Below is our revised manuscript with all changes highlighted. Following the manuscript, you will find our reply to the two referees. The reply letters have already been uploaded as Interactive Discussions.

Rapid mineralization of biogenic volatile organic compounds in temperate and Arctic soils

5 Christian Nyrop Albers^{1,2}, Magnus Kramshøj^{1,2,3}, Riikka Rinnan^{2,3}

¹Geological Survey of Denmark and Greenland (GEUS), Department of Geochemistry, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark

²Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark

³Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen E, Denmark

Correspondence to: Christian N Albers, cal@geus.dk

Abstract. Biogenic volatile organic compounds (BVOCs) are produced by all life forms. Their release into the atmosphere is important with regards to a number of <u>climate related</u> physical and chemical processes and great effort
 has been put into determining sources and sinks of these compounds in recent years. Soil microbes as a possible sink for BVOCs in the atmosphere has been suggested, however, experimental evidence for this sink is scarce despite its potentially high importance to both carbon cycling and atmospheric concentrations of these gases. We therefore conducted a study with a number of commonly occurring BVOCs labelled with ¹⁴C and modified existing methods to study mineralization of these compounds to ¹⁴CO₂ in four different top soils. Five of the six BVOCs were rapidly
 mineralized by microbes in all soils. However, great differences were observed with regards to speed of mineralization,

- 20 mineralized by microbes in all soils. However, great differences were observed with regards to speed of mineralization, extent of mineralization and variation between soil types. Methanol, benzaldehyde, acetophenone and the oxygenated monoterpene geraniol were mineralized within hours in all soils. The hydrocarbon monoterpene p-cymene was mineralized rapidly in soil from a coniferous forest but slower in soil from and adjacent beech stand while chloroform was mineralized slowly in all soils. From our study it is clear that soil microbes are able to degrade completely BVOCs
- 25 released by aboveground vegetation as well as BVOCs released by soil microbes and plant roots. In addition to the possible atmospheric implications of this degradation the very fast mineralization rates are likely important in shaping the net BVOC emissions from soil and it is possible that BVOC formation and degradation may be an important but little recognized part of internal carbon cycling in soil.

30 **1** Introduction

Non-methane biogenic volatile organic compounds (BVOCs) are produced by all life forms, with plants being the most important contributors to the atmospheric concentrations of BVOCs and also the most studied group of BVOC emitters (Laothawornkitkul et al., 2009; Peñuelas et al., 2014). Production of BVOCs in soil (McNeal and Herbert, 2009; Ramirez et al., 2010) and by isolated soil microorganisms (Insam and Seewald, 2010; Garbeva et al., 2014) has been shown as well, though.

35

BVOCs comprise a very high diversity concerning molecular size and chemical structures, which leads to a high compound-to-compound variation in life times and reactions in the environment. Chemical oxidation reactions are regarded as the dominant BVOC sink in air, with impacts on the concentrations of methane, ozone, formation of secondary organic aerosols and consequently even on clouds formation (Peñuelas and Staudt, 2010; Glasius and Goldstein, 2016). In addition to chemical reactions in the atmosphere, an uptake or deposition of BVOCs into or onto soil has been observed (Ramirez et al., 2010; Spielmann et al., 2017) and so has a bidirectional atmosphere/soil exchange of certain BVOCs (Asensio et al., 2007; Asensio et al., 2008; Gray et al., 2014). The mechanism behind the soil uptake has not been investigated, but it may owe to-processes like adsorption to organic matter, dissolution in soil water and microbial degradation may all be important. Adsorption and dissolution may be predicted if the chemical characteristics of the BVOCs in question are known, and fate models for these parameters could then be set up. The microbial degradability of BVOCs - and especially the rate of degradation - are on the other hand very difficult to predict, since degradation rates in soil vary a lot from compound to compound and from soil to soil.

50 It is known from lab experiments, that many BVOCs can be degraded by soil bacteria functioning as substrates for growth (e.g. Cripps, 1975; Misra et al., 1996; Kleinheinz, 1999; El Khawand et al., 2016). However, the studies on BVOC degradation in soil or by isolated soil microorganisms, have typically used BVOC concentrations of 3-6 orders of magnitude higher than those present in the environment. Degradation experiments with such high concentrations are very well suited for selectively enriching BVOC degraders and showing the potential for use of a degrader organism in

55 industrial processes. However, they do not serve to assess degradation at realistic environmental concentrations that would be too low to sustain bacterial growth singly due to degradation of a specific BVOC. Thus, we do not know if microbial BVOC degradation in soil is of environmental importance. An exception from this is isoprene degradation, of which there is substantial evidence from laboratory experiments with different temperate forest soils conducted at isoprene concentrations close to what may be found in the environmented conditions (Cleveland and Yavitt, 60 1997; Gray et al., 2015).

Degradation experiments with BVOCs in soil are difficult to interpret as the same compounds may be produced and released by the soil while also being degraded. By using isotopically labelled compounds in degradation experiments it is possible to target degradation alone. Isotopic labelling also enables working with compounds at lower concentrations.

65 This is especially true for using radioactive ¹⁴C-labelling, which furthermore enables one to determine complete mineralization to ¹⁴CO₂. Compared to compound removal over time, complete mineralization is leaves no doubt that the ultimate proof of degradation is occurring and is often used in pesticide fate studies. However, apart from three studies

40

looking at mineralization of ¹⁴C-labelled geraniol (Owen et al., 2007), methanol (Stacheter et al., 2013) and chloroform (Albers et al., 2011), we are unaware of such studies with BVOCs. Furthermore, so far no BVOC mineralization studies were done at concentrations observed in natural environments.

70

The aim of this study was to assess microbial mineralization of different BVOCs in soils from contrasting environments. The microbial sink of BVOCs in soil would be of potentially high importance to both carbon cycling and atmospheric concentrations of these gases. We therefore purchased a number of commonly occurring BVOCs labelled with ¹⁴C and modified existing methods to study mineralization of these compounds to ¹⁴CO₂ in four different soils.

75

95

100

2 Materials and Methods

2.1 Soil sampling and characterization

- Soil was sampled at four sites representing common ecosystem types in the temperate and Arctic temperature zones.
 From the temperate zone, we sampled a coniferous forest site (12°03'40" E, 56°02'22" N) dominated by Norway spruce (*Picea abies*) and Scots pine (*Pinus sylvestris*) and a European beech (*Fagus sylvatica*) forest site (12°04'22" E, 56°02'22" N). The two sites were located 750 m apart. At both sites the Aeolian sandy soil is 200 to 400 years old and has been forested for at least 150 years. Both sites lack underwood, forest floor vegetation and moss cover, and a 5-10 cm thick organic layer has accumulated on top of the sand. Loose litter was removed before sampling the organic layer.
 From the Arctic, we sampled a tundra heath site (53°27'48" W, 69°15'49") dominated by 5-15 cm tall dwarf shrubs *Empetrum nigrum*, *Betula nana* and *Cassiope tetragona*. A 4-8 cm thick organic layer has accumulated on top of a
- sandy parent soil. We sampled the organic layer in between individual plants. The second Arctic site was an area with bare ground without vegetation and with coarse soil particles ("Arctic bare soil", 53°27'58" W, 69°15'57"), located 300 m from the heath site. Here, the top 5 cm was sampled. The location of the Arctic and temperate sites is shown on a
 90 map in Fig. S1.

From each site, 10-12 replicate samples were cored with a brass core (diameter 38 mm) from within a 25 m² area and pooled in a plastic bag. After arrival to the laboratory, the pooled samples were gently mixed by hand and larger roots were removed to get the final soil sample. The Arctic bare soil contained no roots and instead of mixing by hand, this soil was homogenized by sieving (5 mm). The mixed samples were stored at 3°C for a period of up to six weeks before mineralization experiments were initiated.

Water content was determined gravimetrically after drying at 105°C for 24 hours. Soil organic matter was determined as loss on ignition (LOI; 550°C, 2h). pH was determined with a pH electrode in slurries of soil:water (1:2.5) after 30 min shaking.

For each soil, triplicate DNA extractions were made from 0.25 g subsamples using the PowerLyzer PowerSoil DNA Isolation Kit (MoBio, Carlsbad, California). Total bacterial biomass was quantified as 16s gene copies by qPCR targeting the 16S rRNA sequence using forward primer 341F (5´-CCTACGGGAGGCAGCAG-3´) and reverse primer

105 518R (5'-ATTACCGCGGCTGCTGG-3') and 1 µL DNA template, as previously described (Feld et al., 2016). Total fungal biomass was determined as ITS2 gene copies by targeting the fungal ITS2 nuclear ribosomal DNA region using forward primer gITS7 (GTGARTCATCGARTCTTTG) and reverse primer ITS4 (TCCTCCGCTTATTGATATGC) as previously described (Christiansen et al., 2017). All qPCR was run in technical triplicates.

110 **2.2 Atmospheric BVOC-concentrations**

A snap-shot of the atmospheric concentration of a range of BVOCs was determined on the day of soil sampling in each of the two forest sites and in the Arctic sampling area. Triplicate 6 L air samples (12 L at the Arctic sites) were drawn through a sorbent cartridge 10 cm above soil surface (Coniferous, Beech and Arctic Bare sites) or 5 cm above the canopy (Arctic Heath site). Two types of sorbent cartridges were used in order to capture a range of BVOCs (Tenax TA/Carbograph 1TD as sorbent) and (Carbotrap B/Carboxen 1000/Carboxen 1003) to capture halogenated VOCs, including the model compound chloroform. The sorbent cartridges were sampled and analyzed by GC-MS as previously described (Kramshøj et al., 2015; Johnsen et al., 2016). Briefly, VOCs in general were analyzed on an Agilent 7890A GC coupled with a 5975 inert MSD/DS EI system with chromatographic separation on a HP-5 capillary column.

