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Abstract. Foraminifera are commonly used to reconstruct paleoenvironmental conditions based on the taxonomical 

composition, as well as elemental and/or isotopic signatures of their calcareous tests. A major problem, often referred to as 

the ‘vital effect’, is that such geochemical signatures stored in inorganic calcium carbonates differ greatly under the same 

environmental conditions. This effect was previously explained by proportional contributions from passive vs active ion 5 

transport patterns, but their details are still investigated. In this study, the functional role of pseudopodial structures during 

chamber formation is elucidated by detailed observation of Ammonia beccarii (Linnaeus) using a time-lapse optical imaging 

system and high-resolution electron microscopy. For the first time, we document triple organic layers sandwiching carbonate 

precipitation sites. The three major organic layers (outer organic layer, primary organic sheet, and inner organic layer) are 

formed by an initial framework of pseudopodia overlaid with further layer-like pseudopodia. The POS seems to facilitate 10 

early calcium carbonate nucleation, then entrapped by double precipitation sites. We further show that calcification starts 

when outer/inner organic layers still reveal tiny gaps (holes within the framework) that may serve as pathways for passive 

ion exchange (e.g., Mg2+) between seawater and the confined precipitation space. Nevertheless, the majority of wall 

thickening occurs when the precipitation site is completely isolated from seawater that implicates of active ion exchange. 

This may explain the differences in Mg/Ca ratios in early and later stages of calcification observed in previous studies. Our 15 

study resolves a key ‘missing piece’ in understanding foraminiferal calcification. The ‘vital effect’ is directly linked to 

spatio-temporal organization of the ‘biomineralization sandwich’ controlled by the three major organic layers. This study 

exemplifies the importance of culture experiments and in-depth observations of living organisms in order to interpret and 

calibrate biogeochemical proxies. 

1 Introduction 20 

Rotaliids are calcareous perforate foraminifera representing a group of marine protists classified within the Globothalamea 

class of the phylum Foraminifera (Pawlowski et al., 2013). They consist of well-established group of benthic and planktonic 

proxies. Rotaliid foraminiferal tests (shells) grow by additions of small compartments called ‘chambers’ sequentially with 

the growth of the cytoplasm (Haynes, 1981), each species has a characteristic test morphology. Foraminifera as a phylum 

originated in the Precambrian and survived to modern days, they have experienced numerous diversifications and extinctions 25 

following global environmental changes. About 4,000 species have been described from the modern environment (e.g. 

Murray, 2007; Pawlowski et al., 2014). Furthermore, approximately 50,000 to 100,000 species have been documented from 

the fossil record. These numerous foraminifera species have specific habitat and environment preferences and are limited to 

specific geological ages. Moreover, the test are easily fossilized after death and are preserved in the sediment through 

geological time scales. The taxonomy and diversity of foraminiferal assemblages in each environment has been well 30 
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investigated throughout the geological age, and they are widely used as index fossils and facies indicators (e.g. Murray, 

2007).  

In recent years, the foraminiferal test has become widely applied as a palaeoenvironmental proxy, and its geochemical / 

isotopic composition has become one of the major tools in palaeoenvironmental reconstructions. The test morphology and 

chemical composition to a certain extent depend on the environment (Schiebel et al., 2017; de Nooijer et al., 2014). The 5 

calcification process of the foraminiferal test is the phase of growth in which the elemental and isotopic compositions of the 

test is determined, and is also the key generating their morphological diversity. To this end, elucidating the detailed 

mechanisms of foraminiferal calcification has been treated with great interest in the field of geosciences. For example, it has 

been proven by experiment that the seawater temperature and the Mg/Ca ratio of foraminifera show a strong linear 

correlation (Nürnberg et al., 1996; Toyofuku et al., 2000). Meanwhile, it is also known that the incorporation ratio Mg/Ca is 10 

variable and species specific (summary in Toyofuku et al., 2011). The chemical distribution, however, vary among even 

individuals of the same species and exhibit zonation, corresponding to the test wall structure (Kunioka et al., 2006; Van Dijk 

et al., 2017). These variations in chemical composition, both inter- and intraspecific, are inclusively termed ‘vital effect’ 

(Urey, 1951). In order to reconstruct accurate palaeoenvironments, it is important to utilize reliable proxies, such as the 

chemistry and isotopic composition of foraminifera tests. Therefore, the biological processes of chamber formation is of 15 

great importance and interest. Fortunately, since foraminifera still survive till modern days, it is possible to carry out in situ 

observations and design culture experiments for learning their biology and further improving palaeoenvironmental analysis. 

Despite this, the biomineralization process foraminifera is much less studied compared to that of bivalves and 

coccolithophores. 

Observation of the foraminiferal chamber formation has been reported from as early as 1854 using the genus Peneroplis 20 

(Schultze, 1854), and many species have been documented thereafter (e.g., Myers, 1935, 1940, 1943; Jepps, 1942; Sliter, 

1970; Berthold, 1976; Spindler and Rottger, 1973). Superfine structure observation by scanning and transmission electron 

microscopy (SEM and TEM) in order to carry out more detailed documentation of the cellular process of calcite precipitation 

during chamber formation in the benthic species Rosalina floridana (Angell, 1967) and the planktonic species Globorotalia 

truncatulinoides (Hemleben et al., 1986), Orbulina universa (Spero, 1988) have been reported. The common features 25 

summarized from these detailed observations on benthic and planktonic species, points to the fact that cytoplasm and the 

many types of organic sheet-like structures (i.e., organic layers like Outer Organic layer (OOL) and Inner Organic Layer 

(IOL)) play fundamental roles in calcification, as opposed to simple chemical reactions between calcium and carbonate ions.  

