Experimental assessment of the sensitivity of an estuarine phytoplankton fall bloom to acidification and warming

Robin Bénard¹, Maurice Levasseur¹, Michael Grant Scarratt², Marie-Amélie Blais¹, Alfonso Mucci³,
 Gustavo Ferreyra⁴, Michel Starr², Michel Gosselin⁴, Jean-Éric Tremblay¹, Martine Lizotte¹

¹Département de biologie, Université Laval, 1045 avenue de la Médecine, Québec, Québec G1V 0A6, Canada

⁶ ²Fisheries and Oceans Canada, Maurice Lamontagne Institute, P.O. Box 1000, Mont-Joli, Québec G5H 3Z4, Canada

7 ³Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montréal, Québec H3A 2A7, Canada

8 ⁴Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski,

9 Québec G5L 3A1, Canada

10 Correspondence: Robin Bénard (robin.benard.1@ulaval.ca)

11 Abstract. We investigated the combined effect of ocean acidification and warming on the dynamics of the phytoplankton fall 12 bloom in the Lower St. Lawrence Estuary (LSLE), Canada. Twelve 2600 L mesocosms were set to initially cover a wide range 13 of pH_T (pH on the total proton scale) from 8.0 to 7.2 corresponding to a range of pCO₂ from 440 to 2900 μ atm, and two 14 temperatures (in situ and +5 °C). The 13-day experiment captured the development and decline of a nanophytoplankton bloom 15 dominated by the chain-forming diatom *Skeletonema costatum*. During the development phase of the bloom, increasing pCO₂ 16 influenced neither the magnitude nor the net growth rate of the nanophytoplankton bloom whereas increasing the temperature 17 by 5 °C stimulated the chlorophyll a (Chl a) growth rate and maximal particulate primary production (P_P) by 76 % and 63 %, 18 respectively. During the declining phase of the bloom, warming accelerated the loss of diatom cells, paralleled by a gradual 19 decrease in the abundance of photosynthetic picoeukaryotes and a bloom of picocyanobacteria. Increasing pCO_2 and warming 20 did not influence the abundance of picoeukaryotes while picocyanobacteria abundance was reduced by the increase in pCO_2 21 when combined with warming in the latter phase of the experiment. Over the full duration of the experiment, the time-22 integrated net primary production was not significantly affected by the pCO₂ treatments or warming. Overall, our results 23 suggest that warming, rather than acidification, is more likely to alter phytoplankton autumnal bloom development in the LSLE 24 in the decades to come. Future studies examining a broader gradient of temperatures should be conducted over a larger seasonal 25 window in order to better constrain the potential effect of warming on the development of blooms in the LSLE and its impact 26 on the fate of primary production.

27 **1. Introduction**

Anthropogenic emissions have increased atmospheric carbon dioxide (CO_2) concentrations from their pre-industrial value of 280 to 412 ppm in 2017, and concentrations of 850–1370 ppm are expected by the end of the century under the business-as-30 usual scenario RCP 8.5 (IPCC, 2013). The global ocean has already absorbed about 28 % of these anthropogenic CO_2 31 emissions (Le Quéré et al., 2015), leading to a global pH decrease of 0.11 units (Gattuso et al., 2015), a phenomenon known 32 as Ocean Acidification (OA). The surface ocean pH is expected to decrease by an additional 0.3–0.4 units under the RCP 8.5 33 scenario by 2100, and as much as 0.8 units by 2300 (Caldeira and Wickett, 2005; Doney et al., 2009; Feely et al., 2009). The 34 accumulation of anthropogenic CO₂ in the atmosphere also results in an increase in the Earth's heat content that is primarily 35 absorbed by the ocean (Wijffels et al., 2016), leading to an expected rise of sea surface temperatures of 3 to 5 °C by 2100 36 (IPCC, 2013). Whereas the effect of increasing atmospheric CO₂ partial pressures (pCO₂) on ocean chemistry is relatively well 37 documented, the potential impacts of OA on marine organisms and how their response to OA will be modulated by the 38 concurrent warming of the ocean surface waters are still the subject of much debate (Boyd and Hutchins, 2012; Gattuso et al., 39 2013).

40 Over the last decade, there has been increasing interest in the potential effects of OA on marine organisms (Kroeker et al., 41 2013). The first experiments were primarily conducted on single phytoplankton species (reviewed in Riebesell and Tortell, 42 2011), but subsequent mesocosm experiments highlighted the impact of OA on the structure and productivity of complex 43 plankton assemblages (Riebesell et al., 2007, 2013). Due to their widely different initial and experimental conditions, these 44 ecosystem-level experiments generated contrasting results (Schulz et al., 2017) but some general patterns nevertheless 45 emerged. For example, diatoms generally benefit from higher pCO₂ through stimulated photosynthesis and growth rates since 46 the increase in CO₂ concentrations compensates for the low affinity of RubisCO towards CO₂ (Giordano et al., 2005; Gao and 47 Campbell, 2014). Although most phytoplankton species have developed carbon concentration mechanisms (CCM) to 48 compensate for the low affinity of RubisCO towards CO₂, CCM efficiencies differ between taxa, rendering predictions of the 49 impact of a CO_2 rise on the downregulation of CCM rather difficult (Raven et al., 2014). For example, some studies 50 unexpectedly reported no significant or very modest stimulation of primary production under elevated CO₂ concentrations 51 (Engel et al., 2005; Eberlein et al., 2017). OA can ultimately affect the structure of phytoplankton assemblages. Small cells 52 such as photosynthetic picoeukaryotes can benefit directly from an increase in pCO_2 as CO_2 can passively diffuse through their 53 boundary layer (Beardall et al., 2014), and the smallest organisms within this group could benefit most from the increase 54 (Brussaard et al., 2013). Accordingly, OA experiments have typically favoured smaller phytoplankton cells (Yoshimura et al., 55 2010; Brussaard et al., 2013; Morán et al., 2015), although the proliferation of larger cells has also been reported (Tortell et 56 al., 2002). Hence, generic predictions of phytoplankton community responses to OA are challenging.

57 Few recent studies have investigated the combined effects of OA and warming on natural phytoplankton assemblages (Hare 58 et al., 2007; Feng et al., 2009; Maugendre et al., 2015; Paul et al., 2015, 2016). Laboratory experiments have shown that OA 59 and warming could together increase photosynthetic rates, but at the expense of species richness, the reduction of diversity 60 predominantly imputable to warming (Tatters et al., 2013). Results of an experiment conducted with a natural planktonic 61 community from the Mediterranean Sea showed no effect of a combined warming and decrease in pH on primary production, 62 but higher picocyanobacteria abundances were observed in the warmer treatment (Maugendre et al., 2015). Shipboard 63 microcosm incubations conducted in the northern South China Sea displayed higher phytoplankton biomass, daytime primary 64 productivity and dark community respiration under warmer conditions, but these positive responses were cancelled at low pH 65 (Gao et al., 2017). In contrast, a mesocosm experiment carried out with a fall planktonic community from the western Baltic 66 Sea led to a decrease in phytoplankton biomass under warming, but combined warming and increased pCO_2 led to an increase 67 in biomass (Sommer et al., 2015). Results from experiments where the impacts of pCO₂ and temperature are investigated 68 individually may be misleading as multiple stressors can interact antagonistically or synergistically, sometimes in a nonlinear, 69 unpredictable fashion (Todgham and Stillman, 2013; Boyd et al., 2015; Riebesell and Gattuso, 2015; Gunderson et al., 2016). 70 The Lower St. Lawrence Estuary (LSLE) is a large (9350 km²) segment of the greater St. Lawrence Estuary (d'Angleian, 71 1990). From June to September, the LSLE is characterized by a dynamic succession in the phytoplankton community, mostly 72 driven by changes in light and nutrient availability through variations in the intensity of vertical mixing (Levasseur et al., 73 1984). The spring and fall blooms are mostly comprised of diatoms, with simultaneous nitrate and silicic acid exhaustion 74 ultimately limiting primary production (Levasseur et al., 1987; Roy et al., 1996). How OA and warming may affect these 75 blooms and primary production has never been investigated in the LSLE. The OA problem is complex in estuarine and coastal 76 waters where freshwater runoff, tidal mixing, and high biological activity contribute to variations in pCO₂ and pH on different 77 time scales (Duarte et al., 2013). The surface mixed-layer pCO_2 in the LSLE varies spatially from 139 to 548 uatm and is 78 strongly modulated by biological productivity (Dinauer and Mucci, 2017). Surface pH_T has been shown to vary from 7.85 to 79 7.93 in a single tidal cycle in the LSLE, nearly as much as the world's oceans have experienced in response to anthropogenic 80 CO₂ uptake over the last century (Caldeira and Wickett, 2005; Mucci et al., 2017).

The main objective of this study was to experimentally assess the sensitivity of the LSLE phytoplankton fall assemblage to a large pCO₂ gradient at two temperatures (in situ and +5 °C). Whether lower trophic-level microorganisms thriving in a highly variable environment will show higher resistance or resilience to future anthropogenic forcings is still a matter of speculation.

84 **2. Material and methods**

85 2.1 Mesocosm setup

86 The mesocosm system consists of two thermostated full-size ship containers each holding six 2600 L mesocosms (Aquabiotech 87 Inc., Québec, Canada). The mesocosms are cylindrical $(2.67 \text{ m} \times 1.40 \text{ m})$ with a cone-shaped bottom within which mixing is 88 achieved using a propeller fixed near the top (Fig. 1). The mesocosms exhibit opaque walls and all lie on the same plane level 89 as not to shade each other. Light penetrates the mesocosms only through a sealed Plexiglas circular cover at their uppermost 90 part. The cover allows the transmission of 90 % of photosynthetically active radiation (PAR; 400-700 nm), 85-90 % of UVA (315-400 nm), and 50-85 % of solar UVB (280-315 nm). The mesocosms are equipped with individual, independent 91 92 temperature probes (AQBT-Temperature sensor, accuracy ± 0.2 °C). Temperature in the mesocosms was measured every 15 93 minutes during the experiment, and the control system triggered either a resistance heater (Process Technology TTA1.8215) 94 located near the middle of the mesocosm or a pump-activated glycol refrigeration system to maintain the set temperature. The pH in each mesocosm was monitored every 15 minutes using Hach[®] PD1P1 probes (± 0.02 pH units) connected to Hach[®] 95 96 SC200 controllers, and positive deviations from the target values activated peristaltic pumps linked to a reservoir of artificial 97 seawater equilibrated with pure CO₂ prior to the onset of the experiment. This system maintained the pH of the seawater in the 98 mesocosms within \pm 0.02 pH units of the targeted values by lowering the pH during autotrophic growth but could not increase

99 the pH during bloom senescence when the pCO₂ rose and pH decreased.

100 **2.2 Setting**

101 The water was collected at 5 m depth near Rimouski harbour (48° 28' 39.9" N, 68° 31' 03.0" W) on the 27th of September 2014 (indicated as day -5 hereafter), and the experiment lasted until the 15th of October 2014 (day 13). In situ conditions were: 102 103 salinity = 26.52, temperature = 10 °C, nitrate (NO₃⁻) = $12.8 \pm 0.6 \mu$ mol L⁻¹, silicic acid (Si(OH)₄) = $16 \pm 2 \mu$ mol L⁻¹, and 104 soluble reactive phosphate (SRP) = $1.4 \pm 0.3 \,\mu$ mol L⁻¹. On day -5, the water was filtered through a 250 μ m mesh while 105 simultaneously filling the 12 mesocosm tanks by gravity with a custom made 'octopus' tubing system. The initial pCO₂ was 106 623 ± 7 µatm and the in situ temperature of 10 °C was maintained in the twelve mesocosms for the first 24 h (day -4). After 107 that period, the six mesocosms in one container were maintained at 10 °C while temperature was gradually increased to 15 °C 108 over day -3 in the six mesocosms of the other container. To avoid subjecting the planktonic communities to excessive stress 109 due to sudden changes in temperature and pH while setting the experiment, the mesocosms were left to acclimatize on day -2 110 before acidification was carried out over day -1. One mesocosm from each temperature-controlled container was not pH-111 controlled to assess the community response to the freely fluctuating pH. These two mesocosms were labelled "Drifters" as 112 the initial in situ pH was allowed to fluctuate over time with the development of the phytoplankton bloom. The other 113 mesocosms were set to cover a range of pH_T of ~8.0 to ~7.2 corresponding to a pCO₂ gradient of ~440 to ~2900 µatm after 114 acidification was carried out. To attain initial targeted pH, CO₂-satured artificial seawater was added to the mesocosms that 115 needed a pH lowering while mesocosms M2 (8.0), M4 (7.8), M6 (Drifter), M9 (8.0), M11 (Drifter) and M12 (7.8) were openly 116 mixed to allow the degassing of the supersaturated CO_2 . Once the mesocosms had reached their target pH, the automatic 117 system controlled the sporadic addition of CO₂-saturated water to refrain the pH from rising. Only the Drifters were not 118 controlled throughout the experiment. Incident light was variable during our experiment, with only few sunny days (Fig. 2).

119 **2.3 Seawater analysis**

The mesocosms were sampled between 05:00 and 08:00 a.m. every day. Seawater for carbonate chemistry, nutrients, and primary production were collected directly from the mesocosms as close to sunrise as possible. Seawater was also collected in 20 L carboys for the determination of chlorophyll *a* (Chl *a*), taxonomy, and other variables. Total amount of volume sampled every day was 24 L or less. Samples for salinity were taken from the artificial seawater tanks and in the mesocosms on day -3, 3 and 13. The samples were collected in 250 mL plastic bottles and stored in the dark until analysis was performed using a Guildline Autosal 8400B Salinometer during the following months.