Halogenated VOCs were analyzed on a Shimadzu GC2010 splitting the sample equally to an ECD and a GC2010 Plus

120 MS detector with chromatographic separation on a VOCOL capillary column.

2.3 Incubations for BVOC mineralization

125

115

Six ¹⁴C-labeled BVOCs were used as model compounds representing different molecular weights and chemical classes (Fig. 1, Table <u>21</u>). ¹⁴C-methanol (58 mCi millimole⁻¹), [ring-¹⁴C-]-benzaldehyde (>99% radiochemical purity; 60 mCi millimole⁻¹) (trans)-[1-14C]-Geraniol (99% radiochemical purity; 55 mCi millimole⁻¹), [ring-¹⁴C-]-acetophenone (99% radiochemical purity; 55 mCi millimole⁻¹) and ¹⁴C-chloroform (>99% radiochemical purity; 2.25 mCi millimole⁻¹) were purchased from American Radiolabeled Chemicals Inc. (St. Louis, MO). [1-methyl-¹⁴C]-p-cymene (96% radiochemical purity; 57 mCi millimole⁻¹) was purchased from Moravek (Brea, Ca). Stock solutions (3x10⁷ DPM mL⁻¹) were made in sterile water (methanol and benzaldehyde), ethanol (acetophenone, geraniol and p-cymene) or acetonitrile (chloroform) and stored at -18°C until use.

Figure 1. Chemical structures of the used model compounds. Radiolabeled C is marked with an asterisk.

- 135 Incubations were carried out in 120 mL serum flasks. Into each flask, 5 (coniferous), 6 (beech and Arctic heath) or 10 (Arctic bare) g fresh weight (f.w.) soil with natural moisture was weighed and equilibrated overnight at 10°C. A small glass vial containing 2.5 mL 1M NaOH and 0.01M NaHCO3 was placed in the flask to trap ¹⁴CO2 liberated from ¹⁴C-BVOC mineralization. The NaHCO₃ was used in order to precipitate all trapped ¹⁴CO₂ with Ba²⁺ added during the following analysis procedure. 0.5 mL radiolabeled BVOCs dissolved in sterile water was then distributed across the soil 140 with a pipette. The transfer of the BVOC had to be carried out fast in order not to loose it from the aqueous solution. For each BVOC, portions of the aqueous solution were transferred to scintillation vials containing HiSafe 3 liquid scintillation cocktail (Perkin Elmer, Waltham, MA) just before transferring to the first incubation flask and just after transferring to the last incubation flask to assure that all flasks had received similar ¹⁴C-BVOC-concentrations. The scintillation vials were then counted on a liquid scintillation counter (Tri-Carb 2810 TR, PerkinElmer, Waltham, MA) 145 for 30 minutes or until 1% uncertainty (2S, 95% CL) was achieved. The BVOC concentrations used for incubation corresponded to 43-73 ppbv (64-504 ng L⁻¹), assuming all BVOCs wereas present in the headspace of the flasks. Most of the BVOCs were, however likely dissolved in water or adsorbed to the soil, so recalculating to a soil basis (0.8-11 µg kg⁻¹ f.w. soil) may be more appropriate.
- 150 Immediately after the transfer of the BVOC solution, flasks were closed with crimp-caps containing an alumina-coated septum (Mikrolab Aarhus, Denmark) and incubated at 10°C in the dark. At several time points, the alkaline CO₂-trap was exchanged through a needle syringe permanently installed in the septum (to avoid loosing BVOCs when exchanging the CO₂-trap). 1 mL was transferred to each of two 2 mL Eppendorf tubes with either 0.7 mL water or 0.7 mL BaCl₂ (1.5M, to precipitate trapped ¹⁴CO₂ as Ba¹⁴CO₃) to differentiate between trapped ¹⁴CO₂ and dissolved ¹⁴-
- 155 BVOC (Fig. 2). After 5 h reaction time, the tubes were centrifuged (12000 g, 2 min) and 1 mL from each tube was counted by liquid scintillation. 1 mL 1M NaOH had been added to the scintillation liquid in the case of the tube added only water. This was done to increase pH in the liquid and thereby avoid losses of ¹⁴CO₂.

160 Figure 2. Sketch of method for capturing ¹⁴CO₂, separating it from dissolved ¹⁴C-BVOC and analyzing by liquid scintillation counting (LSC).

After the last sampling point, 30 mL methanol were added to the soil in each flask through the permanently installed needle to extract any residual ¹⁴C-BVOC. After 24 h shaking the supernatant was transferred to a 50 mL centrifuge tube and centrifuged (4000 g, 5 min). The ¹⁴C-activity was then determined in 3 mL supernatant by liquid scintillation counting.

Incubations were made in three replicates. In addition to each BVOC/soil combination, a negative control was included in which the soil had been sterilized by autoclaving twice. Oxygen consumption during incubation was determined for each soil type by incubating an additional flask in which oxygen spot sensors (PreSens, Regensburg, Germany) readable through the glass of the bottles, had been installed.

The incubation method is a modification of previous methods for measuring mineralization of organic compounds. Suitability and limitations of the method are discussed in the supplementary information.

175

165

170

Table 1. Characteristics of the model co	mpounds sorted by boili	ing point (BP). S	w is water solubility	y. ∞ means unlimited solubility
(miscible). X means clear evidence for s	pecified source in the er	nvironment. (X) r	means that some ev	idence exists.

Name		BP	Molecular	\underline{S}_{w}	Plant	Soil/microbial	Anthropo-
	<u>Cas. No.</u>	<u>(°C)</u>	weight	(mg L ⁻¹)	source	source	genic source
Chloroform	<u>67-66-3</u>	<u>61</u>	<u>119</u>	<u>8000</u>	$(X)^k$	$\underline{X^{i,j}}$	<u>X</u>
Methanol	<u>67-56-1</u>	<u>65</u>	<u>32</u>	$\overline{\infty}$	$\underline{X^{f}}$	X ^{a,b,e}	<u>X</u>
<u>p-cymene</u>	<u>99-87-6</u>	177	134	<u>23</u>	$\underline{X^{g,m}}$	$(X)^{a^{*}}$	
Benzaldehyde	100-52-7	<u>178</u>	106	<u>3000</u>	$\underline{X^{\mathrm{f},\mathrm{m}}}$	$\underline{X^{c,d}}$	<u>X</u>
Acetophenone	<u>98-86-2</u>	202	<u>120</u>	<u>5500</u>	$\underline{X^{m}}$	$\underline{X^{c,d}}$	<u>X</u>
Geraniol	106-24-1	<u>230</u>	<u>154</u>	<u>686</u>	$\underline{X^{f,h}}$	$(X)^{l^{*}}$	
^a Asensio et al., 200)7. ^b Schink and	Zeikus, 1980).ºGutiérrez-Lun	a et al., 2010.	^d McNeal and H	erbert, 2009. eBäck e	t al., 2010.

^fKesselmeier and Staudt, 1999. ^gOrtega et al., 2008. ^hChen and Viljoen, 2010. ⁱHoekstra et al., 1998. ^jAlbers et al., 2010. ^kLaturnus

180 and Matucha, 2008. ¹Schulz and Dickschat, 2007. ^mJardine et al., 2010.

*Limited evidence for a soil or microbial source of these two monoterpenoids, but clear evidence for a general monoterpenoid production in soil and by various microorganisms (e.g. Schulz and Dickschat, 2007; Leff and Fierer, 2008; McNeal and Herbert, 2009; Bäck et al., 2010).

2.4 Statistical analyses 185

> We tested for significant differences between the mineralization curves using Repeated Measures Analysis of Variance in IBM SPSS Statistics 24. The model included incubation time as a within-subject factor and soil type as a betweensubject factor. Different soil types were compared to each other using Tukey's HSD post hoc test. Differences were considered significantly different when P < 0.05.

190

3 Results and Discussion

3.1 Soil characterization

195

The four top-soils used in the study showed clear differences with regards to major soil parameters like soil organic matter content, pH and microbial biomass (Table 24). The two forest top soils differed in soil organic matter content, but were both acidic (pH just below 4). The Arctic Heath top soil had an organic matter content in between the two forest soils but a higher pH of 5.3. As expected, the Arctic bare soil differed most, as it comprised the parent mineral soil while the others were dominated by organic matter accumulation on top of the parent soil. Nevertheless, the bare soil did contain 3.6% soil organic matter and some bacterial biomass (Table 2+), which may be due to its close proximity (meter-scale) to vegetated areas. However, despite its relatively high content of organic matter and bacteria, it showed very low oxygen consumption during incubation (0.3 μ M g⁻¹ dry weight (d.w.) d⁻¹) compared to the three 200 organic soils (5-14 μ M g⁻¹ d.w. d⁻¹). This indicates that the soil organic matter is not very reactive and/or that the bacterial activity per cell is low in this soil. It should be stressed, that the measured oxygen consumption is not necessarily the same that it would be in nature, as the soil was disturbed (homogenized by hand) which may increase bioavailability of soil organic matter. Fungal biomass (determined as ITS2 gene copies) was much higher in the 205 coniferous soil compared to the other organic soil types, which may be expected as fungi are known to play a key role in degradation of needle litter (Boberg, 2009).

