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Abstract. Vegetation fires are an important process in the Earth system. Fire intensity locally impacts fuel consumption,

damage to the vegetation, chemical composition of fire emissions but also how fires spread across landscapes. It has been

observed that fire occurrence, defined as the frequency of active fires detected by the MODIS sensor, is related to intensity

with a hump-shaped empirical relation meaning that  occurrence reaches a maximum at  intermediate fire intensity. Raw

burned area products obtained from remote-sensing can not discriminate between ignition and propagation processes. To go

beyond burned area and to test if fire size is driven by fire intensity at global scale as expected from empirical fire spread

models, we  used the newly delivered global FRY database which provides fire patch functional traits based on satellite

observation,  including fire  patch  size,  and  the  fire  radiative  power  measures  from the  MCD14ML dataset .  This  paper

describes the varying relationships between fire size and fire radiative power across biomes at global scale. We show that in

most fire regions of the world defined by the the GFED database, the linear relationship between fire radiative power and

fire patch size saturates for a threshold of intermediate intensity fires. The value of this threshold differs from one region to

another, and depends on vegetation type. In the most fire-prone savanna regions, once this threshold is reached, fire size

decreases for the most intense fires, which mostly happen in the late fire season. According to the percolation theory, we

suggest that the decreasing of fire size for more intense late season fires is a consequence of the increasing fragmentation of

fuel continuity along the fire season and suggest that landscape-scale feedbacks should be developed in global fire modules.

1 Introduction

Fire is a major perturbation of the Earth system, which impacts the plant biomass distribution and vegetation structure, the

carbon cycle, global atmospheric chemistry, air quality and climate (Bowman et al. 2009). Fire is therefore recognized as an

essential climatic variable (GCOS 2011), and the potential impact of global warming on drought severity and fire season

length is a key scientific question (Flannigan et al. 2009, Krawchuk et al. 2009, Aragão et al. 2018) to understand its role

within the Earth system. Most Dynamic Global Vegetation Models (DGVMs) have included fire modules (see Hantson et al.

2016, Rabin et al. 2017 for a review) to improve the prediction of the impact of fire on vegetation dynamics and the carbon

cycle. Substantial efforts have been devoted in the past decades to create reliable burned area (BA), active fires and fire

radiative power  (FRP)  global  datasets  which allow to quantify  the fire  perturbation since  the  beginning of  the  2000’s

(Mouillot et al. 2014) and benchmark DGVM fire modules.

A fire can be decomposed as a two-step process, the ignition and the propagation (Pyne 1996, Scott et al. 2014). Potential

fire ignitions are set by lightning strikes and humans (deliberately or accidentally), and the probability that an ignition turns

into  a  spreading  fire  event  mainly  depends  on  fuel  type  and  its  moisture  content  at  the  location  of  the  ignition.  The
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Rothermel’s equation (Rothermel 1972) has long been used to model fire propagation in landscape fire succession models

(Cary et al. 2006), whose rate of spread scales with a power function of the wind velocity, landscape slope and fire intensity.

However, this model, used by processed-based fire modules in most DGVM, has only been benchmarked on experimental

and localized fires, discarding topographic and landscape effects. Besides, for larger natural fires, the continuity of the fuel

bed also has an impact on fire propagation: a homogeneous fuel bed usually promotes fire propagation (Baker et al. 1994)

while fragmented landscape with a heterogeneity of fuel patches reduces fire spread (Turner et al. 1989). On the other hand,

the velocity of fire propagation determines the amount of fuel entering the combustion zone, and therefore feeds back on the

intensity of the fire event.  In addition to its coupling with fire propagation, fire intensity also significantly impacts the

chemical composition of the emissions (Tang et al. 2017), the amplitude and severity of vegetation damage and its post-fire

regeneration ability (Bond and Keeley et al. 2005). As a result, analyses focusing on fire patch properties, such as fire patch

size and shape, rather than on simple BA have emerged in the last decade. Information on the fire patch size distribution

(Archibald et al. 2010, Hantson et al. 2015, Laurent et al. 2018)  can be used to map the different fire regimes at global scale

(Archibald et al. 2013), and edge effects could reveal landscape scale processes leading to the observed shapes of burned

patches (Greene et al. 2005, Cary et al. 2009).