Pseudopodium is one of the key features of foraminiferal biology. Pseudopodia form a part of the cytoplasm consisting of 

cytoskeleton structures, such as microtubules and actin filaments, as well as other organelles like mitochondria, vesicles, and 30 

vacuoles (Marszalek, 1969, reviewed in Travis and Bowser, 1991). Pseudopodium represents a multi-functional cellular 

structure serving various purposes such as locomotion, feeding, digestion, and chamber formation. Granuloreticulopodium 

(see Travis and Bowser, 1991) is included in this general term to define a granular reticulated pseudopodium responsible for 

feeding, digestion and locomotion. The appearance of pseudopodia changes during chamber formation and a fan-like array 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-295
Manuscript under review for journal Biogeosciences
Discussion started: 23 July 2018
c© Author(s) 2018. CC BY 4.0 License.



4 
 

of pseudopodia develops (Bé et al., 1979). Then, an organic structure that forms the framework for chamber formation, 

called Anlage, is formed (Angell, 1967). In benthic foraminifers, an algal cyst composed of foreign detritus and other 

materials is constructed around this Anlage (Angell, 1967). Anlage is largely constructed by foamy and spherical 

microstructures (<1 µm) (Angel, 1967; Hemleben et al., 1986), and is bulging in shape which led some authors to call it a 

‘bulge’ in early studies using planktonic foraminifers (e.g., Bé et al., 1979). This bulging Anlage is the three-dimensional 5 

structure that becomes the precursor of the chamber. There are three organic layers in the Anlage, one on the outer surface 

has been termed the ‘Outer organic layer’ (OOL; Spero, 1988), the one in the middle is named the ‘Primary organic sheet’ 

(POS) (Hemleben et al., 1986; Erez, 2003), and the innermost one is called the ‘Inner organic layer’ (IOL; Spero, 1988). 

Precipitation of calcium carbonate microcrystals takes place on both sides of the POS, sandwiched between the Outer and 

Inner organic layers. In addition to these three organic layers, the term Anlage is now loosely accepted to include the 10 

numerous pseudopodial cytoplasm that are present around them during calcification. Since different authors have different 

views and definitions as to what Anlage means (e.g., Angell, 1979; Bé et al., 1979; Hemleben et al., 1986), hereafter we 

refrain from using the term Anlage and instead use ‘organic scaffolding’ to refer to the organic framework which the 

chamber wall is built upon.   

In order to investigate the fundamental functions of the POS, the Outer organic layer and the Inner organic layer during 15 

chamber formation, Nagai et al (2018) conducted focused ion-beam (FIB) processing on a foraminifera specimen during 

calcification, which allows the thin-sectioning of the site of calcification without decalcification to observe cytoplasm and 

the natural state of the calcifying test (calcium carbonate crystals) together using electron microscopy. Their observations 

clearly show that the organic scaffolding has numerous voids and empty spaces within the membranous structure of the site 

of calcification (SOC). The presence of calcification liquid and exo/endocytosis are inferred, and the growth of calcium 20 

carbonate could be shown using time series samples. However, they have not documented the processes which leads to the 

construction of the POS and other organic structures during chamber formation. 

Undoubtedly, the organic scaffolding built prior to chamber formation is an important factor shaping the characteristic 

morphology of foraminifera, serving as a template for calcification. When the foraminiferal test is dissolved, the organic 

structure is revealed and it has the same overall morphology as the calcareous part (Banner and Williams, 1973). Despite it 25 

has been suggested that pseudopodial activity plays a key role in this process, little is known about the mechanism. Spindler 

and Röttiger (1973) first stated that it is pseudopodia that secrete the organic layer using optical microscopy, working with 

Heterostegina depressa. However, due to the low resolution of optical microscopy, they were unable to see the details of the 

process and this had no evidence other than largely speculation.  

Although foraminifera are widely used for palaeoenvironment modelling, a total understanding of the foraminiferal 30 

calcification process is still lacking, impacting the accuracy of predictions made from foraminifera-based data. An accurate 

overview and model of the chamber formation by pseudopodia and the calcification process in calcareous foraminifera is 

therefore urgently needed to better our understanding of palaeoenvironments as well as predicting responses to ongoing 

climate change. To fill this knowledge gap, this study aims to elucidate the role of pseudopodial activities on the formation 
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process of foraminiferal chamber and its organic structures within the calcareous wall using the benthic hyaline foraminifera 

Ammonia beccarii, which has been used in a few relevant previous studies (e.g., Toyofuku et al., 2017), as a model system. 

