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Abstract.  

This work reports on the current status of global modelling of iron (Fe) deposition fluxes and atmospheric 

concentrations and analyses of the differences between models, as well as between models and observations. A 30 

total of four global 3-D chemistry-transport (CTMs) and general circulation (GCMs) models have participated in 

this intercomparison, in the framework of the United Nations Joint Group of Experts on the Scientific Aspects of 

Marine Environmental Protection (GESAMP) Working Group 38, “The Atmospheric Input of Chemicals to the 

Ocean”. The global total Fe (TFe) emissions strength in the models is equal to ~72 Tg-Fe yr−1 (38–134 Tg-Fe 

yr−1) from mineral dust sources and around 2.1 Tg-Fe yr−1 (1.8–2.7 Tg-Fe yr−1) from combustion processes (sum 35 
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of anthropogenic combustion/biomass burning and wildfires). The mean global labile Fe (LFe) source strength in 

the models, considering both the primary emissions and the atmospheric processing, is calculated to be 0.7 (±0.3) 

Tg-Fe yr−1, accounting for mineral dust and combustion aerosols together. The mean global deposition fluxes into 

the global ocean is estimated in the range of 10-30 Tg-Fe yr−1 and 0.2-0.4 Tg-Fe yr−1 for TFe and LFe, 

corresponding to roughly 15 Tg-Fe yr−1 and 0.3 Tg-Fe yr−1, respectively, for the multi model ensemble model 5 

mean. 

The model intercomparison analysis indicates that the representation of the atmospheric Fe cycle varies among 

models, in terms of both the magnitude of natural and combustion Fe emissions as well as the complexity of 

atmospheric processing parametrizations of Fe-containing aerosols. The model comparison with aerosol Fe 

observations over oceanic regions indicate that most models overestimate surface level TFe mass concentrations 10 

near the dust source regions and tend to underestimate the low concentrations observed in remote ocean regions. 

All models are able to simulate the tendency of higher Fe concentrations near and downwind from the dust 

source regions, with the mean normalized bias for the Northern Hemisphere (~14), larger than the Southern 

Hemisphere (~2.4) for the ensemble model mean. This model intercomparison and model–observation 

comparison study reveals two critical issues in LFe simulations that require further exploration: 1) the Fe-15 

containing aerosol size distribution and 2) the relative contribution of dust and combustion sources of Fe to labile 

Fe in atmospheric aerosols over the remote oceanic regions. 
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1 Introduction 

Oceans are important for the Earth System’s functioning, currently absorbing roughly 27% of total CO2 

emissions (e.g., Le Quéré et al., 2013), providing about half of atmospheric oxygen and being a source of 

biomass needed to help sustain life on our planet. Iron (Fe) is a key element for marine life (Duce and Tindale, 

1991; Fung et al., 2000) being required for photosynthesis and respiration. As an essential micronutrient, Fe (co-5 

)limits ocean productivity over large regions (Boyd et al., 2005; Jickells et al., 2005; Martin et al., 1991; Moore et 

al., 2013), influences the nitrogen fixation capability of diazotrophs in oligotrophic regions (Falkowski, 1997; 

Falkowski et al., 2000) and overall affects the transport and sequestration of carbon into the deep ocean (Maher et 

al., 2010). Atmospheric deposition is considered an important external Fe source to the open ocean (Jickells et 

al., 2005; Tagliabue et al., 2017). Micronutrient Fe delivered through atmospheric pathways may influence the 10 

primary and export production of carbon over the High-Nutrient Low-Chlorophyll (HNLC) oceanic regions (i.e., 

the oceanic regions where Fe is the limiting factor for phytoplankton productivity). However, significant Fe 

inputs from continental margins and hydrothermal vents are also supplied to the global ocean, regulating the 

ocean biogeochemical cycles. Moreover, riverine Fe inputs are currently estimated 1-2 orders of magnitudes 

smaller that the atmospheric pathway (e.g., Tagliabue et al., 2016), affecting mainly coastal regions, while 15 

icebergs and glaciers could also be important to the polar oceans (Raiswell et al., 2016).  

Understanding of the impact of Fe on global marine productivity requires knowledge of the rates and locations of 

Fe supply to the ocean, and of the physicochemical forms of Fe that can be utilized by marine biota (i.e., those 

that are bioavailable). The bioavailability of Fe is a complex issue (e.g., Lis et al., 2015; Morel et al., 2008) and 

several naming conventions and abbreviations were used to characterize the atmospheric supply of potentially 20 

bioavailable Fe to the global ocean (Baker and Croot, 2010; Shi et al., 2012). It has been widely assumed that 

soluble Fe can be considered, as a first approximation, to be bioavailable (Baker et al., 2006a, 2006b) and a 

common experimental practice to determine the bioavailable Fe fraction in Fe-containing aerosols is the 

quantification of Fe in a leachate solution that passes through 0.45 µm, 0.2 µm or 0.02 µm sized filter (see 

Meskhidze et al., 2016 and ref. therein). However, due to its operational definition, it has been shown that this 25 

filterable Fe may contain both the soluble Fe and colloidal forms (Jickells and Spokes, 2001; Raiswell and 

Canfield, 2012). Upon deposition to the surface ocean, the soluble of Fe delivered through atmospheric pathways 

can either enter the dissolved Fe pool or precipitate-out as large oxy-hydroxide particles (de Baar and de Jong, 

2001; Boyd and Ellwood, 2010; Meskhidze et al., 2017; Turner and Hunter, 2001). Consequently, the impact of 

atmospheric Fe on marine biogeochemistry depends on both the total Fe (TFe) deposition and its solubility, 30 
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keeping in mind that the bioavailable fraction of Fe in seawater will then also change due to post-atmospheric 

deposition ocean processes (e.g., Baker and Croot, 2010; Chen and Siefert, 2004; Meskhidze et al., 2017; Rich 

and Morel, 1990).  

On the global scale mineral dust is the dominant source of Fe to the atmosphere ( ~95%; Mahowald et al., 2009) 

The average Fe content in upper crustal minerals is 3.5% (e.g., Duce and Tindale, 1991), but this can vary 5 

considerably, depending on the underlying mineralogy (and geography) of the dust source (Journet et al., 2014; 

Nickovic et al., 2012, 2013). According to Journet et al. (2014), the Fe content of various minerals is as follows: 

hematite (69.9%), goethite (62.8%), chlorite (12.3%), vermiculite (6.71%), illite (4.3%), smectite (2.6%), 

feldspars (0.34%) and kaolinite (0.23%) in clay- and silt-sized soil particles (i.e., soil particles with diameters < 

2µm and 2 - 50 µm, respectively). Fe-containing aerosols also originate from wildfires and biomass burning 10 

(Guieu et al., 2005; Mahowald et al., 2005; Oakes et al., 2012; Paris et al., 2010) and anthropogenic combustion 

processes, such as coal and oil fly ash (Luo et al., 2008), including ship oil combustion (Ito, 2013). Other sources 

of Fe-oxides can be also identified in the atmosphere, attributed to volcanic eruptions (Benitez-Nelson et al., 

2003; Langmann et al., 2010) and to lesser extent meteors (Johnson, 2001). 

The use of global biogeochemical numerical models and surface observations is an excellent way to better 15 

understand past, present and future atmospheric supply to the oceans, as well as to quantify the resultant effect on 

the ocean biological productivity and the carbon uptake. Modelling of the atmospheric supply of soluble Fe to the 

global ocean is challenging, due to the multitude and complexity of the forms under which Fe can be present in 

aerosol emitted to the atmosphere (Meskhidze et al., 2017), as well as the variety and complexity of processes 

which alter the solubility of Fe during its transport through the atmosphere (Baker and Croot, 2010). Indeed, the 20 

soluble fraction of Fe in atmospheric aerosols may include different Fe forms in the ferric oxidation state (Fe(III)) 

(Fu et al., 2012), ferrihydrite and amorphous precipitates, Fe-oxide nanoparticles (Shi et al., 2009), Fe-organic 

complexes (Cheize et al., 2012) and Fe in the ferrous oxidation state (Fe(II)) (Raiswell and Canfield, 2012). The 

atmospheric modelling community is mostly focused on the soluble fraction of the deposited Fe over the oceans 

and for this work the general term labile Fe (LFe) will be used to represent the overall soluble Fe in simulated 25 

atmospheric aerosol. Both the TFe and LFe atmospheric deposition can be used in ocean biogeochemical 

modelling. For example, total Fe is used for comparisons of particulate Fe with the measurements in the ocean 

biogeochemistry models (e.g., Ye and Völker, 2017), while LFe can be assumed as readily available to the 

marine ecosystem. Note that the less labile fraction of TFe can be slowly dissolved from particulate Fe in the 

ocean during sinking of mineral particles (e.g., roughly 0.01% per day; Bonnet, 2004), with the dissolution of Fe, 30 

however, being species depended and affected by spatiotemporal variations in the ocean. 
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During recent decades, intensive research has been carried out to elucidate the origin, nature and magnitude of 

LFe fluxes to the surface ocean. Soils may include a small fraction of LFe - roughly 0.1%; e.g., Ito and Shi 

(2016) - considered as impurities attached on minerals such as illite, smectite, kaolinite and feldspars (e.g., Ito 

and Xu, 2014). Fe-containing fly ash has been observed to be present as ferric sulfate salts or nanoparticulate Fe 

and thus is highly soluble (Fu et al., 2012; Schroth et al., 2009), since it is mainly formed via high-temperature 5 

combustion followed by sulfuric acid condensation (Sippula et al., 2009). However, the form and the chemical 

properties of Fe in emissions can vary substantially for each combustion source (Ito, 2013; Wang et al., 2015), 

with the initial soluble fraction in combustion emissions to be about 77–81% in oil fly ash (Schroth et al., 2009), 

20–25% in coal fly ash (Chen et al., 2012) and 18-46% in biomass fly ash (Bowie et al., 2009; Oakes et al., 

2012). Recently, Matsui et al. (2018) suggested, based on observed magnetite concentrations, that emissions of 10 

anthropogenic combustion Fe in global models could be significantly underestimated, and show that the 

atmospheric burden of Fe is potentially up to 8 times greater than previous estimates have suggested (Luo et al., 

2008). LFe can be also formed in the atmosphere during atmospheric processing of mineral dust and combustion 

aerosols (Ito, 2012; Ito and Feng, 2010; Johnson and Meskhidze, 2013; Meskhidze et al., 2005; Myriokefalitakis 

et al., 2015). We use here the general term “solubilisation” to describe the process that converts Fe from 15 

relatively insoluble minerals to the soluble Fe during atmospheric transport and photo-chemical transformation in 

the aqueous solution of aerosols and clouds.  

