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Abstract. 12 

Carbon stored in coastal wetland ecosystems is of global relevance to climate regulation. 13 

Broad-scale inventories of this ‘blue’ carbon store are currently lacking and labour intensive. 14 

Sampling 23 salt marshes in the United Kingdom, we developed a Saltmarsh Carbon Stock 15 

Predictor (SCSP) with the capacity to predict up to 44% of spatial variation in surface soil 16 

organic carbon (SOC) stock (0-10 cm) from simple observations of plant community and soil 17 

type. Classification of soils into two types (sandy or not-sandy) explained 32% of variation in 18 

SOC stock. Plant community type (5 vegetation classes) explained 37% of variation. Combined 19 

information on soil and plant community types explained 44% of variation in SOC stock. GIS 20 

maps of surface SOC stock were produced for all salt marshes in Wales (~4000 hectares), using 21 

existing soil maps and governmental vegetation data, demonstrating the application of the 22 

SCSP for large-scale predictions of blue carbon stores and the use of plant community traits 23 

for predicting ecosystem services.   24 
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1 Introduction 25 

Implementation of environmental policy and management via ‘the ecosystem approach’ 26 

requires a broad-scale knowledge of the distribution of natural stocks and ecosystem services 27 

(McKenzie et al., 2014; Meiner et al., 2013; TEEB, 2010; UK National Ecosystem Assessment, 28 

2014). Spatial information is often patchy and for some ecosystem stocks and services it is 29 

almost entirely lacking. The ‘predictive tool’ approach, based on mathematical modelling, was 30 

traditionally used in population and resource distributional mapping (Cuddington et al., 31 

2013), and has recently been applied to the predictive mapping of ecosystem services 32 

(McHenry et al., 2017). Significant advances have been made in predicting ecosystem service 33 

provision in terrestrial systems, such as agricultural landscapes, freshwater habitats and 34 

forests (Ding and Nunes, 2014; Emmett et al., 2016; Vigerstol and Aukema, 2011). In contrast, 35 

there are few predictive tools for coastal systems which, combined with a shortage of baseline 36 

data for many environmental variables (Robins et al., 2016), means that distributional maps 37 

of ecosystem services and stocks are lacking for global coastlines (Meiner et al., 2013).  38 

Coastal wetlands (mangroves, tidal marshes and seagrasses) sequester significant amounts of 39 

‘blue carbon’, particularly below-ground,  in long-lived soil organic carbon (SOC) stores 40 

(Chmura et al., 2003; Howard et al., 2017; Luisetti et al., 2013). Global strategies for 41 

integrating blue carbon storage into greenhouse-gas accounting have been proposed (IPCC, 42 

2014). However, a global inventory of blue carbon remains a challenge, as empirical 43 

observations of SOC stocks in coastal wetlands are expensive, scarce and unevenly 44 

distributed, with few records even for relatively well-studied areas such as Europe (Beaumont 45 

et al., 2014). Ecosystem service maps for the UK National Ecosystem Assessment (NEA) for 46 

Wales, the focal region of the present study, characterised salt marshes as coastal margin 47 
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habitat, assigned the lowest category of carbon storage relative to all other terrestrial 48 

habitats (Scholefield, 2013). SOC stocks in Welsh salt marshes may be under-estimated due 49 

to incomplete habitat mapping of inter-tidal areas. Rolling out empirical observations of 50 

below-ground SOC stock across large scales of blue carbon systems is not a practicable and 51 

affordable short-term solution to the lag between management ambition and carbon 52 

inventorying. Predictive mapping of carbon stocks holds great promise; it has been 53 

extensively trialled for terrestrial systems (Emmett et al., 2016; Gray et al., 2013; Rossel et al., 54 

2014), but rarely applied to blue carbon ecosystems (Gress et al., 2017; Meiner et al., 2013). 55 

Predictive models of ecosystem services typically use a combination of predictor variables 56 

(Posner et al., 2016). For carbon storage, predictors such as climate, soil type, sedimentary 57 

classification and habitat or land management type are commonly used (Chaplin-Kramer et 58 

al., 2015; Jardine and Siikamäki, 2014; Kelleway et al., 2016). Many ecosystem service models 59 

that include carbon storage predictions are computationally sophisticated, operationally time 60 

consuming and require specialists for their operation and interpretation (Posner et al., 2016), 61 

all of which reduces the scope for their use by landscape managers. Simple predictive tools 62 

that incorporate readily available spatial information with ground-truthed field 63 

measurements might be a more attractive option for use in the field. For example, a recent 64 

study by Emmett et al. (2016) proposed soil pH as a potential metric for ecosystem service 65 

provision, at catchment scale, accounting for 45% of variation in ecosystem service supply. 66 

