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2. Abstract. The El Niño – Southern Oscillation (ENSO) has been suggested as a strong forcing in the methane cycle and as 

a driver of recent trends in global atmospheric methane mole fractions [CH4]. Such a sensitivity of the global CH4 budget to 10 

climate events would have important repercussions for climate change mitigation strategies and the accuracy of projections 

for future greenhouse forcing. Here, we test the impact of ENSO on atmospheric CH4 in a correlation analysis. We use local 

and global records of [CH4], as well as stable carbon isotopic records of atmospheric CH4 (δ13CH4), which are particularly 

sensitive to the combined ENSO effects on CH4 production from wetlands and biomass burning. We use a variety of nominal, 

smoothed and detrended time series including growth rate records. We find that at most 36% of the variability in [CH4] and 15 

δ13CH4 is attributable to ENSO, but only for detrended records in the Southern tropics. Trend-bearing records from the 

Southern tropics, as well as all studied hemispheric and global records show a minor impact of ENSO, i.e. <24% of variability 

explained. Additional analyses using hydrogen cyanide (HCN) records show a detectable ENSO influence on biomass burning 

(up to 51%-55%), suggesting that it is wetland CH4 production that responds less to ENSO than previously suggested. 

Dynamics of the removal by hydroxyl likely counteract the variation in emissions, but the expected isotope signal is not 20 

evident. It is possible that other processes obscure the ENSO signal, which itself indicates a minor influence of the latter on 

global CH4 emissions. Trends like the recent rise in atmospheric [CH4] can therefore not be attributed to ENSO. This leaves 

anthropogenic methane sources as the likely driver, which must be mitigated to reduce anthropogenic climate change. 
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4. Introduction 

Attributing recent changes in the methane budget, and the associated impact on its growth rate, to specific natural or 

anthropogenic causes is essential for climate change mitigation. The impact of climatic variability on methane emissions is 

particularly important to assess the potential for CH4 release under future climate scenarios (e.g., from permafrost and wetland 

environments, as well as gas hydrates) in a reinforcing feedback. Atmospheric methane mole fractions [CH4] have increased 5 

by 140% over preindustrial levels (MacFarling Meure et al., 2006). The associated increase in radiative forcing makes CH4 

the second-most important anthropogenic greenhouse gas (Shindell et al., 2009). The long-term [CH4] increase until the late 

1990s can be attributed to increasing emissions from fossil fuel production (Ferretti et al., 2005; Schaefer et al., 2016), as well 

as sources from agriculture (enteric fermentation in livestock, rice production), waste management and anthropogenic burning 

(van Aardenne et al., 2001; Saunois et al., 2016). After a plateau in the early 2000s, [CH4] has been rising again since 2007. 10 

Considering recent reconstructions of methane’s dominant atmospheric sink, i.e. the hydroxyl radical OH, we consider it likely 

that increasing emissions contribute to (Rigby et al., 2017), if not dominate (Naus et al., 2018), the [CH4] rise. If so, the methane 

source type that varied can be investigated with measurements of stable carbon isotope ratios in atmospheric methane (δ13CH4). 

The latter are influenced by the relative source contributions from 13C-depleted biogenic, 13C-rich pyrogenic, and thermogenic 

methane with intermediate 13C. Isotope studies suggest that biogenic methane sources make either a dominant (Schaefer et 15 

al., 2016; Nisbet et al., 2016) or strong (Worden et al., 2017) contribution to the recent [CH4] rise. Biogenic methane comes 

predominantly from wetlands and agriculture. Schaefer et al, (2016) suggested agriculture as the more likely cause, primarily 

because satellite data place the increased emissions in Southeast Asia, India and China (Houweling et al., 2014). However, 

this geographic footprint from an inversion of satellite data is also consistent with fluxes from one particular wetland emissions 

model (Houweling et al., 2014). Other studies also assume a stronger role of wetlands due to drier conditions during the plateau 20 

years (Bousquet et al., 2006) and higher wetland emissions afterwards, which are attributed to a switch to predominant La 

Niña conditions around 2007 (Bousquet et al., 2011; Nisbet et al., 2016). La Niña is the cold phase of El Niño – Southern 

Oscillation (ENSO) cycles, which have a strong impact on precipitation anomalies in tropical regions (Ropelewski and Halpert, 

1987; Lyon and Barnston, 2005) (Fig.1) that are key source areas for methane production from wetlands and biomass burning 

(Kirschke et al., 2013). ENSO impacts are strongest in the tropics, generally from December to February. During El Niño (La 25 

Niña) events in the December to February period, it tends to be drier (wetter) in the Indonesian region, north-east Brazil and 

south-eastern Africa, whereas it tends to be wetter (drier) in the southern USA and Mexico, eastern China and Taiwan, and 

east-central Africa (Fig. 1).  During El Niño (La Niña) events in the June to August period, it tends to be drier (wetter) in the 

Indonesian region, central America and India. 

The generally drier conditions during El Niños suppress global wetland emissions in models by up to 19 Tg/yr in the 1990s 30 

(Hodson et al., 2011). Several anthropogenic sources are subject to the same ENSO forcing and are expected to vary in concert 

with wetlands (e.g., rice agriculture, possibly livestock). At the same time, dry El Niño phases enhance CH4 emissions from 

both natural and anthropogenic biomass burning (van der Werf et al., 2006). Wet La Niña conditions have the opposite effect; 
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summed across the globe they increase wetland emissions and lower biomass burning CH4. As tropical wetland fluxes are 

considerably larger than biomass burning emissions (Saunois et al., 2017), the expected net effect is a lower [CH4] growth rate 

caused by El Niño conditions and a higher one due to La Niñas. The ENSO impact on δ13CH4 should be more pronounced than 

the one on [CH4], because changes in wetland and biomass burning emissions combine to enrich atmospheric CH4 in 13C 

during El Niños and deplete it during La Niñas. Biogenic methanogenesis in wetlands discriminates strongly against 13C and 5 

creates methane that is 13C-depleted (13C = -58‰ for tropical wetlands) relative to the plant precursor material (13C of -12‰ 

to -28‰) and to the combined total of global emissions (13C ~ -53.5‰). In contrast, during burning the isotope ratios of the 

precursor plant material are essentially conserved and lead to 13C ~ -22‰ for CH4 emissions from fires (Schwietzke et al., 

2016). The simultaneous suppression of 13C-depleted wetland CH4 and enhancement of very 13C-rich pyrogenic emissions 

(and vice versa) act in the same direction on the δ13CH4 of the combined source. The latter should be detectable in atmospheric 10 

δ13CH4 records if the impact of ENSO on the CH4 cycle is sufficiently large, as is predicted by the emission anomalies in 

wetland emission models (Hodson et al., 2011), reconstructed from satellite observations of burned area (van der Werf et al., 

2010), and observed through variability in hydrogen cyanide (HCN) (Pumphrey et al., 2018), which is an indicator of biomass 

burning.  

Varying contributions from wetlands dominated by C3 and C4 plants, which differ in the δ13CH4 of their emissions, may be 15 

part of the ENSO-CH4 signal or work to obscure it if controlled by other drivers. In general, we assume that δ13CH4 of the 

various emission sources has not changed over the ~35 yr period of our study. Although such changes, correlated to 

atmospheric CO2 mole fractions, have been reported to occur over centuries to millennia in ice core studies (Möller et al., 

2013), they are likely negligible over the short duration and >20% CO2-change of our study period.  