126 2.3.1 Carbonate chemistry

Carbonate chemistry parameters were determined using methods described in Mucci et al. (2017). Briefly, water samples for
 pH (every day) and total alkalinity (TA, every 3–4 days) measurements were, respectively, transferred from the mesocosms to

- 125 mL plastic bottles without headspace and 250 mL glass bottles. A few crystals of $HgCl_2$ were added to the glass bottles 130 before sealing them with a ground-glass stopper and Apiezon[®] Type-M high-vacuum grease. The pH was determined within 131 hours of collection, after thermal equilibration at 25.0 ± 0.1 °C, using a Hewlett-Packard UV-Visible diode array 132 spectrophotometer (HP-8453A) and a 5 cm quartz cell with phenol red (PR; Robert-Baldo et al., 1985) and *m*-cresol purple 133 (mCP; Clayton and Byrne, 1993) as indicators. Measurements were carried out at the wavelength of maximum absorbance of 134 the protonated (HL) and deprotonated (L) indicators. Comparable measurements were carried out using a TRIS buffer prepared 135 at a practical salinity of 25 before and after each set of daily measurements (Millero, 1986).
- The pH on the total proton concentration scale (pH_T) of the buffer solutions and samples at 25 °C was calculated according to the equation of Byrne (1987), using the salinity of each sample and the HSO₄⁻ association constants given by Dickson (1990). The TA was determined on site within one day of sampling by open-cell automated potentiometric titration (Titrilab 865, Radiometer[®]) with a pH combination electrode (pHC2001, Red Rod[®]) and a dilute (0.025N) HCl titrant solution. The titrant was calibrated using Certified Reference Materials (CRM Batch#94, provided by A. G. Dickson, Scripps Institute of Oceanography, La Jolla, USA). The average relative error, based on the average relative standard deviation on replicate standard and sample analyses, was better than 0.15 %. The carbonate chemistry parameters at in situ temperature were then
- 143 calculated using the computed pH_T at 25 °C in combination with the measured TA using CO₂SYS (Pierrot et al., 2006) and
- 144 the carbonic acid dissociation constants of Cai and Wang (1998).

145 **2.3.3 Nutrients**

146 Samples for NO₃⁻, Si(OH)₄, and SRP analyses were collected directly from the mesocosms every day, filtered through

- 147 Whatman GF/F filters and stored at -20 °C in acid washed polyethylene tubes until analysis by a Bran and Luebbe Autoanalyzer
- 148 III using the colorimetric methods described by Hansen and Koroleff (2007). The analytical detection limit was $0.03 \mu mol L^{-}$
- 149 ¹ for NO₃⁻ plus nitrite (NO₂⁻), 0.02 μ mol L⁻¹ for NO₂⁻, 0.1 μ mol L⁻¹ for Si(OH)₄, and 0.05 μ mol L⁻¹ for SRP.

150 **2.3.4 Plankton biomass, composition and enumeration**

- Duplicate subsamples (100 mL) for Chl *a* determination were filtered onto Whatman GF/F filters. Chl *a* concentrations were measured using a 10-AU Turner Designs fluorometer, following a 24 h extraction in 90 % acetone at 4 °C in the dark without grinding (acidification method: Parsons et al., 1984). The analytical detection limit for Chl *a* was 0.05 μ g L⁻¹.
- Pico- $(0.2-2 \mu m)$ and nanophytoplankton $(2-20 \mu m)$ cell abundances were determined daily by flow cytometry. Sterile cryogenic polypropylene vials were filled with 4.95 mL of seawater to which 50 μ L of glutaraldehyde Grade I (final concentration = 0.1 %, Sigma Aldrich; Marie et al., 2005) were added. Duplicate samples were flash frozen in liquid nitrogen after standing 15 minutes at room temperature in the dark. These samples were then stored at -80 °C until analysis. After thawing to ambient temperature, samples were analyzed using a FACS Calibur flow cytometer (Becton Dickinson) equipped with a 488 nm argon laser. The abundances of nanophytoplankton and picophytoplankton, which includes photosynthetic

- 160 picoeukaryotes and picocyanobacteria, were determined by their autofluorescence characteristics and size (Marie et al., 2005).
- 161 The biomass accumulation and nanophytoplankton growth rates were calculated by the following equation:

162
$$\mu = \ln (N_2/N_1) / (t_2 - t_1),$$
 (1)

where N_1 and N_2 are the biomass or cell concentrations at given times t_1 and t_2 , respectively.

Microscopic identification and enumeration for eukaryotic cells larger than 2 µm was conducted on samples taken from each mesocosm on three days: day -4, the day when maximum Chl *a* was attained in each mesocosm, and day 13. Samples of 250 mL were collected and preserved with acidic Lugol solution (Parsons et al., 1984), then stored in the dark until analysis. Cell identification was carried out at the lowest possible taxonomic rank using an inverted microscope (Zeiss Axiovert 10) in accordance with Lund et al. (1958). The main taxonomic references used to identify the phytoplankton were Tomas (1997) and Bérard-Therriault et al. (1999).

170 2.3.5 Primary production

171 Primary production was determined daily using the ¹⁴C-fixation incubation method (Knap et al., 1996; Ferland et al., 2011). 172 One clear and one dark 250 mL polycarbonate bottle were filled from each mesocosm at dawn and spiked with 250 µL of 173 $NaH^{14}CO_3$ (80 µCi mL⁻¹). One hundred µL of 3-(3.4-dichlorophenyl)-1.1-dimethylurea (DCMU) (0.02 mol L⁻¹) was added to 174 the dark bottles to prevent active fixation of 14 C by phytoplankton (Legendre et al., 1983). The total amount of radioisotope in each bottle was determined by immediately pipetting 50 µL subsamples into a 20 mL scintillation vial containing 10 mL of 175 176 scintillation cocktail (EcolumeTM) and 50 uL of ethanolamine (Sigma). Bottles were placed in separate incubators, at either 177 10 °C or 15 °C, under reduced (30 %) natural light for 24 h, which corresponds to the light transmittance at mid-mesocosm 178 depth.

179 At the end of the incubation periods, 3 mL were transferred to a scintillation vial for determination of the total primary 180 production (P_T), 3 mL were filtered through a syringe filter (GD/X 0.7 μ m) to estimate daily photosynthetic carbon fixation 181 released in the dissolved organic carbon pool (P_D). The remaining volume was filtered onto a Whatman GF/F filter to measure 182 the particulate primary production (P_P). Vials containing the P_T and P_D samples were acidified with 500 μ L of HCl 6 N, allowed 183 to sit for 3 h under a fume hood, then neutralized with 500 µL of NaOH 6 N. The vials containing the filters were acidified 184 with 100 µL of 0.05 N HCl and left to fume for 12 h. Fifteen mL of scintillation cocktail were added to the vials and they were 185 stored pending analysis using a Tri-Carb 4910TR liquid scintillation counter (PerkinElmer). Rates of carbon fixation into 186 particulate and dissolved organic matter were calculated according to Knap et al. (1996) using the dissolved inorganic carbon 187 concentration computed for each mesocosm at the beginning of the daily incubations and multiplied by a factor of 1.05 to correct for the lower uptake of ¹⁴C compared to ¹²C. 188

189 2.4 Statistical analysis

190 All statistical analyses were performed using R (nlme package). A general least squares (gls) model approach was used to test 191 the linear effects of the two treatments (temperature, pCO₂), and of their interactions on the measured variables (Paul et al., 192 2016; Hussherr et al., 2017). The analysis was conducted independently on two different time periods: Phase I (day 0 to day 193 of maximum Chl a concentration) was calculated individually for each mesocosm, whereas Phase II (day after maximum Chl a 194 concentrations) corresponded to the declining phase of the bloom (Table 1). Averages (or time-integration in the case of 195 primary production) of the response variables were calculated separately over the two phases and were plotted against pCO₂. 196 Separate regressions were performed with pCO_2 as the continuous factor for each temperature when a temperature effect or 197 interaction with pCO_2 was detected in the gls model. Otherwise, the model included data from both temperatures and the 198 interaction with pCO₂. Normality of the residuals was determined using a Shapiro-Wilk test (p > 0.05) and data were 199 transformed (natural logarithm or square root) if required. As explained by Havenhand et al. (2010), the gradient approach, 200 instead of treatment replication, is particularly suitable when few experimental units are available such as in large volume 201 mesocosm experiments. In addition, squared Pearson's correlation coefficients (r^2) with a significance level of 0.05 were used 202 to evaluate correlations between key variables.

203 **3. Results**

204 **3.1 Seawater chemistry**

205 Water salinity was 26.52 ± 0.03 on day -4 in all mesocosms and remained constant throughout the experiment, averaging 206 26.54 ± 0.02 on day 13. The TA was practically invariant in the mesocosms, averaging $2057 \pm 2 \,\mu$ mol kg_{sw}⁻¹ on day -4 and $2058 \pm 2 \text{ }$ µmol kg_{sw}⁻¹ on day 13. Following the filling of the mesocosms, the pH_T in all mesocosms decreased from an average 207 208 of 7.84 to 7.53. Throughout the rest of the experiment after treatments were applied, the pH remained relatively stable in the 209 pH-controlled treatments, but decreased slightly during Phase II by an average of -0.14 ± 0.07 units relative to the target pH_T 210 (Fig. 3a). Given a constant TA, pH variations were accompanied by variations in pCO₂, from an average of $1340 \pm 150 \,\mu atm$ 211 on day -3, and ranging from 564 to 2902 µatm at 10 °C, and from 363 to 2884 µatm at 15 °C on day 0 following the 212 acidification (Fig. 3b; Table 1). The pH_T in the Drifters (M6 and M11) increased from 7.896 and 7.862 on day 0 at 10 °C and 213 15 °C, respectively, to 8.307 and 8.554 on day 13, reflecting the balance between CO_2 uptake and metabolic CO_2 production 214 over the duration of the experiment. On the last day, pCO₂ in all mesocosms ranged from 186 to 3695 μ atm at 10 °C, and from 215 90 to 3480 µatm at 15 °C. The temperature of the mesocosms in each container remained within ± 0.1 °C of the target 216 temperature throughout the experiment and averaged 10.04 \pm 0.02 °C for mesocosms M1 through M6, and 15.0 \pm 0.1 °C for 217 mesocosms M7 through M12 (Fig. 3c; Table 1).

218 **3.2 Dissolved inorganic nutrient concentrations**

Nutrient concentrations averaged 9.1 \pm 0.5 μ mol L⁻¹ for NO₃⁻, 13.4 \pm 0.3 μ mol L⁻¹ for Si(OH)₄, and 0.91 \pm 0.03 μ mol L⁻¹ for 219 220 SRP on day 0 (Fig. 3d, e, f). Within individual mesocosms, concentrations of nitrate, silicic acid and soluble reactive phosphate 221 displayed similar temporal patterns following the development of the phytoplankton bloom. Overall, NO₃⁻ depletion was 222 reached within 5 days in all mesocosms at 10 °C, exception made of the Drifter which became nutrient-deplete by day 3. 223 Nutrient depletion was reached slightly earlier within the 15 °C mesocosms, all of them displaying exhaustion within 3 days 224 of the experiment. Accordingly, bloom development and primary production within each mesocosm were eventually limited 225 by the supply in nutrients, irrespective of the temperature or pH treatment. Likewise, Si(OH)₄ fell below the detection limit 226 between day 1 and 5 in all mesocosms except for those whose pH_T was set at 7.2 and 7.6 at 10 °C (M5 and M3) and in which 227 Si(OH)₄ depletion occurred on day 9. Variations in SRP concentrations followed closely those of NO₃⁻ in all mesocosms except 228 again for those set at pH 7.2 and 7.6 in which undetectable values were reached on day 9.

229 3.3 Phytoplankton biomass

230 Chl a concentrations were below 1 μ g L⁻¹ just after the filling of the mesocosms, and averaged 5.9 ± 0.6 μ g L⁻¹ on day 0 (Fig. 231 4a). They then quickly increased to reach maximum concentrations around $27 \pm 2 \mu g L^{-1}$ on day 3 ± 2 , and decreased progressively until the end of the experiment, reaching $11 \pm 1 \mu g L^{-1}$ and $2.4 \pm 0.2 \mu g L^{-1}$ at 10 °C and 15 °C on day 13. During 232 233 Phase I, results from the gls model show no significant relationships between the mean Chl a concentrations and pCO₂, 234 temperature, and the interaction of the two factors (Fig. 4b; Table 2). During this phase, the accumulation rate of Chl a was 235 positively affected by temperature, increasing by ~ 76 %, but was not affected by the pCO₂ gradient at either temperature (Fig. 236 5a; Table 3). The maximum Chl a concentrations reached during the bloom were not affected by the two treatments (Fig. 5b; 237 Table 3). During Phase II, we observed no significant effect of pCO_2 , temperature, and the interaction of those factors on the 238 mean Chl *a* concentrations following the depletion of NO_3^- (Fig. 4c; Table 4).

239 3.4 Phytoplankton size-class

Nanophytoplankton abundance varied from $8 \pm 1 \times 10^6$ cells L⁻¹ on day 0 to an average maximum of $36 \pm 10 \times 10^6$ cells L⁻¹ at 240 241 the peak of the bloom (Fig. 4d). At both temperatures, nanophytoplankton abundance increased until at least days 2 or 4 and 242 decreased or remained stable thereafter. The correlation between the nanophytoplankton abundance and Chl a (r² = 0.75, 243 p < 0.001, df = 166) suggests that this phytoplankton size class was responsible for most of the biomass build-up throughout 244 the experiment. As observed for the mean Chl a concentration, the mean abundance of nanophytoplankton was not 245 significantly affected by the p CO_2 gradient at the two temperatures investigated during Phase I, but showed higher values at 246 15 °C ($26 \pm 2 \times 10^6$ cells L⁻¹) than at 10 °C ($14 \pm 1 \times 10^6$ cells L⁻¹) (Fig. 4e; Table 2). Likewise, the growth rate of 247 nanophytoplankton during Phase I was not influenced by the pCO₂ gradient at the two temperatures but was significantly 248 higher in the warm treatment (Fig. 5c; Table 3). During Phase II, no relationship was found between the mean

- nanophytoplankton abundance and the pCO₂ gradient, the temperature, and the pCO₂ \times temperature interaction (Fig. 4f; Table
- 250 4).
- Initial abundance of photosynthetic picoeukaryotes was $10 \pm 2 \times 10^6$ cells L⁻¹, accounting for more than 80 % of total plankton cells in the 0.2–20 µm size fraction. The abundance of this plankton size fraction decreased slightly through Phase I and their number remained relatively stable at $4 \pm 3 \times 10^6$ cells L⁻¹ throughout Phase II (Fig. 4g). We found no relationship between the abundance of picoeukaryotes and the pCO₂ gradient at the two temperatures investigated during both Phases I and II, and no temperature effect was observed either (Fig. 4h, i; Tables 2 and 4).
- 256 Picocyanobacteria exhibited a different pattern than the nanophytoplankton and picoeukaryotes (Fig. 4j). Their abundance was 257 initially low (1.7 \pm 0.3 \times 10⁶ cells L⁻¹ on day 0), remained relatively stable during Phase I, and increased rapidly during Phase 258 II. accounting for ~50 % of the total picophytoplankton cell counts toward the end of the experiment. During Phase I, the mean 259 picocyanobacteria abundance was not influenced by the pCO₂ gradient or temperature (Fig. 4k; Table 2). During Phase II, the 260 mean picocyanobacteria abundance was not significantly affected by pCO₂ at in situ temperature. However, mean 261 picocyanobacteria were higher at 15 °C, with the pCO₂ gradient responsible for a \sim 33% reduction of picocyanobacteria abundance from the Drifter to the more acidified treatment $(4.4 \pm 0.2 \times 10^6 \text{ cells } \text{L}^{-1} \text{ vs. } 3.0 \pm 0.3 \times 10^6 \text{ cells } \text{L}^{-1})$ (Fig 4l; Table 262 263 4).