Iron solubility (i.e., the fraction of total Fe that is soluble) in atmospheric aerosols over the Atlantic and Pacific 

Oceans has been observed to be in the range of 0.1–67% during oceanographic cruises (Baker et al., 2006a; 

Furutani et al., 2010), with even higher solubilities (up to 80%) measured in precipitation samples in the Southern 20 

Ocean (Heimburger et al., 2013). During atmospheric transport, coating of Fe-containing dust particles by acidic 

compounds (e.g., sulfates and nitrates) increases the Fe solubility. When this process is taken into account in 

model simulations (e.g., Meskhidze et al., 2005) it aids in explaining the observations. Indeed, measurements of 

the fresh dust particles present low (<<1%) initial solubilities (Chuang et al., 2005; Fung et al., 2000; Hand et al., 

2004; Sedwick et al., 2007), while high aerosol solubilities are commonly observed at lower dust concentrations 25 

far from sources (Baker and Jickells, 2006; Sholkovitz et al., 2012; Oakes et al., 2012). Atmospheric processing 

of dust (Kumar et al., 2010; Meskhidze et al., 2003; Srinivas et al., 2014) is considered as the best candidate to 

explain these observations. These processes may alter also the global pattern of LFe deposition (Fan et al., 2004), 

especially within remote regions, such as the Atlantic, the Pacific (e.g., Sedwick et al., 2007) and the Southern 

Ocean (Ito and Kok, 2017; Johnson et al., 2010, 2011).  30 
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There is clear experimental evidence that atmospheric acidity - which is mainly driven by air pollution over high 

populated regions especially over the Northern Hemisphere (e.g., Seinfeld and Pandis, 2006) as well as natural 

sources such as volcanic sulfur emissions and the oceanic emissions of dimethylsulfide (DMS) in relatively 

pristine ecosystems (e.g., Benitez-Nelson et al., 2003) - increases the dust solubility. Laboratory studies indicate 

that Fe solubilisation from minerals under acidic conditions in aerosol or rain droplets (Brandt et al., 2003; Shi et 5 

al., 2011; Spokes et al., 1994) occurs on different timescales; from hours to weeks depending on the size and the 

type of the Fe-containing minerals (Shi et al., 2011), with amorphous and ultrafine Fe solubilized much faster in 

acidic solutions (Brandt et al., 2003) compared to the aluminosilicates (roughly 10-14 days). Other laboratory 

studies also support the occurrence of photo-induced reductive Fe solubilisation under acidic conditions (e.g., Fu 

et al., 2010), a mechanism that involves electron transfer to Fe(III) atoms on the particle surface to produce Fe(II) 10 

(Larsen and Postma, 2001). The reductive solubilisation of minerals that are rich in Fe is also observed to be 

accelerated in the presence of Fe(II) or Fe(II)-ligand complexes (Litter et al., 1994). The oxalate-promoted 

solubilisation (e.g., Paris et al., 2011) is controlled by the breaking of Fe-O bonds at the minerals surface due to 

the formation of a mononuclear bidentate ligand with surface Fe (Yoon et al., 2004), with the solubilisation rate 

significantly increased as the pH decreases. Luo and Gao (2010) further prescribed pH and oxalate/hematite ratio 15 

dependent solubilisation rates for mineral dust, based on the laboratory experiments of Xu and Gao (2008). For 

weakly acidic conditions (pH=4.7) and various oxalate concentrations, a positive linear correlation between 

oxalate concentrations and the released LFe from different minerals has been also observed (Paris et al., 2011; 

Paris and Desboeufs, 2013). Laboratory investigations (Chen and Grassian, 2013; Siffert and Sulzberger, 1991) 

indicated that even under highly acidic solutions (pH=2-3), the oxalic acid can be more important for the Fe 20 

solubilisation process of dust and combustion aerosols than the sulfuric acid through the formation of 

Fe(III)−oxalate complexes. Thus the minerals’ solubilisation depends mainly on the proton concentration, the 

mineral surface concentration of organic ligands (such as oxalate), the sunlight and the ambient temperature (e.g., 

Hamer et al., 2003; Lanzl et al., 2012; Lasaga et al., 1994; Zhu et al., 1993). 

The first modelling efforts that took into account the mixing of mineral dust with such anthropogenic acidic trace 25 

gases like sulfur dioxide (SO2) (Fan et al., 2004; Meskhidze et al. 2003; Meskhidze et al., 2005; Solmon et al., 

2009) showed considerable enhancements of atmospheric soluble Fe concentrations. A review by Mahowald et 

al. (2009) pointed out that human activity may have significantly modified the soluble Fe oceanic deposition flux, 

because anthropogenic combustion processes increased both Fe emissions and the acidity of atmospheric 

aerosols. Recent studies (Meskhidze et al., 2017; Tagliabue et al., 2017) further show that atmospheric and 30 

oceanic organic ligands may increase the Fe solubilisation in the atmosphere and in the ocean, by forming Fe 
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complexes that further increases the Fe bioavailability for the marine ecosystems. State-of-the-art global models 

clearly indicate a strong spatial and temporal variability of atmospheric LFe supply to the global ocean, that can 

be partly attributed to atmospheric processing. The global LFe deposition flux is currently estimated in the range 

of 0.4–1.1 Tg-Fe yr−1 (Ito and Kok, 2017; Ito and Shi, 2016; Ito and Xu, 2014; Johnson and Meskhidze, 2013; 

Luo et al., 2008; Myriokefalitakis et al., 2015; Wang et al., 2015).  5 

In order to constrain a global picture of the influence of present atmospheric composition on the Fe supply to the 

oceans, we perform here a systematic comparison between models and between models and observations. We 

identify possible similarities and differences among models and between models and observations. The goals of 

the present study are to (1) quantify the magnitude of the atmospheric TFe and LFe fluxes to the global ocean as 

calculated by four state-of-the-art global atmospheric aerosol models, (2) explain the differences of the simulated 10 

LFe among the participating models, as well as (3) to provide multi-model ensemble TFe and LFe atmospheric 

Fe deposition fluxes for the next-generation of ocean biogeochemistry modelling studies. Overall, the importance 

of this work lies on an extended review and synthesis of the current knowledge of global atmospheric Fe 

deposition fluxes in the ocean, aiming to provide ensemble model data to the scientific community, able to be 

used in ocean biogeochemistry models and as comparative measures for atmospheric models. 15 

The following discussion is organized in four sections: Section 2 describes the participating models and the 

observations used in this study. To build a concise view of the present-day understanding on the magnitude as 

well as the distribution of the TFe and LFe simulated deposition fluxes to the global ocean, ensemble model 

calculations are also presented. Section 3 presents and discusses the simulated global Fe atmospheric budgets and 

distributions. In Sect. 4, the uncertainties in the calculated surface aerosol Fe concentrations and deposition 20 

fluxes are discussed and the potential model biases are analyzed by attributing them to their major contributors. 

Finally, in Sect. 5 the findings of the present study are summarized together with recommendations for future 

research directions.  

2 Methods 

2.1 Description of models 25 

The global models participating in this study differ in the spatial horizontal and vertical resolution, the 

meteorology, the emissions used for gas and aerosol species, as well as, the aerosol microphysics (i.e., size 

distribution and refractive properties). They also differ in the gas- and aqueous- phase chemical schemes and the 

parameterisations of atmospheric transport and deposition processes. The main characteristics of the participating 
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models are summarized in Table 1. Note, however, that for this intercomparison no requirements of specific year, 

meteorological conditions or emission inventories have been set to the model simulations. Presented data are 

therefore mainly based on earlier published (or soon to be published) modeling experiments, which are evaluated 

and systematically analyzed here.  

1. The Community Atmosphere Model version 4 (CAM4) is embedded within the National Center for 5 

Atmospheric Research (NCAR) Community Earth System Model version 1.0.5 (CESM 1.0.5; Hurrell et 

al., 2013). The CAM4 simulations are conducted with a horizontal resolution of 2.0° x 1.9° (longitude x 

latitude) and 56 vertical layers up to 2 hPa and forced by NASA’s Goddard Earth Observing System 

(GEOS-5) meteorology. The emission data sets for anthropogenic activities, such as fossil fuel and 

biofuel combustion, are taken from the Aerosol Comparison between Observations and Models 10 

(AeroCom) database (Dentener et al., 2006). Desert dust is modeled following the Dust Entrainment and 

Deposition (DEAD) module (Zender et al., 2003) with updates in size fractions (Kok, 2011) and optics as 

described in Albani et al. (2014). The bin widths are prescribed at 0.1-1.0, 1.0-2.5, 2.5-5.0, and 5.0-10.0 

µm diameter and with fixed lognormal sub-bin distributions. Dust in CAM4 is speciated into six 

minerals, clays (illite, kaolinite and montmorillonite), feldspar, calcite and hematite (Scanza et al., 2015), 15 

with a total dust source of about 1767 Tg yr-1 calculated for the present day. Further details on the CAM4 

model used for this work are provided in Scanza et al. (2018) and references therein.  

2. The GEOS-Chem model is driven by assimilated meteorological fields from the Goddard Earth 

Observing System (GEOS-5) of the NASA Global Modeling Assimilation at a horizontal 2.0◦×2.5◦ 

(latitude x longitude) grid resolution and 47 vertical levels up to 0.01 hPa. GEOS-Chem simulates the 20 

emissions and chemical transformation of sulfur compounds, carbonaceous aerosols, and sea salt, and 

includes H2SO4-HNO3-NH3 aerosol thermodynamics solved by the ISORROPIA II thermodynamic 

model (Fountoukis and Nenes, 2007) coupled to an O3-NOx-hydrocarbon-aerosol chemical mechanism. 

GEOS-Chem combines the DEAD scheme with the source function used in the Goddard Chemistry 

Aerosol Radiation and Transport (GOCART) model. Once mineral dust is mobilized from the surface, 25 

the model uses four standard dust bins with diameter boundaries of 0.2–2.0, 2.0–3.6, 3.6–6.0 and 6.0–

12.0 µm to simulate global dust transport and deposition, emitting 1614 Tg yr−1 of mineral dust globally. 

Further details on the GEOS-Chem model used for the this work can be found in Johnson and Meskhidze 

(2013) and references therein.  