Changes in OH have also been suggested as partial or dominant drivers in recent CH4 trends, both for the onset of the 1999-20 

2006 plateau (McNorton et al., 2016; Schaefer et al., 2016) and for the post-2007 [CH4] increase (Rigby et al., 2017; Turner 

et al., 2017). A chemistry climate model suggests that ENSO modulates tropical OH (where hydroxyl levels are highest) via 

changes in NOx production through lightning, ozone availability and specific humidity, as well as emissions of reactive carbon 

(Turner et al., 2018). Resulting changes in methane removal could create their own signal in atmospheric records of [CH4] and 

δ13CH4. They could also either reinforce or dampen the emission impacts discussed above.  25 

We conduct correlation analyses between ENSO variability and [CH4], as well as δ13CH4 records to quantify how much ENSO 

anomalies in emissions and sinks affect atmospheric CH4. Specifically, we explore how much of the year-to-year variability 

in atmospheric methane can be attributed to ENSO and how large the ENSO-CH4 signal is in dependence of latitude. We test 

if recent trends in methane growth rate can be attributed to wetland emissions controlled by ENSO dynamics or if agricultural 

sources are more likely drivers. ENSO is quantified by four different indices, which are based on ocean temperature, sea level 30 

pressure gradients and a multivariate combination. [CH4] and δ13CH4 time series from four different locations were used, two 

from stations in the Southern tropics (Samoa, SMO, and Ascension Island, ASC), the Southern mid-latitudes (Baring Head, 

NZ; BHD) taken as representative of the Southern hemisphere, and global average time series of [CH4] and δ13CH4 calculated 

from a network of global stations (Dlugokencky et al., 2011; Schaefer et al., 2016). We also investigate ENSO’s impact on 
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HCN data measured in Lauder, NZ (LAU), to quantify the biomass burning contribution separately. The aim is to detect the 

impact of ENSO on atmospheric CH4 on various spatial scales. 

5.1. Methods 

5.1.1. Data 

For access to all data sets used in this study see Sect. 10 5 

5.1.1.1. ENSO indices 

We used four different indices in our analysis to cover various climatic effects of the ENSO cycle (Figs. 2A and 3A). The 

Southern Oscillation Index (SOI) is calculated from the gradient in mean sea-level pressure observations at Tahiti and Darwin, 

Australia (Troup, 1965). Further information on the SOI is given by (Horel and Wallace, 1981; Trenberth, 1976). The Ocean 

Niño Index (ONI) uses sea surface temperature (SST) anomalies in the eastern Pacific Niño 3.4. region (5°N-5°S, 120-170°W), 10 

which show smaller intra-seasonal variability than pressure and are further smoothed by using 3-month running means 

(Barnston et al., 1997; Kousky and Higgins, 2007).  

The El Niño Modoki Index (EMI) is based on SST anomalies in the central Pacific (Ashok et al., 2007) rather than the eastern 

Pacific (the canonical El Niño). Events with the largest SST anomalies in the Modoki region show differences in the climate 

teleconnections to canonical El Niño events. The tropical precipitation differences are modest, but large differences in 15 

tropospheric circulation and wind anomalies (Yeh et al., 2009) can produce large extra-tropical differences in precipitation and 

temperature. The EMI has also been shown to be a significant predictor of tropical atmospheric ozone variations (Xie et al., 

2014). 

 Variability in both atmospheric pressure and SST anomalies informs the Multivariate ENSO Index (MEI) (Wolter and 

Timlin, 1993; Wolter and Timlin, 1998). The various indices correlate highly with each other (r2 = 0.85 and higher), except 20 

the EMI (r2 between 0.33 and 0.52 for correlations with SOI, ONI and MEI), which deviates from the others during the 

strong 1997-198 El Niño event. Excluding the latter brings the correlation to r2 between 0.74 and 0.79.  

An ENSO index based on precipitation data, the ESPI, (Curtis and Adler, 2000) correlates very highly with the MEI, the 

ONI, and the SOI (r2 of 0.902, 0.909, and 0.839, respectively). Therefore, we did not conduct separate calculations for the 

ESPI.  25 
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5.1.1.2. [CH4] time series 

The [CH4] time series used in this study are from the Global Monitoring Division of the National Oceanic and Atmospheric 

Administration - Earth System Research Laboratory (NOAA ESRL) Carbon Cycle Cooperative Global Air Sampling Network 

(Dlugokencky et al., 2017). These data include records from SMO (latitude 14.24⁰S, longitude 170.57⁰W) and ASC (7.92⁰S, 

14.42⁰W) as well as global averages calculated by smoothing background data temporally and zonally; all with coverage from 5 

1983-2017. In addition, we use data measured at the NZ National Institute of Water and Atmospheric Research (NIWA) from 

BHD in NZ (41.41⁰S, 174.87⁰E; 1992-2017) (Lowe et al., 1991). Both data sets are on the same international scale 

(Dlugokencky et al., 2005), although for the presented analysis internal consistency of the time series is the relevant criterion; 

inter-laboratory offsets do not affect the findings. The individual time series (Figs. 2B-E) show seasonal cycles, inter-annual 

variability (IAV) and long-term trends. To investigate ENSO effects on these different time scales we derived the following 10 

seven records from the individual measurements at each station (Table 1). First, the nominal monthly mean values to capture 

the full variability in the data (“nom”). Second, 12-month running means to represent IAV and trends (“run”). Third, monthly 

resolved growth rate defined as the difference between the following 12 months and the preceding 12 months (“gro”). Fourth, 

a residual (“res”) as calculated by seasonal trend analysis by Loess (STL, Cleveland et al., 1990). The seasonal window was 

set at 120 months, which forces a uniform seasonal cycle over the duration of the record. The residual therefore represents 15 

IAV in the expression of the seasonal cycle as well as other short-term anomalies. Fifth, sixth, and seventh: detrended time 

series where the STL trend component is subtracted from the monthly means with subsequent determination of detrended 

monthly means, 12-month running means, and growth rate (“det-nom”, “det-run”, “det-gro”).  

5.1.1.3. δ13CH4 time series 

The δ13CH4 time series used in this study were measured at three different laboratories, i.e., the Institute of Arctic and Alpine 20 

Research (INSTAAR), USA; the Institute for Environmental Physics (IUP) at Heidelberg University, Germany; and at NIWA. 

Details of the analytical methods are given by Schaefer et al. (2016) and references therein. All values are based on measured 

13C /12C ratios and are reported in the standard δ-notation δ13C = (Rsample/Rstandard-1)*1000‰ as per mille (‰) values where the 

reference standard is Vienna PeeDee Belemnite. Records at SMO (1998-2016) and ASC (2000-2016) are measured at 

INSTAAR. The BHD record (1992-2016) is based on measurements at INSTAAR and NIWA. An annually averaged global 25 

δ13CH4 time series was established by Schaefer et al. (2016) based on data from INSTAAR, NIWA and IUP. In this analysis, 

we use the measurements covering 1992-2016 (Fig. 3C). For the global δ13CH4 data set we conducted the analysis for the 

nominal annual means (“nom”) and growth rate, i.e. difference between two subsequent yearly values (“gro”). We also 

detrended the time series by subtracting linear trends for the sub-periods 1992-1999 and 2007-2016 (“det”) and then calculated 

a detrended growth rate (“det-gro”). For the single-station δ13CH4 records of BHD, ASC, and SMO we derived the same seven 30 

records as described for the [CH4] data (Fig. 3D-F). 
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5.1.1.4. HCN time series 

HCN retrievals were computed from mid-infrared solar spectra measured at LAU (45.04°S, 169.68°E) as part of the Network 

for the Detection for Atmospheric Composition Change (NDACC). The time series has been described by Zeng et al. (2012), 

but the data used here are from updated retrievals using the improved SFIT4 algorithm (NDACC, 2014). The HCN data show 

strong seasonality that is even more pronounced in the updated retrievals. Zeng et al. (2012) found a significant negative trend 5 

for 1997-2009 and attributed it to variations in biomass burning. A similar deseasonalised trend is apparent in the updated 

record. HCN values are here reported as Petamolecules cm-2. Measurements cover the period 1998-2017 when combined for 

two different instruments with a change-over point in 2000. We conducted our analyses for total column values (0-100 km). 