Recent work has explicitly linked SOC stock to both soil properties and plant community 67 

parameters for terrestrial and coastal grasslands (Bai et al., 2016; Manning et al., 2015). In 68 

addition, these SOC stores are further mediated by climatic factors (e.g. precipitation), and 69 

land-use management (e.g. livestock grazing intensity) (Ford et al., 2012; Tanentzap and 70 
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Coomes, 2012; Yang et al., 2010). Classification of soils by texture can be useful for quantifying 71 

soil organic matter (SOM) content and therefore indicating SOC stock (O’Brien et al., 2015). 72 

In particular, a strong positive correlation between clay content and SOC stock is apparent 73 

due to the adsorption of organics to clay particles (Arrouays et al., 2006; Hassink, 1997; Oades, 74 

1988). The composition of the plant community, presence of dominant species and plant 75 

diversity largely determine root properties (e.g. biomass, turnover and exudates), which 76 

further influence SOM content and SOC stock (De Deyn et al., 2008; Ford et al., 2016). Species-77 

rich plant communities are also often functionally diverse, with differing root strategies 78 

leading to enhanced root biomass (Loreau et al., 2001) and consequent impacts on SOC stock 79 

(Jones and Donnelly, 2004). Moreover, particular life history strategies or plant traits can also 80 

be associated with enhanced carbon capture and storage, for example fast growth rates or 81 

the production of recalcitrant litter that is slow to break down (Yapp et al., 2010). The ability 82 

to easily and quickly predict saltmarsh SOC stock from plant community assemblages and / or 83 

soil type would provide the potential to update the current inventory (IPCC, 2014) of blue 84 

carbon on a regional, biogeographical or national scale. This would be of interest to a wide 85 

group of stake-holders including academics, the IPCC, the Blue Carbon Initiative 86 

(http://thebluecarboninitiative.org/) and governmental / non-governmental land managers. 87 

Here we present a range of predictive models for surface SOC stock (0-10 cm) based on plant 88 

(vegetation type, class, species richness, root biomass) and soil (simplified type or texture 89 

category) parameters measured across 23 salt marshes in Wales, UK. In addition, we used a 90 

subset of these models to create a novel tool for practitioners – the Saltmarsh Carbon Stock 91 

Predictor (SCSP) - for predicting and mapping the SOC stock of Welsh salt marshes 92 

(https://www.saltmarshapp.com/saltmarsh-tool/); alongside a simplified version designed 93 

for use by the general public - the Saltmarsh App (https://www.saltmarshapp.com/). 94 

http://thebluecarboninitiative.org/
https://www.saltmarshapp.com/saltmarsh-tool/
https://www.saltmarshapp.com/
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2 Materials and methods 95 

2.1. Site selection 96 

Twenty-three saltmarsh sites were sampled for vegetation and soil properties in July 2015: 97 

10 in north or mid Wales and 13 in south Wales, UK (Fig.1) representing a range of marsh 98 

typologies. The Severn estuary in the south-east was excluded due to nesting bird 99 

restrictions. The British National Vegetation Classification (NVC) scheme was used to 100 

characterise vegetation communities (Rodwell, 2000). Four of the most common vegetation 101 

types (= 5 NVC classes) were assessed in this study (Table 1); they were chosen as they are 102 

widespread and common the UK, and present at all study sites according to governmental 103 

(Natural Resources Wales, NRW) NVC maps (e.g. Fig. S1, Supplement). At each study site, 104 

four 1 x 1 m quadrats were sampled per vegetation type (each quadrat ca. 10 metres apart 105 

along a transect line). In some specific locations, where extent was limited, only two 106 

quadrats per vegetation type were assessed. Note that the 4 vegetation types equate to 5 107 

NVC classes as the Juncus maritimus community is divided into two distinct classes (Table 1). 108 

The 4 vegetation types focused on in this study were located using governmental maps 109 

based on vegetation surveys from 1996-2003 (detailed in section 2.6). Vegetation type was 110 

therefore validated on the ground as species extent could have altered between the survey 111 

date and the present day.2.2. Plant community and root biomass 112 

Above-ground vegetation characteristics were measured within each 1 × 1 m quadrat. 113 

Percentage cover of each plant species was estimated by eye. Plant species richness was 114 

recorded as the number of species present per quadrat. Shannon-Weiner index [S-W index 115 

(H’)] was calculated as a measure of plant diversity based on species cover. NVC classes 116 

associated with each vegetation type (Table 1) were verified for each quadrat using the 117 
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Tablefit v1.1 software (Hill, 2011). Root dry biomass was determined for 0 - 10 cm depth using 118 

a 2.6 cm diameter corer: roots were removed from sediment, washed and then dried at 60°C 119 

for 72 hours. All plant nomenclature followed Stace (2010). 120 

2.3. Soil characteristics, SOC stock and field texture test 121 

Soil characteristics were measured from within each 1 x 1 m quadrat. Soil samples, of ~ 10 g 122 

(fresh mass) from the top 10 cm, were taken from within each quadrat, diluted to a ratio of 123 

1:2.5 by volume with deionised water and measured for electrical conductivity (EC) and pH 124 