Recent studies (Pausas and Ribeiro et al. 2013, Luo et al. 2017) have shown that fire occurrence, defined as the number of

remotely detected active fires in unit of time per unit area, increases with fire intensity up until a threshold is reached (so-

called  Intermediate  Fire  Occurrence-Intensity  (IFOI)  hypothesis)  above  which  occurrence  decreases  with  increasing

intensity. Since ignition and propagation are different processes and are not driven by the same climatic variables,  it  is

necessary to go beyond fire occurrence and BA and to consider individual fire events. Here we document and investigate the

relationship between fire patch size derived from BA data and FRP at global scale based on remote sensing information. FRP

measures the energy emitted through radiative processes released during the combustion, and can be associated with fire

intensity all along the fire burning process (Wooster et al. 2005, Ichoku et al. 2008, Barrett and Kasischke 2013, Wooster et

al. 2013). A positive relationship between fire patch size and the reaction intensity of the fire front is expected at least for

small fire size, whose propagation rate has been benchmarked using laboratory experiments. But we do not know if this

holds up at global and regional scale for bigger fires, usually reaching longer temporal scales with varying wind directions

and atmospheric circulation, and larger spatial extent. Fire patch size may not continue to increase with fire intensity above a

certain size due to landscape fragmentation could act as a natural barrier against fire propagation. To uncover the fire size-

intensity relationships, we assembled the information on fire patch size recovered from the FRY global database (Laurent et

al. 2018) based on the MODIS MCD64A1 and the MERIS FireCCI41 burned area products, with FRP using active fire pixel

data from the MCD14ML dataset.

2 Data and Methodology

We used the FRY database containing the list of fire patches characterized by their morphological traits, including fire patch

size, at global scale (Laurent et al. 2018). Fire patches were derived from the MERIS fire_cci v4.1 (later called FireCCI41,

Chuvieco et  al. 2016) and the MCD64A1 Collection 6 (Giglio et  al.  2016) BA pixel  products.  The FireCCI41 product

provides the pixel burn dates for the period 2005-2011 and is derived from the ENVISAT-MERIS sensor, with a spatial

resolution of 300x300m and a 3-day revisit frequency at the equator. The MCD64A1 product, derived from the MODIS

sensors, provides pixel burn dates at global scale over the period 2000-2017 with a coarser resolution (~500x500m) but a

more frequent revisit time (1 day at equator). The pixel burned dates are combined using a flood-fill algorithm (Archibald et

al. 2009), which is parametrized by a cut-off value. This cut-off value corresponds to the maximum time difference between

the burn date of neighbouring pixels belonging to the same fire patch. These global datasets have been thoroughly compared
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by the authors of the FRY database, locally compared using North America Forest Service fire patch database (Chuvieco et

al. 2016) and validated against Landsat fire polygons in the Brazilian cerrado (Nogueira et al. 2017). The FRY database is

organized in 8 datasets (2 surveys times 4 cut-off values), and provides for each individual fire patch a set of variables, called

fire patch functional traits, including the geo-location of the patch centre, the fire patch size (later called FS, in hectares), and

different indices on fire patch morphology. Standard Deviation Ellipses (SDE) are fitted by Laurent et al. over each fire patch

larger  than 5 pixels  (using the “aspace” R package),and the geo-location of  their  centres,  half-axes  and  orientation in

longitudinal/latitudinal coordinate system are also provided for each fire patch, as well as the values of the minimum, mean

and maximum pixel burn dates..

Active fire  pixel  data from the MCD14ML dataset  (Giglio et  al.  2006) consists in a  list  of  geographic coordinates  of

individual active fire pixels detected by the Terra and Aqua sensors onboard the MODIS satellite for the period 2000-2017

with a resolution of 1x1km. For each pixel, the dataset provides the date and hour of burn of the active fire pixel, along with

its FRP (in MW). FRP represents the energy emitted by fire through radiative processes (i.e. the total fire intensity minus the

energy  dissipated  through convection and  conduction) over its  total  area.  It  is  widely used as  a  proxy for  fire  impact

assessment (Barrett and Kasischke 2013, Sparks et al. 2018), biomass combustion rates (Roberts et al. 2005) or fire event

(Hernandez et al. 2015) and fire spread (Johnson et al. 2017) modelling. We performed a spatio-temporal matching between

active fire pixel data and all the fire patches from the FRY database in order to recover the average FRP for each fire patch.

To do so, we consider that an active fire pixel belongs to a fire patch if it fulfils the two following conditions:

 The centre of the active fire pixel must be located within the SDE of the fire patch. Since the side of an active fire

pixel is 1km, we also consider that an active fire pixel located at a distance of 1km or less from the area covered by

the SDE belong to the fire patch.