The latter signal is dominated by the tropospheric burden as measured in the 0-12 km height partial column; the correlation 

between total and tropospheric HCN is r2 = 0.997. In addition, we investigated whether the stratospheric HCN burden is 10 

differently impacted by ENSO. To that end, we used the 12-100 km partial column, which holds ~22% of the total HCN 

burden. This layer shows lower correlation with the total column record (r2 = 0.45).  

Analogous to the monthly resolved methane records we constructed monthly means, 12-month running means, growth rates 

and STL residuals for the total column and stratospheric HCN data (Fig. 3B). No detrended records other than STL residual 

were considered.  15 

5.1.2. Analysis 

We conducted correlation analyses between the time series of a chosen ENSO index and either a [CH4], δ13CH4, or HCN record 

as the dependent variable. The degree of correlation is quantified by the square (r2-value) of the Pearson correlation coefficient 

or, alternatively, of the Spearman ranking coefficient. The Pearson coefficient is more commonly used, but it assumes linear 

relationships between the variables and may underestimate nonlinear correlations. We therefore also used the Spearman rank, 20 

which does not require linearity. Note that not all correlation combinations were tested using both coefficients.  

A lag time between ENSO forcing and detection of resulting δ13CH4 or HCN variability at the measurement site, (or in the 

global average) is likely, due to a variety of factors that may lead to lags of unknown length and some of which may be 

cumulative: e.g., hydrology, plant growth and decay, microbial response, seasonal triggers for methanogenesis or burning, as 

well as atmospheric chemistry, mixing, and transport between source regions and sampling sites. Therefore, it is difficult to 25 

define a cut-off for lags. Literature estimates of specific lags range from days (Chamberlain et al., 2016) to 7 months (Zhang 

et al., 2018; Zhu et al., 2017), not counting atmospheric transport. Given ENSO variability with a periodicity of 2-7 years 

(McPhaden et al., 2006), our analysis therefore allows for lag times of up to 5 years in monthly increments in the calculations 

and reports the maximum r2 and lag time (in months) for a given ENSO-[CH4]/δ13CH4/HCN combination. We conducted the 

analysis for all permutations of the four ENSO indices as monthly means and their 12-month running means as well as the 30 

[CH4], δ13CH4, and HCN data products listed in Sect. 2.1 and Table 1. For all [CH4], δ13CH4, and HCN parameters we used 

the period 1998-2016, except for ASC where data are available only from late 2000. Using the same period for all time series 



7 

 

avoids differing correlation results due to varying data coverage. The period includes the strong El Niños of 1998 and 2015, 

as well as the strong La Niñas of 1999, 2007 and 2010. We also calculated correlations for the period 1983-2016 ([CH4] of 

SMO, ASC and global) and 1992-2016 (δ13CH4 at BHD and global).  

5.2. Results 

Most combinations have r2-values <0.1 when comparing one dependent data set to the different ENSO time series (Tables 2-5 

4). In the following, we only summarise results for the highest r2 for each dependent time series (across all the nominal, 

smoothed and detrended records for a station). Given that Pearson coefficient and Spearman rank give comparable results 

(Tables 3 and 4), we quote the Spearman results unless otherwise mentioned. P-values for the Spearman ranks indicate that all 

results for r2>0.1 are significant (p<0.001), except for global δ13CH4 correlations, where no p-values below 0.05 occur. 

Although the analysis provides r2-values for lags up to 60 months (Tables 2-4), we consider it likely that lags of >3 years 10 

indicate spurious correlations given that individual ENSO events last 1-2 years and global atmospheric mixing times are on 

order of 1 year. Therefore, we also report the highest r2 for lags <3 years in the following sections. For other cases with lags 

>3 years in Tables 2-4, the highest relevant r2-value is lower than the reported value, where the latter places an upper limit on 

the influence of ENSO.  

Methane mole fractions show correlations with ENSO of r2-values up to 0.36 at SMO, but only for detrended time series (Table 15 

1). The highest values are from (detrended) growth rates, which can be more indicative of dynamics within an ENSO event, 

rather than its overall emissions impact (Zhang et al., 2018). For SMO detrended [CH4] series, lag times are fairly consistent 

across the various ENSO indices and generally shorter than 1 year. For other [CH4] records at SMO and ASC the highest 

correlations are r2<0.23 and have lags of over 3 years (r2<0.19 for lags <3 years). The global running mean [CH4] time series 

shows r2=0.24 (lag: 4.5 years; r2=0.04 for lag <3 years) with the SOI running mean for the period 1998-2016. However, for 20 

the full length of available data, as well as all BHD records, all correlations are below r2=0.20, with lag times that are variable, 

extremely short (zero or 1 month) or over 3 years.  

The highest correlations are between HCN running means for total column, as well as stratospheric growth rates, and 12-month 

running mean ENSO records (Table 2). Here, ENSO accounts for 30%-51% of the observed variability, depending on the 

ENSO index. For both total and stratospheric HCN, lag times for maximum correlation are generally shorter than one year and 25 

are consistent (≤6 months difference) between the various ENSO indices, with exception of the EMI.  

The δ13CH4 records from the stations SMO, ASC, and BHD all have r2-values below 0.24 (Table 3). Variability in lag times 

between different ENSO indices for the same dependent record is generally high.  

None of the global δ13CH4 series produced statistically robust correlations with ENSO; all p-values were higher than 0.05. The 

following findings are therefore not relevant for further interpretation. The highest correlation is between global detrended 30 

δ13CH4 and SOI monthly means with r2=0.37. Global δ13CH4, is the only parameter where ENSO monthly means produce 

higher correlations than the smoothed (12-month running mean) record. Because the correlation calculation between annual 
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δ13CH4 and ENSO monthly means is specific for the month-of-year, this indicates that global δ13CH4 is more sensitive to the 

seasonality of ENSO than its IAV. The actual ENSO influence on global δ13CH4 is shown through correlation with running 

ENSO indices, which is highest between nominal δ13CH4 values and SOI with Pearson r2 = 0.25 for 1998-2016. For the period 

1992-2016 this value drops to Pearson r2 = 0.20. The lack of statistical robustness for global δ13CH4-ENSO correlations may 

stem from the different resolution of the two sets of time series. In this case, the southern hemispheric record from BHD may 5 

represent the extra-tropical impact of ENSO on δ13CH4.  

The full BHD record for 1992-2016 gives very similar results as the 1998-2016 subset used for comparison with the other 

stations (as discussed above). However, the shorter subset for 1998-2014 produces larger Pearson r2-values (0.26 for running 

means and SOI), and for 2001-2014 we find Pearson r2-values up to 0.38 (growth rate correlated to EMI). These shorter data 

sets omit the strong El Niño events of 1998 and/or 2015-16, which could have been expected to have a strong influence on 10 

methane emissions and consequently δ13CH4.  