(Jenway 4320 conductivity meter, Hanna pH209 pH meter). EC was used as a proxy for salinity. 125 

Soil bulk density samples were taken using a stainless-steel ring (3.1 cm height, 7.5 cm 126 

diameter) inserted horizontally into the soil (from a depth of 2 cm to 9.5 cm deep) to quantify 127 

the top 10 cm of soil (Fig. S2, Supplement). Samples were dried at 105 °C for 72 hours to 128 

assess soil moisture content and soil bulk density. The dried samples were ground and sub-129 

sampled for loss-on-ignition analysis (375 °C, 16 h) to estimate SOM content (Ball, 1964). SOC 130 

stock was calculated from bulk density and SOM with SOC content estimated as 55 % of SOM, 131 

as determined by elemental analyser (Emmett et al., 2010).  132 

Root-free soil samples (1 per quadrat at 5 cm depth) were classified into 12 soil texture 133 

categories using the British Columbia protocol for estimating soil texture in the field 134 

(https://www.for.gov.bc.ca/isb/forms/lib/fs238.pdf) based on graininess, moistness, 135 

stickiness and ability to hold a form without breaking apart when rolled. Soil was also assigned 136 

a simplified soil type of ‘Sandy’ or ‘Non-sandy’ (Table 2). These approaches were chosen over 137 

conventional soil grain-size assessment as they facilitate inexpensive, broad-scale 138 

observations where soils can be classified by non-experts in a few minutes in the field. 139 

https://www.for.gov.bc.ca/isb/forms/lib/fs238.pdf
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Table 1. Saltmarsh vegetation types, associated National Vegetation Classification (NVC) class 140 

and marsh intertidal position (zone) (http://jncc.defra.gov.uk/pdf/Salt-marsh_Comms.pdf). 141 

 142 

NVC 

class 

Plant community Commonly co-occurring species Marsh position 

SM13 Puccinellia maritima Festuca rubra, J. gerardii, Agrostis stolonifera, 

Plantago maritima, species poor when intensively 

grazed 

Low to mid 

marsh 

SM14 Atriplex portulacoides Partial or total dominance of A. portulacoides with 

similar species to SM13 

Mid to high 

marsh 

SM16 Juncus gerardii P. maritima, F. rubra, A. stolonifera, Glaux maritima, 

Triglochin maritima, Armeria maritima, P. maritima 

Low to high 

marsh 

SM15 Juncus maritimus Partial or total dominance of J. maritimus, with T. 

maritima and J. gerardii 

Low to mid 

marsh 

SM18 Juncus maritimus F. rubra, A. Stolonifera, J. gerardii, Atriplex prostrata, 

P. maritima 

Mid to high 

marsh 

 143 

  144 

http://jncc.defra.gov.uk/pdf/Salt-marsh_Comms.pdf
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Table 2. Soil texture categories [British Columbia protocol for estimating soil texture in the 145 

field (https://www.for.gov.bc.ca/isb/forms/lib/fs238.pdf)] and simplified soil type. 146 

Soil texture category Soil category description Simplified soil type 

S Sand 85 - 100 % sand Sandy 

SL Sandy loam 45 - 80 % sand Sandy 

FSL Fine sandy loam 46 – 80 % fine sandy Sandy 

SC Sandy clay 45 - 65 % clay Sandy 

Si Silt 0 - 20 % sand Non-sandy 

SiL Silt loam 0 - 50 % sand Non-sandy 

L Loam 20 - 50 % sand Non-sandy 

CL Clay loam 20 - 45 % sand Non-sandy 

SiCL Silty clay loam 0 - 20 % sand Non-sandy 

SiC Silty clay 0 - 20 % sand Non-sandy 

C Clay > 40 % clay (0 - 45 % sand) Non-sandy 

O Organic > 30 % OM Non-sandy 

 147 

https://www.for.gov.bc.ca/isb/forms/lib/fs238.pdf
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 148 

Figure 1. The 23 Welsh salt marshes included in the study.   149 
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2.4. Analysis: Explanatory variables and prediction of SOC stock  150 

The relationship between the response variable ‘surface SOC stock’ and the explanatory 151 

variables was determined using uni- or bi-variate linear mixed effects models. This was done 152 

in order to keep the models as simple as possible, to be able to scale the results up to the 153 

landscape-scale using available GIS layers (see subsection 2.6) and with the final aim of being 154 

of direct use for practitioners. The explanatory variables we entered in the models were the 155 

fixed categorical variables ‘vegetation type’ (4 levels: P. maritima community, A. 156 

portulacoides community, J. gerardii community, J. maritimus community), ‘NVC class’ (5 157 

levels: SM13, SM14, SM16, SM15, SM18), ‘simplified soil type’ (2 levels : sandy, non-sandy), 158 