 The detection date of the active fire pixel must lie between the minimum minus a 30 days buffer and maximum

burn date of the BA pixels of the fire patch. The 30 days extension is used to account for the possible time lag

between the detection of an active fire pixel and its associated burned date pixels. 

Once the active fire pixels belonging to each fire patch were obtained, we compute for each patch the mean FRP value of all

associated pixels. The spatio-temporal matching sometimes fails to recover any active fire pixels for some fire patches. Such

fire patches (~20-25% of each sample) were discarded from the analysis. We observed that the number of fire patches

without attributed active fire pixels raises as the cut-off decreases (see Supplementary Tab 1). This can be explained by the

fact that, for low cut-off values, a real fire event can be split by the flood-fill algorithm in different smaller fire patches.

Using a shorter value for the temporal buffer (10 days) slightly raises the failure rate of the matching, but had no significant

impact on the results presented in this analysis.

In the following, we studied the relationship between FRP and FS in each region defined by the Global Fire Emission

Database (GFED, Giglio et al. 2013, Supplementary 1). Since different vegetation types can occur within a GFED region

(and consequently different amount of biomass or drought severity), we split all of them in three vegetation types using the

GLCF MODIS Land Cover data (Channan et al. 2014) and explore the relationship between FRP and fire size for each

vegetation  type  in  each  GFED  regions.  The  vegetation  types  are  defined  by  grouping  together  MODIS  Land  Cover

categories: “forests” stands for all the forested land cover types (evergreen/deciduous needleleaf/broadleaf forests and mixed

forests), “savannas” for savannas with woody savannas, and “grasslands/shrublands” stands for grasslands with open and

closed shrublands. The spatial extent corresponding to these three vegetation types can be found in Supplementary Figure 2. 
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In each 1ºx1º cell, we split the fire season into three periods: early, corresponding to the 4 months before the month with the

highest BA, middle, corresponding to the peak BA month, and late fire season corresponding to the 4 months after the peak

BA month. We did not split the fire patch distribution in different  FRP categories, because of the big asymmetry of the

number of fire patches between high and low intensity fires. For each period, following the same methodology as in Laurent

et al. 2018, we fitted a power law against the fire patch size distribution to estimate the power-law slope parameters β begin,

βmiddle and βend. These β parameters allow to investigate the asymmetry of the fire size distribution in each cell. High β values

implies that the size distribution is dominated by small fires.

The results  presented below have been  computed  for  each of  the 8 different  fire  patch  datasets  of  the FRY database.

However, we will further only focus on the results obtained from the MCD64A1-derived fire patch dataset, with a cut-off

value of 14 days. The figures obtained for the FireCCI41 fire patch product with a cut-off of 14 days (which span the years

2005 to 2011) can be found in Supplementary. The same analysis was also performed with a cut-off value of 3 days for both

MCD64A1 and FireCCI41: testing another extreme cut-off value allows us to estimate the impact on the results of the

temporal threshold parameter used to reconstruct fire patches by Laurent et al. (2018).

3 Results

The median FS and median FRP are displayed on Figure 1. Large and intense fire patches are located in Australia, in the

grasslands  of  Kazakhstan,  in  Namibia,  in  Sahel,  and  in  Patagonia.  High  mean  FRP values  are  also  reached  in  South

Australia, in the Mediterranean Basin and in the forested areas of Western USA and boreal North America. On the contrary,

fires are both smaller and less intense in croplands of North America, Europe and South East Asia, and in African savannas.

The fraction of BA in the cell each year is also displayed.

The relationships between the median, 25th and 75th quantiles of FS based on MCD64A1 with a cut-off value of 14 days,

and FRP for different GFED regions are shown in Figure 2. The color of the dots and error bars represents the average of the

minimum burn dates of the fire patches in each bin of FRP, and the background histograms the number of fire patches in

each FRP bins. In all GFED regions, the number of fire patches peaks at low to intermediate FRP values (~20-30 MW). In

most of GFED regions, we note that median FS and quantiles decreases once a FRP threshold is reached (Figure 2). In order

to smooth the estimation of this  FRP threshold (later called FRPMAX) above which FS seems to saturate, we fitted a four-

degree polynomial function to the data and determined the FRP at the maximum median FS value of the fit. The results are

displayed in Table 1.