For none of the stations (including global average) did the detrended δ13CH4 time series (incl. STL residuals) produce a 

markedly stronger correlation with ENSO than any of the other data series from that station. This is remarkable because ENSO 

can be expected to have more influence on IAV than on the long-term trends, which are quite pronounced.  

5.3. Discussion 15 

5.3.1. General causes and caveats for correlations of [CH4], 13CH4, and HCN with ENSO 

Detected correlations between ENSO indices and [CH4]/δ13CH4/HCN by themselves do not prove a causal relationship. 

However, the underlying mechanisms for a potential forcing have been presented by van der Werf et al. (2006) for biomass 

burning and by Hodson et al. (2011) for wetland CH4 production. Accordingly, a correlation analysis is useful to quantify an 

upper limit of variability in the CH4 cycle attributable to ENSO. Because ENSO simultaneously suppresses wetland CH4 that 20 

is more 13C-depleted than the cumulative methane source and enhances pyrogenic CH4 that is more 13C-enriched (or vice 

versa), the two influences partly cancel for the combined emission rates, i.e. their impact on [CH4]. However, they reinforce 

each other’s impact on total source δ13CH4. It is possible that biomass burning and wetland CH4 production have different 

response times to ENSO forcing, which would weaken their cumulative impact on 13CH4. Similarly, longer atmospheric 

residence time of CH4 (~9 years, Prather et al., 2012) over HCN (~3 months, Li et al., 2000) and a smaller relative portion of 25 

ENSO-sensitive emissions in the global methane source may lead to dampening effects in the [CH4] and 13CH4 variability 

and hence lower correlation with ENSO indices compared to HCN. The available records for HCN and 13CH4 from ASC and 

SMO cover only a small number of ENSO events, which could affect the results. However, when analysing subperiods of 

global and BHD [CH4] and 13CH4 records, we find larger correlations for shorter periods, particularly when strong ENSO 

events are excluded. This shows that the results are not biased against the detection of ENSO influences because records are 30 

too short. We also note that all stations measure background air, they are set up to detect broad spatial and temporal trends and 
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not specific emission events such as an ENSO triggered plume. However, if ENSO is invoked as a main cause of recent trends 

in [CH4] and 13CH4 (Nisbet et al., 2016) this should be manifested in sizeable correlations.  

 

5.3.2. Contrasting correlation patterns for [CH4] and 13CH4 versus HCN 

In all [CH4] and δ13CH4 records, ENSO cycles explain about one third of the variability in detrended records and less than one 5 

quarter in others. This is true even for the Southern tropics, where ENSO has strong climatic impacts and where the majority 

of low-latitude wetland emissions and of biomass burning emissions originate (Kirschke et al., 2013). Correlations found for 

ASC and SMO, which represent this latitude band in our study, exceed those for the Southern mid-latitudes or the global record 

only by a limited margin and only for detrended records. Further, inconsistent lag times, lags of more than three years, and 

higher correlation coefficients for the exclusion of major ENSO events point to spurious correlations.  10 

In contrast, we find a prominent influence of ENSO on the biomass burning proxy HCN. ENSO impacts on HCN have been 

reported before, e.g., by Pumphrey et al. (2018), who observe suppression of HCN levels during La Niña events and 

enhancement during El Niños, particularly in equatorial Asia. That study found a rather confined geographical impact of El 

Niño events with strongly enhanced HCN emissions around Malaysia, Indonesia, and Papua New Guinea, as well as generally 

rapid transport eastward and to the stratosphere. We speculate that the fast, upward transport (although not observed for all El 15 

Niño events) explains why stratosphere growth rates are the most sensitive data set to ENSO. For the total column, the HCN 

burden is concentrated in lower tropospheric levels and may be subjected to more mixing of different air parcels. According 

to the results of Pumphrey et al. (2018), data from LAU in the Southern mid-latitudes are outside the region of the strongest 

HCN signal. This is also evident in the zonal mean HCN climatologies of Sheese et al. (2017). Yet, ENSO accounts for up to 

51% of the variability in our biomass burning proxy record. One explanation for the lower combined wetland-pyrogenic δ13CH4 20 

signal is low sensitivity of wetland CH4 production to ENSO events. This is consistent with r2-values of 0.12-0.26 between 

modelled wetland methane emissions (using different climate data sets as drivers) and MEI as reported by Zhang et al. (2018).  

Alternatively, other processes in the CH4-cycle obscure the ENSO impacts.  

 

5.3.3. Impact of ENSO on methane emission rates 25 

In a correlation analysis by Zhu et al. (2017), ENSO explained 49% of IAV in modelled tropical wetland CH4 emissions. 

This is far higher than the combined effect with biomass burning on 13CH4 in this study and therefore seems to be an 

overestimate. Even so, the magnitude of the modelled emission changes is 6 Tg/yr at most. The modelling study of Hodson 

et al. (2011) finds slightly larger anomalies in global wetland emissions due to ENSO with mean reductions of -9±3 Tg/yr and 

mean gains of +8±4 Tg/yr for El Niño and La Niña events, respectively. Pandey et al. (2017) found in a comprehensive 30 

inversion study that the net effect of the strong 2011 La Niña on tropical and northern extratropical CH4 emissions was a 

global increase of +6.6 Tg/yr.  The wetland emission anomalies are expected to be partly compensated by changes in biomass 

burning that are of opposite sign. We are not aware of studies that quantify biomass burning anomalies for specific ENSO 

events. Assuming that ENSO is the main control of biomass burning emissions of CH4, the IAV in the GFED data (van der 
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Werf et al., 2010) may serve as an indication for possible ENSO impacts. In that case, the standard deviation of 2.4 Tg/yr for 

1998-2014 would approximate the average impact, with maximum anomalies of up to 4 Tg/yr. We use these numbers 

together with results from Hodson et al. (2011) in the following proof-of-concept discussions. The combined wetland – 

biomass burning anomalies are ~6 Tg/yr for average ENSO events and ~8 Tg/yr for extreme ones; restricted to 1-2 yearlong 

individual events. This is well short of the sustained increase after 2007 when yearly emissions were ~20 Tg higher than 5 

during the 1999-2006 plateau period and the 9 Tg/yr reduction during the 1990s (Schaefer et al., 2016).  Previous findings 

that modelled tropical (Zhu et al., 2015) and global (Zhang et al., 2018) wetland CH4 emissions can explain at most 25% and 

14%, respectively, of the variation in atmospheric methane growth rates therefore agree with our results that ENSO exerts 

only a minor control on atmospheric CH4.  

 10 

5.3.4. Process based understanding of ENSO impact on wetlands 

A major contribution of ENSO to the recent [CH4] increase is inconsistent with independent assessments of wetland response, 

as shown above, but our findings do not detect any clear minor contribution of ENSO to [CH4] and 13CH4 timeseries, either. 

Several reasons may explain the lack of correlation, where we assume that wetlands respond less than proposed. The main 

ENSO forcing on tropical wetland CH4 production is thought to be via wetland extent, which is driven by precipitation (Hodson 15 

et al., 2011; Holmes et al., 2015; in contrast Zhu et al., 2017, find temperature to be dominant). However, a case study in the 

Eastern Amazon finds that precipitation changes explain only 21% of wetland CH4 emission variance during the wet season 

and 7% over the whole year (Basso et al., 2016). The lack of a direct link between precipitation and wetland CH4 production 

is also evident in the large range in output from various wetland models even when forced with the same meteorological 

conditions (Melton et al., 2013), although the disagreement between models could also be due to an incomplete understanding 20 

of influences on the wetland cycle other than precipitation (Turetsky et al., 2014; Bridgham et al., 2013; Parker et al., 2018). 