264 **3.5 Phytoplankton taxonomy**

265 The taxonomic composition of the planktonic assemblage larger than 2 µm was identical in all treatments at the beginning of 266 the experiment, and was mainly composed of the cosmopolitan chain-forming centric diatom Skeletonema costatum (S. 267 costatum) and the cryptophyte Plagioselmis prolonga var. nordica (Fig. 6). At the peak of the blooms (maximum Chl a 268 concentrations), the species composition did not vary between the pCO_2 treatments and between the two temperatures tested. 269 S. costatum was the dominant species in all mesocosms (70–90 % of the total number of eukaryotic cells), except for one 270 mesocosm (M3, pH 7.6 at 10 °C) where a mixed dominance of *Chrysochromulina* spp. (a prymnesiophyte of 2–5 µm) and S. 271 costatum was observed (Fig. 6a). S. costatum accounted for 80-90 % of the total eukarvotic cell counts in all mesocosms at 272 the end of the experiment carried out at 10 °C. At 15 °C, the composition of the assemblage had shifted toward a dominance 273 of unidentified flagellates and choanoflagellates (2–20 µm) in all mesocosms with these two groups accounting for 55–80 % 274 of the total cell counts while diatoms showed signs of loss of viability as indicated by the presence of empty frustules (Fig. 275 6b).

276 **3.6 Primary production**

P_P increased in all mesocosms during Phase I of the experiment, in parallel with the increase in Chl *a* (Fig. 7a). P_P maxima were attained on days 3–4, except for the 15 °C Drifter (M11) where P_P peaked on day 1. We found no significant effect of the pCO₂ gradient, temperature and the pCO₂ × temperature interaction on the time-integrated P_p during both Phases I and II (Fig. 7b, c; Tables 2 and 4). Similarly, the absence of significant treatment effects remained when normalizing P_P per unit of

- Chl *a* (Fig. 7g, h, i). Initial Chl *a*-normalized P_P values were $3.3 \pm 0.5 \mu \text{mol C} (\mu \text{g Chl } a)^{-1} \text{d}^{-1}$ and reached maxima between 3.7 ± 0.3 µmol C (µg Chl *a*)^{-1} d^{-1} and 5.7 ± 0.6 µmol C (µg Chl *a*)^{-1} d^{-1} at 10 °C and 15 °C, respectively. These values then decreased to 2.2 ± 0.6 µmol C (µg Chl *a*)^{-1} d^{-1} and 0.9 ± 0.2 µmol C (µg Chl *a*)^{-1} d^{-1} on the last day of the experiment. During Phase I, the mean Chl *a*-normalized P_P was not significantly affected by the pCO₂ gradient or warming, as observed for the mean Chl *a* concentrations and time-integrated P_P over that phase (Fig. 7h; Table 2). During Phase II, the log of the mean Chl *a*-normalized P_P was not significantly affected by the pCO₂ gradient, the temperature, or the interaction of these factors (Fig. 7i; Table 4).
- P_D was low at the beginning of the experiment, averaging $1.5 \pm 0.4 \mu$ mol C L⁻¹ d⁻¹, increased progressively during Phase I to 288 289 reach maximum values of 6–48 μ mol C L⁻¹ d⁻¹ between days 4 and 8, and decreased thereafter (Fig. 7d). Time-integrated P_D 290 was not significantly affected by the pCO₂ gradient, the temperature, and the pCO₂ × temperature interaction during the two 291 phases (Fig. 7e, f; Tables 2 and 4). Chl *a*-normalized P_D was low on day 0, averaging $0.3 \pm 0.1 \mu$ mol C (μ g Chl *a*)⁻¹ d⁻¹, reached 292 maximum values of 1.0 ± 0.2 umol C (ug Chl a)⁻¹ d⁻¹ and 1.6 ± 0.2 umol C (ug Chl a)⁻¹ d⁻¹ at 10 °C and 15 °C, then respectively decreased to $0.17 \pm 0.05 \,\mu\text{mol C}$ ($\mu\text{g Chl }a$)⁻¹ d⁻¹ and $0.6 \pm 0.2 \,\mu\text{mol C}$ ($\mu\text{g Chl }a$)⁻¹ d⁻¹ by the end of the 293 294 experiment (Fig. 7j). During Phase I, the mean Chl *a*-normalized P_D was affected neither by the pCO₂ gradient, the temperature, 295 nor by the interaction between those factors (Fig. 7k; Table 2). During Phase II, the log of the mean Chl *a*-normalized P_D was 296 not affected by pCO₂ at either temperature tested, but significantly increased with warming (Fig. 7l; Table 4).
- 297 Figure 6 shows the influence of the treatments on maximum P_P and P_D as well as on the time-integrated P_P and P_D over the full 298 length of the experiment. We found no effect of the pCO₂ gradient on the maximum P_P values at the two temperatures tested, 299 but warming increased the maximum P_P values from $66 \pm 13 \mu$ mol C L⁻¹ d⁻¹ to $126 \pm 8 \mu$ mol C L⁻¹ d⁻¹ (Fig. 8a; Table 5). The 300 time-integrated P_P over the full duration of the experiment was not affected by the pCO₂ gradient or the increase in temperature 301 (Fig. 8b; Table 5). The maximum P_D values were significantly affected by the treatments (Fig 8c; Table 5). Maximum P_D 302 decreased with increasing pCO_2 at in situ temperature but warming cancelled this effect (antagonistic effect). Nevertheless, 303 the time-integrated P_D over the whole experiment did not vary significantly between treatments, although a decreasing 304 tendency with increasing pCO₂ at 10 °C and an increasing tendency with warming can be seen in Fig. 8d (Table 5).

305 4. Discussion

306 4.1 General characteristics of the bloom

The onset of the experiment was marked by an increase of pCO_2 on the day following the filling of the mesocosms. This phenomenon often takes place at the beginning of such experiments when pumping tends to break phytoplankton cells and larger debris into smaller ones. We attribute the rapid fluctuations in pCO_2 to the release of organic matter following the filling of the mesocosms with a stimulating effect on heterotrophic respiration, and hence CO_2 production. Then, a phytoplankton bloom, numerically dominated by the centric diatom *S. costatum*, took place in all mesocosms, regardless of treatments (Fig. 6). *S. costatum* is a common phytoplankton species in the St. Lawrence Estuary and in coastal waters (Kim et al., 2004; Starr et al., 2004; Annane et al., 2015). The length of the experiment (13 days) allowed us to capture both the development and declining phases of the bloom. The exponential growth phases lasted 1–4 days depending on the treatments, but maximal Chl *a* concentrations were reached only after 7 days in two of the twelve mesocosms (Fig. 4a; Table 1). The suite of measurements and statistical tests conducted did not provide any clues as to the underlying causes for the lower rates of biomass accumulation measured in these two mesocosms. Since statistical analyses conducted with or without these two apparent outliers gave similar results, they were not excluded from the analyses.

319 In situ nutrient conditions prior to the water collection were favourable for a bloom development. Based on previous studies, 320 in situ phytoplankton growth was probably limited by light due to water turbidity and vertical mixing at the time of water 321 collection (Levasseur et al. 1984). Grazing may also have played a role in keeping the in situ biomass of flagellates low prior 322 to our sampling. However, a natural diatom fall bloom was observed in the days following the water collection in the adjacent 323 region (Ferreyra, pers. comm.). The increased stability within the mesocosms, combined with the reduction of the grazing 324 pressure (filtration on 250 um) likely contributed to the fast accumulation of phytoplankton biomass. During the development 325 phase of the bloom, the concentration of all three monitored nutrients decreased, with NO_3^- and Si(OH)₄ reaching undetectable 326 values. This nutrient co-depletion is consistent with results from previous studies suggesting a co-limitation of diatom blooms 327 by these two nutrients in the St. Lawrence Estuary (Levasseur et al., 1987, 1990). Variations in P_P roughly followed changes 328 in Chl a, and, as expected, the maximum Chl a-normalized P_P (5 ± 2 µmol C (µg Chl a)⁻¹ d⁻¹) was reached during the 329 exponential growth phase in all mesocosms. Decreases in total phytoplankton abundances and P_P followed the bloom peaks 330 and the timing of the NO_3^- and Si(OH)₄ depletions. A clear succession in phytoplankton size classes characterized the 331 experiment. Nanophytoplankton cells were initially present in low abundance and became more numerous as the S. costatum 332 diatom bloom developed. The correlation ($r^2 = 0.83$, p < 0.001, df=34) between the abundance of nanophytoplankton and S. 333 costatum enumeration suggests that this cell size class can be used as a proxy of S. costatum counts in all mesocosms 334 throughout the experiment. Nanophytoplankton cells accounted for 79 ± 7 % of total counts of cells < 20 µm on the day of the 335 maximum Chl a concentration. Accordingly, nanophytoplankton exhibited the same temporal trend as Chl a concentrations. 336 During Phase II, nanophytoplankton abundances remained roughly stable at in situ temperature but decreased at 15 °C towards 337 the end of the experiment. Photosynthetic picoeukaryotes were originally abundant and decreased throughout the experiment 338 whereas picocyanobacteria abundances increased during Phase II. This is a typical phytoplankton succession pattern for 339 temperate systems where an initial diatom bloom growing essentially on allochthonous nitrate gives way to smaller species 340 growing on regenerated forms of nitrogen (Taylor et al., 1993).

341 **4.2 Phase I (Diatom bloom development)**

Our results show no significant effect of increasing pCO₂/decreasing pH on the mean abundance and net accumulation rate of the diatom-dominated nanophytoplankton assemblage during the development of the bloom (Figs. 4e and 5c). These results suggest that *S. costatum*, the species accounting for most of the biomass accumulation during the bloom, neither benefited from the higher pCO₂ nor was negatively impacted by the lowering of pH. Assuming that *S. costatum* was also responsible for

- most of the carbon fixation during the bloom development phase, the absence of effect on P_P and Chl *a*-normalized P_p following increases in pCO₂ brings additional support to our conclusion. *S. costatum* operates a highly efficient CCM, minimizing the potential benefits of thriving in high CO₂ waters (Trimborn et al., 2009). This may explain why the strain present in the LSLE did not benefit from the higher pCO₂ conditions. Likewise, a mesocosm experiment conducted in the coastal North Sea showed no significant effect of increasing pCO₂ on carbon fixation during the development of the spring diatom bloom (Eberlein et al., 2017).
- 352 In addition to the aforementioned insensitivity to increasing pCO_2 , our results point towards a strong resistance of S. costatum 353 to severe pH decline. During our study, surprisingly constant rates of Chl a accumulation and nanophytoplankton growth (Fig. 354 5a, c), as well as maximum P_P (Fig. 8a), were measured during the development phase of the bloom over a range of pH_T 355 extending from 8.6 to 7.2 (Fig. 3a). In a recent effort to estimate the causes and amplitudes of short-term variations in pH_T in 356 the LSLE, Mucci et al. (2017) showed that pH_T in surface waters was constrained within a range of 7.85 to 7.93 during a 50-357 h survey over two tidal cycles at the head of the Laurentian Channel. It is notable that even the upwelling of water from 100 m 358 depth or of low-oxygen LSLE bottom water would not decrease pH_T beyond ~7.75 and ~7.62, respectively (Mucci et al., 2017) 359 and references therein). Our results show that the phytoplankton assemblage responsible for the fall bloom may tolerate even 360 greater pH_T excursions. In the LSLE, such conditions may arise when the contribution of the low pH_T (7.12) freshwaters of 361 the Saguenay River to the LSLE surface waters is amplified during the spring freshet. However, considering that comparable 362 studies conducted in different environments have reported negative effects of decreasing pH on diatom biomass accumulation 363 (Hare et al., 2007; Hopkins et al., 2010; Schulz et al., 2013), it cannot be concluded that all diatom species thriving in the 364 LSLE are insensitive to acidification.