‘soil texture’ (12 levels: sand, sandy loam, fine sandy loam, sandy clay, silt, silt loam, loam, 159 

clay loam, silty clay loam, silty clay, clay, organic) and the continuous variables ‘root biomass’ 160 

and ‘plant species richness’. Livestock-grazing intensity (2 levels: grazed versus un-grazed), EC 161 

and pH were not used as explanatory variables in the uni- or bi-variate models presented here 162 

as they were not found to be significant explanatory variables of surface SOC stock, nor are 163 

they easily assessed by practitioners. The categorical variable ‘vegetation type’ was nested 164 

within  ‘saltmarsh site’ to take into account data structure and avoid pseudo replication. 165 

Inspection of residuals and Bartlett’s test detected a clear violation of the assumption of 166 

homoscedasticity. We addressed this issue by adding a constant variance function to the 167 

linear mixed effects models, to take into account the differences in variance across groups 168 

(e.g. vegetation type, NVC class, simplified soil type).  Final models were selected on the basis 169 

of the lowest Akaike’s Information Criteria (AIC) (Zuur et al., 2009). Likelihood-ratio based 170 

pseudo R-squared were calculated for final models (Grömping, 2006).The final uni- and bi-171 

variate models we tested were the following: i) NVC_model (‘NVC class’ only); ii) Soil_model 172 
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(‘simplified soil type’ only); iii) Veg_soil_model (‘vegetation type’ and ‘simplified soil type’ 173 

combined); iv) NVC_soil_model (‘NVC class’ and ‘simplified soil type’ combined). Surface SOC 174 

stock predictions were calculated from the coefficients of the final linear mixed effects 175 

models. For example, the NVC_soil_model values for each explanatory variable for coefficient 176 

1 (i.e. simplified soil type: sandy, non-sandy) and coefficient 2 (i.e. NVC class: SM13, SM14, 177 

SM15, SM16, SM18) were summed and added to the model intercept giving a model 178 

prediction of surface SOC stock for each model in tonnes of carbon per hectare (t C ha-1) for 179 

the top 10 cm of soil. All analysis was carried out in R (R Core Team, 2016).  180 

2.5. Model selection justification for the SCSP tool and the Saltmarsh App 181 

The SCSP tool (Skov et al., 2016; https://www.saltmarshapp.com/saltmarsh-tool/) was 182 

designed to be used primarily by expert practitioners whereas the Saltmarsh App 183 

(https://www.saltmarshapp.com/) was aimed at the general public. Therefore the models 184 

they utilise to predict saltmarsh SOC stock (0-10 cm) differ based on access to data sources. 185 

The SCSP tool offers two types of information: i) a lookup table for predicted surface SOC 186 

stock (t C ha-1) provided either NVC class (NVC_model), simplified soil type (Soil_model) or 187 

both (NVC_soil_model) are known; and ii) a GIS map layer and series of maps (see subsection 188 

2.6). The NVC_soil_model was used for The SCSP tool as existing governmental maps are 189 

already categorised by NVC class. The carbon calculator component of the Saltmarsh App was 190 

based on the Veg_soil_model. This model was selected as vegetation type was assessed as 191 

easier to determine than NVC class by non-experts (e.g. citizen-scientists) in the field. For both 192 

the SCSP tool and the Saltmarsh app ‘simplified soil type’ was used instead of ‘soil texture 193 

category’ as simplified soil type was both easier to assess in the field by non-experts and more 194 

straightforward to map using existing soil maps. For both the SCSP tool and the Saltmarsh App 195 

https://www.saltmarshapp.com/saltmarsh-tool/
https://www.saltmarshapp.com/
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surface SOC stock predictions are provided, either directly or via look-up tables, without the 196 

need for the user to carry out their own analysis2.6. Scaling-up: SOC Stock mapping 197 

As part of the SCSP tool, a GIS shapefile (referred to as the SCSP shapefile) was developed to 198 

illustrate how information on NVC class and simplified soil types (sandy v non-sandy) can be 199 

integrated into broad-scale mapping of surface SOC stocks in saltmarshes across Wales, UK. 200 

The SCSP shapefile illustrated surface SOC stocks for marshes across Wales utilising the 201 

predictive power of the linear mixed effects models obtained in the statistical analyses 202 

(section 2.4) for: A) ‘NVC class’ only (NVC_model); B) ‘Simplified soil type’ only (Soil_model); 203 

C) ‘NVC and simplified soil type’ combined, (NVC_soil_model); D) ‘NVC and simplified soil 204 

type’ combined (NVC_soil_model) plus predictions based on ‘simplified soil type’ (Soil_model) 205 

where SOC predictions for NVC pioneer communities were not known. Estimates of the total 206 

amount of saltmarsh carbon stock (t C), present within the top 10 cm of soil, for the area of 207 

the saltmarsh (%) for which we had the necessary information to make predictions were 208 

calculated for each map. For example, Laugharne marsh (Fig. 2) included NVC classes for 209 

which the study did not have predictive SOC to NVC relationships; hence, shapefiles A and C 210 