Northern  Hemisphere  Africa  (NHAF),  Equatorial  Asia  (EQAS)  and  Southeast  Asia  (SEAS)  experience  a  humped

relationship between FS and FRP. At low FRP values (30 to 80 MW), the median and quantiles of FS increases with FRP

and reaches a maximum value at low to intermediate FRP (Table 1, Figure 2). We also identified in Figure 2 that the fire

patches associated with intense fires having a  FRP above the regional threshold tend to occur later in the fire season. In

Central America (CEAM), Northern Hemisphere South America (NHSA), Southern Hemisphere Africa (SHAF), Southern

Hemisphere South America (SHSA), and Australia (AUST), but also in Boreal Asia (BOAS), the relationship between the

median and quantiles of FS vs  FRP is similar. However, the maximum FS is reached at higher  FRP values (from 75 to

125MW) than for NHAF, EQAS and SEAS, and the decrease following the maximum FS is more gradual. Intense fire events

also appear later  in  the fire  season for  BOAS and AUST, and AUST exhibits the highest  FS/FRP slope (9.0 ha.MW-1

compared to 0.6 to 4.4 ha.MW-1 for other regions). By contrast, in Boreal North America (BONA), Temporal North America

(TENA) and Europe (EURO), and Central Asia (CEAS), mean FS constantly increases with FRP and only reaches a plateau
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at very high  FRP (~196 MW for BONA, ~215 MW for TENA, ~240 MW for EURO and 277 MW for CEAS). In those

temperate and boreal regions, we did not observe the humped shape relation with a decrease of FS for high FRP that occurs

in other GFED regions (Figure 2). Middle East (MIDE) also displays a positive correlation between median FS and FRP, but

the statistics for intense fire events is too low to infer any significant relationship at high FRP values. 

Figure 3 displays the same analysis as figure 2, but each GFED region is subdivided into 3 vegetation types (as defined in

the Methodology section), allowing an overview of the contribution of each vegetation type by region. For BONA, TENA

and EURO, mostly dominated by forest fires, we observe that the generic pattern obtained in Figure 2 is similar to the one

observed for the ‘forests’ vegetation type, while the other vegetation types display a more humped-shape relationship. In

tropical areas (NHSA, SHSA, NHAF, SHAF, AUST), the generic pattern observed in Figure 2 is similar to the one observed

for the “savannas” and “grassland/shrublands” vegetation types,  highlighting the uniform pattern in these two dominant

vegetation types within the region, only differentiated by a higher median fire size for “savannas”. ‘Forests’ vegetation types

display a more linear relationship, closer to the one observed in temperate and boreal areas. In conclusion, the behavior of

the relationship between FRP and FS obtained  for  each  GFED region is  actually  representative of  the  main dominant

vegetation types composing these regions, while the non-dominant vegetation types may experience another pattern. In all

regions, savannas and grasslands ecosystems experience higher median fire sizes with a humped shape FS/FRP relationship,

while forested areas experience a more linear relationship.

Figure 4 shows for 1ºx1º cells at global scale the month with the largest median FS, the month with the highest median FRP,

and the phase shift between these two months. For most African cells, the month with highest median FRP is shifted between

3 to 6 months after the month with highest FS. These cells correspond to the regions where high burn area (Figure 1, Giglio

et al. 2013) and a high density of fire patches are detected (Laurent et al. 2018). A narrower shift is observed in SEAS,

northern AUST, and in the cells of South America with a slightly lower number of fire patches and lower BA. In Northern

America (BONA and TENA), BOAS, and central and south AUST, no shift is observed, which means that the largest fires

and  the  most  intense  fires  happened  concomitantly  during  the  fire  season.  Some  cells  (mainly  in  Sahel  and  eastern

BOAS/CEAS) displayed a negative shift, meaning that the most intense fires happened sooner than the largest fires.

 The global maps of power-law slope parameters βbegin, βmiddle and βend (respectively for the beginning, middle and end of the

fire season) are displayed on Figure 5. The β parameters are only computed when more than 10 fire patches are available

during the considered period, to ensure a sufficient number of patches in the fit. The differences between β end and βbegin are

also shown in Figure 5. The highest β values (either βbegin, βmiddle and βend) were mainly obtained in NHAF, northern SHAF,

NHSA, SHSA and SEAS, as observed in previous fire size distribution analysis (Hantson et al. 2015, Laurent et al. 2018). In

these regions, we found that the value of β is higher at the end of the fire season than at the beginning, meaning that the

proportion of small fires rises through the fire season, supporting our early results that late fire season don’t get larger with

increasing FRP. In AUST, the β value remains constant all along the fire season, and increases in eastern BONA, TENA, and

eastern BOAS, suggesting that later season fires are more dominated by larger fires. For other regions, the limited number of

fire patches render difficult the interpretation of the evolution of β through the fire season.