210

Table 42. Soil parameters determined from homogenized samples with major roots removed. Average of three replicate extractions and analyses for 16s and ITS2 (±standard deviation) and one for the other parameters. Sample depth corresponds roughly to the depth of the organic layer after removing litter from the top and is the average depth of 10 pooled soil cores. At the Arctic bare soil no organic layer was present. 16s is a measure of bacteria in the soil. ITS2 is a measure of fungal biomass. O2-consumption is measured during mineralization experiments and may be different from that in nature. All parameters except moisture are on dry weight basis.

Soil	Depth	SOM	$pH_{\rm H2O}$	Moisture	16s	ITS2	O ₂ -consumption
	(cm)	(%)		(weight %)	(<u>gene</u> copies g ⁻¹)	(gene_copies g ⁻¹)	$(\mu M g^{-1} d^{-1})$
Temp. conif.	0-6	78	3.8	45	$6.2 \cdot 10^{10} \pm 2.8 \cdot 10^{10}$	$5.5 \cdot 10^8 \pm 6.9 \cdot 10^7$	9
Temp. beech	0-5	20	3.9	46	$4.2{\cdot}10^{10}{\pm}1.2{\cdot}10^{10}$	$3.7\!\cdot\!10^7{\pm}1.7\!\cdot\!10^7$	5
Arctic heath	0-6	36	5.3	51	$2.8{\cdot}10^{10}{\pm}4.5{\cdot}10^{10}$	$7.0{\cdot}10^7{\pm}1.5{\cdot}10^6$	14

Arctic bare	0-5	3.6	7.3	8.1	$2.2 \cdot 10^9 \pm 1.1 \cdot 10^9$	$2.4 \cdot 10^6 \pm 6.8 \cdot 10^5$	0.3
-------------	-----	-----	-----	-----	-------------------------------------	-------------------------------------	-----

3.2 BVOC mineralization

215 As model compounds we chose six BVOCs that have well described natural sources, are commonly detected in nature and have quite different molecular weights and physical/chemical properties (Table 21).

Table 2. Characteristics of the model compounds sorted by boiling point (BP). X means clear evidence for specified source in the environment. (X) means that some evidence exists. ∞ means unlimited solubility (miscible).

Name	Con No	BP	Molecular	S **	Plant	Soil/microbial	Anthropo-
	Cus. No.	<u>(°C)</u>	weight	(mg-L-¹)	source	source	genic source
Chloroform	67-66-3	61	119	8000	$(\mathbf{X})^k$	$\mathbf{X}^{i,j}$	X
Methanol	67-56-1	65	32	90	\mathbf{X}^{f}	$\mathbf{X}^{\mathrm{a,b,e}}$	X
p cymene	99-87-6	177	134	23	$X^{g,m}$	(X)^{a*}	
Benzaldehyde	100-52-7	178	106	3000	$\mathbf{X}^{\mathrm{f},\mathrm{m}}$	$\mathbf{X}^{e,d}$	X
Acetophenone	98-86-2	202	120	5500	X ^m	$\mathbf{X}^{\mathrm{c},\mathrm{d}}$	X
Geraniol	106-24-1	230	154	686	$\mathbf{X}^{\mathrm{f,h}}$	$(X)^{l*}$	

220

*Asensio et al., 2007. *Schink and Zeikus, 1980.*Gutiérrez-Luna et al., 2010. *McNeal and Herbert, 2009. *Bäck et al., 2010. ^fKesselmeier and Staudt, 1999. ^eOrtega et al, 2008. ^hChen and Viljoen, 2010. ⁱHoekstra et al., 1998. ⁱAlbers et al., 2010. ^kLaturnus and Matucha, 2008. ¹Schulz and Dickschat, 2007. ^mJardine et al., 2010.

*Limited evidence for a soil or microbial source of these two monoterpenoids, but clear evidence for a general monoterpenoid production in soil and by various microorganisms (e.g. Schulz and Dickschat, 2007; Leff and Fierer, 2008; McNeal and Herbert, 2009; Bäck et al., 2010).

225

230

235

Five of the six BVOCs were rapidly mineralized in all four soils included in the mineralization experiment, with chloroform showing somewhat slower mineralization (Fig. 3). None of the sterilized soil samples showed any detectable mineralization so the degradation of the BVOCs was in all cases microbially derived. However, great differences were observed with regards to speed of mineralization, extent of mineralization and variation between soil types. Methanol and benzaldehyde showed the highest mineralization rates. Especially for methanol (Fig. 3b), mineralization was so fast that the CO₂ transfer rate from soil to trap was most likely determining the shape of the mineralization curve rather than the speed of mineralization. For example, the theoretical initial (0-2 h) mineralization rate in the Arctic Heath soil that can be determined with the applied method would be 40% h⁻¹ as calculated from the curve in Supplementary Fig. S 2^{1} , and the observed mineralization of methanol in that soil type was 39% h⁻¹ (Table 3). Also benzaldehyde mineralization was so fast that probably the CO2 transfer rate influenced the shape of the mineralization eurve (Fig. 3d). The fact that methanol is degraded quickly in soil is not a surprise, as many isolated soil bacteria have the capability to degrade this BVOC (Kolb, 2009), and different temperate grassland and forest soils have

been found to contain at least 10^6 bacteria with the capability to degrade methanol per gram of soil (Stacheter et al., 2013). However, our data are the first to demonstrate degradation of methanol within the range of observed atmospheric concentrations (less than 100 ng L⁻¹, Seco et al. (2007)). Degradation of benzaldehyde in soil or by soil microorganisms

has not been demonstrated, but benzaldehyde mineralization by pure microbial cultures has been shown (Kamada et al., 2002). <u>Also benzaldehyde mineralization was so fast in the four soils that probably the CO₂ transfer rate influenced the shape of the mineralization curves (Figs. 3d and S2).</u>

- Following methanol and benzaldehyde, geraniol and acetophenone had the highest mineralization rates with most of the 245 mineralization occurring within the first 24 hours of incubation (Fig. 3e,f). These four rapidly degraded compounds had in common that no clear-differences in mineralization rates was observed between the soil types were minor (Table 3) although in many cases still with statistically significant differences in mineralization curves (Fig. 3). For methanol and partly for benzaldehyde this observation the minor differences could be influenced by method limitations (too fast 250 mineralization to be kept in pace by transfer of CO₂ to the trap may have masked any differences), however for geraniol and acetophenone this was not the case. In other words, Arctic soils mineralized these compounds as quickly as temperate forest soils and perhaps even more interestingly, the Arctic bare soil showed similar mineralization rates as the organic soil types. This is despite a much lower abundance of microorganisms as determined by qPCR and a much lower microbial heterotrophic activity during incubation as determined by oxygen consumption (Table 42). Geraniol 255 mineralization has previously been investigated in soil sampled underneath Populus tremula tree crowns (Owen et al., 2007). The mineralization observed in that study was different from the one we observed, with an initial lag phase with less than 5% mineralization in the first ~10 hours. The lag phase was followed by maximum mineralization rates of 1-3% h⁻¹ which is close to what we observed right after the start of incubation (Table 3). An extremely high geraniol concentration of 600 mg kg⁻¹ soil was used in that study compared to $6-11 \,\mu g \, kg^{-1}$ soil in ours, which is the most likely cause of this difference in mineralization. The geraniol concentration used by Owen et al. (2007) would allow growth 260 with geraniol as substrate (hence the lag phase) while the concentrations we used would allow only very limited microbial growth. However, the two studies all in all demonstrate that oxygenated monoterpenes may be degraded within a very large concentration range in soil.
- P-cymene mineralization showed as the only BVOC clear differences between the soil types (Fig. 3c). Initial mineralization rates were by far the highest in the coniferous forest soil (10% h⁻¹, Table 3) followed by the Arctic heath soil (2% h⁻¹), the beech forest soil (0.4% h⁻¹) and the Arctic bare soil (0.2% h⁻¹). In other words, the coniferous forest soil showed a 25 times higher initial mineralization rate compared to the beech forest soil sampled just 750 meters away. In addition, the three soils with slowest mineralization showed a slightly s-shaped mineralization curve meaning
 that mineralization rate increased after an initial lag-phase with slower mineralization (Fig. 3c and Table 3). All in all it appears that the coniferous forest soil is especially adapted to degrade p-cymene. P-cymene is a hydrocarbon monoterpene (monoterpene without heteroatoms) and these are emitted in very high concentrations in coniferous forests (Guenther et al., 1994; Rinne et al., 2009). Our measurements also showed a much higher concentration of this BVOC group in the atmosphere of the coniferous forest compared to the other sampling sites (Table 4). In addition, needle
 litter emits high amounts of hydrocarbon monoterpenes (Aaltonen et al., 2011, Faiola et al., 2014) exposing the soil to these compounds found in higher concentrations in soil under conifers than deciduous trees (Smolander et al., 2006).
 - All in all it seems likely that the high adaptation for p-cymene mineralization in the coniferous forest soil is caused by a high natural input of hydrocarbon monoterpenes to this soil type.