We combine differential interference contrast (DIC) microscopy and scanning electron microscopy, capturing DIC images 

through a time-lapse to document the pseudopodial activities during chamber growth and carried out SEM observations for 

specimens fixed in different chamber formation process to visualize organic structures at the sub-micron order. 5 

2 Materials and Methods 

2.1 Sample Collection and Laboratory Culture 

Living foraminifera were collected from brackish water salt marsh sediments of Hiragata Bay, Natsushima-cho Yokosuka, 

Japan (35°19’21’’N, 139°38’5’’E) in the spring of 2015. Surface (top 5 mm) sediments were collected and transported to the 

laboratory to serve as a stock from which individuals of the benthic calcareous foraminifera Ammonia beccarii (sensu De 10 

Nooijer et al., 2008) were isolated. Living specimens were recognised by their bright yellow color and visible pseudopodial 

activity. They were cleaned from excess sediment and debris under a stereo microscope (SteREO Discovery V12, Zeiss Co. 

Ltd.) and transferred to filtered (0.2 µm) natural seawater (salinity ca. 35) and placed in a Petri dish. The Petri dishes were 

maintained at 20°C and twice a week, a small amount of live microalgae (Dunaliella tertiolecta, NIES-2258) were added. 

Within a few days of feeding, some individuals started chamber formation and were selected for observation. 15 

2.2 Optical Observation Settings of Chamber Formation 

Chambers in the process of formation were observed using an inverted differential interference contrast (DIC) microscope 

(Axio Observer Z1, Zeiss, Germany). Time-lapse images were captured automatically by the digital microscope software 

Axiovision (Version 4.6). Time intervals between shots varied from 10 seconds to 10 minutes, but typically the interval was 

1 minute. Magnifications of the available objective lenses were x10, x20 x40, and x63. A heat cut filter was applied to 20 

reduce damage on the living individuals inflicted by the image capture process. 

2.3 Microstructure Observation and EDS Analysis 

All specimens were fixed simultaneously using a fixing solution (3% paraformaldehyde, 0.3% glutaraldehyde, 2% NaCl in 

PBS buffer, pH 7.8) and subsequently stored in 2.5% glutaraldehyde at 4°C to avoid any morphological changes in the cell 

material through dehydration. They were then washed in 0.2 µm filtered seawater, post-fixed with 2% osmium tetraoxide 25 

filtered seawater solution for 2 hours at 4°C. Following that the specimens were rinsed with distilled water and conductive 

staining was performed by incubating in 0.2% aqueous tannic acid (pH 6.8) for 30 minutes (Willingham and Rutherford, 

1984). After another wash with distilled water, specimens were further treated with 1% aqueous osmium tetraoxide for 1 

hour. Finally, they were dehydrated in a graded ethanol series and critical point dried (JCPD5; JEOL Ltd., Tokyo, Japan). 

SEM observations were carried out on a JSM6700F field emission scanning electron microscope (FE-SEM) in Japan Agency 30 
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for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan. Elemental composition of all specimens was 

analysed using a JED 2300 (JEOL) dispersive spectrometer (EDS) equipped on the same JSM6700F FE-SEM at JAMSTEC.  

Selected specimens processed for SEM observation were embedded in epoxy resin for the purpose of measuring elemental 

composition of the newly forming chamber wall. The epoxy resin fully filled the chamber cavities and were polished to 

expose the chamber wall being formed, and the exposed surface was coated with a ca. 3-nm-thick osmium foil. After rinsing 5 

with distilled water, this polished block was sectioned using an automicrotome to generate relief-free sections of 

foraminiferal tests revealing fresh calcite surfaces of chamber walls. 

3 Results 

We succeeded in observing the chamber formation in Ammonia beccarii using DIC and SEM techniques. Time-lapse 

imaging with DIC observation was able to capture the process of chamber formation and the change in morphology over 10 

time at a micrometer order resolution, importantly also capturing the movement of cytoplasm and pseudopodia in detail. 

SEM observation revealed the fine submicron order processes leading to the construction of organic structures as well as the 

precipitation of calcium carbonate. 

3.1 Time Series Observation with Optical Microscopy 

We were able to observe the chamber formation process of A. beccarii for 59 times in total with DIC. Depending on the size 15 

of the chamber, it took about 5–8 hours to complete the whole process (Table 1). Prior to the start of chamber formation, 

exceptional activities were exhibited by the expanded pseudopodia. Usually for the purpose of feeding and moving, 

pseudopodia randomly branches at irregular intervals to arbitrary direction with variable lengths. During the chamber 

formation process, however, the pseudopodial activity significantly differed, in that a fan-shaped complex pseudopodial 

network was constructed (Figure 1A), expanding from the aperture of the last existing calcified chamber. This pseudopodial 20 

network is arranged in a dense, radiating spray resembling that of a dandelion flowerhead. This unique characteristic allowed 

us to recognise individuals in the beginning of chamber formation and start our time-lapse observation from there (as 0 min). 

For an average individual, the events of chamber formation can be sequentially divided into three steps, outlined as follows 

in a typical time sequence.  

The initial stage of chamber formation was from 0 to about 15 minutes. This is the stage where the organic framework for 25 

chamber formation is built. Following the pseudopodial network construction which takes place from 0 minute, an 

aggregation of cytoplasm quickly became visible around the aperture of the last existing calcified chamber (15 minutes; 

Figure 1B). As the cytoplasm expands, the pseudopodial network retracts. We consider the completion of the organic 

framework to be the end of the initial stage. 