365 In contrast to the pCO_2 treatment, warming affected the development of the bloom in several ways. Increasing temperature by 366 5 °C significantly increased the accumulation rate of Chl a, and the nanophytoplankton growth rate during Phase I of the 367 bloom. The positive effects of warming on maximum P_P during the development phase of the bloom most likely reflect the 368 sensitivity of photosynthesis to temperature (Sommer and Lengfellner, 2008; Kim et al., 2013). It could also be related to 369 optimal growth temperatures, which are often higher than in situ temperatures in marine phytoplankton (Thomas et al., 2012; 370 Boyd et al., 2013). In support of this hypothesis, previous studies have reported optimal growth temperatures of 20–25 °C for 371 S. costatum, which is 5–10 °C higher than the warmer treatment investigated in our study (Suzuki and Takahashi, 1995; 372 Montagnes and Franklin, 2001). Extrapolating results from a mesocosm experiment to the field is not straightforward, as little 373 is known of the projected warming of the upper waters of the LSLE in the next decades. In the Gulf of St. Lawrence, positive 374 temperature anomalies in surface waters have varied from 0.25 to 0.75 °C per decade between 1985 and 2013 (Larouche and 375 Galbraith, 2016). In the LSLE, warming of surface waters will likely result from a complex interplay between heat transfer at 376 the air-water interface and variations in vertical mixing and upwelling of the cold intermediate layer at the head of the Estuary 377 (Galbraith et al., 2014). Considering current uncertainties regarding future warming of the LSLE, studies should be conducted

- 378 over a wider range of temperatures in order to better constrain the potential effect of warming on the development of the
- 379 blooms in the LSLE.
- 380 Picoeukaryotes showed a more or less gradual decrease in abundance during Phase I, and our results show that this decline 381 was not influenced by the increases in pCO₂ (Fig. 4g, h; Table 2). Picoeukaryotes are expected to benefit from high pCO₂ 382 conditions even more so than diatoms as CO₂ can passively diffuse through their relatively thin boundary layer precluding the 383 necessity of a costly uptake mechanism such as a CCM (Schulz et al., 2013). This hypothesis has been supported by several 384 studies showing a stimulating effect of pCO₂ on picoeukaryote growth (Bach et al., 2016; Hama et al., 2016; Schulz et al., 385 2017 and references therein). On the other hand, in nature, the abundance of picoeukaryotes generally results from a delicate 386 balance between cell division rates and cell losses through microzooplankton grazing and viral attacks. The few experiments, 387 including the current study, reporting the absence or a modest effect of increasing pCO_2 on the abundance of eukaryotic 388 picoplankton attribute their observations to an increase in nano- and microzooplankton grazing (Rose et al., 2009; Neale et al., 389 2014). During our experiment, the biomass of microzooplankton increased with increasing pCO₂ by ca. 200-300 % at the two 390 temperatures tested (Ferreyra and Lemli, unpubl. data). Thus, it is possible that a positive effect of increasing pCO_2 and 391 warming on picoeukaryote abundances might have been masked by higher picoeukaryote losses due to increased 392 microzooplankton grazing.

393 **4.3 Phase II (declining phase of the bloom)**

394 The gradual decrease in nanophytoplankton abundances coincided with an increase in the abundance of picocyanobacteria 395 (Fig. 4j). At in situ temperature, the picocyanobacteria abundance during Phase II was unaffected by the increase in pCO_2 over 396 the full range investigated (Fig. 41; Table 4). The lack of positive response of picocyanobacteria to elevated pCO_2 was 397 somewhat surprising considering that they have less efficient CCMs than diatoms (Schultz et al., 2013). Accordingly, several 398 studies have reported a stimulation of the net growth rate of picocyanobacteria under elevated pCO₂ in different environments 399 (coastal Japan, Mediterranean Sea, and Rauneiforden in Norway) and under different nutrient regimes, i.e. bloom and post-400 bloom conditions (Hama et al., 2016; Sala et al., 2016; Schulz et al., 2017). However, studies have also shown no direct effect 401 of elevated pCO_2 on the net growth of picocyanobacteria during studies conducted in the Subtropical North Atlantic and the 402 South Pacific (Law et al., 2012; Lomas et al., 2012). In our study, picocyanobacteria abundance was even reduced when high 403 CO₂ was combined with warming. Similar negative effects of CO₂ on picocyanobacteria (particularly Synechococcus) have 404 also been observed under later stages of bloom development, i.e. nutrient depletion, either caused by competition or grazing 405 (Paulino et al., 2008; Hopkins et al., 2010). A potential increase in grazing pressure, following the rise in heterotrophic 406 nanoflagellates abundance (e.g. choanoflagellates; Fig. 6b) measured under high pCO₂ and warmer conditions, could explain 407 the ostensible negative effect of increasing pCO_2 on picocyanobacteria abundance in our experiment. Despite the absence of 408 grazing measurements during our study, our results support the hypothesis that the potential for increased picocyanobacteria 409 population growth under elevated p CO_2 and temperature is partially dependent on different grazing pressures (Fu et al., 2007). 410 Neither warming nor acidification affected the net particulate carbon fixation during the declining phase of the bloom. In our 411 study, the time-integrated P_P and Chl *a*-normalized P_P were not significantly affected by the increase in pCO₂ during Phase II 412 at the two temperatures tested (Fig. 7; Table 4). This result is surprising since nitrogen-limited cells have been shown to be 413 more sensitive to acidification, resulting in a reduction in carbon fixation rates due to higher respiration (Wu et al., 2010; Gao 414 and Campbell, 2014; Raven et al., 2014). Although our measurements do not allow to discriminate between the contributions 415 of the different phytoplankton size classes to carbon fixation, we can speculate that diatoms, which were still abundant during 416 Phase II, contributed to a significant fraction of the primary production. If so, these results suggest that S, costatum remained 417 insensitive to OA even under nutrient stress. However, in contrast to Phase I, increasing the temperature by 5 °C during Phase 418 II significantly increased the Chl a-normalized P_D. The warming-induced increase in fixed carbon being release in the dissolved 419 fraction likely stems from increased exudation by phytoplankton, or sloppy feeding / excretion following ingestion by grazers 420 (Kim et al., 2011). The increase in fixed carbon released as dissolved organic carbon (DOC) measured during Phase II may 421 also result from greater respiration by the nitrogen-limited diatoms during periods of darkness of the incubations, as dark 422 phytoplankton respiration rates generally increase with temperature (Butrón et al., 2009; Robarts and Zohary, 1987). Moreover, 423 the enclosures do not permit the sinking and export of particulates organic carbon (POC), allowing a further transformation 424 into DOC by heterotrophic bacteria, a process that could be exacerbated under warming (Wohlers et al., 2009).

425 **4.4 Effect of the treatments on primary production over the full experiment**

426 As mentioned above, increasing pCO₂ had no effect on time-integrated P_P during the two phases of the bloom, and warming 427 only affected the maximum P_P. As a result, primary production rates integrated over the whole duration of the experiment were 428 not significantly different between the two temperatures tested. Although not statistically significant, the time-integrated $P_{\rm D}$ 429 over the full experiment displays a slight decrease with increasing pCO₂ at 10 °C and overall higher values in the warmer 430 treatment (Fig. 8d; Table 5). Previous studies have reported increases of DOC exudation (Engel et al., 2013), but also 431 decreasing DOC concentrations at elevated pCO₂ under nitrate limitation (Yoshimura et al., 2014). The increase in DOC 432 exudation is attributed to a stimulation of photosynthesis resulting from its sensitivity to higher pCO_2 (Engel et al. 2013), but 433 the causes for a decrease in DOC concentrations at high pCO_2 are less clear and potentially attributable to an increase in 434 transparent exopolymer particle (TEP) production (Yoshimura et al, 2014). Elevated TEP production under high pCO₂ 435 conditions has been measured both at the peak of a bloom in a mesocosm study (Engel et al., 2014), and in post-bloom nutrient 436 depleted conditions (MacGilchrist et al., 2014). However, during our study, TEP production decreased under high pCO₂ 437 (Gaaloul, 2017). Thus, the apparent decrease in P_D cannot be attributed to a greater conversion of exuded dissolved 438 carbohydrate into TEP. The apparent rise in P_D under warming is consistent with previous studies reporting similar increases 439 in phytoplankton dissolved carbon release with temperature (Morán et al., 2006; Engel et al., 2011). Although these apparent 440 changes in P_D with increasing pCO₂ and warming require further investigations, they suggest that a larger proportion (~15 % 441 of P_T at 15 °C compared to 10 % at 10 °C) of the newly fixed carbon could be exuded and become available for heterotrophic 442 organisms under warmer conditions.

443 **4.5 Implications and limitations**

444 During our study, we chose to keep the pH constant during the whole experiment instead of allowing it to vary with changes 445 in photosynthesis and respiration during the bloom phases. This approach differs from previous mesocosm experiments where 446 generally no subsequent CO₂ manipulations are conducted after the initial targets are attained (Schulz et al. 2017 and therein). 447 Keeping the pH and pCO₂ conditions stable during our study allowed us to precisely quantify the effect of the changing 448 pH/pCO₂ on the processes taking place during the different phases of the bloom. Such control was not exercised in two of our 449 mesocosms (i.e. the Drifters). In these two mesocosms, the pH_T increased from 7.9 to 8.3 at 10 °C, and from 7.9 to 8.7 at 15 °C. 450 Since the buffer capacity of acidified waters diminishes with increasing CO₂, the drift in pCO₂ and pH due to biological activity 451 would have been even greater in the more acidified treatments (Delille et al., 2005; Riebesell et al., 2007). Hence, allowing 452 the pH to drift in all mesocosms would have likely ended in an overlapping of the treatments where acidification effects would 453 have been harder to detect. Thus, our experiment could be considered as an intermediate between strictly controlled small scale 454 laboratory experiments and large scale pelagic mesocosm experiments in which only the initial conditions are set. By limiting 455 pCO_2 decrease under high CO_2 drawdown due to photosynthesis during the development of the bloom phase, we minimise 456 confounding effects of pCO₂ potentially overlapping in association with high biological activity in the mesocosms. Hence, the 457 experimental conditions could be considered as extreme examples of acidification conditions, due to the extent of pCO₂ values 458 studied. However, the absence of OA effects on most biological parameters measured during our study, even under these 459 extreme conditions, strengthens the argument that the phytoplankton community in LSLE is resistant to OA.

460 5. Conclusion

461 Our results reveal a remarkable resistance of the different phytoplankton size classes to the large range of pCO₂/pH investigated 462 during our study. It is noteworthy that the plankton assemblage was submitted to decreases in pH far exceeding those that they 463 are regularly exposed to in the LSLE. The resistance of S. costatum to the pCO_2 treatments suggests that the acidification of 464 surface waters of the LSLE will not affect the development rate and the amplitude of fall blooms dominated by this species. 465 Photosynthetic picoeukaryotes and picocyanobacteria thriving alongside the blooming diatoms were also insensitive to 466 acidification. In contrast to the pCO₂ treatments, warming the water by 5 °C had multiple impacts on the development and 467 decline of the bloom. The 5 °C warming hastened the development of the diatom bloom (albeit with no increase in total cells 468 number) and increased the abundance of picocyanobacteria during Phase II despite a reduction under high pCO₂. These 469 temperature-induced variations in the phytoplankton assemblage were accompanied by an increase in maximal P_P and suggest 470 a potential increase in P_D under warming, although no significant changes in time-integrated P_P and P_D were observed over the 471 phases or the full temporal scale of the experiment. Overall, our results indicate that warming could have more important 472 impacts than acidification on phytoplankton bloom development in the LSLE in the next decades. Future studies should be 473 conducted and specifically designed to better constrain the potential effects of warming on phytoplankton succession and 474 primary production in the LSLE.

475 *Data availability.* The data are freely accessible via <u>https://doi.org/10.1594/PANGAEA.886887</u>, or can be obtained by contacting the author (<u>robin.benard.1@ulaval.ca</u>).

Author contributions. R. Bénard was responsible for the experimental design elaboration, data sampling and processing, and
 the redaction of this article. Several co-authors supplied specific data included in this article, and all co-authors contributed to
 this final version of the article.

480 *Competing interests.* The authors declare that they have no conflict of interest.

481 Acknowledgements

The authors wish to thank the Station Aquicole ISMER, especially Nathalie Morin and her staff, for their support during the project. We also wish to acknowledge Gilles Desmeules, Bruno Cayouette, Sylvain Blondeau, Claire Lix, Rachel Hussherr, Liliane St-Amand, Marjolaine Blais, Armelle Simo and Sonia Michaud for their help in setting up, sampling and processing samples during the experiment. The authors want to thank Jean-Pierre Gattuso for his constructive comments on an earlier draft of this manuscript. This study was funded by a Team grant from the Fonds de la Recherche du Québec – Nature et Technologies (FRQNT-Équipe-165335), the Canada Foundation for Innovation, and the Canada Research Chair on Ocean Biogeochemistry and Climate. This is a contribution to the research programme of Québec-Océan.

489 **References**

Annane, S., St-Amand, L., Starr, M., Pelletier, E., and Ferreyra, G. A.: Contribution of transparent exopolymeric particles
(TEP) to estuarine particulate organic carbon pool, Mar. Ecol. Prog. Ser., 529, 17–34, doi:10.3354/meps11294, 2015.

492 Bach, L. T., Taucher, J., Boxhammer, T., Ludwig, A., Aberle-Malzahn, N., Abrahamsson, K., Almén, A. K., Asplund, M. E.,

493 Audritz, S., Boersma, M., Breitbarth, E., Bridges, C., Brussaard, C., Brutemark, A., Clemmesen, C., Collins, S., Crawfurd, K.,

494 Dahlke, F., Deckelnick, M., Dittmar, T., Doose, R., Dupont, S., Eberlein, T., Endres, S., Engel, A., Engström-Öst, J., Febiri,

495 S., Fleischer, D., Fritsche, P., Gledhill, M., Göttler, G., Granberg, M., Grossart, H. P., Grifos, A., Hoffmann, L., Karlsson, A.,

496 Klages, M., John, U., Jutfelt, F., Köster, I., Lange, J., Leo, E., Lischka, S., Lohbeck, K., Lundve, B., Mark, F. C., Meyerhöfer,

497 M., Nicolai, M., Pansch, C., Petersson, B., Reusch, T., De Moraes, K. R., Schartau, M., Scheinin, M., Schulz, K. G., Schwarz,

498 U., Stenegren, M., Stiasny, M., Storch, D., Stuhr, A., Sswat, L., Svensson, M., Thor, P., Voss, M., Van De Waal, D., Wannicke,

499 N., Wohlrab, S., Wulff, A., Achterberg, E. P., Algueró-Muñiz, M., Anderson, L. G., Bellworthy, J., Büdenbender, J., Czerny,

500 J., Ericson, Y., Esposito, M., Fischer, M., Haunost, M., Hellemann, D., Horn, H. G., Hornick, T., Meyer, J., Sswat, M., Zark,

501 M., and Riebesell, U.: Influence of ocean acidification on a natural winter-to-summer plankton succession: First insights from

a long-term mesocosm study draw attention to periods of low nutrient concentrations, PLoS ONE, 11(8), 1-33,

503 doi:10.1371/journal.pone.0159068, 2016.