- 280 Chloroform, which is a well-known pollutant but also a natural product in soil (Hoekstra et al., 1998; Albers et al., 2010; Johnsen et al., 2016), was mineralized in all four soils (Fig. 3a), but at much slower rates compared to the other BVOCs (Table 3). Interestingly, the Arctic soils showed a faster mineralization of chloroform than the temperate forest soils with the Arctic bare soil being the fastest. This indicates that chloroform mineralization in soil is not adapted to the natural exposure, since much higher chloroform formation, emission and soil air concentrations are found in coniferous
- forests compared to Arctic Heaths (Albers et al. 2011; Johnsen et al. 2016; Albers et al. 2017). Chloroform mineralization was previously determined at 10°C in a spruce forest soil in which initial mineralization rates of 0.01-0.04 % h⁻¹ were observed (Albers et al., 2011). These rates are roughly ten times lower than the ones observed in our study (0.2-0.5% h⁻¹, Table 3). The spruce forest soil was similar to the coniferous forest soil used in our study, but there was a difference in chloroform concentration, which in our case was 4-7 µg kg⁻¹ soil and in the previous study was 350
- 290 μg kg⁻¹ soil. This stresses that the concentration used during incubation may to a high degree determine how fast the compound is mineralized. On the other hand, if mineralization rates are recalculated to a mass-unit per time-unit, differences in the case of chloroform mineralization would be much smaller between the two studies.

295

Figure 3. Mineralization curves for six BVOCs in soil from coniferous forest, beech forest, Arctic heath and Arctic bare soil. Initial BVOC concentrations varied from 0.8-11 µg kg soil⁻¹. "Ster." means that soil was sterilized twice by autoclaving. Error bars are standard deviation of triplicate incubations. Some error bars are smaller than the symbols. Letters to the right of the mineralization curves denote results of Tukey's post hoc test after Repeated Measures Analysis of Variance. Curves sharing a letter are not significantly different from each other (P > 0.05). Note the incubation time unit for chloroform is days and for the other BVOCs it is 300 hours.

The extent of mineralization (determined as ¹⁴CO₂ release at the termination of experiment) was in general similar between soils but differed greatly between the BVOCs (Fig. 3 and Table S1). Methanol showed almost 100% ¹⁴CO₂ release while acetophenone and geraniol released only 40%. The 40% release should not be interpreted as if only 40% of the compound was degraded, but rather that 60% of the mineralized compound was used as a carbon source for microbial growth. This is a generally accepted interpretation of mineralization curves that often go to yields of only 40-

50% with the remaining part incorporated into biomass that is only slowly mineralized along with microbial turnover (Nowak et al., 2011; Glanville et al., 2016). Just after incubation, we extracted non-degraded or metabolized BVOCs with methanol, and only sterilized samples released a major pool of methanol-extractable ¹⁴C (typically between 50 and 95%) while non-sterilized samples typically released less than 5% (Table S1). This strongly supports the interpretation

that all BVOC was degraded. Geraniol was an exception from this with 15-25% of added ¹⁴C extracted in non-sterilized samples and 83-92% extracted in sterilized samples. While methanol, benzaldehyde, acetophenone and p-cymene were conclusively degraded completely within 140 hours (and presumably much faster) we therefore cannot exclude the possibility that some less degradable degradation products of geraniol have accumulated. It has been shown that some 315 fungi have the ability to metabolize geraniol into various derivatives (Demyttenaere et al., 2000).

Based on extent of mineralization, some compounds (e.g. methanol) were used only as a source of energy (as electron donor), while others (e.g. geraniol and acetophenone) were also used as a carbon source for growth. Recently, Gunina et al. (2017) suggested that the oxidation state of a C-atom determines how much is released as CO₂, and how much is incorporated into biomass. They found a positive relationship between carbon oxidation state and ¹⁴CO₂-release for seven easily degradable low molecular weight sugars, acids and amino acids. However, the carbon atom in methanol (oxidation state -2) is more reduced than the labeled carbon atoms in geraniol (oxidation state 0), benzaldehyde and acetophenone (both -1), so the oxidation state does not determine mineralization extent of the model BVOCs.

325 P-cymene was an exception from the minor difference in mineralization extent between soil types. In soil from the coniferous forest and from the Arctic heath, more than 80% of the ¹⁴C was liberated as ¹⁴CO₂ (Fig. 3c and Table S1). In the Arctic bare soil only half of this release was measured, while the beech forest soil was in between. In all soils, pcymene dissipation degradation was complete at the end of the experiment, since we in all soils could extract only very little ¹⁴C with methanol (Table S1). One possible explanation for this difference is that different microorganisms 330 degrade p-cymene in the studied soils and that these different organisms have different degradation strategies for the compound, i.e. different fractions used for energy and growth. Another, perhaps more likely explanation, is that pcymene is used as a carbon source mainly when degradation is occurring along with microbial growth. This explanation is supported by the fact that the slower the initial degradation is and the more s-shaped the mineralization curves are (presence of lag phase, Table 3), the more carbon seems to be accumulated into biomass (less ¹⁴CO₂-release, Fig. 3c). 335 This is also supported by the earlier observed higher mineralization extent of ¹⁴C- geraniol at high concentration that supported growth (mineralization extent of 64-75%, Owen et al., 2007) compared to the mineralization extent we observed for this compound with no or very little growth (33-46%, Fig. 3f and Table S1). In addition, the highest mineralization extent in the case of geraniol was observed in the coniferous forest soil, which was the only soil where a lag phase (though very weak) was observed (Table 3).

340

310

Table 3. Mineralization parameters calculated from the mineralization experiment shown in Fig. 3. Initial mineralization rate is
calculated as the average rate during the first two hours of incubation. A lag phase is noted where the initial mineralization rate is no
the highest. (Yes) denotes a very weak lag phase.

	Initial mineralization rate (% h ⁻¹)						Lag pha	Lag phase?	
	Conif.	Beech	Heath	Bare	(Conif.	Beech	Heath	Bare
Chloroform	0.20	0.17	0.34	0.48		No	No	No	No
Methanol	38	35	39	25		No	No	No	No
p-Cymene	10	0.4	2.0	0.2		No	Yes	(Yes)	Yes
Benzaldehyde	14	13	16	12		No	No	No	No
Acetophenone	2.0	2.6	4.3	2.3	((Yes)	(Yes)	No	(Yes)
Geraniol	1.5	3.5	4.3	2.3	((Yes)	No	No	No

345 The potential for very fast mineralization of different BVOCs in different temperate and Arctic soils may have significant environmental implications. A few previous studies have shown deposition of BVOCs onto soil (Ramirez et al., 2010; Spielmann et al., 2017) or a bidirectional atmosphere/soil exchange of certain BVOCs (Asensio et al., 2007; Asensio et al., 2008; Gray et al., 2014), but the mechanism behind the uptake of BVOCs into or onto soil has been largely uninvestigated. Our results suggest that BVOCs will be taken up from the atmosphere by microorganisms that then mineralize the compounds. The concentration of BVOCs in the atmosphere is very low, also at the sites where we sampled soil (Table 4). Mineralization experiments cannot be carried out at such low concentrations but we used BVOC concentrations that are much more realistic than those used in previous degradation studies. Furthermore, similar atmospheric concentrations as we used for incubations have been observed in nature for methanol (Seco et al., 2007), chloroform (Albers et al., 2011) and monoterpenes (Barney et al., 2009).

355

360

It is therefore very likely that soil microorganisms also take up and mineralize BVOCs in the natural environment and most likely also in urban environments, where concentrations in the air can be much higher due to additional anthropogenic input (Seco et al., 2007). *In situ* uptake studies using e.g. <u>Proton-Transfer-Reaction Mass Spectrometry</u> <u>PTR MS technology</u> should be carried out in order to provide quantitative estimates of the importance of BVOC uptake in soil. However, simultaneous formation and degradation of the compounds is a complicating aspect in such studies. The use of labeled compounds in the field to determine simultaneous formation and degradation, as previously done in laboratory studies with methane (von Fischer and Hedin, 2002) and methyl halides (Rhew et al., 2003), could be a great supplement to more conventional PTR-MS studies.

365 Table 4. Atmospheric concentrations of relevant BVOCs (mean \pm standard deviation, n=3) measured 10 cm above soil surface (coniferous, beech and Arctic bare sites) or 5 cm above the canopy (Arctic heath site) the day of soil sampling. Methanol could not be analyzed with the applied methods. Comparable literature data are included, when available.

	Atmospheric concentration (ng L ⁻¹)						
Name	Coniferous*	Beech	Arctic**				
Oxygenated monoterpenes	0.00 ± 0.00	0.00 ± 0.00	0.01 ± 0.01				
Hydrocarbon monoterpenes	3.36* ±0.32	0.37 ^b ±0.12	0.71^e ±0.10				
Benzaldehyde	$\frac{1.01 \pm 0.03}{2}$	$\frac{1.14 \pm 0.08}{2}$	0.00 ± 0.00				
Acetophenone	0.44 ± 0.06	0.59 ±0.03	0.01 ± 0.01				
Chloroform	0.10 ±0.02	0.06 ±0.00	0.06 ± 0.00				

*n=2 due to loss of a sample, except for chloroform (n=3). **One sample from the bare soil, two from the Arctic Heath. *Mainly

pinenes, camphene, carene and p-cymene. ^bMainly camphene, α-pinene, δ-terpinene and carene. ^eMainly δ-terpinene.