Zhang et al. (2018) report an evolving response of wetland emissions to El Niños, where an initial reduction due to decreased 

wetland extend is counteracted by increased microbial activity under higher temperatures during the later stages of the event. 

A complex response of wetland CH4 production is not only seen in models, however. The inversion study of Pandey et al. 

(2017) found a global increase of +6.6 Tg/yr for the strong 2011 La Niña, but a reduction by -6.1 Tg/yr during the 2012 weak 25 

La Niña. Similarly, Liu et al. (2017) found that El Niño conditions produced opposing weather forcing and carbon cycle 

responses between various tropical regions, as well as differing ones between the 1998 and 2015 events. Another example of 

this is flooding in the Amazon region during La Niña events, while flooding in the wetlands of the Paraná region occurs during 

El Niños (Parker et al., 2018). Depending on the strength and geographical expression of the climate anomaly, ENSO may 

thus cause regional or global emission anomalies that are opposite to the expected pattern.  30 

 

5.3.5. Evaluating the consistency of ENSO impacts throughout the record 

The atmospheric [CH4] history shows global emission reductions in the 1990s and increases after 2007 (Schaefer et al., 2016). 

This would be consistent with ENSO forcing of the methane cycle where the 1990s were dominated by drier El- Niño periods, 
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whereas the recent years of predominant La Niña conditions were wetter. Given that the magnitude of the low-latitude wetland 

CH4 source exceeds pyrogenic emissions rates, the expected emissions history would qualitatively match atmospheric trends. 

Also, for a short period between 2008 and 2011 Schaefer et al. (2016) observed the activation of CH4 emissions with an 

extremely 13C-depleted cumulative δ13CH4 (~-75‰). Such a value on the global scale is hard to match by a single source type. 

The cumulative effect of wetland enhancement and fire suppression forced by the 2008 La Niña event would provide an 5 

excellent explanation. However, the isotopic signal of the emissions reductions in the 1990s should be similar if ENSO forcing 

was the cause. In contrast, Schaefer et al. (2016) found that the “lost emissions” during that period are quite 13C-rich and rather 

indicate a reduction in fossil fuel methane. An alternative interpretation of these isotope trends by Rice et al. (2016) requires 

simultaneous reductions of pyrogenic and biogenic emissions, which is also inconsistent with the expected ENSO forcing. A 

consistent match between ENSO phases and global δ13CH4 is therefore neither evident in the dominant δ13CH4 trends nor in 10 

the correlation analysis presented in this study.   

 

5.3.6. Using isotopes to attribute emission changes 

The impact of an ENSO emissions “perturbation” (i.e. the combined emissions anomaly of an event) on atmospheric 13CH4 

can be assessed in isotope mass balance calculations according to:  15 

 Stotal*total = S1*1+ S2*2+ S3*3  (1)  

Where, for a given source, S and  represent emission rate and 13CH4, respectively (note that for scenarios discussed here S 

may be negative, i.e., a reduction in emissions). Using generic isotope source signatures for biogenic, fossil fuel and pyrogenic 

methane emissions from Schwietzke et al. (2016), we find that the average La Niña perturbations proposed in section 4.3. have 

an effective 13CH4 of -79‰, with -83‰ for extreme ones. As expected, the combined isotope leverage of wetland 20 

enhancement and fire reductions on the global source is strong, equalling the leverage of much larger source anomalies (20 

Tg/yr) with lower 13CH4 of ~-60‰ after 2007 as calculated by Schaefer et al. (2016). In addition to the assumed 6 Tg/yr 

ENSO perturbation, another ~14 Tg/yr of emissions with 13CH4=-52‰ would be necessary to produce the observed [CH4] 

and 13CH4 trends. The isotope mass balance then shows that the non-ENSO additional emissions are a roughly equal mix of 

fossil fuel and biogenic methane. Noting that the assumption that all years after 2007 experienced average La Niña conditions 25 

is unrealistic; these findings therefore show the following three points: (i) ENSO effects alone cannot explain the post-2007 

[CH4]-rise. (ii) There was an increase in biogenic sources in addition to ENSO driven wetland anomalies. Other wetland 

variability may have contributed to the rise (Zhang et al., 2018); given the range in wetland model output (Melton et al., 2014) 

this stands to be confirmed by ensemble runs. In the absence of boreal emission increases (Sweeney et al., 2016), the only 

biogenic source large enough to accommodate the required changes is agriculture (Saunois et al., 2016). (iii) Any ENSO-30 

driven reduction in biomass burning after 2007 allows for, or requires, growing fossil fuel emissions. The latter has recently 

been proposed by Worden et al. (2017), who reconstructed larger biomass burning reductions after 2007 than recorded by 

GFED, although without assigning the reductions to ENSO or other causes.  
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5.3.7. Role of other methane cycle processes 

There is an alternative explanation for the lack of correlation between ENSO and the methane records. ENSO could affect CH4 

emissions from tropical wetlands and biomass burning as predicted by Hodson et al. (2011) and van der Werf et al. (2006), 5 

respectively, but the resulting isotopic signal is overwhelmed by other components of the CH4 cycle. Such influences could be 

other sources (particularly anthropogenic ones), variability in atmospheric transport or changes in CH4 sink processes. A 

stronger ENSO signal in Southern tropical [CH4] and δ13CH4 compared to Southern mid-latitudes and global average would 

be expected for several of these scenarios. This is because both biomass burning and wetland emissions show strong maxima 

in the Southern tropics and should be the dominant sources in this latitudinal band (Kirschke et al., 2013). The detrended [CH4] 10 

records from SMO show such a signal, but one that explains only one third of the IAV and doesn’t seem to have significant 

impact on the trends. Further, we don’t find higher ENSO forcing of the δ13CH4 variability even in the core region of its 

climatic impact. Corbett et al. (2017) show that during La Niña events high surface temperatures over the Western Pacific lead 

to upward transport over the Indonesian region (a CH4 source area from wetlands and rice paddies) and negative CH4 anomalies 

in the mid-troposphere (tropical surface air with relatively low [CH4] replaces air from the Northern Hemisphere with higher 15 

[CH4]). This mechanism would dampen the signal of higher La Niña emissions in surface records like SMO and ASC. 

However, the corresponding El Niño anomalies in mid-tropospheric CH4 over the Central Pacific are smaller. This indicates 

that Central Pacific surface air, where there are no CH4 sources, is closer in [CH4] to mid-tropospheric levels than surface air 

from the Western Pacific. Unless there were strong longitudinal differences in mid-tropospheric [CH4], this is inconsistent 

with a scenario where high concentrations of CH4 are generated over the Western Pacific in La Niñas but transported upwards 20 

and away from the surface stations used in this study. On hemispheric or global scales, transport processes are unlikely to play 

a strong role, given the short mixing time of methane relative to its atmospheric turn-over.    