- 504 Beardall, J., Stojkovic, S., and Gao, K.: Interactive effects of nutrient supply and other environmental factors on the sensitivity
- of marine primary producers to ultraviolet radiation: Implications for the impacts of global change, Aquat. Biol., 22, 5–23,
- 506 doi:10.3354/ab00582, 2014.
- 507 Bérard-Therriault, L., Poulin, M., and Bossé, L.: Guide d'identification du phytoplancton marin de l'estuaire et du golfe du
- Saint-Laurent incluant également certains protozoaires., Canadian Special Publication of Fisheries and Aquatic Sciences, 128,
 1–387, doi :10.1139/9780660960579, 1999.
- 510 Boyd, P. W., and Hutchins, D. A.: Understanding the responses of ocean biota to a complex matrix of cumulative 511 anthropogenic change, Mar. Ecol. Prog. Ser., 470, 125–135, doi:10.3354/meps10121, 2012.
- 512 Boyd, P. W., Rynearson, T. A., Armstrong, E. A., Fu, F., Hayashi, K., Hu, Z., Hutchins, D. A., Kudela, R. M., Litchman, E.,
- 513 Mulholland, M. R., Passow, U., Strzepek, R. F., Whittaker, K. A., Yu, E., and Thomas, M. K.: Marine Phytoplankton
- 514 temperature versus growth responses from polar to tropical waters outcome of a scientific community-wide study, PLoS
- 515 ONE, 8(5), doi:10.1371/journal.pone.0063091, 2013.
- 516 Boyd, P. W., Lennartz, S. T., Glover, D. M., and Doney, S. C.: Biological ramifications of climate-change-mediated oceanic
- 517 multi-stressors, Nat. Clim. Chang., 5(1), 71–79, doi:10.1038/nclimate2441, 2015.
- 518 Brussaard, C. P. D., Noordeloos, A. A. M., Witte, H., Collenteur, M. C. J., Schulz, K., Ludwig, A., and Riebesell, U.: Arctic
- 519 microbial community dynamics influenced by elevated CO_2 levels, Biogeosciences, 10(2), 719–731, doi:10.5194/bg-10-719-520 2013, 2013.
- 521 Butrón, A., Iriarte, A., and Madariaga, I.: Size-fractionated phytoplankton biomass, primary production and respiration in the
- 522 Nervión-Ibaizabal estuary: A comparison with other nearshore coastal and estuarine ecosystems from the Bay of Biscay, Cont.
- 523 Shelf Res., 29(8), 1088–1102, doi:10.1016/j.csr.2008.11.013, 2009.
- 524 Byrne, R. H.: Standardization of Standard Buffers by Visible Spectrometry, Anal. Chem, 59, 1479–1481, 525 doi:10.1021/ac00137a025, 1987.
- Cai, W. J., and Wang, Y.: The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and
 Altamaha Rivers, Georgia, Limnol. Oceanogr., 43(4), 657–668, doi:10.4319/lo.1998.43.4.0657, 1998.
- 528 Caldeira, K., and Wickett, M. E.: Ocean model predictions of chemistry changes from carbon dioxide emissions to the 529 atmosphere and ocean, J. Geophys. Res., 110(C9), 1–12, doi:10.1029/2004JC002671, 2005.
- Clayton, T. D., and Byrne, R. H.: Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale
 calibration of m-cresol purple and at-sea results, Deep. Res. Part I, 40(10), 2115–2129, doi:10.1016/0967-0637(93)90048-8,
 1993.
- 533 d'Anglejan, B.: Recent sediments and sediment transport processes in the St. Lawrence Estuary, in: Oceanography of a large-
- scale estuarine system, Eds: El-Sabh, M. I., and Silverberg, N., Springer-Verlag, New York, USA, 109–129, doi:
 10.1002/9781118663783.ch6, 1990.
- 536 Delille, B., Harlay, J., Zondervan, I., Jacquet, S., Chou, L., Wollast, R., Bellerby, R. G. J., Frankignoulle, M., Borges, A. V.,
- 537 Riebesell, U. and Gattuso, J. P.: Response of primary production and calcification to changes of pCO2during experimental

- blooms of the coccolithophorid Emiliania huxleyi, Global Biogeochem. Cycles, 19(2), 1–14, doi:10.1029/2004GB002318,
 2005.
- 540 Dickson, A. G.: Standard potential of the reaction: $AgCl(s) + 1 2H_2(g) = Ag(s) + HCl(aq)$ and the standard acidity constant of
- 541 the ion HSO₄⁻ in synthetic sea water from 273.15 to 318.15 K, J. Chem. Thermodyn., 22(2), 113–127, doi:10.1016/0021-542 9614(90)90074-Z, 1990.
- 543 Dinauer, A., and Mucci, A.: Spatial variability in surface-water pCO₂ and gas exchange in the world's largest semi-enclosed
- 544 estuarine system: St. Lawrence Estuary (Canada), Biogeosciences, 14(13), 3221–3237, doi:10.5194/bg-14-3221-2017, 2017.
- 545 Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A.: Ocean acidification: The other CO₂ problem, Ann. Rev. Mar. Sci.,
- 546 1(1), 169–192, doi:10.1146/annurev.marine.010908.163834, 2009.
- 547 Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A., Ramajo, L., Carstensen, J., Trotter, J. A., and
- 548 McCulloch, M.: Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH,
- 549 Estuaries Coasts, 36(2), 221–236, doi:10.1007/s12237-013-9594-3, 2013.
- Eberlein, T., Wohlrab, S., Rost, B., John, U., Bach, L. T., Riebesell, U., and Van De Waal, D. B.: Effects of ocean acidification
 on primary production in a coastal North Sea phytoplankton community, PLoS ONE, 12(3), e0172594,
- 552 doi:10.1371/journal.pone.0172594, 2017.
- 553 Engel, A., Zondervan, I., Aerts, K., Beaufort, L., Benthien, A., Chou, L., Delille, B., Gattuso, J.-P., Harlay, J., Heeman, C.,
- 554 Hoffmann, L., Jacquet, S., Nejstgaard, J., Pizay, M.-D., Rochelle-Newall, E., Schneider, U., Terbrueggen A., and Riebesell,
- 555 U.: Testing the direct effect of CO₂ concentration on a bloom of the coccolithophorid *Emiliania huxleyi* in mesocosm 556 experiments, Limnol. Oceanogr., 50(2), 493–507, doi:10.4319/lo.2005.50.2.0493, 2005.
- 557 Engel, A., Händel, N., Wohlers, J., Lunau, M., Grossart, H.-P., Sommer, U., and Riebesell, U.: Effects of sea surface warming
- on the production and composition of dissolved organic matter during phytoplankton blooms: Results from a mesocosm study,
- 559 J. Plankton Res., 33(3), 357–372, doi:10.1093/plankt/fbq122, 2011.
- Engel, A., Borchard, C., Piontek, J., Schulz, K. G., Riebesell, U., and Bellerby, R.: CO₂ increases ¹⁴C primary production in
 an Arctic plankton community, Biogeosciences, 10(3), 1291–1308, doi:10.5194/bg-10-1291-2013, 2013.
- Engel, A., Piontek, J., Grossart, H.-P., Riebesell, U., Schulz, K. G., and Sperling, M.: Impact of CO₂ enrichment on organic
 matter dynamics during nutrient induced coastal phytoplankton blooms, J. Plankton Res., 36(3), 641–657,
 doi:10.1093/plankt/fbt125, 2014.
- Feely, R. A., Doney, S. C., and Cooley, S. R.: Ocean acidification: present conditions and future changes in a high-CO₂ world,
 Oceanography, 22(4), 36–47, doi:10.5670/oceanog.2009.95, 2009.
- 567 Feng, Y., Hare, C. E., Leblanc, K., Rose, J. M., Zhang, Y., DiTullio, G. R., Lee, P. A., Wilhelm, S. W., Rowe, J. M., Sun, J.,
- 568 Nemcek, N., Gueguen, C., Passow, U., Benner, I., Brown, C., and Hutchins, D. A.: Effects of increased pCO₂ and temperature
- 569 on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response, Mar. Ecol. Prog. Ser.,
- 570 388, 13–25, doi:10.3354/meps08133, 2009.

- 571 Ferland, J., Gosselin, M., and Starr, M.: Environmental control of summer primary production in the Hudson Bay system: The
- 572 role of stratification, J. Mar. Syst., 88(3), 385–400, doi:10.1016/j.jmarsys.2011.03.015, 2011.
- 573 Gaaloul, H.: Effets du changement global sur les particules exopolymériques transparentes au sein de l'estuaire maritime du
- 574 Saint-Laurent, M.Sc. thesis, Université du Québec à Rimouski, Canada, 133 pp., 2017.
- 575 Galbraith, P. S., Chassé, J., Gilbert, D., Larouche, P., Caverhill, C., Lefaivre, D., Brickman, D., Pettigrew, B., Devine, L., and
- 576 Lafleur, C.: Physical Oceanographic Conditions in the Gulf of St. Lawrence in 2013, DFO Can. Sci. Advis. Sec. Res. Doc.,
- 577 2014/062(November), vi + 84 pp, 2014.
- Gao, K., and Campbell, D. A.: Photophysiological responses of marine diatoms to elevated CO₂ and decreased pH: A review,
 Funct. Plant Biol., 41(5), 449–459, doi:10.1071/FP13247, 2014.
- 580 Gao, G., Jin, P., Liu, N., Li, F., Tong, S., Hutchins, D. A., and Gao, K.: The acclimation process of phytoplankton biomass,
- carbon fixation and respiration to the combined effects of elevated temperature and pCO_2 in the northern South China Sea,
- 582 Mar. Pollut. Bull., 118(1–2), 213–220, doi:10.1016/j.marpolbul.2017.02.063, 2017.
- Gattuso, J. P., Mach, K. J., and Morgan, G.: Ocean acidification and its impacts: An expert survey, Clim. Change, 117(4),
 725–738, doi:10.1007/s10584-012-0591-5, 2013.
- 585 Gattuso, J.-P., Magnan, A., Bille, R., Cheung, W. W. L., Howes, E. L., Joos, F., Allemand, D., Bopp, L., Cooley, S. R., Eakin,
- 586 C. M., Hoegh-Guldberg, O., Kelly, R. P., Portner, H.-O., Rogers, a. D., Baxter, J. M., Laffoley, D., Osborn, D., Rankovic, A.,
- 587 Rochette, J., Sumaila, U. R., Treyer, S., and Turley, C.: Contrasting futures for ocean and society from different anthropogenic
- 588 CO₂ emissions scenarios, Science, 349(6243), doi:10.1126/science.aac4722, 2015.
- Giordano, M., Beardall, J., and Raven, J. A.: CO₂ concentrating mechanisms in algae: Mechanisms, environmental
 modulation., and evolution, Annu. Rev. Plant Biol., 56(1), 99–131, doi:10.1146/annurev.arplant.56.032604.144052, 2005.
- 591 Gunderson, A. R., Armstrong, E. J., and Stillman, J. H.: Multiple stressors in a changing World: The need for an improved
- 592 perspective on physiological responses to the dynamic marine environment, Ann. Rev. Mar. Sci., 8(1), 357-378,
- 593 doi:10.1146/annurev-marine-122414-033953, 2016.
- Hama, T., Inoue, T., Suzuki, R., Kashiwazaki, H., Wada, S., Sasano, D., Kosugi, N., and Ishii, M.: Response of a phytoplankton
- community to nutrient addition under different CO_2 and pH conditions, J. Oceanogr., 72(2), 207–223, doi:10.1007/s10872-015-0322-4, 2016.
- 597 Hansen, H. P., and Koroleff, F.: Determination of nutrients, in: Methods of Seawater Analysis, 3, Eds: Grasshoff K., Kremling,
- 598 K.., and Ehrhardt, M., Wiley-VCH Verlag GmbH, Weinheim, Germany, 159–228, doi:10.1002/9783527613984.ch10, 2007.
- 599 Hare, C. E., Leblanc, K., DiTullio, G. R., Kudela, R. M., Zhang, Y., Lee, P. A., Riseman, S., and Hutchins, D. A.: Consequences
- 600 of increased temperature and CO₂ for phytoplankton community structure in the Bering Sea, Mar. Ecol. Prog. Ser., 352, 9–16,
- 601 doi:10.3354/meps07182, 2007.
- Havenhand, J., Dupont, S., and Quinn, G. P.: Designing ocean acidification experiments to maximise inference, in Guide to
- 603 best practices for ocean acidification research and data reporting, Eds: Riebesell, U., Fabry, V. J., and Gattuso, J.-P.,
- 604 Publications Office of the European Union, Luxembourg, 67–80, 2010.