	Atmosphe	ric concentratio	Initial headspace concentration	
Name	Coniferous* Beech		Arctic**	during incubation (ng L ⁻¹)***
Oxygenated monoterpenes	$0.00^{\underline{e}} \pm 0.00$	$0.00\pm\!\!0.00$	0.01 ±0.01	<u>504</u>
Hydrocarbon monoterpenes \underline{d}	$3.36^{a\underline{.f}}\pm\!0.32$	$0.37^b\pm0.12$	$0.71^{\circ}\pm0.10$	<u>260</u>
Benzaldehyde	1.01 ±0.03	1.14 ± 0.08	$0.00\pm\!0.00$	<u>286</u>
Acetophenone	0.44 ± 0.06	0.59 ± 0.03	0.01 ± 0.01	<u>350</u>
Chloroform	$0.10^{\text{g}}\pm 0.02$	0.06 ± 0.00	$0.06\pm\!\!0.00$	<u>340</u>
Methanol (literature data)	<u>64</u>			

370 *n=2 due to loss of a sample, except for chloroform (n=3). **One sample from the bare soil, two from the Arctic Heath. ***Assuming all added BVOC is present in headspace, although most will likely be adsorbed to soil or dissolved in water. "Mainly pinenes, camphene, carene and p-cymene. ^bMainly camphene, α -pinene, δ -terpinene and carene. ^cMainly δ -terpinene. <u>d</u>Comparable literature values but from a different ecosystem type go from 0.5-50 ng L⁻¹ (Barney et al., 2009). ^eAir samples taken at the interface between litter and atmosphere have shown concentrations of 60-390 ng L⁻¹ (Ketola et al., 2011). ^fAir samples taken at the interface 375 between litter and atmosphere have shown concentrations of 10-24300 ng L⁻¹ (Ketola et al., 2011). ^gComparable literature data go from 0.08-2.1 ng L⁻¹ (Albers et al., 2010).

In addition to the uptake from the atmosphere, the very fast mineralization rates are likely important in shaping the net BVOC emissions from soil. The net BVOC release from soil to the atmosphere in general is low compared to the plant emissions (Peñuelas et al., 2014), but emissions may represent a minor portion of the amount that was excreted by soil microbes (Insam and Seewald, 2010; Garbeva et al., 2014) or by roots (Lin et al., 2007; Delory et al., 2016), produced for example with the purpose of communication (Garbeva et al., 2014; Delory et al., 2016). It is thus possible that BVOCs are a significant source of carbon to soil microbes and hence that BVOC formation and degradation may be an important but little recognized part of internal carbon cycling in soil. In addition, plant litter releases BVOCs from both 385 abiotic and biotic processes (for example terpenoids (Faiola et al., 2013) and methanol (Gray et al., 2010)). These BVOCs may to a large degree never reach the atmosphere but rather be an input of degradable carbon to microorganisms in the top soil.

4 Conclusions

- 390 In conclusion, wWe have shown that six chemically very different BVOCs are can all be mineralized by microbes in Arctic and temperate soils at environmentally relevant concentrations. Five of the BVOCs were mineralized very quickly, but still we observed a relatively large compound-to-compound variation in mineralization rate as well as mineralization extent compared to a much lower soil-to-soil variation. P-cymene was an exception from this pattern with large differences in both mineralization rate and extent differing between soils of different origin.
- It is thus clear that soil microbes are able to degrade completely and quickly BVOCs released by aboveground vegetation, soil microbes and plant roots. <u>In addition to the possible atmospheric implications of BVOC degradation by soil microbes</u>, BVOC formation and degradation may furthermore be an important but little recognized part of internal carbon cycling in soil.and aAdditional studies should be carried out to quantify theise processes in nature. In addition to the possible atmospheric implications of BVOC degradation may furthermore, BVOC formation and degradation may furthermore be an important but little recognized part of internal carbon cycling in soil.and aAdditional studies should be carried out to quantify theise processes in nature. In addition to the possible atmospheric implications of BVOC degradation by soil microbes, BVOC formation and degradation may be an important but little recognized part of internal carbon cycling in soil.

Acknowledgments. We wish to thank Pia Bach Jacobsen, GEUS, for excellent technical assistance in the laboratory. We also thank Anders Priemé, Copenhagen University for advice on the qPCR targeting the fungal community and for providing the ITS2 standard. The study was financially supported by the Danish Council for Independent Research | Natural Sciences (DFF-4002-00495), the Villum foundation (VKR022589), and by the Danish National Research Foundation (CENPERM DNRF100).

Competing interests. The authors declare that they have no conflict of interest.

410 Data availability. The data set related to Figure 3 has been provided as a supplement.

References

405

430

Aaltonen, H., Pumpanen, J., Pihlatie, M., Hakola, H., Hellén, H., Kulmala, L., Vesala, T. and Bäck, J.: Boreal pine forest floor biogenic volatile organic compound emissions peak in early summer and autumn, Agric. For. Meteorol., 151(6), 682–691, doi:10.1016/J.AGRFORMET.2010.12.010, 2011.

Albers, C. N., Laier, T. and Jacobsen, O. S.: Formation, fate and leaching of chloroform in coniferous forest soils, Appl. Geochemistry, 25, 1525–1535, doi:10.1016/j.apgeochem.2010.08.003, 2010.

Albers, C. N., Jacobsen, O. S., Flores, É. M. M., Pereira, J. S. F. and Laier, T.: Spatial variation in natural formation of chloroform in the soils of four coniferous forests, Biogeochemistry, 103, 317–334, doi:10.1007/s10533-010-9467-9, 2011.

420 <u>Albers, C. N., Jacobsen, O. S., Flores, E. M. M. and Johnsen, A. R.: Arctic and Subarctic Natural Soils Emit</u> <u>Chloroform and Brominated Analogues by Alkaline Hydrolysis of Trihaloacetyl Compounds, Environ. Sci. Technol.,</u> <u>51(11), 6131–6138, doi:10.1021/acs.est.7b00144, 2017.</u>

Asensio, D., Peñuelas, J., Filella, I. and Llusià, J.: On-line screening of soil VOCs exchange responses to moisture, temperature and root presence, Plant Soil, 291(1-2), 249–261, doi:10.1007/s11104-006-9190-4, 2007.

425 Asensio, D., Peñuelas, J., Prieto, P., Estiarte, M., Filella, I. and Llusià, J.: Interannual and seasonal changes in the soil exchange rates of monoterpenes and other VOCs in a Mediterranean shrubland, Eur. J. Soil Sci., 59(5), 878–891, doi:10.1111/j.1365-2389.2008.01057.x, 2008.

Barney, J. N., Sparks, J. P., Greenberg, J., Whitlow, T. H. and Guenther, A.: Biogenic volatile organic compounds from an invasive species: impacts on plant–plant interactions, Plant Ecol., 203(2), 195–205, doi:10.1007/s11258-008-9529-4, 2009.

Boberg, J.: Litter decomposing fungi in boreal forests, 67 pp., Dept. of Forest Mycology and Pathology, Swedish University of Agricultural Sciences., 2009.

Bäck, J., Aaltonen, H., Hellén, H., Kajos, M. K., Patokoski, J., Taipale, R., Pumpanen, J. and Heinonsalo, J.: Variable emissions of microbial volatile organic compounds (MVOCs) from root-associated fungi isolated from Scots pine, Atmos. Environ., 44(30), 3651–3659, doi:10.1016/J.ATMOSENV.2010.06.042, 2010.

Chen, W. and Viljoen, A. M.: Geraniol — A review of a commercially important fragrance material, South African J. Bot., 76(4), 643–651, doi:10.1016/J.SAJB.2010.05.008, 2010.

Christiansen, C. T., Haugwitz, M. S., Priemé, A., Nielsen, C. S., Elberling, B., Michelsen, A., Grogan, P. and Blok, D.: Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra, Glob. Chang. Biol., 23(1), 406–420, doi:10.1111/gcb.13362, 2017.

Cleveland, C. C. and Yavitt, J. B.: Consumption of atmospheric isoprene in soil, Geophys. Res. Lett., 24(19), 2379–2382, doi:10.1029/97GL02451, 1997.

Cripps, R. E.: The microbial metabolism of acetophenone. Metabolism of acetophenone and some chloroacetophenones by an Arthrobacter species., Biochem. J., 152(2), 233–241 [online] Available from: http://www.ncbi.nlm.nih.gov/pubmed/4061 (Accessed 7 December 2017), 1975.

Delory, B. M., Delaplace, P., Fauconnier, M.-L. and du Jardin, P.: Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions?, Plant Soil, 402(1-2), 1–26, doi:10.1007/s11104-016-2823-3, 2016.

Demyttenaere, J. C. R., del Carmen Herrera, M. and De Kimpe, N.: Biotransformation of geraniol, nerol and citral by sporulated surface cultures of Aspergillus niger and Penicillium sp., Phytochemistry, 55(4), 363–373, doi:10.1016/S0031-9422(00)00330-7, 2000.

Faiola, C. L., VanderSchelden, G. S., Wen, M., Elloy, F. C., Cobos, D. R., Watts, R. J., Jobson, B. T. and VanReken, T.
M.: SOA Formation Potential of Emissions from Soil and Leaf Litter, Environ. Sci. Technol., 48(2), 938–946, doi:10.1021/es4040045, 2014.

Feld, L., Nielsen, T. K., Hansen, L. H., Aamand, J. and Albers, C. N.: Establishment of Bacterial Herbicide Degraders
in a Rapid Sand Filter for Bioremediation of Phenoxypropionate-Polluted Groundwater., Appl. Environ. Microbiol., 82(3), 878–887, doi:10.1128/AEM.02600-15, 2016.

Von Fischer, J. C. and Hedin, L. O.: Separating methane production and consumption with a field-based isotope pool dilution technique, Global Biogeochem. Cycles, 16(3), 8-1-8-13, doi:10.1029/2001GB001448, 2002.