3. The Integrated Massively Parallel Atmospheric Chemical Transport (IMPACT) model (Rotman et al., 30 

2004) is also driven by assimilated meteorological fields from the Goddard Earth Observation System – 
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Forward Processing (GEOS–FP) of the NASA Global Modeling and Assimilation Office (Lucchesi, 

2017) with a horizontal resolution of 2.0°×2.5° and 59 vertical layers up to 0.01 hPa. The model 

simulates the emissions, chemistry, transport, and deposition of major aerosol species (Liu et al., 2005) 

and their precursor gases (Ito et al., 2007). IMPACT takes into account emissions of primary aerosols 

and precursor gases of secondary aerosols such as sulfate, nitrate, ammonium and oxalate. The emission 5 

data sets for anthropogenic activities such as fossil fuel use and biofuel combustion are taken from the 

Community Emission Data System (CEDS) (Hoesly et al., 2018). Fe-containing combustion and dust 

aerosols are distributed among 4 bins in the model, with diameters: <1.26, 1.26–2.5, 2.5–5, and 5–20 µm, 

respectively (Ito, 2015; Ito and Feng, 2010). The present-day emission estimates for natural sources as 

well as combustion aerosols from biomass burning are used together with anthropogenic emissions 10 

(Dentener et al., 2006; Ito et al., 2018). A total dust source of 5070 Tg yr-1 is dynamically calculated by a 

physically-based dust emission scheme (Kok et al., 2014a, 2014b) in the model for the present day 

(Experiments 3 in Ito and Kok, 2017). The chemical composition of mineral dust and combustion 

aerosols can change dynamically from that in the originally emitted aerosols due to reactions with 

gaseous species. Aerosol pH is calculated from the internal particle composition (H+ and H2O) for each 15 

size bin by the thermodynamic equilibrium module (Jacobson, 1999). The aerosol acidity depends on the 

aerosol types, mineralogy, particle size, meteorological conditions, and transport pathway of aerosols (Ito 

and Feng, 2010; Ito and Xu, 2014; Ito, 2015). A more detailed description of the IMPACT model used 

for this work can be found in Ito (2015), Ito and Kok (2017), Ito and Shi (2016) and references therein.  

4. The TM4-ECPL global chemistry transport model simulates the oxidant (O3/NOx/HOx/CH4/CO) 20 

chemistry, accounting for non-methane volatile organic compounds, including isoprene, terpenes and 

aromatics, multiphase chemistry in clouds and aerosol water, as well as all major primary and secondary 

aerosol components, including sulfate, nitrate and secondary organic aerosols. TM4-ECPL is coupled 

with the ISORROPIA II thermodynamic model (Fountoukis and Nenes, 2007) and it uses modal size 

(lognormal) distributions to describe the evolution of fine and coarse aerosols in the atmosphere. Dust 25 

emissions, for the present version of the model, are calculated online based on the dust source 

parameterization of Tegen et al. (2002), as described in Myriokefalitakis et al. (2016); with the updated 

dust source calculations to produce slightly higher (~7%) dust emissions of around 1181 Tg yr−1 

compared to the modified AeroCom inventory (Dentener et al., 2006) taken into account in the previous 

version of the model (Myriokefalitakis et al., 2015). Dust is emitted in the fine and coarse mode with 30 

mass median radii (lognormal standard deviation) of 0.34 µm (1.59) and 1.75 µm (2.00), respectively. 
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Note also that in the updated version of the model, the mineral-containing combustion aerosols are 

emitted with a number mode radius (lognormal standard deviation) of 0.04 µm (1.8) and 0.5 µm (2.0) for 

the fine and coarse mode, respectively (Dentener et al., 2006; Myriokefalitakis et al., 2016). All aerosol 

species in the model are subject to hygroscopic growth and removal processes that overall affect the mass 

median radius. The aerosol hygroscopic growth in the model is treated as a function of ambient relative 5 

humidity and the composition of soluble aerosol components and the uptake of water on aerosols change 

the particle size. TM4-ECPL model is driven by ECMWF (European Center for Medium-Range Weather 

Forecasts) Interim re-analysis project (ERA-Interim) meteorology and it has a horizontal resolution of 

3.0◦ x 2.0◦ in longitude by latitude, 34 hybrid layers from the surface up to 0.1 hPa and a model time step 

of 30 min. Further details on the TM4-ECPL model used for this study can be found in Myriokefalitakis 10 

et al. (2015, 2016) and references therein. 

2.1.1 Iron emission parameterizations 

The primary Fe sources taken into account by the models can be roughly grouped as 1) mineral dust and 2) 

combustion sources. Various parameterizations or simplifications of Fe emission are adopted by the models, with 

the most important in the context of this paper being the Fe content and initial Fe solubility in emissions. The 15 

mean Fe content in dust emissions, as well as the initial Fe solubility in emissions taken into account by the 

participating models, are presented in the supplement (Fig. S1 and Fig. S2, respectively). In more details: 

1. Mineral dust emissions: Mineral-Fe primary sources are derived from the total mineral dust emissions, 

the fraction of specific Fe-containing minerals in dust emissions and the Fe content of each mineral 

(Table S1). CAM4 uses a soil mineralogy map and the Fe content in soils is estimated based on 20 

mineralogical content (Claquin et al., 1999; Scanza et al., 2015, 2018; Zhang et al., 2015). GEOS-Chem 

and TM4-ECPL take into account the global soil mineralogy data set developed by Nickovic et al. 

(2012). GEOS-Chem prescribes an initial Fe solubility of 0.45% for the most reactive and poorly 

crystalline pool of Fe in desert top soils (Fig. S1), based on the synthesis of data from the Saharan and 

Sahel regions of northern Africa (Shi et al., 2012). The IMPACT model uses the mineralogy map and the 25 

Fe content in soils as estimated by Journet et al. (2014). All the Fe-containing minerals in the model (i.e., 

hematite, goethite, illite, smectite, kaolinite, chlorite, vermiculite, and feldspars) are considered to be in 

the clay-sized (diameters <2 µm), with only goethite, chlorite, and feldspars to be also present in the silt-

sized soils (diameters between 2-50 µm; Journet et al., 2014). The Fe content averaged in size bins 1–3 

(3.6%) is higher than in the size bin 4 (2.3%). IMPACT applies an initial Fe solubility of 0.1% (Ito and 30 
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Shi, 2016) to the mineral dust aerosols emitted in the atmosphere (Fig. S1). In TM4-ECPL, the Fe 

content of the different Fe-containing minerals of dust (i.e., illite, kaolinite, smectite, goethite and 

hematite and feldspars) is based on the recommendations of Nickovic et al. (2013) and the assumption 

that is equally distributed between clay- and silt-sized soils, while for GEOS-Chem the Fe content of 

mineral dust was set to the widely accepted global mean value of 3.5% (Duce and Tindale, 1991). The 5 

initial solubility of the emitted Fe-containing dust particles in TM4-ECPL is prescribed as 4.3% on 

kaolinite and 3% on feldspars emissions (Ito and Xu, 2014), while other minerals are considered to be 

emitted containing only insoluble Fe. The resulted annual global mean TFe content of emitted dust 

particles in TM4-ECPL is calculated to be 3.2% on average (Fig. S2).  

2. Combustion emissions: All models but one (i.e., GEOS-Chem) include Fe-combustion emissions. These 10 

are considered to be emitted from different combustion sectors with various initial Fe solubilities, with 

the most important ones to be those from biomass burning, coal and oil combustion (Table S2). The 

CAM4 simulation includes the combustion Fe sources derived from industrial, biofuels (e.g., residential 

heating) and fires (sum of wildfires and anthropogenic biomass burning), as described in Luo et al. 

(2008), with an assumption that 4% is soluble at emission, and atmospheric processing occurs as for dust. 15 

Shipping Fe emissions are not currently represented within CAM4. IMPACT takes into account Fe 

emissions from biomass burning, coal combustion and oil combustion (Ito et al., 2018), while an initial 

Fe solubility (58±22%) which is only applied to the primary Fe emission of ship oil combustion aerosols 

(Ito, 2015) assuming other Fe combustion emission sectors as insoluble. TM4-ECPL takes into account 

Fe emissions from biomass burning, coal combustion and oil combustion, based on the recommendations 20 

of Luo et al. (2008) for biomass burning and coal combustion and by Ito (2013) for oil combustion, 

assuming fixed Fe-solubilities of 12% for biomass-burning Fe emissions, 8% for coal combustion and 

81% for oil combustion from shipping. Note that none of the current models considered here take into 

account volcanic emissions, although it may be an important source of LFe to some regions of the ocean 

(e.g., Duggen et al., 2010). 25 

2.1.2 Iron solubilisation parameterizations 

The conversion of insoluble-to-soluble Fe in the models can be parameterized as an aqueous-phase kinetic 

process that depends on (1) the proton activity (also termed as acid-promoted solubilisation), (2) the oxalate 

concentration (also termed as oxalate-promoted Fe solubilisation) and (3) the actinic flux (also termed as photo-

reductive solubilisation). The simplification of the applied parameterisations differs among models; from the 30 
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models used in this study, only IMPACT takes into account all three solubilisation processes, but only in aerosol 

water for both dust and combustion aerosols. TM4-ECPL and GEOS-Chem apply an acid- and oxalate- 

solubilisation scheme only for dust aerosols, both in aerosol and cloud water. Oxalate is, however, used in models 

as a proxy of all organic ligands for the ligand-promoted dissolution since 1) it is the most abundant in the 

atmosphere (e.g., Kawamura and Ikushima, 1993; Kawamura and Sakaguchi, 1999) originating mainly from 5 

secondary sources and only a weak contribution from combustion primary sources (e.g., Myriokefalitakis et al., 

2011) and 2) it is the most effective ligand in promoting Fe solubilisation (e.g., Paris et al., 2011). We note, 

however, that more work is required to elucidate the role of other ligands that may promote Fe dissolution in 

future studies. 

CAM4 accounts for the atmospheric processing of both dust and combustion aerosols, based on the acid- 10 

(Meskhidze et al., 2005) and oxalate- (Paris et al., 2011) driven solubilisation processes in a simplified manner 

appropriate for use in an earth system model (Scanza et al., 2018). The method is described in more detail in 

Scanza et al. (2018), but generally the acid promoted iron dissolution depends explicitly on modeled temperature 

and an assumed acidity, which is either high (i.e., pH=2) or low (i.e., pH=7.5) based on the relative model 

concentrations of sulfate and calcite, while the oxalate concentrations in cloud water required for ligand 15 

promoted iron dissolution are not explicitly calculated, but instead assumed to be proportional to the modeled 

organic carbon aerosol concentration. CAM4 also assumes Fe from dust to be in either a slow, medium or readily 

soluble state based on Shi et al. (2011) and Ito and Xu (2014), while Fe from combustion is assumed to be in a 

medium soluble state. 