The middle stage of chamber formation took place at 15–60 minutes. During this stage, the foraminifer prepares the organic 30 

scaffolding for calcium carbonate precipitation which begins during this stage. By 30 minutes, the cytoplasmic aggregation 

concentrates in the same shape of a newly forming chamber like a hemi-sphere (Figure 1C). At this point, fine and short 
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pseudopodia have retracted to a certain extent but still seen on the surface of the structure. A brighter band of particles, 

probably representing calcium carbonate starting to become formed, can be seen on the surface of this. This proceeds to 

become the chamber wall. At around 60 minutes, the pseudopodia retracts beyond the forming chamber wall and the wall 

surface becomes smooth (Figure 1D).  

The late stage of chamber formation is defined as the stage where calcium carbonate is precipitated extensively to thicken 5 

the chamber wall in the newly forming chamber, and takes places between around 60–400 minutes. We define the start of the 

late stage as when the pseudopodia beings to expand again to cover the organic scaffolding, and also the whole organic 

scaffolding is covered by a layer of calcium carbonate (with pores becoming visible under light microscopy). From around 

60–100 minutes, the pseudopodia expand again to form a dense network, this time in thicker strands (Figure 2A). The length 

of all the pseudopodia appear remarkably regular. Calcium carbonate continues to be precipitated in the forming wall. At this 10 

point, the overall outline and size of the newly forming chamber is basically fixed. Pseudopodial movement can be seen 

inside the forming chamber (open triangles in Figure 2A). Cytoplasm aggregate that filled the newly forming chamber 

retreats to the previously formed chamber. So empty space is made in the chamber. At 150 minutes, a network of 

pseudopodia is present in the forming chamber, the chamber wall of which thickens and the pores become increasingly and 

clearly visible (from Figure 2B–C). Chamber thickening continues to occur from 150–400 minutes (Figure 2C). During this 15 

process, the density of the pseudopodial network on the chamber wall surface is increased and wraps the chamber wall like a 

mesh. As the chamber wall thickening completes at around 400 min, the mesh-like pseudopodial network on the surface 

disappears (Figure 2D). We consider this to indicate the termination of chamber formation process. After this, the individual 

starts to show the usual type of pseudopodia movement. 

3.2 Ultramicro Observations on the Forming Chamber Wall 20 

The process of chamber formation is classified into three stages, as outlined above. Specimens exemplary of each stage were 

observed with a scanning electron microscope. A schematic diagram is presented in Figure 3, which outlines the general 

observations. The basis of organic layer formation is the interweaving of a pseudopodial framework (Figure 3A), the 

interspaces of which is then filled in with a further layer of pseudopodial material, resulting in a complete organic layer. The 

pseudopodia are observed to form a dense framework (purple dotted lines in Figures 2A, 3 and 4), which is then overlaid by 25 

a layer of membranous pseudopodia which fills the interspaces (Figure 4E). In the OOL, numerous spaces of 100 nm – 1 um 

can be seen (gray in Figures 2–4), which represents the interspaces between the framework which is yet to be filled. In some 

instances, the membranous pseudopodia were observed during the process of filling the interspaces, sometimes from more 

than one direction (e.g., Figure 4E), by a gradual, webbed expansion.   

 30 

Initial Stage 

In the initial stage of chamber formation, the test was entirely covered with pseudopodia and organic layer-like structures 

(Figure 4A), some parts of these covering structures were peeled off during the sample preparation process. Focusing on the 
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chamber being formed, it was possible to observe the OOL and the POS (Figure 4B), with the POS being visible from gaps 

in the OOL. The interspace between the two layers was narrow (Figures 4B-C). Even at high magnification, the outer surface 

of the OOL itself is relatively smooth layer-like structure (OOL in Figure 4B-C). In some cases, the pseudopodia can be seen 

directly expanding from the OOL (Figure 4C). The primary organic sheet (POS) can also be observed (Figure 4B) and is 

relatively robust, covered by numerous protrusions. These are convex, frustoconical structures about 1 µm in width (Figure 5 

4A-B), and represent pore plates which corresponds to pores. These are simultaneously formed when the POS was 

constructed (green coloured in Figure 4C-D). Projections (<1 µm) were observed on the cytoplasmic surface of OOL (light 

green in Figure 4B). Vesicles can be seen on the OOL (blue coloured in Figure 4C, some appeared crushed probably due to 

the critical point drying process), and similar structures could also be found on the POS (blue coloured in Figure 4D and E). 

The size of vesicles varied from 50 nm to 500 nm, and these likely represent vesicles. On the OOL, some pseudopodia 10 

appeared to have a form like that of a sausage chain (Figure 4B), the diameter and interval of contractions were variable. The 

bulging part contained only cavities and this form might be associated with peristalsis. It is known pseudopodia transport 

mitochondria and vesicles (Travis and Bowser, 1991; Cedhagen and Frimanson, 2002), and it is possible that this peristaltic 

structure has important roles in such transportation. 

No crystals were found between the POS and the OOL, indicating that no calcium carbonate has been deposited at this stage, 15 

supported by the fact that the SEM-EDS analyses showed an absence of calcium signals (Figure 7A). 