Garbeva, P., Hordijk, C., Gerards, S. and de Boer, W.: Volatile-mediated interactions between phylogenetically
different soil bacteria, Front. Microbiol., 5, 289, doi:10.3389/fmicb.2014.00289, 2014.

Glanville, H. C., Hill, P. W., Schnepf, A., Oburger, E. and Jones, D. L.: Combined use of empirical data and mathematical modelling to better estimate the microbial turnover of isotopically labelled carbon substrates in soil, Soil Biol. Biochem., 94, 154–168, doi:10.1016/j.soilbio.2015.11.016, 2016.

445

450

435

Glasius, M. and Goldstein, A. H.: Recent Discoveries and Future Challenges in Atmospheric Organic Chemistry, Environ. Sci. Technol., 50(6), 2754–2764, doi:10.1021/acs.est.5b05105, 2016.

Gray, C. M., Monson, R. K. and Fierer, N.: Emissions of volatile organic compounds during the decomposition of plant litter, J. Geophys. Res., 115(G3), G03015, doi:10.1029/2010JG001291, 2010.

Gray, C. M., Monson, R. K. and Fierer, N.: Biotic and abiotic controls on biogenic volatile organic compound fluxes from a subalpine forest floor, J. Geophys. Res. Biogeosciences, 119(4), 547–556, doi:10.1002/2013JG002575, 2014.

470 Gray, C. M., Helmig, D. and Fierer, N.: Bacteria and fungi associated with isoprene consumption in soil, Elem. Sci. Anthr., 3(0), 000053, doi:10.12952/journal.elementa.000053, 2015.

Guenther, A., Zimmerman, P. and Wildermuth, M.: Natural volatile organic compound emission rate estimates for U.S. woodland landscapes, Atmos. Environ., 28(6), 1197–1210, doi:10.1016/1352-2310(94)90297-6, 1994.

Gunina, A., Smith, A. R., Kuzyakov, Y. and Jones, D. L.: Microbial uptake and utilization of low molecular weight
organic substrates in soil depend on carbon oxidation state, Biogeochemistry, 133(1), 89–100, doi:10.1007/s10533-017-0313-1, 2017.

Gutiérrez-Luna, F. M., López-Bucio, J., Altamirano-Hernández, J., Valencia-Cantero, E., de la Cruz, H. R. and Macías-Rodríguez, L.: Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission, Symbiosis, 51(1), 75–83, doi:10.1007/s13199-010-0066-2, 2010.

480 Hoekstra, E. J., de Leer, E. W. B. and Brinkman, U. A. T.: Natural Formation of Chloroform and Brominated Trihalomethanes in Soil, Environ. Sci. Technol., 32(23), 3724–3729, doi:10.1021/es980127c, 1998.

Insam, H. and Seewald, M. S. A.: Volatile organic compounds (VOCs) in soils, Biol. Fertil. Soils, 46(3), 199–213, doi:10.1007/s00374-010-0442-3, 2010.

Jardine, K., Abrell, L., Kurc, S. A., Huxman, T., Ortega, J. and Guenther, A.: Volatile organic compound emissions
from Larrea tridentata (creosotebush), Atmos. Chem. Phys., 10(24), 12191–12206, doi:10.5194/acp-10-12191-2010, 2010.

Johnsen, A. R., Jacobsen, O. S., Gudmundsson, L. and Albers, C. N.: Chloroform emissions from arctic and subarctic ecosystems in Greenland and Northern Scandinavia, Biogeochemistry, 130(1-2), 53–65, doi:10.1007/s10533-016-0241-5, 2016.

490 Kamada, F., Abe, S., Hiratsuka, N., Wariishi, H. and Tanaka, H.: Mineralization of aromatic compounds by brown-rot basidiomycetes – mechanisms involved in initial attack on the aromatic ring, Microbiology, 148(6), 1939–1946, doi:10.1099/00221287-148-6-1939, 2002.

Kesselmeier, J. and Staudt, M.: Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology, J. Atmos. Chem., 33(1), 23–88, doi:10.1023/A:1006127516791, 1999.

495 <u>Ketola, R. A., Kiuru, J. T., Kotiaho, T., Kitunen, V. and Smolander, A.: Feasibility of membrane inlet mass</u> spectrometry for on-site screening of volatile monoterpenes and monoterpene alcohols in forest soil atmosphere, Boreal Environ. Res., 16(1), 36–46

El Khawand, M., Crombie, A. T., Johnston, A., Vavlline, D. V., McAuliffe, J. C., Latone, J. A., Primak, Y. A., Lee, S.-K., Whited, G. M., McGenity, T. J. and Murrell, J. C.: Isolation of isoprene degrading bacteria from soils, development of isoA gene probes and identification of the active isoprene-degrading soil community using DNA-stable isotope probing, Environ. Microbiol., 18(8), 2743–2753, doi:10.1111/1462-2920.13345, 2016.

Kleinheinz, G. T., Bagley, S. T., John, W. P. St., Rughani, J. R. and McGinnis, G. D.: Characterization of Alpha-Pinene-Degrading Microorganisms and Application to a Bench-Scale Biofiltration System for VOC Degradation, Arch. Environ. Contam. Toxicol., 37(2), 151–157, doi:10.1007/s002449900500, 1999.

505 Kolb, S.: Aerobic methanol-oxidizing Bacteria in soil, FEMS Microbiol. Lett., 300(1), 1–10, doi:10.1111/j.1574-6968.2009.01681.x, 2009.

500

Kramshøj, M., Vedel-Petersen, I., Schollert, M., Rinnan, Å., Nymand, J., Ro-Poulsen, H. and Rinnan, R.: Large increases in Arctic biogenic volatile emissions are a direct effect of warming, Nat. Geosci., 9(5), 349–352, doi:10.1038/ngeo2692, 2016.

510 Laothawornkitkul, J., Taylor, J. E., Paul, N. D. and Hewitt, C. N.: Biogenic volatile organic compounds in the Earth system, New Phytol., 183(1), 27–51, doi:10.1111/j.1469-8137.2009.02859.x, 2009.

Laturnus, F. and Matucha, M.: Chloride - a precursor in the formation of volatile organochlorines by forest plants?, J. Environ. Radioact., 99(1), 119–125, doi:10.1016/j.jenvrad.2007.07.008, 2008.

Leff, J. W. and Fierer, N.: Volatile organic compound (VOC) emissions from soil and litter samples, Soil Biol.
Biochem., 40(7), 1629–1636, doi:10.1016/J.SOILBIO.2008.01.018, 2008.

Lin, C., Owen, S. M. and Peñuelas, J.: Volatile organic compounds in the roots and rhizosphere of Pinus spp., Soil Biol. Biochem., 39(4), 951–960, doi:10.1016/J.SOILBIO.2006.11.007, 2007.

McNeal, K. S. and Herbert, B. E.: Volatile Organic Metabolites as Indicators of Soil Microbial Activity and Community Composition Shifts, Soil Sci. Soc. Am. J., 73(2), 579–588, doi:10.2136/sssaj2007.0245, 2009.

 Misra, G., Pavlostathis, S. G., Perdue, E. M. and Araujo, R.: Aerobic biodegradation of selected monoterpenes, Appl. Microbiol. Biotechnol., 45(6), 831–838, doi:10.1007/s002530050770, 1996.

Nowak, K. M., Miltner, A., Gehre, M., Schäffer, A. and Kästner, M.: Formation and Fate of Bound Residues from Microbial Biomass during 2,4-D Degradation in Soil, Environ. Sci. Technol., 45(3), 999–1006, doi:10.1021/es103097f, 2011.

525 Ortega, J., Helmig, D., Daly, R. W., Tanner, D. M., Guenther, A. B. and Herrick, J. D.: Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques – Part B: Applications, Chemosphere, 72(3), 365–380, doi:10.1016/j.chemosphere.2008.02.054, 2008.

Owen, S. M., Clark, S., Pompe, M. and Semple, K. T.: Biogenic volatile organic compounds as potential carbon sources for microbial communities in soil from the rhizosphere of Populus tremula, FEMS Microbiol. Lett., 268(1), 34–39, doi:10.1111/j.1574-6968.2006.00602.x, 2007.

Peñuelas, J. and Staudt, M.: BVOCs and global change, Trends Plant Sci., 15(3), 133–144, doi:10.1016/J.TPLANTS.2009.12.005, 2010.

530

Peñuelas, J., Asensio, D., Tholl, D., Wenke, K., Rosenkranz, M., Piechulla, B. and Schnitzzler, J. P.: Biogenic volatile emissions from the soil, Plant. Cell Environ., 37(8), 1866–1891, doi:10.1111/pce.12340, 2014.

535 Ramirez, K. S., Lauber, C. L. and Fierer, N.: Microbial consumption and production of volatile organic compounds at the soil-litter interface, Biogeochemistry, 99(1-3), 97–107, doi:10.1007/s10533-009-9393-x, 2010.

Rhew, R. C., M, A. and ES, S.: Measuring terrestrial fluxes of methyl chloride and methyl bromide using a stable isotope tracer technique, Geophys. Res. Lett., 30(21), 2103, doi:10.1029/2003GL018160, 2003.

Rinne, J., Back, J. and Hakola, H.: Biogenic volatile organic compound emissions from the Eurasian taiga: current
knowledge and future directions, Boreal Environ. Res., 14(4), 807–826 [online] Available from: https://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=2&SID=N2EGB
wkHspWF9UQ7ty8&page=2&doc=12 (Accessed 24 October 2017), 2009.