- Hopkins, F. E., Turner, S. M., Nightingale, P. D., Steinke, M., Bakker, D., and Liss, P. S.: Ocean acidification and marine
 trace gas emissions, Proc. Natl. Acad. Sci. U.S.A., 107(2), 760–765, doi:10.1073/pnas.0907163107, 2010.
- Hussherr, R., Levasseur, M., Lizotte, M., Tremblay, J. É., Mol, J., Thomas, H., Gosselin, M., Starr, M., Miller, L. A., Jarniková,
- T., Schuback, N., and Mucci, A.: Impact of ocean acidification on Arctic phytoplankton blooms and dimethyl sulfide
 concentration under simulated ice-free and under-ice conditions, Biogeosciences, 14(9), 2407–2427, doi:10.5194/bg-14-24072017, 2017.
- 611 IPCC: Working Group I Contribution to the Fifth Assessment Report Climate Change 2013: The Physical Science Basis,
- 612 Intergov. Panel Clim. Chang., 1535, doi:10.1017/CBO9781107415324., 2013.
- Kim, K. Y., Garbary, D. J., and Mclachlan, J. L.: Phytoplankton dynamics in Pomquet Harbour, Nova Scotia: a lagoon in the
 southern Gulf of St Lawrence, Phycologica, 43(3), 311–328, 2004.
- 615 Kim, J. M., Lee, K., Shin, K., Yang, E. J., Engel, A., Karl, D. M. and Kim, H. C.: Shifts in biogenic carbon flow from particulate
- to dissolved forms under high carbon dioxide and warm ocean conditions, Geophys. Res. Lett., 38(8),
 doi:10.1029/2011GL047346, 2011.
- 618 Kim, J. H., Kim, K. Y., Kang, E. J., Lee, K., Kim, J. M., Park, K. T., Shin, K., Hyun, B., and Jeong, H. J.: Enhancement of
- 619 photosynthetic carbon assimilation efficiency by phytoplankton in the future coastal ocean, Biogeosciences, 10(11), 7525-
- 620 7535, doi:10.5194/bg-10-7525-2013, 2013.
- 621 Knap, A., Michaels, A., Close, A. R., Ducklow, H., and Dickson, A. G.: Protocols for the Joint Global Ocean Flux Study
- (JGOFS) core measurements, JGOFS Rep No. 19, Reprint of the IOC Manuals and Guides No. 29, UNESCO, Bergen, Norway,
 doi:10013/epic.27912, 1996.
- 624 Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte, C. M., and Gattuso, J. P.: Impacts of
- 625 ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming, Glob. Chang. Biol., 19(6),
- 626 1884–1896, doi:10.1111/gcb.12179, 2013.
- Larouche, P., and Galbraith, P. S.: Canadian coastal seas and Great Lakes sea surface temperature climatology and recent
 trends, Can. J. Remote Sens., 42(3), 243–258, doi:10.1080/07038992.2016.1166041, 2016.
- Law, C. S., Breitbarth, E., Hoffmann, L. J., McGraw, C. M., Langlois, R. J., Laroche, J., Marriner, A., and Safi, K. A.: No
- stimulation of nitrogen fixation by non-filamentous diazoytrophs under elevated CO₂ in the South Pacific, Glob. Chang. Biol.,
 18, 3004–3014, 2012.
- 632 Le Quéré, C., Moriarty, R., andrew, R. M., Canadell, J. G., Sitch, S., Korsbakken, J. I., Friedlingstein, P., Peters, G. P., andres,
- 633 R. J., Boden, T. A., Houghton, R. A., House, J. I., Keeling, R. F., Tans, P., Arneth, A., Bakker, D. C. E., Barbero, L., Bopp,
- L., Chang, J., Chevallier, F., Chini, L. P., Ciais, P., Fader, M., Feely, R. A., Gkritzalis, T., Harris, I., Hauck, J., Ilyina, T., Jain,
- A. K., Kato, E., Kitidis, V., Klein Goldewijk, K., Koven, C., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lenton, A., Lima,
- 636 I. D., Metzl, N., Millero, F., Munro, D. R., Murata, A., S. Nabel, J. E. M., Nakaoka, S., Nojiri, Y., O'Brien, K., Olsen, A.,
- 637 Ono, T., Pérez, F. F., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Rödenbeck, C., Saito, S., Schuster, U., Schwinger, J.,
- 638 Séférian, R., Steinhoff, T., Stocker, B. D., Sutton, A. J., Takahashi, T., Tilbrook, B., Van Der Laan-Luijkx, I. T., Van Der

- 639 Werf, G. R., Van Heuven, S., Vandemark, D., Viovy, N., Wiltshire, A., Zaehle, S., and Zeng, N.: Global Carbon Budget 2015,
- 640 Earth Syst. Sci. Data, 7(2), 349–396, doi:10.5194/essd-7-349-2015, 2015.
- Legendre, L., Demers, S., Yentsch, C. M., and Yentsch, C. S.: The ¹⁴C method: Patterns of dark CO₂ fixation and DCMU
- 642 correction to replace the dark bottle, Limnol. Oceanogr., 28(5), 996–1003, doi:10.4319/lo.1983.28.5.0996, 1983.
- Levasseur, M., Therriault, J.-C., and Legendre, L.: Hierarchical control of phytoplankton succession by physical factors, Mar.
- 644 Ecol. Prog. Ser., 19, 211–222, doi:10.3354/meps019211, 1984.
- Levasseur, M. E., and Therriault, J.-C.: Phytoplankton biomass and nutrient dynamics in a tidally induced upwelling: the role
 of teh NO₃:SiO₄ ratio, Mar. Ecol. Prog. Ser., 39, 87–97, 1987.
- Levasseur, M. E., Harrison, P. J., Heimdal, B. R., and Therriault, J.-C.: Simultaneous nitrogen and silicate deficiency of a
 phytoplankton community in a coastal jet-front, Mar. Biol., 104(2), 329–338, doi:10.1007/BF01313275, 1990.
- Lomas, M. W., Hopkinson, B. M., Losh, J. L., Ryan, D. E., Shi, D. L., Xu, Y., and Morel, F. M. M.: Effect of ocean acidification
- on cyanobacteria in the subtropical North Atlantic, Aquat. Microb. Ecol., 66(3), 211–222, doi:10.3354/ame01576, 2012.
- Lund, J. W. G., Kipling, C., and Le Cren, E. D.: The inverted microscope method of estimating algal numbers and the statistical
- basis of estimates by counting, Hydrobiologia, 11, 143–170, 1958.
- MacGilchrist, G. A., Shi, T., Tyrrell, T., Richier, S., Moore, C. M., Dumousseaud, C., and Achterberg, E. P.: Effect of enhanced
- 654 pCO₂ levels on the production of dissolved organic carbon and transparent exopolymer particles in short-term bioassay
- experiments, Biogeosciences, 11(13), 3695–3706, doi:10.5194/bg-11-3695-2014, 2014.
- Marie, D., Simon, N., and Vaulot, D.: Phytoplankton cell counting by flow cytometry, Algal Cult. Tech., 253–267,
 doi:10.1016/B978-012088426-1/50018-4, 2005.
- Maugendre, L., Gattuso, J. P., Louis, J., De Kluijver, A., Marro, S., Soetaert, K., and Gazeau, F.: Effect of ocean warming and
 acidification on a plankton community in the NW Mediterranean Sea, ICES J. Mar. Sci., 72(6), 1744–1755,
 doi:10.1093/icesjms/fsu161, 2015.
- 661 Millero, F. J.: The pH of estuarine waters, Limnol. Oceanogr., 31(4), 839–847, doi:10.4319/lo.1986.31.4.0839, 1986.
- Montagnes, D. J. S., and Franklin, M.: Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content:
- 663 Reconsidering some paradigms, Limnol. Oceanogr., 46(8), 2008–2018, doi:10.4319/lo.2001.46.8.2008, 2001.
- Morán, X. A. G., Sebastián, M., Pedrós-Alió, C., and Estrada, M.: Response of Southern Ocean phytoplankton and
 bacterioplankton production to short-term experimental warming, Limnol. Oceanogr., 51(4), 1791–1800,
 doi:10.4319/lo.2006.51.4.1791, 2006.
- Morán, A. G., Alonso-sa, L., Nogueira, E., Ducklow, H. W., Gonza, N., Calvo-di, A., Arandia-gorostidi, N., Di, L., Huete-
- stauffer, T. M., Rey, U., and Carlos, J.: More, smaller bacteria in response to ocean's warming?, Proc. R. Soc, 282(1810), 1–
- 669 9, doi:http://dx.doi.org/10.1098/rspb.2015.0371, 2015.
- 670 Mucci, A., Levasseur, M., Gratton, Y., Martias, C., Scarratt, M., Gilbert, D., Tremblay, J.-É., Ferreyra, G., and Lansard, B.:
- Tidally-induced variations of pH at the head of the Laurentian Channel, Can. J. Fish. Aquat. Sci., doi:10.1139/cjfas-2017-
- 672 0007, 2017.

- Neale, P. J., Sobrino, C., Segovia, M., Mercado, J. M., Leon, P., Cortés, M. D., Tuite, P., Picazo, A., Salles, S., Cabrerizo, M.
- J., Prasil, O., Montecino, V., and Reul, A.: Effect of CO₂, nutrients and light on coastal plankton. I. Abiotic conditions and
- 675 biological responses, Aquat. Biol., 22, 25–41, doi:10.3354/ab00587, 2014.
- Parsons, T. R., Maita, Y., and Lalli, C. M.: A manual of chemical and biological methods for seawater analysis, Permagon
 Press, New York, 1984.
- Paul, C., Matthiessen, B., and Sommer, U.: Warming, but not enhanced CO₂ concentration, quantitatively and qualitatively
 affects phytoplankton biomass, Mar. Ecol. Prog. Ser., 528, 39–51, doi:10.3354/meps11264, 2015.
- 680 Paul, C., Sommer, U., Garzke, J., Moustaka-Gouni, M., Paul, A., and Matthiessen, B.: Effects of increased CO₂ concentration
- on nutrient limited coastal summer plankton depend on temperature, Limnol. Oceanogr., 61(3), 853–868,
 doi:10.1002/lno.10256, 2016.
- Paulino, A. I., Egge, J. K. and Larsen, A.: Effects of increased atmospheric CO₂ on small and intermediate sized osmotrophs
- during a nutrient induced phytoplankton bloom, Biogeosciences, 5(3), 739–748, doi:10.5194/bg-5-739-2008, 2008.Pierrot, D.,
- 685 Lewis, E., and Wallace, D. W. R.: MS Excel program developed for CO₂ system calculations, Carbon Dioxide Information
- Analysis Center, ORNL/CDIAC-105a, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, 592 Tennessee,
 2006.
- Raven, J. A., Beardall, J., and Giordano, M.: Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms,
- 689 Photosynth. Res., 121, 111–124, 2014.
- Riebesell, U., and Gattuso, J.-P.: Lessons learned from ocean acidification research, Nat. Clim. Chang., 5(1), 12–14,
 doi:10.1038/nclimate2456, 2015.
- Riebesell, U., and Tortell, P. D.: Effects of ocean acidification on pelagic organism and ecosystems, in Ocean Acidification,
 Eds: Gattuso J.-P., and Hansson L., Oxford University Press, New York, 99–121, 2011.
- 694 Riebesell, U., Schulz, K. G., Bellerby, R. G. J., Botros, M., Fritsche, P., Meyerhöfer, M., Neill, C., Nondal, G., Oschlies, a,
- Wohlers, J., and Zöllner, E.: Enhanced biological carbon consumption in a high CO₂ ocean., Nature, 450(7169), 545–548,
 doi:10.1038/nature06267, 2007.
- 697 Riebesell, U., Czerny, J., Von Bröckel, K., Boxhammer, T., Büdenbender, J., Deckelnick, M., Fischer, M., Hoffmann, D.,
- Krug, S. A., Lentz, U., Ludwig, A., Muche, R., and Schulz, K. G.: Technical Note: A mobile sea-going mesocosm system New opportunities for ocean change research. Biogeosciences, 10(3), 1835–1847, doi:10.5194/bg-10-1835-2013, 2013.
- 1000
- Robarts, R. D., and Zohary, T.: Temperature effects on photosynthetic capacity, respiration., and growth rates of bloom-
- 701 forming cyanobacteria, New Zeal. J. Mar. Freshw. Res., 21(3), 391–399, doi:10.1080/00288330.1987.9516235, 1987.
- Robert-Baldo, G., Morris, M., and Byrne, R.: Spectrophotometric determination of seawater pH using phenol red, Anal. Chem.,
- 703 3(57), 2564–2567, doi:10.1021/ac00290a030, 1985.
- Rose, J. M., Feng, Y., Gobler, C. J., Gutierrez, R., Harel, C. E., Leblanc, K., and Hutchins, D. A.: Effects of increased pCO2
- and temperature on the North Atlantic spring bloom. II. Microzooplankton abundance and grazing, Mar. Ecol. Prog. Ser., 388,
- 706 27-40, doi:10.3354/meps08134, 2009.

- 707 Roy, S., Chanut, J.-P., Gosselin, M., and Sime-Ngando, T.: Characterization of phytoplankton communities in the Lower St.
- Lawrence Estuary using HPLC-detected pigments and cell microscopy, Mar. Ecol. Prog. Ser., 142, 55–73,
 doi:10.3354/meps142055, 1996.
- Sala, M. M., Aparicio, F. L., Balagué, V., Boras, J. A., Borrull, E., Cardelús, C., Cros, L., Gomes, A., López-Sanz, A., Malits,
 A., Martinez, R. A., Mestre, M., Movilla, J., Sarmento, H., Vázquez-Domínguez, E., Vaqué, D., Pinhassi, J., Calbet, A., Calvo,

712 E., Gasol, J. M., Pelejero, C., and Marrasé, C.: Contrasting effects of ocean acidification on the microbial food web under

different trophic conditions, ICES J. Mar. Sci., 73(3), 670–679, doi:10.1093/icesjms/fsv130, 2016.