 

Middle Stage 

At the middle stage, the interspaces among the framework structure constructed by the pseudopodia has been filled to a 

much larger extent than in the initial stage, with much fewer gaps (about 5 nm – 200 nm; grey coloured in Figure 5B and C) 20 

that could be seen. Nevertheless, calcium carbonate precipitation has already started between organic layers in some parts of 

the forming chamber (Figure 5D). Upon closer observation, these were revealed to consist of needle-like structures that 

covered the surface of the POS, close to the previously formed chamber. These needle-like structures were confirmed to be 

crystals of calcium carbonate precipitating vertically between the OOL and the POS by EDS observation (Figure 7B). 

Therefore, the precipitation does not start at the same time across the entire chamber, but instead begins locally right after the 25 

completion of organic layer construction. At this point, there are still small gaps between independent crystals. It can also be 

noted that the framework structure formed by pseudopodia appears to have a certain directionality in growth.  

Numerous, rather regularly spaced pores (about 1 µm) can be clearly observed on the crystalline layer (Figure 5A). In the 

part where OOL was curled up to reveal the inner side (see Figure 3B), convex structures corresponding to pore lining were 

seen (Figure 5D). This has been termed ‘pore funnel’ by Hottinger (2006), which we adopt here. Interestingly, pores cannot 30 

be seen at this stage from the outer side on the OOL with SEM observation (Figure 5A-B), and the OOL appears entirely 

smooth in the parts where the framework has been filled completely. We interpret this as due to a layer of cytoplasmic 

material also fills the pore lining (i.e., the ‘well’) during chamber formation, which regresses after the completion of 

chamber formation (and therefore becomes visible under SEM). As discussed previously, however, pores can still be seen 
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during chamber formation using light microscopy due to the semi-transparent nature of the organic layers as well as the thin 

calcium carbonate layer. Algal cysts including Dunaliella individuals can be seen (Figure 5A). The OOL is a continuous 

structure that envelopes the entire test, and it extends to the newly forming chamber from the aperture of the previously 

formed chamber. In some parts where calcium carbonate precipitation has not yet taken place, the outer surface of the POS 

can be seen (Figure 5A and 5C) and like in the initial stage, many frustoconical structures about 1 µm in width are seen 5 

(Figure 5C). Vesicles (blue coloured in Figure 5B-C), about 50 nm – 500 nm in size, could be seen on both the OOL and the 

POS as in the initial period. 

 

Late Stage 

In this final stage (Figure 6), the construction of organic layers has been fully completed, and a layer of calcium carbonate 10 

began precipitation across the entire forming chamber. The OOL is therefore seen as uniformly smooth and without gaps 

from the outer side (Figure 6B). Cross-section through the forming chamber wall at the late stage clearly shows three 

completed layers (corresponding to the IOL, the POS, and the OOL from the inner side outwards in that order) and two 

layers of precipitating calcium carbonate sandwiched between the IOL and the POS as well as between the POS and the 

OOL (Figure 6C). EDS analyses obtaining signals of Ca and C, O simultaneously (Figure 7C) clearly indicated high Ca 15 

signal distribution being detected these two layers, showing that these layers are calcium carbonate in nature.   

 The precipitation of calcium carbonate crystals, continuing from the middle stage, leads to carbonate crystals to 

become increasingly densely packed, with gaps between crystals completely disappearing by the end of the late stage (which 

marks the end of chamber formation). In the figured specimen observed in Figure 5, the thickness of the calcium carbonate 

layer is about 1 µm between the OOL and the POS, and about 0.3 µm between the POS and the IOL. OOL had toward the 20 

inner side (Figure 5D). 

As in the middle stage the exterior of the OOL appears smooth (i.e., pores cannot be seen yet) (Figure 5D). The IOL, 

however, when seen from the cytoplasm side, is seen to be covered by regular depressions that corresponds to the convex 

side of the pore plate on the POS (which may be named the ‘inner pore’). The IOL can therefore be considered to have the 

same shape as the POS. Vesicle-like structures could also be observed in the late stage on the surface of the OOL but the size 25 

of these structures was more variable than in the earlier stages, ranging from 50 nm to 1 µm (Figure 5C-D). Furthermore, 

similar structures could also be observed on the IOL (not shown). 

4 Discussion 

4.1 The Weaving of Organic Layers During Chamber Formation 

This study is the first to observe the detailed making of organic layer during chamber formation, and revealed that the layers 30 

are actually woven by pseudopodial activity. Initially, a framework is constructed by a pseudopodial network, which is then 

overlaid and the interspaces filled in by a layer of membranous pseudopodia. The importance of organic layers in the early 
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stages of chamber formation has been speculated in the previous study, but little was known about its origin. It was 

previously thought that the organic layer was secreted from the pseudopodia (e.g., Angell, 1967; Röttiger, 1974; Hemleben 

et al., 1986), and Spindler and Röttiger (1973) reported that the organic layer seems to be connected with pseudopodia. 

These studies were largely limited in that their magnification (only light microscopy was available then) was not sufficient 

resolution to observe the detailed process. The process documented herein provides evidence for an entirely novel model in 5 

that the pseudopodia itself weaves the organic layers – in other words the organic layer is the part of cytoplasm. 