4. Discussion

Following the hypothesis from Rothermel’s equation of fire spread, and considering that FRP can be used as a proxy of fire

reaction intensity (Wooster et al. 2003, 2005), we used the global fire patch database FRY to test if high FRP fires propagate

faster and are therefore systematically larger than low FRP fires. We found that this hypothesis is actually verified for low to
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intermediate FRP in most fire regions and for the three defined vegetation types. We identified biome-specific  FRP vs FS

relationships, with FRP leading to maximum FS being higher in temperate/boreal forests, followed by grasslands, savannas

and tropical forests. 

In most fire-prone biomes, the positive relationship between FS and  FRP does not hold for larger and more intense fire

patches (Figure 2), generally occurring later in the fire season, as previously observed in Australia (Oliveira et al. 2015). This

effect could be explained as follows: at the beginning of the fire season, when the fuel moisture content is still high, FRP is

limited as energy is consumed by fuel moisture vaporization (Alexander 1982, Pyne et al. 1996) and consequently, rate of

spread and fire size also get limited. As the fuel becomes dryer along the fire season (Sow et al. 2013, Sedano and Randerson

2014, N’Dri et al. 2018) fires become more intense and potentially propagate further. However, the propagation of larger

fires can hit some limits due to the fragmentation of the fuel matrix, from intrinsic anthropogenic fragmentation, roads or

grazing fields. The barriers limit FS as fires became larger along the fire season: these large fires will have a high propensity

to reach these barriers. As a result, in fire regions with fragmented vegetation such as African savannas, Soth East Asia or at

the interface between the amazon forest and croplands of South America, a maximum mean FS is reached at intermediate

FRP (Figure  2).  The  FRP threshold  differs  however  between these  regions,  possibly  because  their  level  of  landscape

fragmentation is different (Taubert et al. 2018). 

If fire size would only be limited by the intrinsic structure of vegetation, we would not expect to see the decrease of the

proportion of large fires toward the end of the fire season in fire-prone ecosystem (Figure 5). If the number of individual fire

events is already high at the beginning of the fire season, the landscape becomes even more and more fragmented by BA

scars  (Oliveira et  al.  2015) and fuel  load decrease (N’Dri  et  al.  2018),  meaning that  the limitation of  fire  size due to

landscape fragmentation will be higher for fires ignited later in the fire season (Teske et al. 2012). As a consequence, this

mechanism may explain why the correlation between FRP and FS becomes negative in Figure 2 during the late fire season in

NHAF, NHSA, CEAM, EQAS and SEAS, and why βend is higher than βbegin. This limitation of fire size for intense fires in

those regions, possibly due to the feedback between fire and fuel connectivity at landscape level, is in line with the results

obtained from Mondal and Sukumar (2016) relating the effects of recent past fires on fire hazard in dry tropical forests, and

otherwise theoretically approached from the percolation model applied to wildfires by Archibald et al. (2012). This model

shows that the amount of BA is maximized when both the fire spread probability and the fuel matrix connectivity are high.

BA dramatically drops if fire spread probability is too low (such as in the beginning of the fire season) or if the fuel array

connectivity becomes too small (such as in the end of the fire season). Particularly, the percolation model shows that BA can

drop dramatically once 50-60% of the available fuel has burned, which is close to the maximum percentage of BA detected

by both MCD64A1 and FireCCI41 products (Giglio et al. 2013, Chuvieco et al. 2016). The IFOI hypothesis, proposed by

Luo et al. (2017) to explain why fire occurrence is limited by fire intensity, can be interpreted as a direct consequence of

percolation theory applied to fire-prone ecosystems.

 

For regions where fire events are less frequent, such as in BONA, TENA and EURO (Figure 2), there is no significant

limitation of fire spread and fire size, suggesting that the fragmentation of landscape either from land use or from early

season burn scars does not limit fire spread (Owen et al. 2012). Fire size remains positively correlated with fire intensity all

along the fire season. Moreover, the 75th quantiles for BONA and TENA is higher than for tropical regions (except AUST),

most probably because tree species in BONA and TENA (e.g. spruce) are more flammable , because crown fires are more

frequent, and because these ecosystems experience an actual drought period compared to the tropics where rainfalls occur

more frequently. They can therefore propagate further than herbaceous fires hardly turning into crown fires in savannas and

woodlands in semi arid tropical regions. In BOAS the relationship between FS and FRP is different from the one observed in
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BONA and TENA. This could be a result from the less flammable vegetation and the highest number of ground fires in

BOAS  (Kasischke  and  Bruhwiler  2003).  Moreover,  BA  detection  of  surface  fires  (and  consequently,  fire  patch

characterization) is known to be difficult in boreal Asia, and numerous discrepancies have been observed between the BA

products obtained from different moderation resolution sensors (Chuvieco et al. 2016).