- 714 Schulz, K. G., Bellerby, R. G. J., Brussaard, C. P. D., Büdenbender, J., Czerny, J., Engel, A., Fischer, M., Koch-Klavsen, S.,
- 715 Krug, S. A., Lischka, S., Ludwig, A., Meyerhöfer, M., Nondal, G., Silyakova, A., Stuhr, A., and Riebesell, U.: Temporal
- biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide, Biogeosciences,
- 717 10(1), 161–180, doi:10.5194/bg-10-161-2013, 2013.
- 718 Schulz, K. G., Bach, L. T., Bellerby, R. G. J., Bermudez, R., Budenbender, J., Boxhammer, T., Czerny, J., Engel, A., Ludwig,
- A., Meyerhofer, M., Larsen, A., Paul, A., Sswat, M., and Riebesell, U.: Phytoplankton blooms at increasing levels of
 atmospheric carbon dioxide: experimental evidence for negative effects on prymnesiophytes and positive on small
 picoeukaryotes, Front. Mar. Sci., 4, 64, doi:10.3389/fmars.2017.00064, 2017.
- Sommer, U., and Lengfellner, K.: Climate change and the timing, magnitude, and composition of the phytoplankton spring
 bloom, Glob. Chang. Biol., 14(6), 1199–1208, doi:10.1111/j.1365-2486.2008.01571.x, 2008.
- 724 Sommer, U., Paul, C., and Moustaka-Gouni, M.: Warming and ocean acidification effects on phytoplankton From species
- shifts to size shifts within species in a mesocosm experiment, PLoS ONE, 10(5), 17, doi:10.1371/journal.pone.0125239, 2015.
- 726 Starr, M., St-Amand, L., Devine, L., Bérard-Therriault, L., and Galbraith, P. S.: State of phytoplankton in the Estuary and Gulf
- 727 of St. Lawrence during 2003, CSAS Res. Doc., 2004/123, 35, 2004.
- Suzuki, Y., and Takahashi, M.: Growth responses of several diatom species isolated from various environments to temperature,
- 729 J. Phycol., 31(6), 880–888, doi:10.1111/j.0022-3646.1995.00880.x, 1995.
- 730 Tatters, A. O., Roleda, M. Y., Schnetzer, A., Fu, F., Hurd, C. L., Boyd, P. W., Caron, D. A., Lie, A. A. Y., Hoffmann, L. J.,
- and Hutchins, D. A.: Short- and long-term conditioning of a temperate marine diatom community to acidification and
- 732 warming., Philos. Trans. R. Soc. Lond. B. Biol. Sci., 368(1627), 20120437, doi:10.1098/rstb.2012.0437, 2013.
- Taylor, A. H., Harbour, D. S., Harris, R. P., Burkill, P. H., and Edwards, E. S.: Seasonal succession in the pelagic ecosystem
- of the North Atlantic and the utilization of nitrogen, J. Plankton Res., 15(8), 875–891, doi:10.1093/plankt/15.8.875, 1993.
- 735 Thomas, M. K., Kremer, C. T., Klausmeier, C. a and Litchman, E.: A global pattern of thermal adaptation in marine
- 736 phytoplankton., Science, 338(6110), 1085–1088, doi:10.1126/science.1224836, 2012.
- 737 Todgham, A. E., and Stillman, J. H.: Physiological responses to shifts in multiple environmental stressors: Relevance in a
- 738 changing world, Integr. Comp. Biol., 53(4), 539–544, doi:10.1093/icb/ict086, 2013.
- Tomas, C. R. (ed): Identifying Marine Phytoplankton, Academic Press: San Diego, 858 pp., 1997.

- 740 Tortell, P. D., DiTullio, G. R., Sigman, D. M., and Morel, F. M. M.: CO₂ effects on taxonomic composition and nutrient
- vilization in an Equatorial Pacific phytoplankton assemblage, Mar. Ecol. Prog. Ser., 236, 37–43, doi:10.3354/meps236037,
 2002.
- Trimborn, S., Wolf-Gladrow, D., Richter, K. U., and Rost, B.: The effect of pCO2 on carbon acquisition and intracellular
 assimilation in four marine diatoms, J. Exp. Mar. Bio. Ecol., 376(1), 26–36, doi:10.1016/j.jembe.2009.05.017, 2009.
- Wijffels, S., Roemmich, D., Monselesan, D., Church, J., and Gilson, J.: Ocean temperatures chronicle the ongoing warming
 of Earth, Nat. Clim. Chang., 6(2), 116–118, doi:10.1038/nclimate2924, 2016.
- Wohlers, J., Engel, A., Zollner, E., Breithaupt, P., Jurgens, K., Hoppe, H.-G., Sommer, U. and Riebesell, U.: Changes in
 biogenic carbon flow in response to sea surface warming, Proc. Natl. Acad. Sci., 106(17), 7067–7072,
- 749 doi:10.1073/pnas.0812743106, 2009.
- Wu, Y., Gao, K., and Riebesell, U.: CO₂-induced seawater acidification affects physiological performance of the marine diatom
 Phaeodactylum tricornutum, Biogeosciences, 7(9), 2915–2923, doi:10.5194/bg-7-2915-2010, 2010.
- 752 Yoshimura, T., Nishioka, J., Suzuki, K., Hattori, H., Kiyosawa, H., and Watanabe, Y. W.: Impacts of elevated CO₂ on organic
- carbon dynamics in nutrient depleted Okhotsk Sea surface waters, J. Exp. Mar. Bio. Ecol., 395(1-2), 191-198,
- 754 doi:10.1016/j.jembe.2010.09.001, 2010.
- 755 Yoshimura, T., Sugie, K., Endo, H., Suzuki, K., Nishioka, J., and Ono, T.: Organic matter production response to CO₂ increase
- in open subarctic plankton communities: Comparison of six microcosm experiments under iron-limited and -enriched bloom
- 757 conditions, Deep Res. Part I Oceanogr. Res. Pap., 94, 1–14, doi:10.1016/j.dsr.2014.08.004, 2014.
- 758

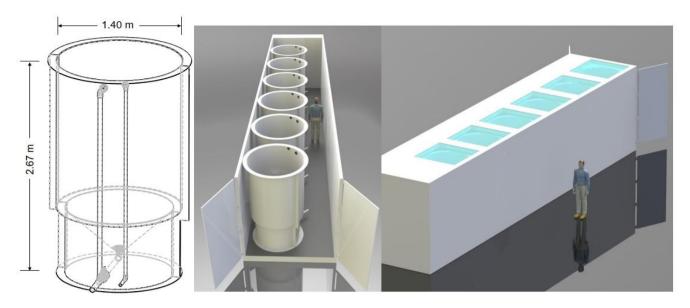


Figure 1. Schematic drawing including mesocosm dimensions and placement within the containers (Aquabiotech Inc, Québec,
 Canada). The whole setup includes a second container holding 6 more mesocosms not depicted here.

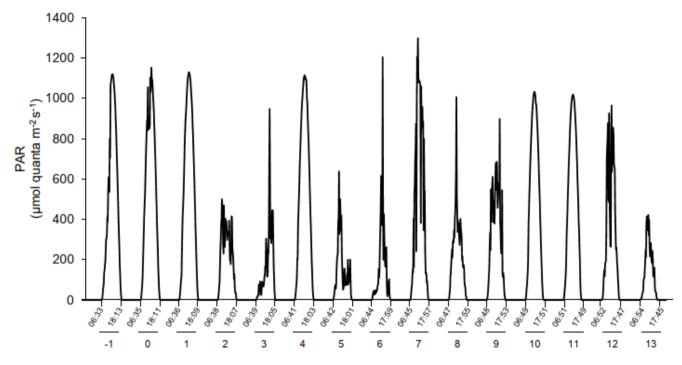


Figure 2. Changes in incident photosynthetic active radiation (PAR) at the top of the mesocosms level during the experiment as
 measurement by a Satlantic HyperOCR hyperspectral radiometer and integrated in the 400-700 nm range. Local sunrise and sunset
 times (EDT) are indicated with the corresponding days of the experiment.

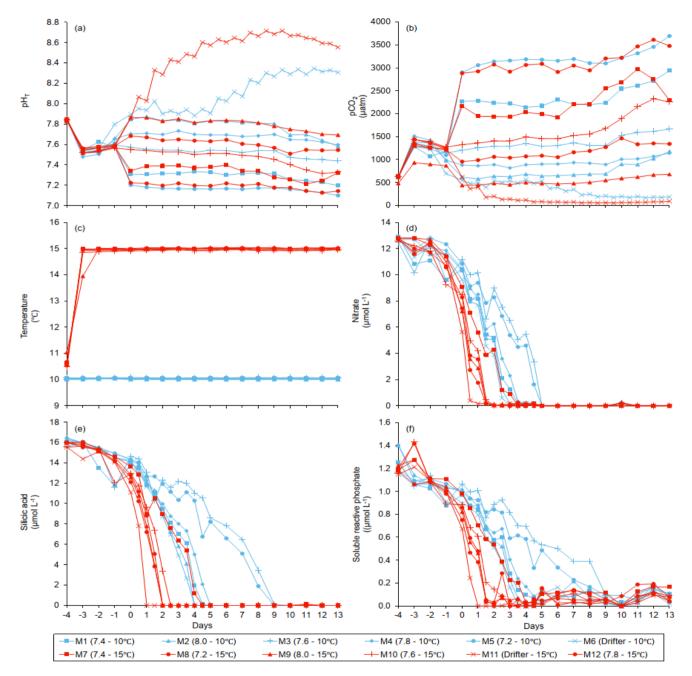


Figure 3. Temporal variations over the course of the experiment for: (a) pH_T, (b) pCO₂, (c) temperature, (d) nitrate, (e) silicic acid,
 (f) soluble reactive phosphate. For symbol attribution to treatments, see legend.

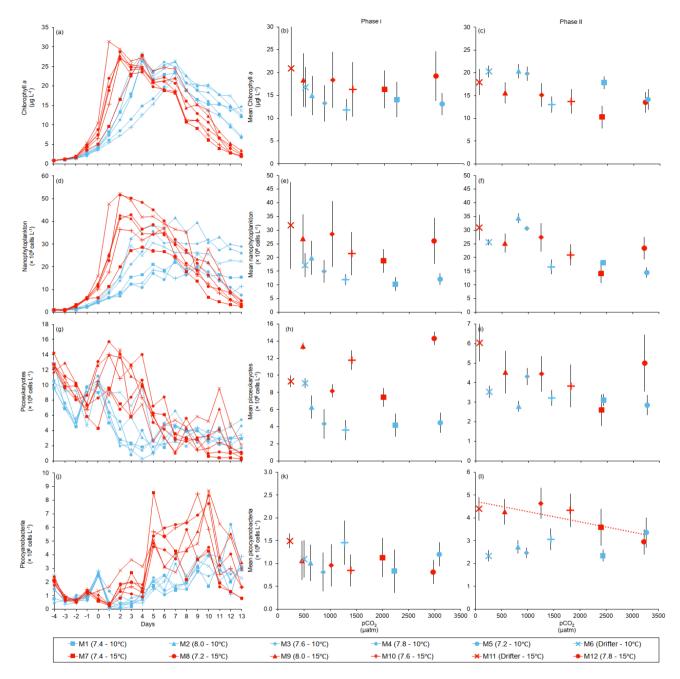


Figure 4. Temporal variations, and averages ± SE during Phase I (day 0 to day of maximum Chl *a* concentration) and Phase II (day after maximum Chl *a* concentration to day 13) for: (a-c) chlorophyll *a*, (d-f) nanophytoplankton, (g-i) picoeukaryotes, (j-l) picocyanobacteria. For symbol attribution to treatments, see legend.

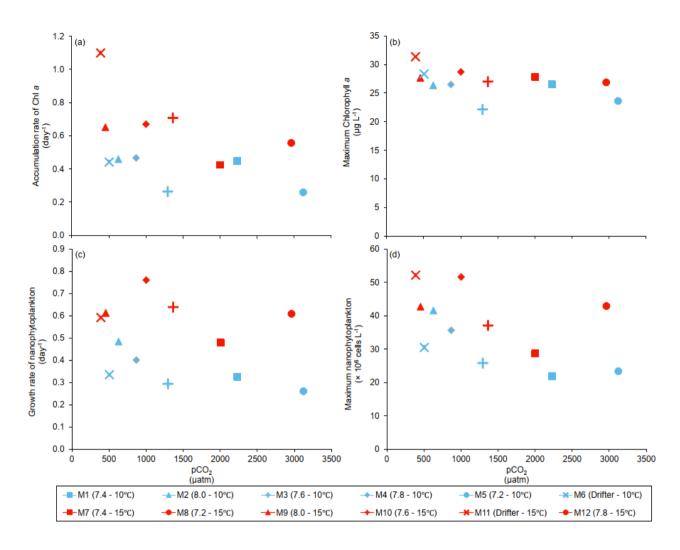


Figure 5. (a) Accumulation rate of Chl *a* (day 0 to maximum Chl *a* concentration), (b) maximum Chl *a* concentrations, (c) growth
 rate of nanophytoplankton (day 0 to maximum nanophytoplankton abundance), and (d) maximum nanophytoplankton abundance
 during the experiment. For symbol attribution to treatments, see legends.

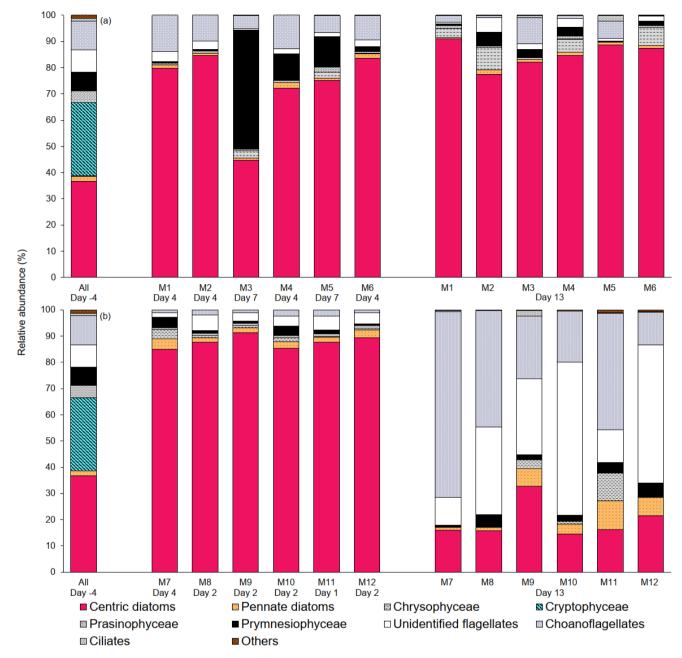


Figure 6. Relative abundance of 10 groups of protists at the beginning of the experiment (day -4), on the day of maximum Chl *a*concentrations in each mesocosm, and at the end of the experiment (day 13) for (a) 10 °C and (b) 15 °C mesocosms. The group
« others » include dinoflagellates, Chlorophyceae, Dictyochophyceae, Euglenophyceae, heterotrophic groups, and unidentified cells.
Each bar plot represents a mesocosm at a given time. The bar plot on day -4 represents the initial community assemblage before
temperature manipulation and acidification, and is therefore the same for each temperature treatment. For symbol attribution to
treatments, see legend.

