth intervals (14 m) as diapycnal DOM and O2 fluxes. The mean values for DHAA and DCHO within the mixed layer are 5 
reported for ~5 m depth intervals.  

   

(µmol L-1) (%DOC) (%DON) Gly Thr Ala Asp Glu Ser Arg Leu Val Ileu Phe Tyr
1-5 30 0.6±0.3 2±1 15±10 22±4 9±1 11±1 17±1 15±3 11±2 2.3±0.3 4±1 3.0±0.4 2.5±0.6 2.4±0.4 1.8±0.4

5-10 25 0.5±0.3 2.3±0.9 15±9 23±4 9±2 11±1 17±1 15±4 10±1 2.2±0.4 4±1 2.9±0.6 2.1±0.5 2.1±0.4 1.7±0.3
10-24 48 0.4±0.2 1.8±0.8 16±14 25±4 9±2 11±1 17±1 13±2 9±1 2.1±0.6 3±1 2.8±0.7 2.2±0.7 2.1±0.6 1.9±0.5
24-38 28 0.24±0.07 1.2±0.3 12±14 28±3 10±1 12±1 17±1 11±2 9±1 1.9±0.4 3±1 2.4±0.6 1.9±0.6 1.8±0.4 2.0±0.7
38-52 34 0.20±0.05 1.0±0.4 9±7 29±6 10±2 12±2 16±2 11±2 9±1 1.8±0.6 3±2 2.3±0.8 1.7±0.5 1.8±0.4 1.7±0.4
52-66 35 0.17±0.03 0.9±0.3 13±19 31±3 10±2 12±1 16±1 10±2 8±1 1.7±0.4 2±1 2.4±0.5 1.6±0.7 1.7±0.3 1.7±0.5
66-80 27 0.16±0.05 0.9±0.3 9±8 32±4 10±1 12±1 15±2 10±2 8±1 1.7±0.5 2±1 2.5±0.6 1.7±0.8 1.7±0.4 1.8±0.5
80-94 22 0.15±0.08 0.9±0.4 8±7 34±3 10±2 12±2 15±1 10±2 9±1 1.6±0.4 2±1 2.2±0.7 1.3±0.7 1.6±0.4 1.6±0.4

94-108 14 0.13±0.03 0.7±0.2 9±8 34±3 10±2 13±2 15±2 9±2 8±2 1.6±0.5 2±1 2.3±0.7 2±1 1.7±0.4 1.7±0.9
108-122 13 0.13±0.03 0.8±0.2 6±4 32±3 10±2 12±1 16±2 10±2 8±1 1.7±0.3 3±1 2.3±0.8 2±1 1.9±0.4 1.7±0.5
122-200 18 0.12±0.03 0.7±0.3 8±6 35±3 10±1 12±2 15±2 9±1 8±2 1.5±0.7 2±1 2.5±0.6 1.7±0.7 1.5±0.4 1.5±0.5

nS SN SA nS SN SA Glc ManXyl Gal Rhm Fuc Ara GluUA GalUA GlcA
1-5 30 1.5±0.8 0.10±0.03 0.10±0.08 9±4 0.6±0.2 0.6±0.3 30±13 32±6 17±6 11±8 8±2 2±1 48±21 51±21 0.4±2

5-10 25 1.1±0.6 0.08±0.03 0.07±0.05 8±4 0.5±0.1 0.5±0.3 33±11 33±5 16±6 8±6 8±2 2±1 43±26 55±24 2±10
10-24 47 0.7±0.3 0.06±0.02 0.04±0.03 5±2 0.4±0.1 0.3±0.2 36±13 37±8 12±5 5±4 7±2 2±1 32±25 67±25 1±7
24-38 28 0.4±0.1 0.04±0.01 0.02±0.02 4±1 0.3±0.1 0.2±0.1 43±11 38±7 9±4 2±2 6±2 0.4±1.0 20±20 80±20 n.d.
38-52 35 0.4±0.2 0.03±0.01 0.02±0.01 4±2 0.3±0.1 0.1±0.1 42±10 41±9 9±3 2±2 5±2 0.3±0.8 28±30 72±30 n.d.
52-66 34 0.5±0.2 0.03±0.01 0.02±0.02 4±2 0.2±0.1 0.2±0.2 45±9 41±9 7±4 2±2 5±2 0.2±0.6 21±27 77±28 2±11
66-80 27 0.4±0.2 0.02±0.01 0.01±0.01 4±2 0.2±0.1 0.1±0.1 47±13 44±12 5±3 1±1 3±2 0.3±0.7 19±28 81±28 n.d.
80-94 22 0.4±0.2 0.02±0.01 0.01±0.01 4±2 0.2±0.1 0.1±0.1 47±11 45±10 4±3 0.1±0.6 2±2 0.7±1.3 32±33 68±33 n.d.