Schink, B. and Zeikus, J. G.: Microbial methanol formation: A major end product of pectin metabolism, Curr. Microbiol., 4(6), 387–389, doi:10.1007/BF02605383, 1980.

545 Schulz, S. and Dickschat, J. S.: Bacterial volatiles: the smell of small organisms, Nat. Prod. Rep., 24(4), 814–842, doi:10.1039/b507392h, 2007.

Seco, R., Peñuelas, J. and Filella, I.: Short-chain oxygenated VOCs: Emission and uptake by plants and atmospheric sources, sinks, and concentrations, Atmos. Environ., 41(12), 2477–2499, doi:10.1016/j.atmosenv.2006.11.029, 2007.

Smolander, A., Ketola, R. A., Kotiaho, T., Kanerva, S., Suominen, K. and Kitunen, V.: Volatile monoterpenes in soil
atmosphere under birch and conifers: Effects on soil N transformations, Soil Biol. Biochem., 38(12), 3436–3442,
doi:10.1016/j.soilbio.2006.05.019, 2006.

Spielmann, F. M., Langebner, S., Ghirardo, A., Hansel, A., Schnitzler, J.-P. and Wohlfahrt, G.: Isoprene and α -pinene deposition to grassland mesocosms, Plant Soil, 410(1-2), 313–322, doi:10.1007/s11104-016-3009-8, 2017.

Stacheter, A., Noll, M., Lee, C. K., Selzer, M., Glowik, B., Ebertsch, L., Mertel, R., Schulz, D., Lampert, N., Drake, H.
L. and Kolb, S.: Methanol oxidation by temperate soils and environmental determinants of associated methylotrophs, ISME J., 7(5), 1051–1064, doi:10.1038/ismej.2012.167, 2013.

Reply to referee 1

General comments

- This paper investigates the mineralization of five BVOCs in four different soils. By using BVOCs labelled with 14C the paper clearly shows the mineralization process of BVOCs occurring in the different soil types. The methodology is adequately described and the experimental procedures are well written, as well as the introduction, results and discussion sections. The fact that soil microbes can metabolize soil BVOCs is already known but, as the authors say, there are still not many studies directly proving microbial degradation of BVOCs. The authors say that one important value of this study is that the incubated soils were exposed to realistic environmental concentrations of BVOCs, not like the other studies, where higher concentrations were used. It would be interesting
- 565 for the readers to have a table were one could see the real initial concentration (not a range), together with the concentration measured of these BVOCs in the environment (in this experiment or in the literature, if some atmospheric BVOC measurement is missing), the amount of BVOC metabolized to CO2 and the amount of BVOC extracted at the end of the incubation, for each BVOCs and soil incubated. This information would help to evaluate the main points of the paper: that some BVOCs can be degraded completely in soil (by giving the recovered BVOCs at the end of the experiment one could see how much was in incorporated in the
- 570 microbial biomass or how much was adsorbed to soil particles) at the relevant environmental concentrations measured. Regarding this point, for the BVOCs that were measured in the atmosphere (not methanol), the highest atmospheric concentrations shown in Table 4 (around 3 ng/L in the coniferous forest, measured at 10 cm above soil) would be still 21 times lower than the minimum concentration used in the incubations (64 ng/L). There are of course technical difficulties, as the authors say, to measure mineralization at the very low atmospheric concentration, thus that table would highlight to what extent the authors have narrowed
- 575 this challenge.

We have considered carefully to make an additional table with the data suggested by the referee. We are afraid that such a table will increase confusion rather than make things clearer, since very different things would be compared in the table (environmental BVOC-concentrations, BVOC concentrations during incubation, mineralized fraction of BVOC and extractable ¹⁴C). We do understand the desire to compare environmental and experimental concentrations.

580 However, this is a difficult task, since we do not know how much of the BVOC we add that is in the air phase as we already discuss in the manuscript (see also our response to the specific comment concerning "page 5, line 138"). After all, we have decided to compare the two concentration types in Table 4, where environmental concentrations were already shown. We have also included comparable literature data, if available:

585 **Table 4.** Atmospheric concentrations of relevant BVOCs (mean \pm standard deviation, n=3) measured 10 cm above soil surface (coniferous, beech and Arctic bare sites) or 5 cm above the canopy (Arctic heath site) the day of soil sampling. Methanol could not be analyzed with the applied methods. Comparable literature data are included, when available.

	Atmospher	ric concentratio	Initial headspace concentration	
Name	Coniferous*	Beech	Arctic**	during incubation $(ng L^{-1})^{***}$
Oxygenated monoterpenes	$0.00^{\text{e}} \pm 0.00$	0.00 ± 0.00	0.01 ±0.01	504
Hydrocarbon monoterpenes ^d	$3.36^{a,f}\pm\!0.32$	$0.37^{b}\pm 0.12$	$0.71^{\circ}\pm0.10$	260
Benzaldehyde	1.01 ± 0.03	1.14 ± 0.08	$0.00\pm\!0.00$	286
Acetophenone	0.44 ± 0.06	0.59 ± 0.03	0.01 ±0.01	350
Chloroform	$0.10^{\text{g}} \pm 0.02$	0.06 ± 0.00	0.06 ± 0.00	340
Methanol (literature data)	0.3-28	34 (Seco et al., 2	64	

*n=2 due to loss of a sample, except for chloroform (n=3). **One sample from the bare soil, two from the Arctic Heath.

***Assuming all added BVOC is present in headspace, although most will likely be adsorbed to soil or dissolved in water. ^aMainly pinenes, camphene, carene and p-cymene. ^bMainly camphene, α -pinene, δ -terpinene and carene. ^cMainly δ -terpinene. ^dComparable literature values but from a different ecosystem type go from 0.5-50 ng L⁻¹ (Barney et al., 2009). ^eAir samples taken at the interface between litter and atmosphere have shown concentrations of 60-390 ng L⁻¹ (Ketola et al., 2011). ^fAir samples taken at the interface between litter and atmosphere have shown concentrations of 10-24300 ng L⁻¹ (Ketola et al., 2011). ^gComparable literature data go from 0.08-2.1 ng L⁻¹ (Albers et al., 2010).

595

600

590

The mineralization extent is clearly an important parameter, but since it is relatively easy to read out of the curves in Figure 3, we did not include them in a table. We can see the need to be able to find the exact data, however and also the benefit of comparing with extraction data, although these play a minor role in the manuscript. We will therefore include a supplementary table with these data in the revised manuscript:

Table S1. Supplementary mineralization parameters from the mineralization experiment shown in Fig. 3. Mineralization extent is the accumulated liberation of ${}^{14}CO_2$ at the end of experiment (144 h, except chloroform (21 d)). Final extraction is the amount of ${}^{14}C$ extractable with methanol at the end of experiment. All data are average of three replicate incubations. nd = no data.

	Mi	Mineralization extent (%)				Extractable ¹⁴ C (%)			
	Conif.	Beech	Heath	Bare		Conif.	Beech	Heath	Bare
Chloroform	36	30	44	47		nd	nd	nd	nd
Methanol	93	90	98	85		1	1	0	1
p-Cymene	81	66	87	48		8	7	4	5
Benzaldehyde	60	53	59	57		4	4	2	1
Acetophenone	43	41	37	46		6	4	3	4
Geraniol	46	42	42	33		19	17	16	25

Specific comments

Page 4, line 115: Table 1 instead of Table 2

610 Reply: The reviewer is correct, Table 1 and 2 should exchange numbers.

Page 5, line 137: As suggested in the general comments, it would be nice to have a table with the initial concentrations for each BVOC and soil type, the corresponding atmospheric concentrations, etc. These are now gathered in table 4 (see response to "General comments")

615

Page 5, line 138: This range 0.8-11 ug/Kg soil FW, is environmentally realistic? Regarding monoterpenes White (1991) reports 12-47 ug/g soil DW in the organic horizon and 0.03 to 0.23 ug/g mineral horizon of Ponderosa pine forest. That would be much higher than the values in this experiment, at least for the organic layer. Is there any information for other BVOCs ? But I guess it's very difficult to find this information...

620 Reference: White, C.S., 1991. The role of monoterpenes in soil-nitrogen cycling processes in ponderosa pine results from laboratory bioassays and field studies. Biogeochemistry 12 (1), 43–68.

This point raised by the reviewer is relevant and something we have given a great deal of thought when designing the experiment. First of all, BVOC measurements around or below the soil surface are very scarce in the literature and for the few studies that exist about BVOC concentrations in soil, very different methods have been used, making it

- 625 impossible to compare. For example in the reference mentioned by the referee, BVOCs were extracted with an organic solvent from the solid matrix after homogenization, hence representing only sorbed/bound BVOC as well as compounds in root material if any remained in the soil, while others measured the concentration in soil air, hence excluding sorbed/bound BVOC. Our focus in the study was the possible uptake from the atmosphere rather than degradation of sorbed/bound residues, although in nature it will all be connected, of course. Based on atmospheric concentration
- 630 measurements, the concentration of many BVOCs seems in general lower than what is possible to analyze with ¹⁴Cmineralization experiments. We therefore used the lowest concentration possible, which for some of the compounds is not far from realistic and under all circumstances much more realistic than what has been used in previous degradation studies. Furthermore, a fraction of the BVOC we add will be sorbed and/or dissolved in soil water, hence making actual atmospheric concentrations in the experiment even closer to those in nature. However, the exact concentration in 635 atmosphere and soil during incubation is not easy to calculate and furthermore it will change rapidly due to the rapid

degradation.