The other three models (i.e., GEOS-Chem, IMPACT and TM4-ECPL) calculate the proton-promoted 20 

solubilisation rate of minerals by applying an empirical parameterization of Meskhidze et al. (2005) and Johnson 

and Meskhidze (2013), that takes into account the degree of saturation of the solution, the type of each mineral 

and the ambient temperature. The thermodynamic equilibrium modules are used to estimate the water content in 

the aqueous phase of hygroscopic particles (Jacobson, 1999; Fountoukis and Nenes, 2007). In addition to the 

mineral types, IMPACT and TM4-ECPL consider three dust-Fe pools associated with mineral source materials as 25 

measured by Ito and Shi (2016) and Shi et al. (2011), respectively, and the solubilisation rates calculated by Ito 

and Shi (2016) and Ito and Xu (2014), respectively. Despite the different mineral databases used by the two 

models (see Sect. 2.1), the three Fe-pools are roughly similarly characterized in the models as ferrihydrite, nano-

sized Fe oxides and heterogeneous inclusion of nano-Fe grains in aluminosilicates, respectively. For GEOS-

Chem, the Fe containing mineral (i.e., hematite, goethite, and illite) solubilisation rate is based on the 30 

temperature-dependent equations of Meskhidze et al. (2005) and Johnson and Meskhidze (2013). 



13 
 

For the oxalate-promoted solubilisation, CAM4, GEOS-Chem and TM4-ECPL apply a linear relationship 

between solubilisation rates and oxalate concentration in the solution, based on the laboratory data of Paris et al. 

(2011), who measured the initial soluble Fe release rates of Fe-oxides and aluminosilicates (i.e., at pH = 4.7, and 

for one hour). TM4-ECPL applied this oxalate-solubilisation relationship for three Fe-containing minerals 

(hematite, goethite, and illite), using illite as a proxy for all Fe-containing aluminosilicate minerals (Johnson and 5 

Meskhidze, 2013). In TM4-ECPL the formation of oxalate in cloud and aerosol water is explicitly simulated in 

the model (Myriokefalitakis et al., 2011), in contrast to GEOS-Chem in which the sulfate concentrations are used 

as a proxy for the oxalate production (Yu et al., 2005). However, in TM4-ECPL the oxalate Fe-solubilisation is 

applied only in cloud droplets, where in GEOS-Chem it is applied both in cloud and aerosol water. IMPACT also 

takes into account an explicit scheme of oxalate formation both in cloud and aerosol water (Lin et al., 2014), 10 

applying however the oxalate-promoted Fe-solubilisation only in aerosol water (Ito, 2015). The constants used to 

calculate these Fe solubilisation rates in IMPACT are fitted to experimental data for coal fly ash (Chen and 

Grassian, 2013), while the rate of the photo-induced solubilisation is based on the Fe-dissolution rates of coal fly 

ash (Chen and Grassian, 2013), scaled on the photolysis rate of H2O2 estimated in the model. 

2.1.3 Deposition parameterizations 15 

The dry and wet deposition are considered as loss processes for all Fe-containing aerosols in the models. For this 

work, the dry deposition fluxes include both the gravitational settling and the turbulent deposition and the wet 

deposition takes into account both the in-cloud nucleation scavenging and the below- cloud scavenging in all 

models. For CAM4, the dry removal of dust aerosols involves parameterizations for gravitational settling and 

turbulent mix out, and wet removal includes in-cloud and below-cloud scavenging (Rasch et al., 2000; Zender et 20 

al., 2003). For GEOS-Chem, the removal of mineral dust occurs through dry deposition processes such as 

gravitational settling (Seinfeld and Pandis, 2006) and turbulent dry transfer of particles to the surface (Zhang et 

al., 2001). Dust removal by wet deposition processes includes both convective updraft scavenging and 

rainout/washout from large-scale precipitation (Liu et al., 2001). 

For IMPACT, the dry deposition of aerosol particles uses a resistance-in-series parameterization (Zhang et al., 25 

2001). Gravitational settling is also taken into account (Rotman et al., 2004; Seinfeld and Pandis, 2006). Aerosols 

and soluble gases can be incorporated into cloud drops and ice crystals within cloud (rainout), collected by falling 

rain and snow (washout), and be entrained into wet convective updrafts (Ito et al., 2007; Ito and Kok, 2017; Liu 

et al., 2001; Rotman et al., 2004). The aging of dust and combustion aerosols from hydrophobic to hydrophilic 

enhances their dry and wet deposition. Hygroscopic growth of mineral dust and combustion aerosols in 30 
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gravitational settling uses the (Gerber, 1991) scheme, including the particle growth due to sulfate, ammonium 

and nitrate associated with the particles (Liu et al., 2005; Xu and Penner, 2012). Scavenging efficiencies for 

mineral dust and combustion aerosols in wet deposition are calculated based on the amount of sulfate, ammonium 

and nitrate coated on the particles (Liu et al., 2005; Xu and Penner, 2012). For TM4-ECPL, the dry deposition 

parameterizations are based on an online scheme that takes into account series of surface and atmospheric 5 

resistances (Ganzeveld and Lelieveld, 1995). The aerosol hygroscopic growth in the model is treated as a 

function of ambient relative humidity and the composition of soluble aerosol components (Gerber, 1985) 

changing thus the particle size and impact on aerosols gravitational settling. For the wet deposition in TM4-

ECPL, both the liquid and ice precipitation are taken into account, with a distinction between scavenging due to 

large-scale and convective precipitation. In-cloud scavenging in stratiform precipitation uses an altitude 10 

dependent precipitation formation rate and the scavenging efficiency is calculated taking into account the 

aerosols lognormal distributions. Note that in TM4-ECPL, all soluble aerosols are assumed to be completely 

scavenged in the convective updrafts producing rainfall rates of >1 mm/h, and exponentially scaled down for 

lower rainfall rates.  

2.2 The ensemble model  15 

Ensemble model calculations of this study aim overall to provide robust results of the simulated atmospheric Fe 

concentrations and deposition fluxes. For these calculations, all fields for TFe and LFe in mineral dust and 

combustion aerosols (as well as for dust aerosols) are first converted to a common 1.0o × 1.0o horizontal 

resolution grid, by using the freely available Climate Data Operators (CDO v.1.9.1) software. The CDO is a 

collection of operators for standard processing of climate and forecast model data developed by the Max Planck 20 

Institute for Meteorology and for this work were applied with a bilinear interpolation to all fields, assuring an 

exact mass conservation. Further details about CDO can be found online in 

https://code.mpimet.mpg.de/projects/cdo/embedded/cdo.pdf. 

The ensemble atmospheric concentrations and deposition fluxes of mineral dust Fe have been calculated from 4 

models, while for the Fe originating from combustion sources, 3 models were used (see Table 2). For Fe-25 

contained combustion aerosols, we simply use the mean of the respective fields of each model to derive the 

ensemble model, since no considerable differences appeared among the participating models. However, since 

model simulations of the global dust cycle are well known to have substantial biases in the size distribution 

relative to in situ measurements and remote sensing observations (e.g., Huneeus et al., 2011; Kok et al., 2017; 

Ridley et al., 2016), we here attempt to reduce these biases by correcting the loading and deposition flux in each 30 
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model’s particle bin, using state-of-the-art constraints on size-resolved dust loading, as recently derived in Kok et 

al. (2017).  

Specifically, a correction factor ci,j is applied to each particle bin j of model i, which equals: 

!",$ =
∫ 	()*+,(- ./
-0,12
-0,13

40,1
                                                                                                                                                (1) 

where, .5*+,./  is the mass size distribution of the global atmospheric dust (see Figs. 2b and S1b in Kok et al. 5 

(2017)). This mass size distribution was obtained from measurements, modeling, and remote sensing constraints 

on the size distribution of emitted dust, the atmospheric lifetime and extinction efficiency of atmospheric dust, 

and the global dust aerosol optical depth (Kok et al., 2017; Ridley et al., 2016). Furthermore, 6",$7 and 6",$8 are 

respectively the lower and upper size limits of particle bin j in model i, and 9",$ is the (not bias corrected) 

simulated global dust loading in that particle bin. Since emission and deposition fluxes scale with atmospheric 10 

dust loading, we correct these fluxes as well as the atmospheric load in each particle bin of each of the 

contributing models by multiplying the flux by the correction factor of Eq. (1). Note, however, that the bias 

correction calculated in this work is expected to correct only the part of the regional bias that stems from a bias in 

the global deposition fluxes. Biases in the regional scales are affected by biases on the global scale, but also by 

other biases, for instance caused by uncertainties in the deposition scheme. The global mean bias correction 15 

factors (i.e., median, lower 95% confidence interval and upper 95% confidence interval) for each model and each 

aerosol size (bin or mode) are presented in Table 3. 

For TM4-ECPL, which uses modal size distributions for dust (see Table 2), we also redistributed the fine and 

coarse aerosols into 4 bins, in order to apply the same methodology. Specifically, the new aerosol modes are re-

calculated using the error function and based on the characteristic (radius and sigma lognormal) of each mode 20 

(see Table 2) to derive binned data for diameters bin 1: 0-1 µm, bin 2: 1-4 µm, bin 3: 4-10 µm and bin 4: 10-20 

µm. This bias correction indicates biases mainly in the small modes, with the median correction factors for bins 1 

- 4 being 0.134, 0.692, 1.257, and 1.81, respectively. Note also that for the ensemble model calculations of this 

study, the TFe and LFe depositions fluxes have been calculated as the sum of Fe from the corrected mineral dust 

and the mean combustion aerosols.  25 

2.3 Iron atmospheric observations 

To evaluate the models’ ability to reproduce the observed distributions of surface TFe and LFe aerosol 

concentrations over oceans, the model results have been compared with available observations from Achterberg 
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et al. (2018), Baker et al. (2006a, 2006b, 2007, 2013), Baker and Jickells (2017), Bowie et al. (2009), Buck et al. 

(2006, 2010, 2013, pers. com. 2018), Chance et al. (2015), Gao et al. (2013), Guieu et al. (2005, pers. com. 