The low correlations of [CH4] and δ13CH4 with ENSO rule out a dominant role for ENSO triggered sink changes in atmospheric 

methane records. Removal processes could lead to either amplification or dampening of source signals. Higher emissions of 

methane and carbon monoxide from biomass burning will draw down OH and weaken the sink. Emission factors from fires 25 

for CO are between 10 and 30-fold higher than for CH4 (Van der Werf et al., 2017), so that the biomass burning dynamics 

dominate the source of reactive carbon, leaving less OH during El Niños and more during La Niñas to draw down CH4. This 

would provide a negative feedback for the emissions [CH4]-signal from ENSO forcing. In contrast, the feedback on the ENSO 

emissions δ13CH4-signal would be positive due to varying enrichment of 13C-methane through sink fractionation (less removal 

leads to less 13C-enrichment of relatively 13C-depleted wetland emissions during La Niñas; more removal increases the 13C-30 

enrichment from biomass burning emissions during El Niños further). In addition to the reactive carbon effect, Turner et al. 

(2018) found a further OH increase during La Niñas due to higher lightning rates with NOx production. Turner et al. (2018) 

could attribute 17% of OH variability that is forced by climate cycles (rather than emissions of other atmospheric compounds) 

to ENSO. This is a minor part of the variability, but in consequence the dampening effect on [CH4] and the reinforcing feedback 
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on δ13CH4 would add further to the reactive carbon feedbacks. In our correlation results these sink impacts are not apparent, 

as the [CH4] correlations for the tropical stations are higher than δ13CH4 correlations (Tables 2 and 3). Nevertheless, the OH-

dynamics provide a possible explanation for the limited ENSO impact on [CH4] variability and trends. They also make δ13CH4 

a conservative proxy for the influence that ENSO exerts on tropical methane.  

Whether ENSO has less influence on CH4 emissions than assumed or whether such an impact is overwhelmed by atmospheric 5 

removal or other CH4 cycle processes, our results suggest that global atmospheric trends in [CH4] and δ13CH4 are dominated 

by other components in the methane budget.  

6. Conclusions 

To study the impact of natural climate variability on recent trends in atmospheric methane concentration, we investigated the 

correlation between ENSO cycles and records of the mole fractions and stable carbon isotopes of methane, as well as HCN as 10 

a biomass burning indicator. As δ13CH4 is subject to a mutually reinforcing signal from ENSO suppression of wetland 

emissions and enhancement of biomass burning CH4 (or vice versa), as well as positive feedbacks from OH-dynamics, it is 

particularly suited to study the role of ENSO in the CH4 cycle.  

We find a sizeable effect of ENSO on biomass burning, as indicated by HCN variability in Southern mid-latitudes. In contrast, 

ENSO explains a smaller fraction (≤37%) of [CH4] IAV even in the Southern tropics, where the expected effect should be 15 

greatest. Trends in [CH4] and δ13CH4 in these latitudes are far less influenced by ENSO (≤23%).  On hemispheric and global 

scales the ENSO signal in the methane records is similarly weak. Our results do not rule out that ENSO influences CH4 

emissions from wetlands and biomass burning through temperature, enhanced precipitation or droughts in key regions, but any 

such impacts are overwhelmed by OH-dynamics or other source and sink processes. We review literature estimates of ENSO-

driven emissions and find them too small and sporadic to account for the post-2007 rise. Counteracting OH-dynamics are 20 

expected to further dampen any influence ENSO may have on methane growth rates. Our findings suggest that ENSO is not 

an important driver for recent global trends in methane, including the [CH4] plateau and the increase in [CH4] since 2007. The 

latter must therefore have different causes. Our results do not rule out that wetland production is a contributor to the post-2007 

[CH4]-rise if driven by environmental controls other than ENSO. This is suggested by an increase in wetland CH4 production 

between the periods 2000-2006 and 2006-2014, although with the limited confidence of a single wetland emissions model 25 

(Zhang et al., 2018). The longer the atmospheric [CH4] and δ13CH4 trends persist, the less probable are processes that impact 

IAV and short-lived cyclical events like ENSO as the driver. Therefore, we consider increasing anthropogenic sources as the 

more likely cause of the [CH4]-rise. Changes in removal rates via OH have been suggested as an additional (Rigby et al., 2017) 

or alternative (Turner et al., 2017) driver of the increase, but recent work suggests that sink impacts are not dominant (Naus et 

al., 2018). There is evidence for additional methane emissions from agriculture (Wolf et al., 2017) and from fossil fuel sources 30 

(Hausmann et al., 2016); both may contribute to the current rise in [CH4] (Worden et al., 2017). Further identification of these 

processes is necessary to inform climate change mitigation policies and climate projections.  
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Fig. 1: Regions of ENSO impacts and monitoring stations used in this study. 

The map indicates the locations of the atmospheric monitoring stations on Ascension Island (ASC), Samoa (SMO), Baring 5 

Head (BHD) and Lauder (LAU). General precipitation anomalies during northern hemisphere El Niño conditions for Dec-Feb 

are taken from https://www.climate.gov/news-features/featured-images/global-impacts-el-nino-and-la-nina. El Niño dry 

regions in Jun-Aug are similar for southern Asia and South America; during La Niña events opposite patterns for wet- and 

dryness develop in roughly the same regions.  
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Fig. 2: Selected time series of ENSO indices and [CH4] 

Panels from top to bottom: (A) multivariate ENSO Index (MEI), Southern Oscillation Index (SOI), Ocean Niño Index (ONI), 

and El Modoki Index (EMI) shown for nominal literature data and their 12-month running means. (B) Global [CH4] records; 

monthly means, 12-month running mean, detrended 12-month running mean, as well as nominal and detrended growth rates. 5 

(C) [CH4] records from BHD (D) [CH4] records from ASC. (E) [CH4] records from SMO. BHD, ASC and SMO display same 

records as for global time series.  
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Fig. 3: Selected time series of ENSO indices, HCN and 13CH4 

Panels from top to bottom: (A) multivariate ENSO Index (MEI), Southern Oscillation Index (SOI), Ocean Niño Index (ONI), 

and El Modoki Index (EMI) shown for nominal literature data and their 12-month running means. (B) HCN records as 12-

month running means from LAU for total atmospheric column and stratosphere (12-100 km) and respective growth rates. (C) 

Global annually averaged 13CH4 according to Schaefer et al. (2016) updated to end of 2016; nominal and detrended values 5 

and their respective growth rates. (D) 13CH4 from BHD; monthly means, 12-month running mean, detrended 12-month 

running mean, as well as nominal and detrended growth rates. (E) 13CH4 from ASC. (F) 13CH4 from SMO. ASC and SMO 

display same records as for BHD. Note scale differences between all 13C-axes to accentuate variability for comparison with 

ENSO.  
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Table 1: Description of time series products used in the correlation analyses.  

Parameter Time series Description 

[C] global nom global monthly means 

global gro global monthly growth rates 

global run 12-month running mean of global monthly means  

global res STL residual of global monthly means 

glob det-
nom 

detrended global monthly means 

glob det-gro detrended global monthly growth rates 

glob det-run detrended 12-month running mean of global monthly means 

C and 

[C] 
NNN* nom station monthly means 

NNN* gro station monthly growth rates 

NNN* run 12-month running mean of station monthly means 

NNN* res STL residual of station monthly means 

NNN* det-
nom 

detrended station monthly means 

NNN* det-
gro 

detrended station monthly growth rates 

NNN* det-
run 

detrended 12-month running mean of station monthly means 

HCN (LAU) total nom Total column monthly means 

total gro Total column monthly growth rates 

total run Total column 12-month running mean of station monthly means 

total res Total column STL residual of station monthly means 

strat. nom Stratosphere monthly means 

strat. gro Stratosphere monthly growth rates 

strat. run Stratosphere 12-month running mean of station monthly means  

strat. res Stratosphere STL residual of station monthly means 

C global nom global yearly means 

global gro global yearly growth rates 

global det detrended global yearly means 

global det-
gro 

detrended global yearly growth rates 

 

*NNN as station acronym ASC, BHD, or SMO 

 

  5 



27 

 

Table 2: Spearman correlation of methane mole fraction with ENSO variability. 