In the manuscript, we already state the following, which we believe sums up these considerations (lines 136-139 and 319-323):

640 "The BVOC concentrations used for incubation corresponded to 43-73 ppbv (64-504 ng L-1), assuming all BVOC was present in the headspace of the flasks. Most of the BVOCs were, however likely dissolved in water or adsorbed to the soil, so recalculating to a soil basis (0.8-11 μg kg-1 f.w. soil) may be more appropriate." And:

"The concentration of BVOCs in the atmosphere is very low, also at the sites where we sampled soil (Table 4).

- 645 Mineralization experiments cannot be carried out at such low concentrations but we used BVOC concentrations that are much more realistic than those used in previous degradation studies. Furthermore, similar atmospheric concentrations as we used for incubations have been observed in nature for methanol (Seco et al., 2007), chloroform (Albers et al., 2011) and monoterpenes (Barney et al., 2009)."
- Page 6, line 170: Table 2 instead of Table 1Reply: The reviewer is correct, Table 1 and 2 should exchange numbers.

Page 8, line 208-213: It is very nice to read the investigations about the transfer rate of CO2 in the supplementary information Fig. S1.

655 Reply: Thank you. We did consider to include it in the manuscript itself, but ended up placing it in the supplementary, where the interested reader will hopefully find it...

Page 11, line 280: This 5% is then adsorption to soil? Again, a table to compare values between soils and BVOCs would be useful in my opinion

660 These 5% could be sorbed/bound mother compound or (more likely) microbial metabolites, containing ¹⁴C due to utilization of the ¹⁴C-BVOC. Regarding the Table, we have made a supplementary table (see response to "General comments").

We will add the following sentence:

"These 5% could be sorbed/bound mother compound or (more likely) microbial metabolites, containing ^{14}C due to utilization of the ^{14}C -BVOC."

Page 11, line 298: what do you mean by dissipation? Do you mean you recovered all the p-cymene added with the extraction? By dissipation we mean degradation in the sense of disappearance, or in other words that we could not recover the compound by extraction. The word "degradation" would probably be easier to read, but since we only measure that the

670 compound is gone, we used the word "dissipation". To clarify, we will change the sentence as follows: *"In all soils, p-cymene dissipation was complete at the end of the experiment,"*

Will be changed to:

"In all soils, p-cymene degradation was complete at the end of the experiment, since we could not extract any ${}^{14}C$ with methanol."

675

665

Page 13, Table 4: Assuming the 3 columns represent the sites where BVOCs were measured at 10 cm surface, where is the Arctic heath site?

As explained in the footnotes of the Table, this is an average of one sample from the bare soil and two from the Arctic Heath. We did take more samples, but they were unfortunately destroyed during transport, and since there was no major

680 difference in compound composition and concentration between the three samples (which may also be expected since there is no forest canopy and the sites are located just 300 m apart) we decided to treat it as one sample type.

Reply to referee 2

M. Mäki (Referee) mari.maki@helsinki.fi Received and published: 7 May 2018

685 General comments

The manuscript shows rapid mineralization of different BVOCs in temperate and Arctic soils. The manuscript is concise and clear. I appreciate your chosen scientific approach and use of relatively low BVOC concentrations, which are more realistic compared to the earlier studies. I recommend this manuscript for publication after it has been modified. Scientific significance of the manuscript would have been stronger if the number of BVOCs and soil types studied would be higher. Considering the Table 4, I would like you

- 690 to justify, why you decided to choose the compounds that were not the dominating ones in the ambient air close to the soil surface. Why to choose p-cymene if several other monoterpenes showed much higher concentrations in the atmosphere above the sampled soils? Especially when you say in the conclusions that BVOC degradation by soil microbes could have atmospheric implications. I would also like to read your reasoning behind why you decided to study only six different BVOCs when the spectrum of different BVOCs emitted by vegetation and soil processes is very high. One value of this study is that you studied different soil types. You should mention different soil types already in the abstract.
- 695 types. You should mention different soil types already in the abstract. With regards to the choice of model BVOCs we had the following major considerations. The first was the number of incubations we could handle in the laboratory within the manpower available to the study and six compounds in triplicate plus abiotic controls seemed like a good compromise. Then to choose these six compounds, we wanted some that represented major BVOC groups, since even though you can expect
- 700 different degradation rates of compounds with similar chemical structures, you may after all expect larger differences between than within chemical groups. The last major consideration was then that the compound should be commercially available as ¹⁴C-labelled. The price of commercially available ¹⁴C- compounds is typically 1000-2000 Euros compared to non-available where you pay 10000-20000 Euro for a custom synthesis. The compounds we chose were those that may be considered most widespread / best
- 705 group representatives and at the same time being commercially available. Even though it could have been nice to have a free choice of compound, this is simply not possible when working with 14C-labelled compounds unless you have a very large budget...

With regards to the use of different soil types we state that in the abstract already.

710 Specific comments

Line 12. You wrote in the text: "Their release into the atmosphere is important with regards to a number of physical and chemical processes." Please keep in mind that you will sell your manuscript to your readers. Please be more precise. What do you mean with this?

We understand this comment, however, in the Abstract, the general introduction should be limited, we

715 believe. However

"physical and chemical processes" Will be changed to: "climate related physical and chemical processes"

720 Line 33. Please remove "though". Will be corrected as suggested

Lines 37-38. Please clarify that this is a chain reaction from BVOCs and oxidants (OH, O3, NOx) to SOA and from there to cloud formation and properties.

725 Will be corrected as suggested

Line 41. "Owe to" is not good. Please use another verb. Will be corrected as suggested

Line 43. Please clarify what is a fate model."and fate models for these parameters could then be set up"

will be deleted, as this part of the sentence is actually not necessary.

Lines 44-45. You wrote that "The microbial degradability of BVOCs - and especially the rate of degradation - are on the other hand very difficult to predict." Could you please clarify why microbial degradability of BVOCs is difficult to predict? In soil, there is a high diversity of compounds with varying properties for microbial degradation. Microbial population diversity is high. Chemical transformation from one compound to another happens also in soil. Soil conditions vary in time, which can affect degradability of BVOCs.

The referee is correct that in most soils there is a huge potential for degradation of all sorts of organic compounds. Therefore it is also not a big surprise, if BVOCs are degraded in soil. However, the rate of

degradation varies tremendously from compound to compound, and with the current QSAR models this is not predictable. Furthermore, the degradation rates may vary from soil to soil. This is what we mean by this sentence. We will add the following to the sentence to make this clearer:

", since degradation rates in soil vary a lot from compound to compound and from soil to soil"

745

740

Lines 54-55. Field study or laboratory measurements? Which ecosystems/soil types? Please clarify. Will be corrected as suggested

Line 61. "The ultimate proof" is not scientific language.

750 Will be changed as suggested

Table 1. Please specify in the table that 16s is bacterial biomass and ITS2 is fungal biomass. Will be corrected as suggested

Line 105. "A snap-shot" is not scientific language.We do not agree with the referee, this is often used and we can think of no better word.

Line 110. Please be more precise: a gas chromatograph–mass spectrometer, and please include the instrument details. Information will be added as suggested.

760

Line 137. Please correct "all BVOC was present". It should be: all the BVOCs were present in the headspace of the flasks. Will be corrected as suggested

Lines 210-220. It would be more easy to read if you would discuss methanol first and benzaldehyde after that. Now you discuss methanol first, then benzaldehyde, then methanol again and so on. Will be corrected as suggested

Line 344. You talk about communication between soil organisms. Please add a reference. We will add two references, also included in the previous sentence (Garbeva et al., 2014; Delory et al., 2016).

770 **201**

Line 327. PTR-MS should be the proton-transfer reaction mass-spectrometer. Will be corrected as suggested

Line 351: It is needless to say "In conclusion", when the title is Conclusions. Please make the conclusions more concise.
 Will be corrected as suggested

Table 2. Please specify in the table that Sw means water solubility. Will be corrected as suggested

Table 4. You could consider to add reactivity of each compound or reactivity range of each compound group, because it will likely affect your results. You should also present analytical methods and calculations in the M&M section. We are not sure what the referee refers to. Is it the atmospheric reactivity of the compounds? If so, how could this affect our concentration measurements?

- 785 We already present how the samples were taken and analysed in section 2.2 This section is now extended based on a previous comment by the referee. Since it is just concentration measurements (and not e.g. fluxes) there are no calculations involved.
- Figure 3. You didn't do any statistical analysis on how the BVOCs behave in the different soil types. You should use valid statistical tests and add p values into the text. Please include statistical methods into the M&M section. Please remove the framing. Same for the Figure S1 in supplements. You should clarify in the figure caption that chloroform was measured for 25 days and others for 150 hours. Finally, it would be nice to see a map that shows locations of the sampling sites in supplements. The figure caption will be corrected as suggested and a map with locations will be included in the supplementary material.
- 795 Regarding the statistical analyses, we have now conducted a Repeated Measures Analysis of Variance followed by a Tukey's post hoc test to test if the mineralization curves in Figure 3 are statistically significantly different. Often, the curves were significantly different despite a low absolute difference. We will therefore change the phrasing in the text a few places to make this clear. A section will be added to the Methods, explaining the type of analysis and conditions used. The result of the test will be added to Figure
- 800 3 in the form of letters denoting whether or not differences between soil types were found statistically significant.