2018), Jickells et al. (2016), Kumar et al. (2010), Longo et al. (2016), Powell et al. (2015), Shelley et al. (2015), 

Shelley et al. (2018), Sholkovitz et al. (2012), Srinivas et al. (2012), Srinivas and Sarin (2013), Wagener (2008) 

and Wagener et al. (2008). A total of 818 observations of TFe and 795 daily observations of LFe over the ocean 5 

performed from September 1999 to March 2015 have been used for this purpose. The global distribution of the 

observed aerosol Fe-concentrations used for this study is presented in Fig. S3 and the respective coordinates in 

Table S3. A bulk dust deposition flux data set compiled by Albani et al. (2014) is also used for comparison of Fe 

deposition flux after multiplying by the averaged Fe content in upper crustal minerals of 3.5%. 

TFe were obtained from sampling aerosols in air mainly on board oceanographic cruises, and for some studies at 10 

sampling stations located on shore or on islands with no local anthropogenic influence. A variety of samplers 

(small or high volume) have been used to collect particulate Fe, using different types of filters. TFe was either 

measured on whole filter or part of filter by X-ray fluorescence or after acid digestion. LFe was obtained 

following several protocols, e.g. contact time, volume of media, and type of media (ultra-pure water or filtered 

surface seawater for different pH conditions and various amounts of Fe ligands). As highlighted in Baker and 15 

Croot (2010), these diverse experimental approaches used for determination of aerosol Fe solubility cause part of 

the variability observed. Although there is still no consensus in the experimental way to determine LFe, this data 

set provides valuable and robust data in all oceanic region to be compared to model outputs. Here the results from 

the different protocols are all combined together. Overall, the results are analyzed with regard to the role of the 

different model complexities, providing insight to directions for future model improvements.  20 

3 Results 

3.1 Global budgets 

All participating models have submitted results to enable the analysis of the TFe and LFe global budgets and 

atmospheric concentrations, both for dust and combustion aerosols, for emissions, dry and wet deposition fluxes, 

atmospheric processing and atmospheric loads (see Sect. 2). Concerning the temporal resolution, daily mean 25 

spatially-resolved budget terms have been submitted for IMPACT, while for GEOS-Chem, CAM4 and TM4-

ECPL monthly mean fields for all budget terms are provided. For atmospheric concentrations however, all 

models provided daily mean fields. Concerning the aerosol size distribution (see Table 2), IMPACT and CAM4 

submitted budget fields for four size bins, TM4-ECPL for two size modes, while GEOS-Chem provided results 
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as bulk aerosols. CAM4 and TM4-ECPL submitted separate fields for proton and oxalate Fe solubilisation, while 

IMPACT and GEOS-Chem provided total fields. IMPACT and CAM4 have also submitted atmospheric 

processing terms for dust and combustion aerosols, while TM4-ECPL only for dust aerosols since no 

solubilisation processes are calculated for Fe combustion aerosol in the model. GEOS-Chem does not take into 

account Fe from combustion aerosols. 5 

3.1.1 Iron sources and deposition 

The computed TFe and LFe emissions together with the deposition fluxes for all models are presented in Table 4. 

Note however that for LFe, both from mineral dust and combustion sources, the total sources (sum of primary 

and secondary sources) are here discussed rather than the primary emissions alone. The models use significantly 

different assumptions to describe the total LFe source to the atmosphere and therefore primary (emissions) and 10 

secondary (atmospheric processing) sources cannot be accurately separated from rapid formation assumed in 

coarse-scale models. The computed annual TFe emissions and LFe sources (emissions and atmospheric 

processing) from 1) mineral dust and 2) combustion sources for each model are presented in Table 4 and the 

corresponding global emission/sources distributions are shown in Fig. S4 and Fig. S5, respectively.  

The importance of wet versus dry deposition as removal processes for atmospheric aerosols depends on the 15 

aerosol solubility and size distribution (and the presence/amount of precipitation). Focusing however on the 

deposition to oceans for this study, the apportionment of the total atmospheric deposition within different oceanic 

regions is presented in Table 5 (for this deposition analysis we use here the ocean classification as provided by 

HTAP phase-2: available online via the HTAP Wiki). Moreover, the computed annual deposition flux 

distributions of TFe and LFe from mineral dust and combustion sources together for each model are further 20 

presented in Fig. S6. 

Overall, the Fe sources and deposition in the models are here classified as:  

1. Total Fe: The modelled annual mean emission fluxes of TFe from mineral dust (TFeD) are calculated to 

be in the range of 38 - 134 Tg-Fe yr-1. CAM4 and GEOS-Chem calculate similar annual TFeD emission 

fluxes (around 57 Tg-Fe yr-1), TM4-ECPL emissions are about 40% lower (~38 Tg-Fe yr-1) and IMPACT 25 

is about 2.4 times higher (around 134 Tg-Fe yr-1). Note that IMPACT takes into account the largest flux 

among the participating models (Table S1) mainly due to the largest upper size. However, dust fluxes in 

the same size range for the different models are comparable after the bias correction based on the 

analysis by Kok et al. (2017) (see Sect. 2.2). TFe emissions from combustion sources (TFeC) range 

between 1.8 and 2.7 Tg-Fe yr-1, with CAM4 and TM4-ECPL calculating annual mean fluxes of around 30 
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1.8 Tg-Fe yr-1 globally, and IMPACT having a 35% higher estimate. On a global scale, dry deposition is 

the most important removal mechanism, across all models for the TFeD; IMPACT has the highest dry 

deposition flux of all models (~68 Tg-Fe yr−1), followed by GEOS-Chem (~40 Tg-Fe yr−1), CAM4 (~33 

Tg-Fe yr−1) and TM4-ECPL (~30 Tg-Fe yr−1). Submicron aerosols are removed mostly by wet removal 

while for supermicron aerosols the gravitational settling is important (e.g., Seinfeld and Pandis, 2006). 5 

Consequently, the wet removal of TFeD across almost all models (except for IMPACT) is smaller than 

dry deposition flux - mainly due to the high contribution of coarse aerosol sedimentation to the dry 

removal processes (Table 4). The simulated wet deposition flux of TFeD ranges over about one order of 

magnitude (from about 8 to 66 Tg-Fe yr−1); IMPACT calculates the highest TFeD wet deposition flux of 

all models of about 66 Tg-Fe yr−1 (~49% of total removal), followed by CAM4 (24 Tg-Fe yr−1; 42%), 10 

GEOS-Chem (16 Tg-Fe yr−1; ~29%) and TM4-ECPL of roughly 8 Tg-Fe yr−1 (~20%). In contrast to 

TFeD, due to the similar assumptions of the size distribution and scavenging efficiency in the models, the 

wet deposition is the larger removal pathway for TFe from combustion processes (TFeC), (except for 

TM4-ECPL, probably due to the different solubility factors in primary emissions and the different 

atmospheric processing parameterizations), responsible overall for about 60% of the total TFeC removal 15 

across models and amounting to about 1 Tg-Fe yr−1.  

2. Labile Fe: The global annual mean LFe sources from mineral dust (LFeD) range between 0.3 and 1.0 

Tg-Fe yr-1. IMPACT and GEOS-Chem calculate similar LFeD sources, close to 0.7-0.8 Tg-Fe yr-1, where 

CAM4 calculates the highest annual source and TM4-ECPL the lowest. However, these differences are 

mainly attributed to the secondary processes leading to LFeD production rather than the primary 20 

emissions. For example, despite the large difference between IMPACT and TM4-ECPL in TFeD sources, 

the models consider similar emission amounts of LFeD emissions of about 0.12-0.13 Tg-Fe yr-1. In 

contrast, the secondary LFeD produced due to atmospheric processing is calculated to vary by a factor of 

3-4 between 0.57 Tg-Fe yr-1 (IMPACT) and 0.17 Tg-Fe yr-1 (TM4-ECPL), respectively. CAM4 takes 

into account LFeD emissions of around 0.18 Tg-Fe yr-1, but the highest annual LFeD atmospheric 25 

processing (0.8 Tg-Fe yr-1), and GEOS-Chem about 0.25 Tg-Fe yr-1 and 0.54 Tg-Fe yr-1 for LFeD 

emissions and atmospheric processing, respectively. The LFe source from combustion aerosols (LFeC), 

with a range of about 0.1-0.2 Tg-Fe yr-1, shows smaller differences than that from mineral dust (0.3-1.0 

Tg-Fe yr-1). Although the differences are not large, these clearly depict the different assumptions 

followed by these two models; IMPACT does not account for primary LFe sources from combustion 30 

(expect those from oil ship combustion of about 0.009 Tg-Fe yr-1), thus almost all the LFeC sources over 
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land are attributed to secondary production via atmospheric processing (0.091 Tg-Fe yr-1). In contrast, 

TM4-ECPL does not take into account atmospheric processing of Fe from combustion sources, 

attributing all the LFeC sources to direct emissions (~0.2 Tg-Fe yr-1). Finally, CAM4 that includes both 

direct emissions and atmospheric processing of LFeC, calculates a total source of about 0.13 Tg-Fe yr-1, 

corresponding to roughly 0.075 Tg-Fe yr-1 and 0.053 Tg-Fe yr-1, for primary LFeC emissions and 5 

atmospheric processing respectively.  

3.1.2 Iron seasonal variability 

Figure 1 presents the global LFe sources (positive) and oceanic deposition fluxes (negative) for all participating 

models and their ensemble mean (see Sect. 3.2), for the four seasons, i.e., December, January and February 

(DJF), March, April and May (MAM), June, July and August (JJA) and September, October and November 10 

(SON). LFe sources are mainly driven by mineral dust aerosols, although a significant fraction (6 to 62%) is due 

to LFe combustion aerosols, especially over the high-latitudes of the Northern Hemisphere (Ito et al. 2018; 

companion manuscript to be submitted). For LFe sources, despite the different assumptions applied in the models 

(i.e., atmospheric processing and direct LFe emissions), maximum sources are calculated for MAM and JJA due 

to intense dust emissions and biomass burning, respectively. The models with the highest LFe sources, also 15 

exhibit the highest deposition fluxes to the ocean. However, significant differences in the magnitude of the 

deposition fluxes are calculated between models (Fig. 1). A seasonal maximum in the deposition fluxes is 

calculated by CAM4 and GEOS-Chem during MAM, attributed to Saharan mineral dust aerosols, while IMPACT 

and TM4-ECPL present a seasonal maximum during JJA. 