(detail above) included areas without surface SOC stock predictions so the percentage of the 211 

marsh area for which SOC predictions were made was <100 %. 212 

The SCSP shapefile was built by combining three GIS layers: i) the first layer provided the 213 

distribution of saltmarsh areas in England and Wales, and is distributed by the Environmental 214 

Agency (EA) (available at https://data.gov.uk/dataset/saltmarsh-extents1); ii) the second 215 

layer gave the distribution of NVC classes in Welsh salt marshes, and was provided by Natural 216 

Resources Wales (‘Intertidal Phase-2’ shapefile); and iii) the third layer provided simplified 217 

soil type information, and was obtained from ‘Soilscapes’, a 1:250,000 scale, soil map covering 218 

https://data.gov.uk/dataset/saltmarsh-extents1)
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England and Wales, and developed by LandIS  (http://www.landis.org.uk/). The EA shapefile 219 

(i) represented saltmarsh areal extent as measured between 2006 and 2009 across England 220 

and Wales (Phelan et al., 2011). The phase-2 survey data of NVC communities (ii) were derived 221 

from 1996-2003 surveys of saltmarsh plant carried out for all of Wales (Brazier et al., 2007). 222 

Soils of the Soilscape map (iii) were simplified into the two types used in surface SOC stock 223 

predicting algorithms: sandy or non-sandy soil. Comparison between mapped soil types and 224 

simplified soil types measured in the field are shown in Table S1 (Supplement). The SCSP 225 

shapefile and instructions on how to use it are available at 226 

https://www.saltmarshapp.com/saltmarsh-tool/. 227 

 228 

3 Results 229 

3.1. Site characterisation 230 

Plant and soil characteristics for each vegetation type of the 23 saltmarsh sites are shown in 231 

Table S2, Supplement. Surface SOC stock (to 10 cm depth) was often greater in both J. gerardii 232 

(SM16) and J. maritimus (SM15; SM18) plant communities (40-60 t C ha-1) than in the Atriplex 233 

(SM14) and Puccinellia (SM13) communities (20-50 t C ha-1). Soil pH of 6-7.5 was common 234 

throughout, but electrical conductivity (a proxy for soil salinity) was more variable, dependent 235 

on specific position and elevation relative to the tidal frame. Plant species richness was 236 

consistent across P. maritima, J. gerardii and J. maritimus communities (4 – 10 species m-2) 237 

with only A. portulacoides occurring commonly as a monoculture. Plant height was variable, 238 

between 3-30 cm for P. maritima and J. gerardii, with shorter swards when grazers present. 239 

A. portulacoides shrubs were consistently 20-30 cm high, with J. maritimus tussocks 40-70 cm 240 

http://www.landis.org.uk/
https://www.saltmarshapp.com/saltmarsh-tool/
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tall. Root biomass of between 1-5 kg DW m-2 was common, with J. gerardii and J. maritimus 241 

communities typically having greater root biomass than the other two community types.  242 

3.2. Surface SOC stock: explanatory variables and model predictions 243 

The relationship between the response variable ‘surface SOC stock’ and the plant and soil 244 

explanatory variables was quantified by 6 uni- and 4 bi-variate models (Table 3). Assessment 245 

of ‘vegetation type’ (Veg_model) or ‘NVC class’ (NVC_model) alone accounted for 36-37 % of 246 

the variation in surface SOC stock. Root biomass alone (Root_model) explained 32 % of 247 

variation. Simplified soil type alone (Soil_model), where soil was divided into sandy or non-248 

sandy groups, explained 32 % of variation rising to 45 % when texture categories (Text_model) 249 

were considered. Plant species richness alone (Species_model) explained 41 % of variation in 250 

surface SOC stock (Fig. S3, Supplement). Bivariate models including plant community 251 

variables (vegetation type or NVC class) and simplified soil type (Veg_soil_model and 252 

NVC_soil_model) explained 40-44 % of surface SOC stock, rising to 51-52 % when plant 253 

variables were coupled with soil texture category (Veg_text_model and NVC_text_model).  254 

3.3. Prediction of surface SOC stock: the SCSP tool and Saltmarsh App 255 

The SCSP tool look up table (Table 4) provides a straightforward way to determine surface 256 

SOC stock (top 10 cm of soil) in a UK saltmarsh based on information on either simplified soil 257 

type, plant community (NVC class or vegetation type) or both. For convenience the SCSP look 258 

up table also contains the model used in the carbon calculator component of The Saltmarsh 259 

App (Veg_soil_model). Predictions of surface SOC stock based on plant NVC communities (5 260 

classes) produced SOC stock predictions (top 10 cm of soil) varying from 32 t C ha-1 for the A. 261 

portulacoides NVC class to 50 t C ha-1 for the J. gerardii NVC class (Table 4). Predictions based 262 
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on simplified soil types (2 types) predicted that sandy soils store less SOC (29 t C ha-1) than 263 

non-sandy soils (43 t C ha-1). A series of GIS based maps, illustrating surface SOC stock (t C ha-264 