4.2 Pore Formation 

Fine-scale observations from the present study allowed us to reconstruct the actual steps in pore formation. As shown 

already in previous studies (Bé et al., 1979; Spero, 1988), the structure known as ‘pore’ in foraminifera is actually a 

composite structure formed by two opposing wells converging at the POS, one opening towards the outer side located on the 10 

OOL and one opening towards the cytoplasm side located on the POS (and same on the IOL). The POS/IOL well has been 

called the pore plate in previous studies (e.g., Haynes, 1981). These pore plates can also be seen on the organic layer 

template when fossil foraminiferal tests are dissolved (Bannar et al., 1973; Banner and Williams, 1973; Hottinger and Dreher, 

1974; Cader et al., 2003; Ni Fhlaithearta et al., 2013). Therefore, the pores are not actually pass-through structures formed at 

once but are instead formed in unison by separate processes on the OOL and the IOL. Our observations show that in the 15 

initial stage of chamber formation, the pore plate (visible as frustoconical structures of about 1 µm) is already present when 

the POS is woven, at the growth front. Pore funnels, about 0.5 µm in size, that pair up with the pore plate in the same 

location (but open to the opposite direction) are formed on the OOL. This structure and the pore plate collectively form the 

pore, and there is no space between the two for calcium carbonate to precipitate, and therefore the pore is not calcified. All 

hyaline foraminifera that have been observed in detail possess pores. Since pores are not pass-through and formed as the 20 

framework for organic layer (i.e., OOL, POS, and IOL) formation is woven and that the layers are somewhat flexible before 

calcification, one possible speculative function for pores is to serve as a connective structure between OOL and IOL. In this 

scenario, the pores ‘staple’ the organic layers of the forming chamber together, so that the sites of calcification maintain a 

consistent thickness and form throughout the chamber while calcification occurs. 

4.3 Vesicles 25 

The existence of vesicles on the surface of organic layers have been reported in previous studies (Angell, 1967; Spero, 1988), 

but their function and significance have not been mentioned. A recent study (Nagai et al., 2018) that utilized Focused Ion 

Beam (FIB) technology to process SEM samples in order to visualize calcium carbonate and organic layers on the same 

semi-thin section. They were able to observe the presence of vesicles in the site of calcification, and that they might be 

responsible for exo- and endocytosis. The vesicles increase the surface area and probably serve to improve the material 30 

exchange efficiency, by increasing the contact surface area with seawater. In the present study, we could observe numerous 

vesicles on all three organic layers, including the OOL, the POS, and the IOL. This indicates that the vesicles probably play 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-295
Manuscript under review for journal Biogeosciences
Discussion started: 23 July 2018
c© Author(s) 2018. CC BY 4.0 License.



11 
 

important roles in material exchange during calcification for both the outer and inner calcified layers, and as the vesicles are 

inferred to result from the activity of the organic layers this further strengthens the active role of these layers in calcification 

(i.e., they are not mere templates). 

4.4 Prospects for Calcification Model 

Until now, the exact process of calcium carbonate precipitation, in terms of how precipitation was related to the degree of 5 

isolation of the site of calcification, remained largely unclear (Erez, 2003; De Nooijer et al., 2014). In the present study, the 

sequence of events during calcification was made clear by time-series observations, and importantly both the formation of 

organic layer and calcium carbonate precipitation were observed together. It is significant that during the Middle Stage, 

although the overall shape of the forming chamber has already been formed by framework-like pseudopodia, the 

precipitation of calcium carbonate was seen to initially start before the framework pseudopodia have been fully covered and 10 

filled by membranous pseudopodia. The organic layers (especially well-observed in the OOL and the POS) still contained 

numerous gap <1 µm in size, which we interpret to maintain the exchangeability of seawater and elements contained within, 

for the initial part of calcium carbonate precipitation. The site of calcification is therefore interpreted to be still open in the 

Middle Stage. In the Late Stage, however, the organic layers have been completely filled by membranous pseudopodia and 

no such gaps remain. At this stage, therefore, the site of calcification is closed from the surrounding seawater. Hence, we 15 

interpret that during the Late Stage the elements require for calcification must be selectively taken up by biological means 

such as exo-endocytosis or ion pumps through the OOL. Although we could not observe the IOL in detail (due to its position 

below the POS) during this process, the IOL most likely receives the required elements through pseudopodial transport 

during the Late Stage, although whether this originate directly from the forming chamber or the previous chambers cannot be 

ascertained yet. Previous evidences (e.g., Toyofuku et al., 2008; De Nooijer et al., 2009) appear to suggest that calcium and 20 

carbonate are transferred from the previously formed chamber. The POS has been widely considered to be the only template 

for calcification (Hemleben et al., 1986), but recent research has revealed that calcium carbonate precipitation also occurs on 

the other organic layers (Nagai et al., 2018). It was also shown that the POS gradually becomes obsolete as the chamber 

matures towards completion of thickening. Therefore, the true role played by the POS during calcification should be 

reconsidered. A likely function of the POS is that by doubling the surface area on which precipitation occurs, the existence 25 

of the POS doubles the rate of chamber formation. Considering that the mobility of foraminifera is highly limited during 

chamber formation, increasing the efficiency of chamber formation is probably beneficial and adaptive to the foraminifera.  