Figure S7 (supplement) further presents the zonal mean seasonal variability of the LFe global sources and 20 

oceanic deposition fluxes. Most of LFe emissions are calculated to occur over the mid-latitudes of the Northern 

Hemisphere (NH) for all seasons, with maximum during MAM and JJA and minima during SON. In DJF, and to 

a lesser extent in JJA, two zonal maxima are shown near the equator and around 30N. The equatorial maximum 

in DJF is, however, shifted to the Northern Hemisphere in JJA following the Intertropical Convergence Zone 

(ITCZ) migration and the subsequent geographic change in the location of biomass burning emissions. Again, all 25 

models appear to have similar LFe seasonality, with the highest LFe oceanic deposition fluxes across all models 

calculated by CAM4 (Table 5).  
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3.2 Ensemble model calculations 

3.2.1 Iron surface concentrations 

The annual mean surface TFe aerosol concentrations for the ensemble model exceed 100 µg-Fe m-3 over the 

major dust source regions such as the Sahara Desert, where mineral dust particles dominate the atmospheric Fe 

burden (Fig. 2a). Relatively high TFe concentrations (e.g., up to 10 µg-Fe m-3 over the tropical Atlantic Ocean) 5 

are calculated for ocean regions at the outflow from these source regions. High TFe concentrations of around 6 

µg-Fe m-3 are also calculated over heavily polluted areas like China, while secondary maxima up to 2-5 µg-Fe 

m−3 are calculated over the central Africa, Asia and Indonesia, where Fe-containing aerosols are associated with 

biomass burning emissions (Fig. 2b). 

Model Fe solubility calculations (Fig. 2c) clearly suggest the impact of atmospheric processing on the derived 10 

LFe ensemble surface concentrations, with high Fe solubilities calculated far from source regions over the remote 

tropical oceans, corresponding to low TFe concentrations. Ensemble annual mean LFe concentrations around 0.5 

µg-Fe m−3 occur downwind of the Sahara and around 0.1 µg-Fe m−3 downwind of the Arabian and Gobi Deserts. 

At the outflow of these regions, the Fe solubility over the global ocean is calculated to be about 1-1.5%, with the 

highest Fe solubilities (4-5%) over the tropical Atlantic Ocean (Fig. 2c). Additionally, LFe concentrations over 15 

polluted regions may range up to 0.05 µg-Fe m−3, indicating a significant anthropogenic contribution via direct 

combustion emissions and atmospheric processing (Fig. 2b). Over central South America, Asia and Indonesia, 

LFe concentrations of about 0.03-0.05 µg-Fe m−3 (corresponding to high Fe solubilities up to 5%) are found due 

to both direct biomass-burning emissions and due to ligand-promoted dissolution. The latter process is enhanced 

in these areas by the respective enhanced oxalate production upon the oxidation of emitted biogenic VOCs 20 

precursors, such as isoprene, under cloudy conditions (Lin et al., 2014; Myriokefalitakis et al., 2011). 

3.2.2 Iron deposition fluxes 

Model calculations indicate that about 71.5 (± 43) Tg-Fe yr−1 of TFe from mineral dust are deposited to the 

Earth’s surface (Table 4), with ensemble deposition fluxes of around 5000-8000 mg-Fe m−2 yr−1 calculated 

downwind of the main desert source regions (Fig. 3a). However, within the Northern Atlantic Ocean in the 25 

outflow of the Sahara, the model mean indicates deposition fluxes up to 2400 mg-Fe m−2 yr−1, while within the 

Northern Pacific Ocean in the outflow of Gobi Desert and within the Southern Ocean downwind of the Patagonia 

Desert the ensemble model shows annual mean fluxes of ~34 and ~10 mg-Fe m−2 yr−1, respectively (Fig. 3a). The 

TFe annual mean global deposition flux from combustion sources (Table 4) is calculated to be about 2.2 (± 0.5) 
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Tg-Fe yr−1, with two main regions where TFe concentrations exceed 2500 mg-Fe m−2 yr−1, one near biomass 

burning regions (e.g., southern Africa, South America and southeast Asia) with up to ~3000 mg-Fe m−2 yr−1, and 

a second near highly populated regions with Fe released from coal and oil combustion processes (India and 

China) with up to ~3500 mg-Fe m−2 yr−1 (Fig. 3b).  

A global mean LFe deposition flux of 0.7 (± 0.2) Tg-Fe yr−1 is derived from all models (Table 4), with about one 5 

third (�0.24 Tg-Fe yr−1) calculated to be deposited to the global ocean for the ensemble model (Table 5). The 

highest annual mean LFe deposition fluxes (up to 36 mg-Fe m−2 yr−1) are simulated within dust source regions 

(Fig. 3c), owing mainly to the LFe content of the emissions (e.g., see Fig. 2d). The global model-mean LFe 

deposition fluxes from combustion sources are calculated at about 0.2 (± 0.04) Tg-Fe yr−1 (Table 4), with 

maximum global deposition rates of 4-5 mg-Fe m−2 yr−1 (Fig. 3c) simulated in the outflow of tropical biomass 10 

burning regions (i.e., South America, Africa and Indonesia), clearly reflecting the contribution of combustion 

processes. Focusing on the marine environment, annual mean LFe deposition rates of 15 mg-Fe m−2 yr−1 are 

calculated for the tropical Atlantic Ocean and for the Indian Ocean (up to 16 mg-Fe m−2 yr−1) under the influence 

of the Arabian and Indian peninsulas, but up to ~29 mg-Fe m−2 yr−1 for the Mediterranean Sea downwind of the 

Sahara Desert. Deposition rates around 1 mg-Fe m−2 yr−1 are calculated to occur within the Northern Pacific in the 15 

outflow from the Gobi Desert as well as within the Southern Hemisphere downwind of Patagonia to the Southern 

Ocean (up to 0.1 mg-Fe m−2 yr−1) and downwind of the dust source regions of Australia and South America (up 

to ~4 mg-Fe m−2 yr−1). The LFe deposition rates to the Southern Ocean are associated mainly with the 

Patagonian, Southern African and Australian deserts, with a smaller contribution in the subtropical ocean from 

biomass burning sources (Fig. 3d). Note, that the largest fluxes of LFe deposited to the HNLC region of the 20 

Southern Ocean (e.g., south of the Antarctic circumpolar current) are simulated to be originating from a 

Patagonian mineral dust source, with rates reaching 0.1 mg-Fe m−2 yr−1. The ensemble annual mean deposition 

fluxes to various oceanic regions are further presented in Table 5.  

4 Uncertainties  

4.1. Comparison with measurements 25 

The TFe concentrations, Fe solubility, and LFe concentrations from the models are compared with the 

measurements and presented in Fig. 4. We use the monthly mean of model output to compare with the 

measurements. The normalized bias (NB) at a given grid box is calculated as follows: 
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where, 

Cmodel,i  is the modelled aerosol concentration in grid box i  and Cobs,i  is the measured aerosol concentration in the 

same grid box. When discussing the multi-model results we use the mean of all models, while we also analyze 

the mean normalized bias (MNB) of the models against measurements (a perfect comparison would have an 5 

MNB of 0 and correlation, R, of 1). A model’s MNB is derived as the arithmetic mean of all NBi values, thus, 

overestimates are weighted more than equivalent underestimates. 

All models captured a tendency of higher Fe concentrations near and downwind of the major dust source regions. 

The MNB for the Northern Hemisphere (14 for ensemble model) is larger than that for the Southern Hemisphere 

(2.4 for ensemble model). This reflects that overall the models overestimate TFe surface mass concentrations. 10 

However, from Fig. 4 we can see that this overestimate is higher for the highest TFe concentrations near the dust 

source regions and tend to turn to an underestimate for the lowest concentrations observed over remote oceans. 

Overall, bias correction for ensemble model improves agreement of the ensemble model against measurements 

(Fig. S8). We note, however, that matching the atmospheric concentrations may cause a high bias in simulated Fe 

depositions at low values in the Southern Hemisphere (Albani et al., 2014; Huneeus et al., 2011) (Fig. S9). The 15 

computed correlation coefficients of the ensemble model against measurements at the surface are 0.13 for TFe, 

0.05 for Fe solubility, and 0.25 for LFe, respectively, which are much smaller than those between the 

participating models (0.57–0.90 for TFe (GEOS-Chem vs. IMPACT)–(CAM4 vs. TM4-ECPL), 0.05–0.56 for Fe 

solubility (CAM4 vs. TM4-ECPL)–(CAM4 vs. IMPACT), and 0.40–0.75 for LFe (GEOS-Chem vs. IMPACT)–

(CAM4 vs. GEOS-Chem)). This indicates a linear dependence of the model results and that the models have 20 

similar behavior accounting for the same key processes that affect Fe deposition. The small positive correlation 

between models and observations indicates that the models miss –or do not accurately represent- important 

processes that drive the variability in the observations. Indeed, when comparing the computed and observed 

solubilities of Fe, all models overestimate the lowest solubilities (<0.1%) observed close to the source regions (14 

samples in Arabian Sea and 2 samples in tropical Atlantic). This is primarily due to the assumed solubility of the 25 

dust aerosols at emissions, and the subsequent enhancement of Fe solubility estimated from the simulated amount 

of atmospheric processing during transport in the models. It is noted, however, that the lowest solubilities in the 

measurements are outliers in the negative slope of Fe concentrations versus Fe solubility in the Northern 

Hemisphere (Fig. 5). Our calculations show that the models have difficulties to simulate the 4 orders of 
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magnitude variability from 0.02% to 98% in the Fe solubility observed in the atmosphere (Fig. 5a). IMPACT 

simulates almost 3 orders of magnitude variability in Fe solubility. In the other models including the ensemble 

model, Fe solubility is less variable (one to two orders of magnitude only). In particular, low solubilities (high 

concentrations near sources) are overestimated and high solubilities (low concentrations at remote locations) are 

underestimated. This may indicate that the primary LFe in the models is overestimated and that models are 5 

missing solubilisation processes during transport or that those considered in the models are not sufficient 

effective. 

All models underestimate the high end of the observed values (>10%) in the Southern Ocean, which are mainly 

associated with transported and aged aerosols and this is potentially a significant shortcoming because this is an 

oceanic HNLC region where atmospheric Fe supply has a potentially important impact on ocean productivity in 10 

past and future climate. In GEOS-Chem, IMPACT, and TM4-ECPL, Fe dissolution over the Southern Ocean is 

suppressed mainly due to the lack of anthropogenic emissions and the subsequent acidification of the aerosols. 