1; top 10 cm of soil) and total surface SOC stored per marsh (t C) for all Welsh saltmarshes 265 

(based on three models: NVC_model; Soil_model; NVC_soil_model) can be viewed in the 266 

Supplement, Fig. S7-S29 inclusive (exemplar Fig. 2) or online at 267 

https://www.saltmarshapp.com/saltmarsh-tool/ 268 

  269 

https://www.saltmarshapp.com/saltmarsh-tool/
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Table 3. Six explanatory variables of surface SOC stock (t C ha-1; top 10 cm of soil) in Welsh 270 

saltmarshes, based on ANOVA output from mixed effect models, with F statistic values 271 

presented. 272 

Model name Vegetation 

type  

NVC class Plant 

species 

richness m2 

Root 

biomass 

(kg DW m-2) 

Simplified 

soil type  

Soil 

texture 

category  

R2 

 Surface SOC stock prediction: 6 single variable models 

Veg_model 9.33 ***  - - - - 0.36 

NVC_model - 7.84 *** - - - - 0.37 

Species_model -  9.61 ** - - - 0.41 

Root_model -  - 15.0 *** - - 0.32 

Soil_model -  - - 12.52 *** - 0.32 

Text_model -  - - - 2.90 ** 0.45 

 Surface SOC stock prediction: 4 bivariate models 

Veg_soil_model 10.18 ***  - - 22.39 *** - 0.40 

Veg_text_model 10.66 ***  - - - 3.84 *** 0.51 

NVC_soil_model - 9.17 *** - - 22.54 *** - 0.44 

NVC_text_model - 7.92 *** - - - 3.63 *** 0.52 

Significance (** = p <0.01, *** = p <0.001) 273 

Vegetation type (4 levels: P. maritima; A. portulacoides; J. maritimus; J. gerardii) 274 

NVC class (5 levels: SM13; SM14; SM15; SM16; SM18) 275 

Simplified soil type (2 levels: ‘Sandy’ soil with ≥45% sand; ‘Non-sandy’ soils with <45% sand including loam, 276 

clay, organic soils) 277 

Soil texture category (12 levels: see Table 2) 278 

  279 
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Table 4. SCSP tool look up table based on models of surface SOC stock (t C ha-1; top 10 cm of 280 

soil) prediction in Welsh salt marshes (using output of a sub-set of models from Table 3). 281 

Vegetation type  NVC class Simplified 

soil type 

Model 

Coefficient(s) 

Model 

Intercept 

Predicted SOC 

stock (t C ha-1) 

NVC_model: ‘NVC class’ only [p < 0.001, r2 = 0.37, mean model standard error (SM13 ± 2.9, SM14 ± 3.9, 

SM15 ± 4.9, SM18 ± 3.4, SM16 ± 3.2)] 

- (P. maritima) SM13 - - - 39.5 40 

- (A. portulacoides) SM14 - - -7.8 39.5 32 

- (J. maritimus) SM15 - - -2.3 39.5 37 

- (J. maritimus) SM18 - - 9.3 39.5 49 

- (J. gerardii) SM16 - - 10.4 39.5 50 

Soil_model: ‘Simplified soil type’ only [p < 0.001, r2 = 0.32, mean model standard error ± 3.9] 

- - Sandy - - 29.4 29 

- - Non-sandy - 13.7 29.4 43 

Veg_soil_model: ‘Vegetation type’ and ‘Simplified soil type’ [p < 0.001, r2 = 0.4, mean model standard error 

(P. maritima ± 2.7, A. portulacoides ± 3.3, J. maritimus ± 3.3 , J. gerardii ± 3.0)] 

P. maritima - (SM13) Sandy 8 -12.9 32.7 28 

P. maritima - (SM13) Non-sandy 8 12.9 19.8 41 

A. portulacoides - (SM14) Sandy - -12.9 32.7 20 

A. portulacoides - (SM14) Non-sandy - 12.9 19.8 33 

J. maritimus - (SM15 & SM18) Sandy 15.1 -12.9 32.7 35 

J. maritimus - (SM15 & SM18) Non-sandy 15.1 12.9 19.8 48 

J. gerardii - (SM16) Sandy 16.3 -12.9 32.7 36 

J. gerardii - (SM16) Non-sandy 16.3 12.9 19.8 49 

NVC_soil_model: ‘NVC class’ and ‘Simplified soil type’ [p < 0.001, r2 = 0.44, mean model standard error 

(SM13 ± 3.3, SM14 ± 3.7, SM15 ± 5.2, SM18 ± 3.3, SM16 ± 3.4)] 

- (P. maritima) SM13 Sandy - -14.1 40.4 26 
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- (P. maritima) SM13 Non-sandy - 14.1 26.3 40 