94-108 15 0.3±0.1 0.02±0.01 0.01±0.01 3±1 0.2±0.1 0.1±0.1 53±11 40±10 4±3 0.1±0.5 2±2 0.2±0.9 28±29 72±29 n.d.
108-122 13 0.4±0.1 0.02±0.01 0.02±0.02 4±2 0.2±0.1 0.2±0.2 51±16 43±14 3±3 0.2±0.7 2±2 0.3±1.0 44±46 56±46 n.d.
122-200 18 0.4±0.2 0.02±0.01 0.01±0.02 4±1 0.2±0.1 0.1±0.2 52±10 44±9 2±2 n.d. 1±2 0.7±2.3 22±30 78±30 n.d.

DHAA 
Depth (m)

Depth (m)

mol% DHAA

DCCHO (µmol L-1) mol%DOC mol% nS mol% SA

n

n
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Table 2: Diapycnal fluxes and supplies (in bold) of O2 and DOM: DOC, DON, dissolved organic carbon in DCCHO and DHAA 
and dissolved organic nitrogen in DHAA. 95% confidence intervals, calculated after Schafstall et al. (2010) for each parameter, 
are presented in brackets. BLM – “below the mixed layer” – a depth, defined below 10m of the water column, using a threshold 
criterion of 0.2°C temperature decrease. 

 5 

   

Depth (m) DOC DON DCCHO-C DHAA-C DHAA-N O2

BML-24 31 (+56/-6) -0.6 (+0.1/-1.0) 6 (+8/-0.06) 0.9 (+1.3/+0.1) 0.3 (+0.4/+0.05) 50 (+77/+17)

24-38 5 (+24/-12) 8 (+87/-2) 0.2 (+6/-0.01) 0.07 (+0.4/+0.03) 0.03 (+0.15/+0.013) 32 (+77/+11)

38-52 0.4 (+1.2/-0.1) 0.4 (+8/-1) 0.12 (+2/+0.04) 0.07 (+0.3/+0.04) 0.03 (+0.1/+0.01) 32 (+72/+15)

52-66 0.2 (+0.6/-0.003) 0.5 (+14/-2) 0.01 (+16/-0.9) 0.05 (+0.2/+0.03) 0.02 (+0.1/+0.01) 17 (+89/+5)

66-80 0.6 (+1.8/-0.03) 0.1 (+12/-2) 0.12 (+11/-0.5) 0.02 (+0.5/-0.08) 0.7×10-2 (+0.2/-0.03) 8 (+17/+1)

80-94 -0.5 (+0.3/-0.4) -0.1×10-2 (+0.01/-0.06) 0.14 (+11/-0.5) 0.01 (+0.2/-0.02) 0.4×10-2 (+0.06/-0.01) 0.12 (+0.2/+0.03)

94-108 -0.2 (+0.02/-0.4) 0.05 (+11/-2) 0.09 (+24/-1) 0.6×10-2 (+0.3/-0.05) 0.2×10-2 (+0.1/-0.02) 0.016 (+0.04/+0.01)

108-122 -0.2 (-0.06/-0.4) 0.01 (+3/-0.5) -0.01 (+0.3/-4) 0.2×10-3(+0.01/-0.02) 0.1×10-3 (+0.01/-0.001) 0.02 (+0.06/+0.01)

BML-38 1.8 (+4.0/-1.0) -0.6 (+5/-1) 0.4 (+0.8/-0.02) 0.06 (+0.09/+0.005) 0.02 (+0.03/+0.002) 1.2 (+5/-2)

24-52 0.3 (+1.6/-0.9) 0.6 (+6/-0.2) 0.5×10-2 (+0.4/-0.01) 0.1×10-3 (+0.02/-0.003) 0.2×10-4 (+0.01/-0.001) 0.04 (+4/-2)