CAM4 is relatively insensitive to the acidity, since most labile Fe is formed by in-cloud processes. Thus, the 

model results from CAM4 can in part test whether in-cloud processing can realistically describe the observed 

pattern of solubility over the Southern Ocean. CAM4 shows higher Fe solubility than field data for most samples 15 

in the Southern Ocean (69% in CAM4, 7% in GEOS-Chem, 55% in IMPACT and 5% in TM4 TM4-ECPL) (Figs. 

4 and 5). Thus, the wide range in observed Fe solubility cannot be explained by excluding the effect of modelled 

aerosol acidity over the Southern Ocean. It is worth mentioning that IMPACT, which has the highest complexity 

in simulating labile Fe, reproduces the widest range of observed Fe solubility. It should be noted, however, that 

the comparison of monthly mean model results with the shorter-term (e.g., daily) observations during different 20 

sampling periods introduces inaccuracies due to an episodic nature of high Fe solubility. A more detailed 

comparison of Fe solubility between models and observations is presented in a separate companion paper to this 

work (Ito et al. 2018; in preparation).  

4.2. Model-to-model comparison 

Model budget analysis and model evaluation indicate that even though the models are able to reproduce surface 25 

Fe measurements to some extent, large differences existed among modes in processes such as emissions, 

transport and deposition. A large diversity is here documented between models in terms of LFe primary sources 

(i.e., emissions) and secondary processes (i.e., atmospheric processing) which introduce uncertainties in the 

estimated oceanic deposition. There are many intrinsic reasons, however, for this diversity in the Fe simulations 

among models; besides the emitted Fe mass in the atmosphere (especially from dust aerosols), the aerosol size 30 
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distribution, the soil mineralogy, the strength of combustion aerosol sources, as well as the parameterizations 

used to calculate the pH of the aerosol water and the oxalate production are large sources of uncertainty in model 

simulations.  

The aerosol size and solubility are important factors driving the atmospheric cycle of Fe, since they both control 

the removal processes from the atmosphere via the dry deposition (including gravitational settling) and the wet 5 

scavenging (e.g., Albani et al., 2014). It is well documented that the lifetime of Fe-containing aerosols ranges 

between less than one day for the coarse mode (with diameters larger than 1 µm)	particles to weeks for the fine 

mode (with diameters less than 1 µm) (e.g., Ginoux et al., 2012; Luo et al., 2008; Mahowald et al., 2009; Tegen 

and Fung, 1994), with the overall lifetime of dust aerosols to usually range between 1.6 and 7.1 days in the 

models (Huneeus et al., 2011). Fine particles have longer lifetimes and thus experience more atmospheric 10 

processing. The conversion of insoluble minerals content to soluble forms as a result of aging during atmospheric 

transport increases aerosols’ solubility. Lifetime calculations can thus provide a valuable tool to determine the Fe 

persistence in the atmosphere, overall integrating sources, transport and deposition differences among models, 

especially over remote areas such as the open ocean. 

4.2.1 Iron atmospheric lifetime (turnover time) 15 

Figure 6 presents the spatial distribution of TFe lifetime over the ocean (i.e., atmospheric concentrations divided 

by total sinks), as calculated for the ensemble model. For TFe originating from dust sources, the calculated global 

mean lifetime over the oceans is ~6 (± 4) days (Fig. 6a). The lifetime of combustion TFe over oceans is longer, at 

around 14 (± 9) days (Fig. 6c), due to the overall smaller size of the combustion Fe aerosols compared to that of 

mineral dust (affecting their sedimentation processes, their horizontal and vertical transport in the atmosphere), 20 

but also because of the low precipitation over part of the regions in which mineral dust and combustion aerosols 

are transported. The ensemble model indicates long TFe lifetimes over remote oceanic regions, such as in the 

outflow of South America, in the outflow of South Africa, as well as in the outflow of Australia (Fig. 6c). Over 

these so-called ocean deserts, where precipitation is low and thus the wet deposition rates are low, the ensemble 

model results overall in longer lifetimes for Fe containing aerosols, although the LFe atmospheric concentrations 25 

can be extremely low. 

To further analyze the differences among the models, the standard deviation (STD) of the TFe lifetime is 

calculated for each grid for dust aerosols (Fig. 6b), combustion aerosols (Fig. 6d), and the combined TFe lifetime 

(Fig. 6f). Over remote oceanic regions, the high STD can be related to the different assumptions used by the 

models to parameterize 1) the long-range transport of Fe-containing aerosols of different parameterizations of the 30 
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sizes, 2) the wet and dry deposition parameterizations, and 3) the soluble fraction of Fe-containing combustion 

aerosols (e.g., the differences in ship oil combustion and biomass burning emissions). From the models that 

include Fe from combustion processes, IMPACT assumes that only ship oil combustion emissions have an initial 

fraction of soluble Fe, and thus all the LFe from continental sources is produced due to atmospheric processing. 

CAM4 does not take into account ship emissions but includes both primary and secondary sources for LFe from 5 

other combustion sources. TM4-ECPL although includes continental and ship oil combustion emissions both for 

TFe and LFe but, it does not take into account any dissolution processes for combustion aerosols, although 

continental and ship oil combustion emissions both for TFe and LFe are considered. Differences in the 

precipitation patterns or parameterization for wet or dry deposition in the models can also partially explain the 

models’ diversity. In addition, less constrained parameters like dissolution, long-range transport and Fe removal 10 

(which affect Fe solubility) can further increase the model diversity, and thus the STD, over these remote areas. 

5 Conclusions and future directions 

We here present the first model intercomparison study of the atmospheric Fe-cycle by assessing aerosol 

simulations of total and labile Fe with four state-of-the-art global aerosol models (CAM4, IMPACT, GEOS-

Chem and TM4-ECPL). The TFe emissions from dust sources in the models range from ~38 to ~134 Tg-Fe yr−1, 15 

with a mean value of 71.5 (±43) Tg-Fe yr−1. The models simulate the secondary formation of soluble Fe in the 

atmosphere, as a result of mineral Fe atmospheric processing by acids, organic ligands and photochemistry, but 

the absolute amount of the simulated LFe remains highly uncertain. The simulated LFe deposition fluxes from 

mineral dust span from 0.3 to 1.0 Tg-Fe yr−1, with a mean value of around 0.7 (±0.3) Tg-Fe yr−1. All models 

capture the main features of the distribution of TFe and LFe: i.e., large deposition rates to the Sahara and Gobi 20 

Desert and regions downwind of strong dust sources. Models also show significant LFe deposition to the oceans 

downwind from the Middle East and the continents of South America, Africa and Australia in the Southern 

Hemisphere; the Middle East has large dust sources and while South America, Africa and Australia experience 

strong biomass burning emissions.  

The models are able to simulate the main features of TFe and LFe atmospheric concentrations and deposition 25 

fluxes. On average, the ensemble model computes roughly 50% higher lifetime with respect to the deposition 

flux for combustion aerosol (~14 days) than for dust aerosol, reflecting differences in size distribution and in the 

location of emitted aerosols. Ensemble model calculations present overestimate of the observed TFe surface mass 

concentrations near the dust source regions and underestimate the Fe concentrations over the Southern Ocean 
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compared with cruise measurements; similar to what was pointed out in Albani et al. (2014) and seen in the dust 

model intercomparison study of Huneeus et al. (2011). Note that the latter is important because of the key role of 

Fe in the biogeochemistry of these ocean waters. For the ensemble model mean, the MNB for the Northern 

Hemisphere (about 14) is larger than for the Southern Hemisphere (about 2.4). Note, however, that evaluation of 

monthly mean model results by comparison with the shorter-term (e.g., daily) observations during different 5 

sampling periods introduces uncertainties, due to short of the sampling frequencies; a comparison of long-term 

measurements with a multi-year modelling will allow assessment of the model performance to capture labile Fe 

concentrations under specific events. 

The model intercomparison and model–observation comparison revealed the Fe size distribution and the relative 

contribution of the dust and combustion sources, as two critical issues for LFe simulations that now require 10 

further study. The diversity of how the models represent Fe emissions as well as of deposition fluxes among the 

models can be thus large, especially over source regions. The model diversity over remote oceans reflects 

uncertainty in Fe content parameterizations of dust emissions (e.g., soil mineralogy and the initial Fe soluble 

content in primary sources) and combustion aerosols, and/or in the parameterizations of the size distribution of 

the transported aerosol Fe, and thus the representation of deposition fluxes - which overall control the 15 

atmospheric lifetime of Fe. On the other hand, there are many other intrinsic reasons for this diversity especially 

for the LFe aerosol fraction, since it involves complex atmospheric chemical processes driven by atmospheric 

acidity. For example, detailed chemical mechanisms need to be invoked to simulate a multi-phase, multi-

component solution system, since such a system may not be solved accurately using a thermodynamic 

equilibrium approach for the entire grid box due to sub-grid processes, e.g., when the dust plume is not well 20 

mixed with surrounding pollutants. Consequently, a reasonable aerosol pH simulation further depends on the 

representation of soluble acidic and basic compounds, as well as the water content of hygroscopic particles. 

In this respect, new field observations are needed to improve understanding of Fe solubilisation process, and how 

this process alters in the presence of anthropogenic pollution. Modelling studies together with their evaluation 

based on a greater number of atmospheric observations, especially over the remote ocean, are deemed necessary 25 

in order to reduce the uncertainty associated to the model performance in simulating the atmospheric Fe 

deposition. For example, the participating models here predict that wet deposition processes are important for the 

LFe atmospheric cycle but, it is rather hard to test that well due to the lack of respective field data. Moreover, 

although the models do well in higher dust and pollution regions, from an oceanographer’s perspective, the 

regions with the lowest Fe supply is of the greatest interest, because that creates the HNLC situation in the water 30 

column. Model evaluation can be further more difficult, however, due to a lack of standardization in the protocols 
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used to determine the soluble Fe fraction in marine aerosol samples (e.g., Baker and Croot, 2010). Protocols that 

involve different solutes, aerosol – solution contact times and filter pore sizes, among other differences, are in use 

by different investigators and these presumably introduce some, as yet unquantified, uncertainties into the 

available databases of aerosol soluble Fe concentrations and Fe solubility. Model developments related to 

atmospheric Fe cycle must be performed in parallel with an extensive model evaluation in order to better 5 

understand the underlying mechanisms and to provide, overall, realistic labile Fe deposition fluxes for the next-

generation of ocean biogeochemistry modelling studies. Although the calculation of the Fe concentrations in the 

ocean is outside the scope of this paper, we expect that the Fe deposition fluxes here provided will be used in 

oceanic models. 