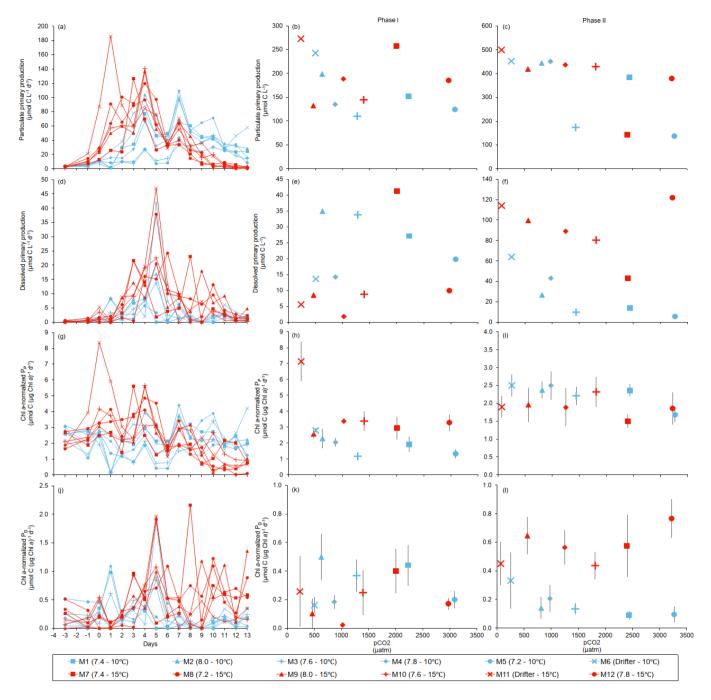
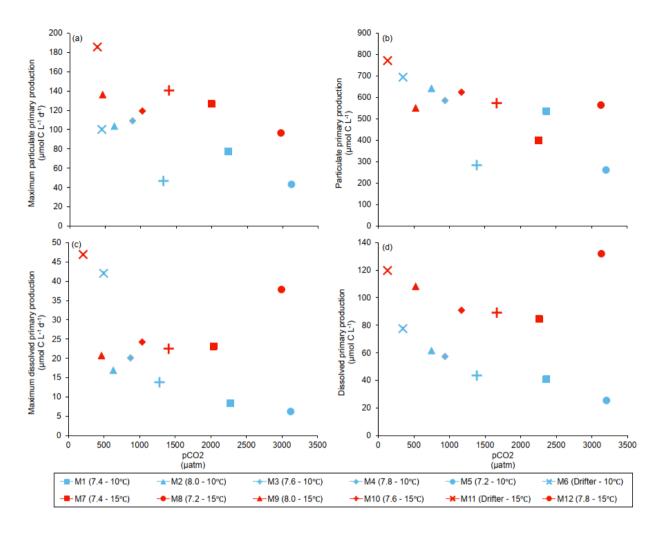



Figure 7. Temporal variations, time-integrated or averaged ± SE during Phase I (day 0 to day of maximum Chl *a* concentration) and Phase II (day after maximum Chl *a* concentration to day 13) for: (a-c) particulate primary production, (d-f) dissolved primary production, (g-i) Chl *a*-normalized particulate primary production, (j-l) Chl *a*-normalized dissolved primary production. For symbol attribution to treatments, see legend.

800 Figure 8. (a) Maximum particulate primary production, (b) time-integrated particulate primary production (c) maximum dissolved

- 801 primary production, and (d) time-integrated dissolved primary production over the full course of the experiment (day 0 to day 13).
- 802 For symbol attribution to treatments, see legend.

804 Table 1. Day of maximum Chl a concentration, the associated average pH_T (total hydrogen ion scale), and average pCO₂ over each 805 individually defined phase. Phase I is defined from day 0 until day of maximum Chl a for each mesocosm, while Phase II is defined 806 from the day after maximum Chl a until day 13. Average temperature over day 0 to day 13 is also presented for each mesocosm. Average values are presented with ± standard errors.

807

-

		Phase I		Pha	Day 0–13	
Mesocosm	Day of max Chl <i>a</i>	$pH_{\rm T}$	pCO ₂ (µatm)	pH_T	pCO ₂ (µatm)	Temperature (°C)
M1 (7.4 – 10 °C)	4	7.32 ± 0.01	2231 ± 25	7.28 ± 0.02	2437 ± 92	10.06 ± 0.01
M2 (8.0 – 10 °C)	4	7.84 ± 0.01	628 ± 16	7.74 ± 0.03	814 ± 65	10.00 ± 0.01
M3 (7.6 – 10 °C)	7	7.54 ± 0.01	1294 ± 18	7.48 ± 0.02	1503 ± 64	10.07 ± 0.01
M4 (7.8 – 10 °C)	4	7.71 ± 0.01	868 ± 13	7.66 ± 0.01	976 ± 29	10.04 ± 0.01
M5 (7.2 – 10 °C)	7	7.17 ± 0.01	3122 ± 35	7.15 ± 0.01	3315 ± 94	10.03 ± 0.01
M6 (Drifter – 10 °C)	4	7.93 ± 0.01	503 ± 15	8.22 ± 0.03	251 ± 25	10.02 ± 0.01
M7 (7.4 – 15 °C)	4	7.38 ± 0.01	2004 ± 44	7.31 ± 0.02	2399 ± 120	15.00 ± 0.01
M8 (7.2 – 15 °C)	2	7.21 ± 0.01	2961 ± 58	7.18 ± 0.01	3179 ± 74	15.01 ± 0.01
M9 (8.0 – 15 °C)	2	7.85 ± 0.01	454 ± 13	7.79 ± 0.02	545 ± 25	15.03 ± 0.01
M10 (7.6 – 15 °C)	2	7.54 ± 0.01	1364 ± 22	7.44 ± 0.02	1746 ± 106	14.94 ± 0.01
M11 (Drifter – 15 °C)	1	8.07 ± 0.01	388 ± 90	8.59 ± 0.02	84 ± 7	14.96 ± 0.02
M12 (7.8 – 15 °C)	2	7.67 ± 0.01	1001 ± 31	7.59 ± 0.01	1215 44±	14.98 ± 0.02

-

809 Table 2. Results of the generalized least squares models (gls) tests for the effects of temperature, pCO_2 , and their interaction during Phase I (day 0 to day of maximum Chl a concentration). Separate analysis with pCO₂ as a continuous factor were performed when

810

o	T	T
0	4	~

811 temperature had a significant effect. Chl a concentration, nanophytoplankton abundance, picoeukarvote abundance, picocyanobacteria abundance, particulate and dissolved primary production, and Chl a-normalized particulate and dissolved 812 813 primary production. Significant results are in bold. *p < 0.05.

Response Variable Factor df t-value p-value Temperature 8 2.004 0.080 Mean Chl a concentration pCO₂ 8 -0.4640.655 $(\mu g L^{-1})$ pCO₂ x Temperature 8 0.244 0.813 0.026* Temperature 8 2.725 Mean nanophytoplankton abundance $pCO_{2}(10^{\circ}C)$ 4 -2.285 0.084 $(\times 10^6 \text{ cells } \text{L}^{-1})$ pCO₂ (15°C) 4 -1.191 0.299 Temperature 8 1.056 0.322 Mean picoeukaryote abundance pCO₂ 8 -1.159 0.280 $(\times 10^6 \text{ cells } \text{L}^{-1})$ pCO₂ x Temperature 8 1.125 0.293 Temperature 8 0.891 0.399 Mean picocyanobacteria abundance pCO₂ 8 0.991 0.351 $(\times 10^6 \text{ cells } \text{L}^{-1})$ pCO₂ x Temperature 8 -1.166 0.277 Temperature 8 -0.124 0.905 Particulate primary production pCO₂ 0.342 8 -1.011 $(\mu mol C L^{-1})$ pCO₂ x Temperature 0.411 8 0.867 Temperature 8 -1.4290.191 Dissolved primary production pCO₂ 8 -0.569 0.585 $(\mu mol C L^{-1})$ pCO₂ x Temperature 8 0.723 0.490 Temperature 8 1.689 0.130 Chl a-normalized particulate primary production pCO₂ 8 0.107 0.918 $(\mu mol C (\mu g Chl a)^{-1} d^{-1})$ pCO₂ x Temperature 8 0.713 -0.381 Temperature 8 -1.046 0.326 Chl a-normalized dissolved primary production pCO₂ 0.713 8 -0.381 $(\mu mol C (\mu g Chl a)^{-1} d^{-1})$ pCO₂ x Temperature 8 0.449 0.665

815 Table 3. Results of the generalized least squares models (gls) tests for the effects of temperature, pCO₂ and their interaction. Separate

816 analysis with pCO₂ as a continuous factor were performed when temperature had a significant effect. Accumulation rate of Chl a

817 (day 0 to maximum Chl *a* concentration), maximum Chl *a* concentration, growth rate of nanophytoplankton (day 0 to maximum

818 nanophytoplankton abundance), and maximum nanophytoplankton abundance. Significant results are in bold. *p < 0.05.

Response Variable	Factor	df	t-value	p-value
	Temperature	8	2.679	0.028*
Accumulation rate of Chl a	pCO ₂ (10 °C)	4	-1.476	0.214
(day-1)	pCO ₂ (15 °C)	4	-1.759	0.154
Manimum Chl a concentration	Temperature	8	1.305	0.228
Maximum Chl <i>a</i> concentration $(u \in \mathbf{L}^{1})$	pCO ₂	8	-0.387	0.709
(µg L ⁻¹)	$p\text{CO}_2 \times Temperature$	8	0.022	0.983
County and of any approximation leader	Temperature	8	2.534	0.035*
Growth rate of nanophytoplankton	pCO ₂ (10 °C)	4	-0.882	0.403
(day ⁻¹)	pCO ₂ (15 °C)	4	0.601	0.564
	Temperature	8	1.380	0.205
Maximum nanophytoplankton abundance $(\times 10^6 \text{ cells } \text{L}^{-1})$	pCO ₂	8	-0.735	0.484
	$p\text{CO}_2 \times Temperature$	8	0.302	0.770

820 Table 4. Results of the generalized least squares models (gls) tests for the effects of temperature, pCO₂, and their interaction during Phase II (day after maximum Chl a to day 13). Separate analysis with pCO₂ as a continuous factor were performed when

821

822 temperature had a significant effect. Chl a concentration, nanophytoplankton abundance, picoeukaryote abundance, picocyanobacteria abundance, particulate and dissolved primary production, and Chl a-normalized particulate and dissolved

primary production. Significant results are in bold. *p < 0.05, **p < 0.01, ***p < 0.001.

823

Response Variable	Factor	df	t-value	p-value
	Temperature	8	-1.539	0.162
Mean Chl <i>a</i> concentration	pCO ₂	8	0.733	0.484
(µg L ⁻¹)	pCO ₂ x Temperature	8	0.156	0.880
	Temperature	8	-0.528	0.612
Mean nanophytoplankton abundance $(\times 10^6 \text{ cells } \text{L}^{-1})$	pCO ₂	8	1.264	0.242
$(\times 10^{\circ} \text{ cens L}^{\circ})$	pCO ₂ x Temperature	8	0.699	0.505
	Temperature	8	1.628	0.142
Mean picoeukaryotes abundance $(\times 10^6 \text{ cells } \text{L}^{-1})$	pCO ₂	8	0.226	0.827
$(\times 10^{\circ} \text{ cens L}^{\circ})$	pCO ₂ x Temperature	8	-0.521	0.617
	Temperature	8	5.983	<0,001***
Mean picocyanobacteria abundance $(\times 10^6 \text{ cells } \text{L}^{-1})$	pCO ₂ (10°C)	4	1.480	0.213
$(\times 10^{\circ} \text{ cens L}^{\circ})$	pCO ₂ (15°C)	4	-3.051	0.038*
	Temperature	8	-0.015	0.988
Particulate primary production $(\mu mol \ C \ L^{-1})$	pCO ₂	8	-0.940	0.375
(µmor C L)	pCO ₂ x Temperature	8	0.460	0.658
	Temperature	8	1.894	0.095
Dissolved primary production (µmol C L ⁻¹)	pCO ₂	8	-1.145	0.285
(µmor C L)	pCO ₂ x Temperature	8	0.847	0.422
(Log) Chl a-normalized particulate	Temperature	8	-2.288	0.052
primary production	pCO ₂	8	-1.491	0.174
$(\mu \operatorname{mol} C (\mu \operatorname{g} \operatorname{Chl} a)^{-1} \operatorname{d}^{-1})$	pCO ₂ x Temperature	8	1.105	0.301
(Log) Chl a-normalized dissolved	Temperature	8	2.357	0.046*
primary production	pCO ₂ (10°C)	4	-2.573	0.062
$(\mu \operatorname{mol} C (\mu g \operatorname{Chl} a)^{-1} d^{-1})$	pCO ₂ (15°C)	4	1.345	0.250

826Table 5. Results of the generalized least squares models (gls) tests for the effects of temperature, pCO_2 and their interaction. Separate827analysis with pCO_2 as a continuous factor were performed when temperature had a significant effect. Maximum particulate and828dissolved primary production, and time-integration over the full duration of the experiment (day 0 to day 13). Natural logarithm829transformation is indicated in parentheses when necessary, significant results are in bold. *p < 0.05, **p < 0.01.</td>

Response Variable	Factor	df	t-value	p-value
	Temperature	8	2.466	0.039*
Maximum particulate primary production $(\mu mol C L^{-1} d^{-1})$	pCO ₂ (10 °C)	4	-2.328	0.080
	pCO ₂ (15 °C)	4	-2.394	0.075
	Temperature	8	-0.055	0.958
Time-integrated particulate primary production (μ mol C L ⁻¹ d ⁻¹)	pCO ₂ (10 °C)	4	-1.300	0.230
	pCO ₂ (15 °C)	4	0.801	0.446
	Temperature	8	-0.659	0.528
(Log) Maximum dissolved primary production (µmol C L ⁻¹)	pCO_2	8	-3.342	0.010**
(,	$p\text{CO}_2 \times Temperature$	8	2.858	0.021*
	Temperature	8	1.687	0.130
Time-integrated dissolved primary production $(\mu mol \ C \ L^{-1})$	pCO ₂	8	-2.153	0.063
	$p\text{CO}_2 \times \text{Temperature}$	8	1.880	0.097