The median FS is globally lower for the datasets generated from FRY with smaller cut-off value (see Supplementary 1 and

2), because big fire patches tend to be split in smaller patches for lower cut-off values, reducing the average fire patch size.

The median FS is also lower for the FireCCI41 derived datasets, due to its ability to detect smaller patches from its better

spatial resolution. Changing the survey or the cut-off value does not impact the global distribution of large and small fire

patches. Reducing the cut-off to 3 days does not change the observed relationship between FS and FRP. The results obtained

from the dataset  derived from FireCCI41 follows the same trend, but for some GFED regions (TENA, EURO, NHSA,

AUST), the seasonality is shifted one month later than for MCD64A1. Reducing the cut-off values lowers the temporal shift

observed on Figure 4 at global scale (Supplementary 3 and 4), but the global distribution of the shift is conserved. Similarly,

FireCCI41 yields smaller shifts than for MCD64A1, but with the same spatial distribution.

In the previous section, we hypothesised that FRP can be used as a proxy of fire reaction intensity but the limitations of such

an approach should be mentioned. First, the energy released by a wildfire can be decomposed in three parts: convection,

conduction, and radiation. FRP only represents the radiative part of the energy released by a fire. Moreover, the fire reaction

intensity used in Rothermel’s equation does not share the same spatial extent as FRP: fire reaction intensity pertains to the

flaming front  of the fire,  while FRP integrates all  the radiative energy emitted over a 1  km2 window. This means that

radiation emitted from smouldering can also contribute to FRP, not only the flaming front. The impact should differ for

different  wetness  conditions  and  vegetation  types:  smouldering  fires  are  more  frequent  in  forested  areas,  whereas  in

grasslands most of the detected radiative power will be released by the active fire front. Another issue appears from the

integration of radiative energy over the 1 km2 window: very often active burning fire lines do not cover the whole 1-km2 area

so that measured FRP is a mixed signal from both active-burning and unburned areas. However, we can expect this effect to

be mitigated by the fact that our analysis does not account for very small fires, since the FRY database does not provide fire

patches  smaller  than  107  ha  for  MCD64A1.  Finally,  a  recent  study  (Roberts  et  al.  2018)  used  3D  radiative  transfer

simulations to show that the canopy structure intercepts part of the FRP emitted by surface fires. This means that the FRP

measured from remote sensing for forested areas and savannas could underestimate the actual FRP. We can also expect this

underestimation to vary with tree species that are associated with different fire regimes. For example, it is probable that the

amount of radiation energy intercepted by the canopy differs strongly between crown fires from highly flammable black

spruce and jack pine forests from BONA (Rogers et al. 2015) and surface fires from larch-dominated forests in BOAS. These

facts advocate the importance to differentiate the relationships between fire size and FRP in different vegetation types with

different fire regime and fire adaptations, due to varying degrees of reliability of using FRP as a proxy of fire reaction

intensity.

Thresholds of FRP detection vary between 9 and 11 MW (Roberts and Wooster 2008, Schroeder et al. 2010) for the MODIS

FRP products,  below which  reliable  detection  becomes  impossible.  In  turn,  analysis  based  on  comparison  with  finer-

resolution remote sensing products actually concluded that MODIS might underestimate by 20% the number of captured fire

pixels, particularly for small fires (Wooster et al. 2012, Peterson et al. 2013). This 9-11 MW threshold falls in the first bin of

the FRP histograms in Figure 2, and could therefore explain the peak of the number of fire patches at intermediate FRP (~20-