Correlations (r2-values) for the Spearman ranking coefficient between [CH4] time series from various sites and ENSO indices 

with lag times (in months) for optimum results. Colour backgrounds indicate r2-values in 10% classes. Grey background 

indicates correlations with p-values > 0.001.  

 5 

Time series MEI nom MEI run ONI nom ONI run SOI nom SOI run EMI nom EMI run 

 r2 lag r2 lag r2 lag r2 lag r2 lag r2 lag r2 lag r2 lag 

[C]                 
global nom 0.08 59 0.12 58 0.04 48 0.06 50 0.10 59 0.17 54 0.04 5 0.03 10 

global gro 0.10 6 0.10 6 0.08 7 0.09 59 0.06 8 0.08 33 0.06 50 0.09 52 

global run 0.10 56 0.18 53 0.06 55 0.09 51 0.11 57 0.24 54 0.07 8 0.08 10 

global res 0.06 49 0.06 47 0.09 49 0.11 48 0.04 25 0.06 60 0.10 0 0.09 0 

glob det-nom 0.10 49 0.02 49 0.06 49 0.04 50 0.05 29 0.02 60 0.07 9 0.03 5 

glob det-gro 0.02 58 0.04 60 0.00 58 0.00 59 0.02 59 0.06 60 0.03 0 0.04 0 

glob det-run 0.05 49 0.06 48 0.09 48 0.12 49 0.03 0 0.04 60 0.08 0 0.08 1 

BHD nom 0.10 56 0.11 58 0.05 45 0.05 47 0.11 56 0.15 59 0.07 53 0.05 51 

BHD gro 0.08 24 0.10 27 0.10 51 0.11 55 0.08 24 0.12 24 0.15 60 0.19 60 

BHD run 0.05 44 0.11 44 0.04 0 0.07 0 0.08 45 0.17 53 0.08 7 0.09 7 

BHD res 0.03 46 0.02 16 0.02 16 0.02 16 0.02 16 0.02 14 0.02 33 0.02 29 

BHD det-nom 0.07 44 0.01 17 0.02 33 0.01 36 0.03 13 0.01 17 0.04 30.00 0.00 29 

BHD det-gro 0.13 56 0.17 58 0.12 23 0.13 59 0.10 23 0.14 59 0.08 60 0.08 24 

BHD det-run 0.10 60 0.14 60 0.07 44 0.09 42 0.07 60 0.11 60 0.08 33 0.11 32 

ASC nom 0.09 56 0.11 45 0.05 44 0.06 46 0.10 42 0.16 46 0.05 53 0.04 50 

ASC gro 0.09 29 0.13 31 0.11 53 0.13 55 0.06 31 0.11 32 0.15 50 0.21 53 

ASC run 0.08 43 0.16 45 0.07 44 0.10 44 0.11 43 0.22 43 0.06 46 0.06 47 

ASC res 0.08 42 0.09 18 0.12 42 0.12 42 0.06 41 0.06 60 0.08 0 0.07 2 

ASC det-nom 0.11 43 0.02 45 0.06 43 0.03 45 0.06 43 0.01 44 0.06 4 0.02 2 

ASC det-gro 0.20 10 0.26 10 0.18 10 0.21 11 0.14 10 0.20 10 0.09 51 0.12 53 

ASC det-run 0.09 40 0.14 17 0.13 41 0.15 42 0.05 17 0.08 17 0.09 0 0.08 1 

SMO nom 0.07 56 0.12 58 0.03 45 0.04 48 0.08 56 0.16 59 0.02 10 0.02 50 

SMO gro 0.19 17 0.18 10 0.15 10 0.17 11 0.10 9 0.12 10 0.13 46 0.17 49 

SMO run 0.07 51 0.14 53 0.04 49 0.05 51 0.08 53 0.18 55 0.01 7 0.01 10 

SMO res 0.16 0 0.13 1 0.22 1 0.15 1 0.14 0 0.15 2 0.17 0 0.14 3 
SMO det-
nom 0.15 0 0.11 1 0.18 0 0.14 1 0.09 0 0.12 2 0.10 0 0.11 3 

SMO det-gro 0.31 9 0.36 10 0.31 10 0.35 11 0.22 9 0.33 11 0.10 10 0.11 12 

SMO det-run 0.26 1 0.24 2 0.29 2 0.27 3 0.21 2 0.25 2 0.23 2 0.21 4 
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Table 3: Spearman correlation of 13CH4 and HCN with ENSO variability. 

Correlations (r2-values) for the Spearman ranking coefficient between dependent variables, i.e. 13CH4 and HCN time series 5 

from various sites, and ENSO indices with lag times (in months) for optimum results. Colour backgrounds indicate r2-values 

in 10% classes. Grey background indicates correlations with p-values > 0.001.  

 

Time series MEI nom MEI run ONI nom ONI run SOI nom SOI run EMI nom EMI run 

 r2 lag r2 lag r2 lag r2 lag r2 lag r2 lag r2 lag r2 lag 

HCN (LAU)                 

total nom 0.13 5 0.03 6 0.06 5 0.05 8 0.08 4 0.04 8 0.10 14 0.05 12 

total gro 0.21 1 0.26 2 0.27 1 0.27 2 0.18 0 0.30 1 0.19 0 0.27 1 

total run 0.23 7 0.30 9 0.35 7 0.39 9 0.23 8 0.38 8 0.40 9 0.51 10 

total res 0.10 7 0.09 7 0.13 7 0.13 7 0.10 10 0.13 6 0.08 9 0.10 10 

strat. nom 0.10 10 0.05 11 0.05 41 0.03 0 0.08 40 0.05 43 0.09 39 0.08 0 

strat. gro 0.36 0 0.43 0 0.40 0 0.44 1 0.22 0 0.37 0 0.21 0 0.30 0 

strat. run 0.03 37 0.05 38 0.05 0 0.08 0 0.05 40 0.08 41 0.07 18 0.10 0 

strat. res 0.10 7 0.07 7 0.10 7 0.08 8 0.07 8 0.07 8 0.11 44 0.10 38 

C                 
global nom 0.17 2 0.17 49 0.13 2 0.12 50 0.27 46 0.27 49 0.16 4 0.05 47 