- (A. portulacoides) SM14 Sandy -7.2 -14.1 40.4 19 

- (A. portulacoides) SM14 Non-sandy -7.2 14.1 26.3 33 

- (J. maritimus) SM15 Sandy 2.4 -14.1 40.4 29 

- (J. maritimus) SM18 Sandy 10.1 -14.1 40.4 36 

- (J. maritimus) SM15 Non-sandy 2.4 14.1 26.3 43 

- (J. maritimus) SM18 Non-sandy 10.1 14.1 26.3 50 

- (J. gerardii) SM16 Sandy 9.5 -14.1 40.4 36 

- (J. gerardii) SM16 Non-sandy 14.1 9.5 26.3 50 

Variables not in model denoted by ‘-’; Variables related to ‘Vegetation type’ or ‘NVC class’ but not included in 282 

analysis in parentheses ‘()’. 283 

Vegetation type (4 levels: P. maritima; A. portulacoides; J. maritimus; J. gerardii) 284 

NVC class (5 levels: SM13; SM14; SM15; SM16; SM18) 285 

Simplified soil type (2 levels: ‘Sandy’ soil with ≥45% sand; ‘Non-sandy’ soils with <45% sand including loam, 286 

clay, organic soils) 287 

 288 
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 289 

Figure 2. Predictions of surface SOC stock (t C ha-1;0-10 cm) for saltmarshes at Laugharne in 290 

south Wales. SOC stock was predicted by a) ‘NVC class’ only (NVC_model); b) ‘Simplified soil 291 

type’ only (Soil_model); c) ‘NVC and simplified soil type’ combined, (NVC_soil_model); d) 292 

NVC_soil_model(used where NVC communities were mapped), combined with Soil_model 293 

(remaining saltmarsh area where NVC community information was not available). Inserted 294 

into maps are estimates of the total amount of  ‘Surface SOC (t C) (0-10 cm)’ for the ‘Area’ of 295 

the saltmarsh (%) for which we had the necessary information to make predictions, with panel 296 

d illustrating best practice. Laugharne marsh included NVC communities for which the study 297 

did not have predictive surface SOC stock to NVC relationships; hence, panel A and C include 298 

areas without SOC predictions (white colour) and the percentage of the marsh area for which 299 

SOC predictions were made are <100 %. 300 

 301 
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4 Discussion 302 

The accurate prediction of ‘blue carbon’ stock is of interest to a wide range of stakeholders 303 

including the IPCC (2014). This study has demonstrated that a large proportion of the variation 304 

in surface layers of SOC stock in saltmarsh habitats can be predicted from just two easy-to-305 

measure variables, plant community (‘vegetation type’ or ‘NVC class’) and simplified soil type, 306 

which together accounted for close to half of the variation in SOC stock in 23 Welsh salt 307 

marshes. Associations of SOC with plant and soil characteristics have been demonstrated in 308 

other ecosystems (Amundson, 2001; Bai et al., 2016; Manning et al., 2015), although this 309 

study is the first to use such relationships to produce a national inventory of blue carbon 310 

storage in surface soil layers. 311 

4.1. Ecological observations 312 

Whilst surface SOC stock in UK saltmarshes was broadly predicted by soil type, with non-sandy 313 

soils more carbon rich, there remained a clear association between SOC stock and plant 314 

community type, with rush-dominated J. maritimus and J. gerardii communities associated 315 

with greater surface SOC stocks than either A. portulacoides or P. maritima communities. The 316 

deep-rooted saltmarsh shrub A. portulacoides (Decuyper et al., 2014) occurred 317 

predominantly as a near monoculture (Ford et al., 2016), with the shallow-rooted salt marsh 318 

grass P. maritima community found alongside simple-rooted plants such as Plantago 319 

maritima. In contrast, the rushes J. gerardii and J. maritimus, characterised by extensive 320 

laterally creeping rhizomes with thick anchors and many shallow fine roots, commonly grew 321 

alongside the grasses Festuca rubra and Agrostis stolonifera and various other forbs. The 322 

diverse Juncus communities are known to have a wide variety of rooting strategies (Minden 323 

et al., 2012) that lead to greater root biomass and consequently greater SOC stock (Jones and 324 
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Donnelly, 2004; Loreau et al., 2001). Higher SOC stock in Juncus areas might also arise as these 325 

species grow in waterlogged conditions that limit aerobic breakdown of organic material 326 

(Ford et al., 2012), while A. portulacoides is known to colonise relatively well-aerated and 327 

drained areas (Armstrong et al., 1985). We did not find an effect of grazing occurrence on SOC 328 

stocks in this study, despite a significant interaction between plant community type (a clear 329 

indicator of surface SOC stock) and livestock-grazing. Our results are, therefore, in line with 330 

the subset of European saltmarsh studies (n = 75) from a recent meta-analysis that only found 331 

an effect of grazing on SOC stock in North American salt marshes (Davidson et al., 2017). 332 