 

It is well known that the chemical and isotopic compositions of calcareous foraminifera tests differ significantly from those 

precipitated inorganically, and the compositions also differ among different species. This effect is collectively known as the 30 

‘vital effect’ (Urey et al., 1951), and has been a great hindrance to the use of foraminifera tests as geochemical proxies, for 

example to reconstruct palaeoclimates. In attempt to explain the vital effect, Nehrke et al. (2013) proposed a transmembrane 

transfer / passive transfer (TMT/PT) model by observing Mg/Ca ratio during calcification, assuming that low ratio indicates 
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active transport (i.e., transmembrane transfer sensu Nehrke et al., 2013) and high ratio indicates passive transport; as Mg is 

discriminate against in Ca channels in active transport. Their observations indicated that that passive transport predominates 

at the early period of calcification, with active transport becoming dominant at later periods. This is consistent with the 

results outlined above from our observations during the present study, but we were able to reveal the reasons behind the 

differences in Mg/Ca ratios in early and later periods of calcification, which is that during the Middle Stage the site of 5 

calcification has not yet been fully enclosed. This is a key piece of finding as to what actually causes the vital effect, in that 

the construction process of the organic layers can significantly influence when the site of calcification becomes isolated, 

leading to differences in chemical and isotopic compositions of the test by the proportion of contributions from passive vs 

active transport. 

5 Conclusion 10 

Calcareous foraminifera are a highly important group in palaeoclimate reconstruction and as indication fossils, by using their 

chemical and isotopic composition as a geochemical proxy. A major problem was that such compositions differed greatly 

from inorganic calcium carbonate under the same environment. The key finding of the present study is that one main 

contributor to this ‘vital effect’ is in fact the proportion of contributions from passive vs active transport in material transfer 

during calcification, which is directly linked to how the three major organic layers (i.e., the OOL, the POS, and the IOL) are 15 

constructed. For the first time, this study revealed that the organic layers are in fact woven by a framework-like pseudopodia 

network that are then overlaid by an overlaying layer of membranous pseudopodia, closing the gaps in the framework and 

thus forming a complete organic layer. We show that calcification has already started when the site of calcification is still 

able to passively exchange elements (e.g., Mg) with seawater; but the majority of wall thickening occurs when it is 

completely isolated and the only means of element exchange is through active transport. This agrees with and explains the 20 

differences in Mg/Ca ratios in early and later periods of calcification observed in previous studies (e.g., Nehrke et al., 2013). 

As such, we resolved a key ‘missing piece’ in understanding foraminiferal calcification that has mystified us for more than a 

decade. This study exemplifies the importance of extensive rearing and in-depth observations of a living species in order to 

correctly use biominerals as a geochemical proxy. 

 25 
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Table 1. List of observation using inverted differential interference contrast microscopy

Date
(YYYYMMDD)

Length of forming
chamber (μm)

Width of forming
chamber (μm) Observation time (min) Test diameter after

chamber formation (μm)
Recorded stages of
chamber formation

20140401 108.12 42.24 300 248.05 Middle-last
20140402 151.45 56.31 60 282.63 Initial stage only
20140404 61.34 50.22 270 135.68 Middle stage-last
20140407 100.58 50.4 400 210.23 Initial satge-last
20140408 104.26 58.3 395 218.69 Middle stage-last
20140416 119.28 61.61 385 287.01 Middle stage-last
20140417 84.61 48.45 385 163.12 Middle stage-last
20140422 127.53 83.74 465 318.79 Middle stage-last
20140430 88.42 56.5 ND ND Initial stage only
20140430 88.42 56.5 345 ND Middle stage-last
20140509 165.95 65.63 342 ND Middle stage-last
20140522 94.98 57.48 360 ND Initial satge-last
20140523 82.71 65.64 380 ND Initial satge-last
20140711 72.21 48.94 138 141.63 Late stage-last
20140718 112.04 62.59 336 284.88 Initial satge-last
20140808 70.56 45.53 303 ND Initial satge-last
20140822 96 59.13 315 ND Initial satge-last
20150410 99.89 45.64 303 209.47 Initial satge-last
20150421 96.39 28.91 396 178.38 Initial satge-last
20150817 109.14 53.03 390 234.97 Initial satge-last
20150820 146.44 94.87 475 539.68 Middle stage-last
20150821 188.2 102.16 405 517.24 Middle stage-last
20150903 95.77 45.81 295 266.01 Middle stage-last
20150904 96.8 58.19 360 284.16 Middle stage-last
20150911 103.06 41.26 125 291.85 Late stage-last
20150917 92.81 55.55 325 199.63 Middle stage-last
20150924 93.61 51.28 345 204.19 Middle stage-last
20151001 92.08 47.51 345 312.03 Middle stage-last
20151014 79.14 58.7 380 193.5 Middle stage-last
20151015 81.64 55.47 370 175.45 Middle stage-last
20151111 142.81 98.42 420 361.39 Middle stage-last
20151118 84.96 54.82 270 210.6 Late stage-last
20151119 88.66 53.6 310 218.69 Middle stage-last
20151120 186.12 118.27 550 448.84 Middle stage-last
20151202 102.52 57.23 380 ND Middle stage-last
20160127 110.04 67.85 355 258 Middle stage-last
20160302 110.47 62.45 20 ND Late stage-last
20160610 121.37 39.38 325 317.71 Middle stage-last
20160611 99.89 57.42 420 206.43 Middle stage-last
20160612 107.65 27.7 335 253.74 Middle stage-last
20160613 132.45 61.4 140 317.63 Late stage-last