global gro 0.20 39 0.18 41 0.18 39 0.16 41 0.34 49 0.20 15 0.15 4 0.08 16 

global det 0.14 1 0.19 14 0.08 20 0.12 16 0.37 22 0.27 17 0.13 15 0.12 16 

global det-
gro 0.23 58 0.16 58 0.18 59 0.18 60 0.37 55 0.24 56 0.15 15 0.12 16 

BHD nom 0.09 56 0.09 60 0.04 56 0.04 59 0.09 55 0.13 60 0.07 42 0.06 39 

BHD gro 0.05 2 0.06 2 0.06 2 0.07 3 0.08 2 0.13 2 0.10 44 0.11 44 

BHD run 0.09 14 0.14 16 0.11 15 0.15 17 0.10 15 0.20 17 0.07 29 0.09 36 

BHD res 0.03 6 0.03 10 0.04 7 0.03 9 0.04 6 0.03 10 0.09 33 0.09 36 

BHD det-nom 0.07 8 0.01 8 0.03 7 0.02 9 0.05 6 0.01 10 0.06 42 0.05 38 

BHD det-gro 0.07 1 0.09 1 0.09 1 0.11 2 0.09 2 0.13 12 0.10 45 0.11 45 

BHD det-run 0.07 9 0.09 11 0.08 12 0.10 12 0.06 9 0.09 13 0.15 32 0.20 35 

ASC nom 0.08 54 0.08 44 0.05 54 0.04 45 0.08 55 0.13 45 0.05 52 0.03 49 

ASC gro 0.10 13 0.14 13 0.10 13 0.09 13 0.11 12 0.22 12 0.13 9 0.13 7 

ASC run 0.08 22 0.13 23 0.08 22 0.10 22 0.12 22 0.23 22 0.12 20 0.14 20 

ASC res 0.03 17 0.04 21 0.03 16 0.02 19 0.05 18 0.06 20 0.03 14 0.03 19 

ASC det-nom 0.05 18 0.03 22 0.03 17 0.01 19 0.06 18 0.04 17 0.05 14 0.01 16 
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ASC det-gro 0.07 13 0.07 14 0.05 13 0.05 60 0.06 12 0.11 13 0.07 8 0.05 6 

ASC det-run 0.04 22 0.05 60 0.04 60 0.04 60 0.07 22 0.09 22 0.06 32 0.06 32 

SMO nom 0.06 56 0.08 55 0.04 43 0.04 44 0.08 56 0.12 42 0.04 40 0.05 38 

SMO gro 0.02 13 0.03 24 0.02 23 0.03 25 0.04 0 0.06 13 0.10 43 0.10 44 

SMO run 0.07 15 0.12 18 0.08 16 0.10 19 0.09 16 0.19 20 0.06 19 0.07 21 

SMO res 0.09 0 0.08 0 0.10 1 0.08 2 0.09 1 0.07 3 0.06 30 0.06 35 
SMO det-
nom 0.06 0 0.06 1 0.08 1 0.06 1 0.06 3 0.05 3 0.06 30 0.05 35 

SMO det-gro 0.05 23 0.06 24 0.04 23 0.06 25 0.03 0 0.03 0 0.09 42 0.08 42 

SMO det-run 0.17 1 0.20 1 0.20 2 0.22 2 0.12 4 0.16 3 0.13 26 0.14 30 
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Table 4: Pearson correlation of 13CH4 and HCN with ENSO variability. 

Correlations (r2-values) for the Pearson correlation coefficient between dependent variables, i.e. 13CH4 and HCN time series 

from various sites, and ENSO indices with lag times (in months) for optimum results. Colour backgrounds indicate r2-values 

in 10% classes. Results have not been screened for p-values.  
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Time series MEI nom MEI run ONI nom ONI run SOI nom SOI run EMI nom EMI run 

 r2 lag r2 lag r2 lag r2 lag r2 lag r2 lag r2 lag r2 lag 

HCN (LAU)                 

total nom 0.10 5 0.03 5 0.04 4 0.04 6 0.06 4 0.04 6 0.10 14 0.06 11 

total gro 0.22 0 0.30 2 0.27 1 0.30 1 0.16 0 0.28 2 0.19 2 0.24 1 

total run 0.22 4 0.29 6 0.34 6 0.40 7 0.18 6 0.34 8 0.36 10 0.46 11 

total res 0.11 7 0.13 5 0.14 5 0.16 6 0.09 7 0.13 7 0.09 10 0.08 11 

strat. nom 0.18 6 0.13 9 0.08 7 0.08 9 0.07 5 0.09 9 0.09 39 0.11 0 

strat. gro 0.42 0 0.54 0 0.49 0 0.55 0 0.22 0 0.39 0 0.18 1 0.25 1 

strat. run 0.12 14 0.17 12 0.05 11 0.07 13 0.05 17 0.11 13 0.18 0 0.18 0 

strat. res 0.17 6 0.16 6 0.17 6 0.17 7 0.08 5 0.12 8 0.10 39 0.09 37 

C                 
global nom 0.16 1 0.16 50 0.14 2 0.09 50 0.24 46 0.25 39 0.13 3 0.05 50 

global gro 0.20 39 0.14 42 0.16 39 0.13 43 0.28 49 0.20 15 0.12 41 0.10 0 

global det 0.18 11 0.15 13 0.15 11 0.12 13 0.32 12 0.24 15 0.11 15 0.08 17 

glob det-gro 0.14 40 0.13 58 0.13 58 0.12 59 0.28 49 0.14 59 0.16 15 0.10 16 

BHD nom 0.10 56 0.09 60 0.04 0 0.05 0 0.10 55 0.14 60 0.05 42 0.04 39 

BHD gro 0.07 61 0.10 60 0.08 0 0.09 1 0.08 2 0.14 1 0.14 45 0.17 47 

BHD run 0.10 0 0.13 0 0.11 0 0.13 0 0.09 62 0.18 57 0.04 38 0.06 41 

BHD res 0.05 6 0.05 9 0.06 7 0.05 9 0.06 6 0.04 10 0.07 35 0.05 9 

BHD det-nom 0.07 8 0.02 7 0.03 7 0.02 8 0.06 6 0.02 9 0.05 42 0.04 34 

BHD det-gro 0.10 0 0.13 0 0.13 0 0.15 1 0.07 2 0.13 0 0.12 45 0.14 47 

BHD det-run 0.10 9 0.13 10 0.11 10 0.14 12 0.06 9 0.10 12 0.18 33 0.23 34 

ASC nom 0.09 54 0.08 58 0.04 54 0.04 37 0.09 55 0.16 33 0.04 52 0.03 32 

ASC gro 0.10 14 0.14 14 0.08 13 0.10 13 0.08 12 0.19 13 0.15 5 0.22 7 

ASC run 0.07 51 0.11 54 0.04 50 0.06 53 0.09 51 0.20 27 0.05 22 0.08 23 

ASC res 0.03 17 0.04 22 0.03 18 0.02 19 0.05 29 0.07 24 0.04 14 0.03 18 

ASC det-nom 0.06 18 0.04 22 0.03 18 0.01 18 0.06 29 0.05 32 0.05 15 0.02 17 

ASC det-gro 0.07 14 0.08 14 0.04 13 0.05 59 0.05 13 0.09 14 0.07 8 0.10 7 

ASC det-run 0.07 22 0.09 23 0.04 59 0.05 59 0.07 25 0.16 24 0.06 56 0.08 57 

SMO nom 0.07 56 0.08 54 0.03 45 0.04 45 0.09 42 0.14 45 0.05 41 0.05 39 

SMO gro 0.04 66 0.04 67 0.04 66 0.03 25 0.03 0 0.06 0 0.10 43 0.11 43 

SMO run 0.07 50 0.10 49 0.03 38 0.05 0 0.09 51 0.18 49 0.03 38 0.04 35 

SMO res 0.10 0 0.07 2 0.10 1 0.07 3 0.10 1 0.06 5 0.06 14 0.06 16 
SMO det-
nom 0.07 0 0.06 2 0.08 1 0.05 3 0.07 1 0.05 5 0.06 14 0.05 16 

SMO det-gro 0.05 22 0.05 24 0.05 66 0.06 25 0.02 26 0.03 26 0.06 42 0.07 42 

SMO det-run 0.06 1 0.06 2 0.07 2 0.08 3 0.05 15 0.07 16 0.14 16 0.19 20 
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