30 MW).  The amount of radiative energy reaching the MODIS instruments is much smaller at larger scan angles than at

Nadir. This means that the MODIS instruments will be less sensitive to low values of FRP at high latitude (Giglio et al. 2003,
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Schröder et al. 2005). This could explain the difference of the distribution of FRP associated with fire patches in BONA: the

stronger asymmetry of the distribution in this region (i.e. the larger tail toward high FRP values) could arise from missing

active  fire  data  from less  intense  fires  in  this  region.  The temporal  sampling  of  FRP also  differs  with  the  latitudinal

coordinate since the number of satellite overpasses is larger at high latitude than at the equator (from 2 observations per day

until 15 at the poles, Giglio et al. 2006). This should raise the chance to recover FRP information for fire patches at high

latitude, assuming that radiative intensity is high enough to exceed the higher detection threshold at larger scan angles. Also,

in some regions (such as NHAF and SHAF), fires exhibit a strong diurnal cycle (Giglio et al. 2006). The detection rate of

active fires will therefore be higher if the peak of diurnal intensity is synchronized with satellite overpass. However, we can

expect the sampling error rate and the variation of FRP sensitivity with latitude to be more homogeneous within each GFED

regions that at global scale.

Fire season length has changed over the last 50 years and is now longer in 25% regions of the world (Jolly et al. 2015). An

increase of drought intensity in fire prone environment could yield to more intense fire events, yielding larger BA patches for

each fire event. However, if the progressive fragmentation of landscape through the fire season limits fire size, then it can be

expected that a longer fire season would only have a limited impact on the increase of BA in these regions. In the same way

but on a longer time scale in less fire prone regions, previous large fires have been shown to limit FS in the recent timeframe

in western US (Haine et al 2013), and previous landscape biomass composition, as a result of fire history, is a major factor

affecting fire severity in boreal forests (Whitman et al. 2018). On the contrary, in regions where the quasi-linear relationship

between fire size and FRP is valid even for high FRP, a longer fire season could dramatically increase burn area, particularly

in North American forests (Gillett et al. 2004, Turetsky et al. 2011). This hypothesis does not account for the impact of

increased severity of fire damage to the vegetation in these ecosystems, and its feedback on fire propagation and occurrence.

Our results are consistent with those of Andela et al. 2017, who showed that, contrary to what would be expected from the

rise of  the fire  danger index,  BA tends to decline at  global scale (25% loss between 1998 and 2015).  This  decline is

especially strong in savannas and grasslands, because of agricultural expansion, which results in a reduction of burnable area

and a more fragmented landscape  (Kamusoko and Aniya 2007, Oliveira et  al.  2017, Sulieman et  al.  2018).  Landscape

fragmentation is also a tool used for fire management. Indigenous burning practices in West Africa promote early burning

and therefore landscape fragmentation in order to limit large and intense fire events which could occur at the end of the fire

season (Laris  2002, Laris and Wardell  2006, Le Page et  al.  2015, Archibald 2016).  Similarly, US forest  services  used

artificial fuel-breaks to fragment the landscape and limit fire size (Green 1977, Agee et al. 2000), as well as fire intensity

(Ager et al. 2017).

Some DGVM fire modules explicitly simulate BA as the product of individual successful fire ignitions with mean fire size

(Thonicke et al. 2010, Yue et al. 2014). In these models, fire size usually depends on wind speed, fuel bulk density and fuel

load. Because of the reduction of the available fuel load due to burning by preceding fires, we can expect than BA saturates

toward the end of the drought season in DGVMs, but this mechanism does not account for landscape fragmentation (due

either  to  land use fragmentation or  progressive  fragmentation by fires).  The LPJ-LMFire v1.0 (Pfeiffer  et  al.  2013),  a

modified version of the Spitfire module for pre-industrial global biomass burning, accounted for passive fire suppression due

to landscape fragmentation. Further refining of process-based fire modules would require extensive comparison with fire

patch data rather than raw BA.
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5. Conclusion

We characterized for the first time the actual relationship between fire size and fire intensity using a combination of fire

patch size and active fire datasets at global scale. We found that in most fire-prone ecosystems, fire size increases with fire

intensity only at low fire intensity, reaches a threshold at intermediate intensity, and then starts to decrease. On the contrary,

in temperate and boreal forests, FS and  FRP are proportional even for high fire intensity. This behavior is observed  with

significant  differences between land cover types (shrublands/grasslands,  savannas and forests)  for  both MCD64A1 and