 10 
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Tables 

Table 1. General description of the participating models used for the atmospheric Fe simulations. For 
multiple year simulations, the average was used. 

Model 
Simulated 

year(s) 

Horizontal 

resolution 

(lon x lat) 

Vertical 

Resolution 

(sigma 

levels) 

Meteorology Reference 

CAM4 2007-2011 1.9° x 2.5° 56 GEOS-5 Scanza et al. (2018) 

GEOS-

Chem 

01/03/2009-

28/02/2010 
2.0° × 2.5° 47 GEOS-5 Johnson and Meskhidze (2013) 

IMPACT 2014 2.0° × 2.5° 59 GEOS-FP Ito et al. (2018) 

TM4-ECPL 2008 3.0° x 2.0° 34 ERA-Interim 
Myriokefalitakis et al. (2015, 

2016) 

 

  5 
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Table 2. Iron representation in the models; TFeD: total Fe in mineral dust; TFeC: total Fe in combustion 
aerosols Fe; LFeD: Labile Fe in mineral dust; LFeC: Labile Fe in combustion aerosols. 

Model 

Aerosol 

Fe 

Species 

Aerosol Size Representation 
Soil 

Mineralogy 

Atmospheric 

Processing 

Aqueous-phase 

median 

CAM4 

TFeD, 

TFeC, 

LFeD, 

LFeC 

4 bins for each Fe-type with 

diameters: 0.1-1.0, 1.0-2.5, 

2.5-5.0, and 5.0-10.0 µm 

Claquin et 

al. (1999) 

Proton- and ligand- 

dissolution of 

dust and 

combustion 

aerosols 

Aerosol water, 

Cloud droplets 

GEOS-

Chem 

TFeD, 

LFeD 

4 bins for TFeD with 

diameters: 0.2–2.0, 2.0–3.6, 

3.6–6.0 and 6.0–12.0 µm 

1 bulk for LFeD 

Nickovic et 

al. (2012) 

Proton- and ligand- 

dissolution of 

dust aerosols 

Aerosol water, 

Cloud droplets 

IMPACT 

TFeD, 

TFeC, 

LFeD, 

LFeC 

4 bins for each Fe-type with 

diameters: <1.26, 1.26–2.5, 

2.5–5, and 5–20 µm 

Journet et 

al. (2014) 

Proton-, ligand- 

and photoinduced 

dissolution of 

dust and 

combustion 

aerosols 

Aerosol water 

TM4-

ECPL 

TFeD, 

TFeC, 

LFeD, 

LFeC 

2 modes for each Fe-type, 

with mass median radii 

(lognormal standard 

deviation) of 0.34 µm (1.59) 

and 1.75 µm (2.00) for dust 

aerosols 

and 0.04 µm (1.8) and 0.5 µm 

(2.00) for combustion 

aerosols 

Nickovic et 

al. (2012) 

Proton- and ligand- 

dissolution of 

dust aerosols 

Aerosol water, 

Cloud droplets 
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Table 3. Global mean bias correction factors (median, lower 95% confidence interval and upper 95% confidence interval) 
derived for each model and each aerosol size (bins or modes) based on state-of-the-art constraints on size-resolved dust 
loading (Kok et al., 2017),  taken into account for the ensemble model calculations. 

Model 
AEROSOL SIZE 

Bin 1 Bin 2 Bin 3 Bin 4 

CAM4 0.91, 0.55, 1.57 0.89, 0.57, 1.32 0.98, 0.62, 1.46 1.60, 0.97, 2.44 

GEOS-Chem 1.37, 0.86, 2.09 0.99, 0.63, 1.44 0.91, 0.56, 1.38 0.24, 0.76, 1.94 

IMPACT 0.89, 0.54, 1.38 0.71, 0.45, 1.01 0.91, 0.564, 1.30 1.01, 0.62, 1.49 

TM4-ECPL* 
Accumulation Mode Coarse Mode 

0.37, 0.22, 0.57 0.73, 0.43, 1.05 

*The median correction factors for the corresponding bins 1-4 are 0.134, 0.692, 1.257 and 1.81, respectively (see text). 

 5 

Table 4. Annual budgets (Tg-Fe yr-1) of total (TFe) and labile (LFe) Fe for emissions (EMI), dry deposition (DRY), wet 
deposition (WET) and sources (SRC; i.e., sum of emissions and atmospheric processing) for dust (TFeD, LFeD) and 
combustion (TFeC, LFeC) Fe-containing aerosols as calculated by the models, as well as the models’ mean (± standard 
deviation; STD). 

Model 
TFeD TFeC LFeD LFeC 

EMI DRY WET EMI DRY WET SRC DRY WET SRC DRY WET 

CAM4 57.1 33.4 23.7 1.9 0.8 1.1 1.0 0.2 0.8 0.1 0.01 0.1 

GEOS-Chem 56.5 40.2 16.3 - - - 0.8 0.6 0.2 -- - - 

IMPACT 134.1 67.9 66.2 2.7 1.0 1.8 0.7 0.3 0.4 0.1 0.01 0.1 

TM4-ECPL 38.1 30.34 7.76 1.8 1.4 0.4 0.3 0.1 0.2 0.2 0.1 0.1 

MEAN 

(± STD) 

71.5 

(± 

42.69) 

43.0 

(± 17.13) 

28.5 

(± 

26.97) 

2.1 

(± 0.51) 

1.1 

(± 0.35) 

1.1 

(± 0.71) 

0.7 

(± 0.28) 

0.3 

(±0.20

) 

0.4 

(±0.28

) 

0.1 

(± 

0.05) 

0.1 

(± 0.06) 

0.1 

(± 0.01) 
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Table 5. Annual deposition fluxes (Tg-Fe yr-1) to different ocean basins of total (TFe) and labile (LFe) Fe, as calculated by 
the contributing models and the derived ENSEMBLE model. 

Ocean Basin CAM4 GEOS-Chem* IMPACT TM4-ECPL ENSEMBLE 
TFe LFe TFe LFe TFe LFe TFe LFe TFe LFe 

North Atlantic 4.914 0.202 6.407 0.109 7.541 0.065 3.903 0.057 5.07 0.096 
South Atlantic 0.681 0.043 2.067 0.017 4.414 0.014 0.455 0.012 1.677 0.02 
North Pacific 1.084 0.057 1.653 0.041 0.972 0.021 3.075 0.054 1.496 0.038 
South Pacific 0.111 0.007 1.114 0.01 2.337 0.014 0.49 0.012 0.867 0.009 

Indian 3.658 0.076 3.818 0.049 6.911 0.09 1.33 0.027 3.644 0.055 
Mediterranean 1.596 0.019 2.664 0.043 4.005 0.021 0.234 0.004 1.95 0.018 

Baltic Sea 0.011 0.001 0.011 <0.001 0.017 <0.001 0.014 <0.001 0.011 <0.001 
Black & Caspian Sea 0.342 0.006 0.398 0.005 0.966 0.009 0.15 0.001 0.439 0.005 

Hudson Bay 0.003 <0.00
1 

0.006 <0.001 0.003 <0.001 0.018 <0.001 0.007 <0.001 

Arctic (>66N) 0.127 0.008 0.142 0.001 0.063 0.001 0.411 0.004 0.162 0.003 
Southern (>60S) 0.010 0.001 0.030 <0.001 0.058 <0.001 0.051 <0.001 0.031 <0.001 

Global Ocean 12.538 0.419 18.31 0.275 27.287 0.235 10.131 0.173 15.354 0.246 
*In GEOS-Chem, only the Fe from mineral dust is considered 10 
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Figures

 

 

Figure 1: Seasonal LFe sources (positive bars) and oceanic deposition fluxes (negative bars/pale colors) in 
Tg-Fe Season-1 for December, January and February (DJF); March, April and May (MAM); June, July 5 
and August (JJA) and September, October and November (SON), as calculated by each model (CAM4: 
magenta; GEOS-Chem: red; IMPACT: green and TM4-ECPL: blue), as well as, the ENSEMBLE model 
(yellow). The hatched areas correspond to the combustion aerosols and the error-bars correspond to the 
standard deviation of the respective season. 

 10 
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a)                                                                                     b) 

  
 c)                                                                                    d) 

  
Figure 2: ENSEMBLE model results for annual mean (a) surface TFe concentration (µg m-3), (b) the 5 
percentage contribution (%) of Fe-containing dust aerosols, (c) the Fe solubility (%) in surface TFe 
concentration and (d) the initial solubility (%) in Fe-containing dust emissions. 
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a)                                                                                     b) 

 
c)                                                                                      d) 

  
Figure 3: ENSEMBLE model results for annual deposition fluxes (mg-Fe m-2 yr-1) for (a) TFe and for (c) 5 
LFe and their respective percentage contribution (%) of combustion aerosols (b, d). 
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Figure 4: Comparison of simulated and observed TFe concentrations (ng m–3), Fe solubility (%), and LFe 
concentrations (ng m–3) in the Northern (blue circles) and Southern (red squares) Hemisphere. a, b, and c 
CAM4; d, e, and f GEOS-Chem; g, h, and i IMPACT; j, k, and l TM4-ECPL; m, n, and o for the 5 
ENSEMBLE model. The mean normalized biases (MNB) between the models and observations are 
presented in parentheses. The solid line represents a 1:1 correspondence and the dashed lines show the 
10:1 and 1:10 relationships, respectively. The bias correction in the mineral dust size distribution is 
applied for the comparison with field data (Kok et al., 2017).  
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Figure 5: Fe solubility versus atmospheric concentrations of aerosol Fe (ng m–3) in the Northern (blue 
circles) and Southern (red squares) Hemisphere for (a) the measurements, (b) CAM4, (c) GEOS-Chem (d) 
IMPACT, (e) TM4-ECPL and (f) the ENSEMBLE model. The bias correction in the mineral dust size 5 
distribution is applied for the comparison with field data (Kok et al., 2017). 
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a)                                                                                        b) 

      
c)                                                                                             d) 

      5 
e)                                                                                             f) 

       
Figure 6: ENSEMBLE model results for TFe lifetime (days) over the ocean originated from a) mineral 
dust sources c) combustion source and e) total (mineral dust + combustion) and the respective standard 
deviation (b,d,f). Lifetimes are atmospheric concentrations divided by total sinks. 10 