38-66 0.01 (+0.07/-0.03) -0.01 (+1/-0.2) 0.8×10-2 (+0.2/+0.002) 0.1×10-2 (+0.02/-0.001) 0.5×10-3 (+0.01/-6×10-4) 1.0 (+7/-0.5)

52-80 -0.03 (+0.05/-0.08) 0.03 (+1/-0.2) -0.8×10-2 (+1/-0.1) 0.2×10-2 (+0.04/-0.005) 0.7×10-3 (+0.01/-0.002) 0.7 (+6/-0.3)

66-94 0.05 (+0.13/-0.006) 0.01 (+0.9/-0.1) -0.1×10-2 (+1/-0.1) 0.6×10-3 (+0.04/-0.007) 0.2×10-3 (+0.01/-0.003) 0.5 (+1/+0.07)

80-108 0.8×10-2 (+0.03/-0.02) -0.3×10-2 (+0.8/-0.1) 0.4×10-2 (+2/-0.1) 0.4×10-3 (+0.02/-0.04) 0.1×10-3 (+0.007/-0.001) 0.7×10-2 (+0.01/+0.001)

94-122 0.4×10-2 (+0.02/-0.01) 0.2×10-2 (+0.8/-0.1) 0.7×10-2 (+2/-0.3) 0.4×10-3 (+0.02/-0.004) 0.1×10-3 (+0.006/-0.001) -0.1×10-2 (+0.003/-0.002)
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Figure 1: Study area and station map. CTD stations, where CTD-probe and fluorimeter measurements were accomplished are 
marked as black dots (a,b). PUMP-CTD stations are depicted in pink diamonds (a). CTD and PUMP-CTD stations, where DOM 
sampling was performed are marked as green stars (a). Microstructure measurements, combined with oxygen profiles are marked 
as grey circles (b). Microstructure measurements, combined with dissolved organic matter (dissolved organic carbon (DOC), 
dissolved hydrolysable amino acids (DHAA) and dissolved combined carbohydrates (DCCHO)) measurements marked as green 5 
pentagrams (b). Extra microstructure measurements, combined with DOC measurements marked with violet pentagrams (b). 
Shaded colors represent chl a concentrations at upper 10 m depth (a) and oxygen concentrations at 15m depth (b). Spaces between 
data points were interpolated by using TriScatteredInterp function (MATLAB, MathWorks). 
 
Figure 2: Mean vertical distribution of the temperature (a), salinity (b), (c) chlorophyll a (chl a) and (d) O2. O2 values below 1 µmol 10 
kg-1 are shaded in violet. The data from all transects and stations were averaged over intervals of 10 km on “Distance from the 
coast” axis and over 1 m on “Depth” axis. Isolines represent potential density, averaged over intervals of 10 km on “Distance from 
the coast” axis and over 1 m on “Depth” axis. 
 
Figure 3: Dissolved organic carbon (DOC) (a), dissolved organic nitrogen (DON) (b), dissolved combined carbohydrates (DCCHO) 15 
(c) and dissolved hydrolysable amino acids (DHAA) (d) distributions over the water column. Data from all transects and stations 
were plotted against distance to coast (km). Space between data points was interpolated by using TriScatteredInterp function 
(MATLAB, MathWorks). Isolines represent potential density, averaged over intervals of 10 km on “Distance from the coast” axis 
and over 1 m on “Depth” axis. 
 20 
Figure 4: Vertical distribution of O2 (a), DOC (b), DON (c), DCCHO(C) (d), DHAA(C) (e), DHAA(N) (f). Black line and error bar 
represent mean distribution and standard deviations of the data points (grey circles), respectively. The blue and red lines and 
shaded areas represent the mean distributions and standard deviations of parameters onshore (<40 km) and offshore (>40 km), 
respectively. 
 25 
Figure 5: The PCA analysis output: variables (on the left) and individuals scores of samples (from the right). The samples, 
collected above 50m depth are marked with acronym “s”, the ones, below 50m depth – with acronym “d”. The samples, which are 
used for comparison are marked with acronyms “HOT” and “BATS”, and represented well oxygenated samples, collected from 
open Pacific and open Atlantic Oceans, respectively (Kaiser and Benner, 2009). 
 30 
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