FireCCI41 products, and for all cut-off values used for fire patch reconstruction. We suggested that the FRP threshold value

is influenced by the fragmentation of the landscape, and the feedback between fuel connectivity and burn area during the fire

season. This fragmentation hypothesis is consistent with the percolation theory applied to fire spread. The fragmentation

hypothesis should be further tested with higher resolution BA datasets, combined with fine temporal resolution land cover

datasets  characterizing the landscape  fragmentation,  associated  with temporally  varying fuel  moisture  data,  and  further

considered in the development of fire-DGVM models. Additional information as fire shape complexity and elongation from

the FRY database should bring substantial information to assert our conclusions.
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Figure 1: Median fire size (in ha), imedian fire radiative power  from FRY database (derived from MCD64A1 with a cut-off of 14
days), and percentage of burned area each year (from GFED). 
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Figure 2: Median fire size vs ifire radiative power (FRP in MW) for different GFED regions. The error bars represent the 25th and
75th quantiles of the FS distribution. The color of the dots and error bars represent the mean burn date of fire patches in each
FRP bin. The black line shows the interpolated 4 degrees polynomial used to smooth the value of FRP associated with maximum
median fire size. The background histograms represent the number of fire patches in each FRP bins.

Figure 3: Median fire size vs fire radiative power (FRP) for different GFED regions for savannas (light green), forests (dark green)
and grassland/shrubland (orange). These vegetation classes are obtained by grouping similar land cover type from MODIS Land
Cover data, and their spatial extent can be found in Supplementary. The error bars represent the 25th and 75th quantiles of the FS
distribution.  The  color  lines  show the  interpolated  4  degrees  polynomial  used  to  smooth  the  value  of  FRP associated  with
maximum median fire size for each land cover type.
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Figure 4: Month with highest median fire radiative power (FRP,top left), highest median FS (top right), and the difference between
the two (bottom). In blue cells, the month with the largest fires events happen before the month with the most intense fires. In red
cells, the month with the largest fires events happen before the month with the most intense fires. In yellow cells, the months with
the largest fires and with the most intense fires are the same.
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Figure 5: Value of the log-log scale slope of the fire size distribution at the beginning of the fire season, beta (4 months before the
month with the highest amount of BA), in the middle of the fire season (corresponding to the month with the highest BA) and at
the end of the fire season (4 months after the month with highest BA).
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Vegetation type GFED
Region

FRP with  largest
associated  fire  patch
sizes (MW)

Slope of  the  FRP vs median
FS  relationship  before  max
FS (ha.MW-1)

Slope  of  the  FRP vs  median  FS
relationship after max FS (ha.MW-1)

Savannas BONA 175 3.907 -7.791

TENA 221 1.179 -1.974

CEAM 10 2.342 -0.499

NHSA 74 2.813 -0.400

SHSA 110 2.692 -0.661

EURO 270 1.548 NA

NHAF 67 5.256 -0.662

SHAF 110 2.300 -0.172

BOAS 224 2.149 -19.993

CEAS 260 0.577 1.011

SEAS 45 3.865 -0.575

EQAS 185 1.716 2.038

AUST 75 13.665 -1.684

Forests BONA 220 9.204 -39.657

TENA 222 3.404 -19.811

CEAM 57 1.071 -0.382

NHSA 76 1.288 -0.457

SHSA 242 0.494 -3.859

EURO 185 4.979 -6.128

NHAF 68 0.609 -0.508

SHAF 270 0.076 NA

BOAS 88 5.734 -1.075

CEAS 90 1.421 -0.696

SEAS 10 3.865 -0.224

EQAS 55 2.904 -0.395

AUST 237 9.533 -8.085

Grasslands/shrublands BONA 170 5.239 -1.579

TENA 219 2.342 -2.809

CEAM 230 2.003 -11.986

NHSA 100 3.014 -1.451

SHSA 148 2.700 -0.726

MIDE 270 0.136 NA

NHAF 220 1.329 -13.382

SHAF 170 2.939 -2.049

BOAS 105 5.081 -0.402
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CEAS 208 3.725 -2.341

AUST 149 16.639 -4.785

All BONA 196 4.420 -7.817

TENA 215 1.359 -1.513

CEAM 84 0.775 -0.154

NHSA 83 2.318 -0.637

SHSA 105 2.384 -0.237

EURO 239 0.628 -8.143

MIDE 198 0.553 -1.254

NHAF 71 3.939 -0.683

SHAF 116 2.474 -0.115

BOAS 86 3.409 -0.346

CEAS 277 0.613 NA

SEAS 37 3.906 -0.327

EQAS 60 3.112 -0.187

AUST 142 9.169 -0.523

Table 1 : Value of the FRP threshold at maximum median FS, and the slope of FS vs FRP before the threshold value for different
GFED regions.
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