20160614-1 102.86 54.75 325 245.19 Middle stage-last
20160614-2 99.83 41.69 150 284.98 Late stage-last
20160618 132.4 52.5 330 288.37 Middle stage-last
20160619 138.03 34.84 270 238.39 Late stage-last
20160621 122.66 71.06 160 277.31 Late stage-last
20160622 101.2 40.52 465 240.3 Middle stage-last
20160623 100.34 44.88 105 259.44 Late stage-last
20160624 84.8 50.3 60 233.67 Late stage-last
20160929 114.94 62.78 214 ND Late stage-last
20170221 119.67 77.47 57 ND Late stage-last
20170310 106.65 65.62 21 277.45 Late stage-last
20171201 83.14 45.8 459 199.71 Middle stage-last
20171202 151.85 97.62 50 ND Late stage-last
20171206 120.69 61.47 582 287.28 Middle stage-last
20171207 77.9 55.65 248 ND Initial satge-last
20180104 90.5 38.1 420 ND Middle stage-last
20180105 114.3 54.3 377 ND Middle stage-last
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Figure 1: Time series observation of chamber formation by optical microscopy. A: Beginning of chamber formation, defined as 0 

minute from the start. B: 15 minutes. C: 30 minutes. D: 60 minutes. Open triangles indicate pseudopodia inside the newly forming 

chamber. Left: optical microscopy image. Right: the same image with schematic overlay; colour legend: deep purple = 

pseudopodia; light purple = cytoplasm; magenta = calcium carbonate in the newly forming chamber; yellow = previously formed 

chambers. 5 
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Figure 2: Time series observation of chamber formation by optical microscopy (continued). A: 100 minutes. B: 150 minutes. C: 

200 minutes. D: 400 minutes. Open triangles indicate pseudopodia inside the newly forming chamber. Left: optical microscopy 

image. Right: the same image with schematic overlay; colour legend: deep purple = pseudopodia; light purple = cytoplasm; 

magenta = calcium carbonate in the newly forming chamber; yellow = previously formed chambers. 

 5 
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Figure 3: Schematic illustrations of chamber formation. A: Construction of organic layers by pseudopodial weaving and 

subsequent gap-filling. B: The entire chamber formation process from the initial stage on the left side to the late stage on the right 

side. Colour legend: brown = OOL /IOL; orange =POS, purple = pseudopodia/cytoplasm; light green = pore funnel on the OOL; 

green = pore plate; magenta = calcium carbonate; blue = vesicles; gray =gap. 5 
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Figure 4: Microstructures during the initial stage of the chamber formation shown by SEM images on the left, supplemented by 

schematic explanation on the right. A: Overview of a specimen showing the OOL covering both the newly forming and older 

chambers. B–C: Magnified images showing the OOL and the POS. D–E: Magnified image of the POS construction front showing 

the weaving action of pseudopodia. E: The same POS construction front showing the membranous pseudopodia extending so as to 

close a large hole (white arrow). Colour legend: brown = OOL; orange = POS; purple = pseudopodia/cytoplasm; light green = pore 5 
funnel on the OOL; green = pore plate; blue = vesicles; gray =gap. 
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Figure 5: Microstructures during the middle stage of the chamber formation shown by SEM images on the left, supplemented by 

schematic explanation on the right. A: Overview of the ventral side of a specimen, showing the cytoplasm covering the newly 

forming chamber. B: Magnified image showing the OOL on the suture, between the new chamber and the previous chamber. C: A 5 
higher magnification image of the POS showing spherical structures on the POS. D: Image showing the matching relationship 

between convex structures on the cytoplasmic surface of the OOL and the pore. Colour legend: brown = OOL; orange = POS; 

purple = pseudopodia/cytoplasm; light green = pore funnel on the OOL; green = pore plate; magenta = calcium carbonate; blue = 

vesicles; gray =gap. 
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Figure 6: Microstructures during the late stage of the chamber formation shown by SEM images on the left, supplemented by 

schematic explanation on the right. A: Overview of the dorsal side of a specimen, with the newly forming chamber on the bottom. 

B: Magnified image of the OOL seen from the outside. C: Image showing a cross-section through the forming chamber wall. D: A 

magnification of the IOL seen from the inner side, showing pores and lots of spherical structures. Colour legend: brown = 5 
OOL/IOL; orange = POS; purple = pseudopodia/cytoplasm; light green = pore funnel on the OOL; green = pore plate; magenta = 

calcium carbonate; blue = vesicles. 
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Figure 7: Elemental maps of cross-sections through the forming chamber wall at different stages, shown by SEM-EDS analyses. A: 

Initial stage. B: Middle stage. C: Late stage. White lines indicate the position of the POS. The false color maps indicate the 

intensity of calcium signals, corresponding to the legend shown on the bottom. 
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