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Dear editor!

I. Serious comments of reviewers and interesting proposal reviewer 2 forced us to re-
consider the proposed MF cycle with the inclusion of CO2 fixation stage This forced
us to reconsider the thermodynamic and kinetic possibilities of the functioning of the
cycle in hydrothermal conditions with a significant presence of methane. Firstly, the
stoichiometry of the cycle reactions began to coincide with the assimilation of CO2 and
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CH4 in many cases of methanotrophic acetogenesis and, secondly, the cycle became
truly autocatalytic, for example, doubling malate in a cycle using CH4 and CO2 as
substrates: C4H605 (malate) + 1,5CH4+2,5C02 = 2C4H605. Despite the comments
of reviewer 3, the methane reaction with fumarate still satisfies the “minimal energy
requirements” for autotrophic growth [Beasley, Nunny, 2012]. |l. This change in the
functioning of the cycle makes it necessary to change the structure of the article and
the thermodynamic table of the cycle reactions, and this, taking into account the sub-
stantial comments of the reviewers (especially reviewer 3), will take some time. ll. |
appeal to the editors of the journal about the possibility of resubmission of the article,
with replies to the reviewers comments, after a while. denial of the existence IV. A
very powerful argument from reviewers is the denial of the possibility of the existence
of significant methane degassing on the early Earth. However, despite a developing
consensus that the Hadean mantle and surface environments were relatively oxidiz-
ing [e.g., Kasting, 2014], some geological evidence points to more reducing conditions
[e.g., Yang et al., 2014]. The major species in the gas phase under oxidizing magmatic
conditions will be CO2 and SO2, as in modern basalts. The major species in the gas
phase under reducing conditions will be CO, CH4 and H2S [lacono-Marziano et al.,
2012; Yang et al., 2014]. There are also good reasons to believe that methane was a
significant gas in the Archean and Haden atmosphere and hydrosphere [Pavlov et al.,
2000; Touret, 2003; Schaefer, Fegley, 2007; Shibuya et al., 2016; Large et al., 2018], in
which case it could also be the source of nascent autotrophic paleometabolism. Fluid
methane degassing of the Earth (i.e., the existence of significant concentrations of
methane in the Archean and Hadean lithosphere) is confirmed by the existence of hy-
drocarbon gas-liquid inclusions in ancient minerals [Schreiber et al., 2017]. In addition,
high-temperature deep synthesis of methane, rather than low-temperature process of
serpeninization (about 100°C), is the main source of methane in seeps and hydrother-
mal vents even now [e.g., Scott et al., 2004; Huang et al., 2017; Brovarone et al; 2017:
Wang et al., 2018]. This conception will also be further additionally reviewed.

With respect Sergey Marakushev
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Fig. 1. The scheme of the proposed methane-fumarate (MF) cycle
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