4.2. Tools for broad-scale predictions of saltmarsh SOC stock 333 

The study findings were used to develop two practical tools for predicting the surface SOC 334 

stocks of salt marshes: the SCSP tool for expert stakeholders (i.e. IPCC, blue carbon initiatives, 335 

academics, policy makers and land managers), and the Saltmarsh App for the general public 336 

(find both at https://www.saltmarshapp.com). All of the univariate and bivariate models 337 

tested in this study explained ≥32 % of the variation in saltmarsh surface SOC stocks, however 338 

not all were of practical use for the tool/app, which required variables that were either easy 339 

to measure or readily available as GIS layers. For example, the characterisation of soils into 340 

12 soil texture categories produced consistently better univariate and bivariate predictions of 341 

SOC (~50% of variation explained) than simple classification into sandy or non-sandy soils 342 

(~33%), as texture-classification allowed a more accurate assessment of the clay to sand ratio, 343 

a key indicator of SOC (Arrouays et al., 2006; O’Brien et al., 2015). However, the 2-class 344 

simplified soil type classification was selected for use in the tools, as existing UK soil maps 345 

categorised saltmarsh soils in these terms, and because non-specialists can distinguish sandy 346 

from non-sandy soils in the field. For plant community type, predictions by ‘vegetation type’ 347 

https://www.saltmarshapp.com/saltmarsh-tool/


23 
 

or ‘NVC class’ performed equally well, both explaining over a third of variation in surface SOC 348 

stock in univariate models, rising to nearly half when combined with either simplified soil type 349 

or texture classification. NVC class was selected as a key variable for SCSP as it is often mapped 350 

at UK level by national agencies, whereas the easier to identify vegetation type was chosen 351 

for the Saltmarsh App. In summary, the SCSP tool generates predictions and maps of 352 

saltmarsh SOC stock from existing mapped information on soil type, NVC classification, or 353 

both. The Saltmarsh App predicts SOC stock from field-based information on vegetation type 354 

and simplified soil type combined. 355 

4.32. Advantages and limitations of predicting blue carbon from vegetation and soil types 356 

Coastal vegetated habitats are now increasingly acknowledged as important carbon sinks 357 

(Howard et al., 2017), based on their high primary production, sediment trapping capacity 358 

and the biogeochemical conditions of their sediments, which slow the decay of organic 359 

material (Kelleway et al., 2017, McLeod et al., 2011). The contribution of coastal habitats, 360 

such as salt marshes, to climate change mitigation had previously been under-estimated 361 

(Scholefield et al., 2013), mainly due to their relatively small area cover relative to the open-362 

ocean or terrestrial vegetated ecosystems. However, on a per area basis, coastal wetlands are  363 

more efficient carbon sinks than most terrestrial forests (Mcleod et al., 2011; Pan et al., 2011) 364 

due to their ability to accrete vertically in response to sea level rise. Indeed, this study shows 365 

Welsh marshes hold up to 50 t C ha-1 in the top 10 cm of soil, equivalent to carbon densities 366 

in habitats such as fresh-water wetlands, semi-natural grasslands and woodlands (Ostle et al., 367 

2009). The SOC predictive models and associated tool presented in this paper are widely 368 

applicable to other UK salt marshes (Fig. S4, Supplement), but also throughout north-western 369 

European salt marshes (from Portugal to the Baltic), due to the similarity of common and 370 
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wide-spread vegetation types (Adam, 1990). However, for use in other biogeographical 371 

regions, particularly North America, where salt marshes are dominated by large Spartina 372 

species that produce organogenic soils (Adam, 1990), the methods would need further 373 

ground-truthing. 374 

IPCC (2014) guidelines suggest that the accurate assessment of blue carbon stocks involves 375 

measurement to a depth of 1m. However,  as this study focused on the principal of predicting 376 

saltmarsh SOC stock from easy-to-measure metrics, only the surface layer (top 10 cm) of soil 377 

was considered. Although this approach does not allow direct prediction of total SOC stock 378 

throughout the soil profile, it is in line with reviews from terrestrial habitats that tend to focus 379 

on shallow soil layers (top 10-15 cm of soil; Ostle et al., 2009). For minerogenic 380 

saltmarshesblue carbon ecosystems, SOC stock in the top layer of soil is generally indicative 381 

of SOC stock in deeper soil layers (Bai et al., 2016; Drake et al., 2015; Fourqurean et al., 2012), 382 

with nearly three quarters of total SOC and over half of the total root biomass in UK 383 

saltmarshes captured by sampling to a depth of 10 cm (based on measurement to 45 cm, 384 

Figures S5-S6, Supplement). We therefore argue that surface SOC stock can provide a reliable 385 

predictor of deeper carbon stores and is therefore a useful indicator of total SOC stock for UK 386 

saltmarshes. 387 

The SCSP tool provides surface SOC stock predictions for saltmarsh plant communities 388 

indicative of the low, mid and high marsh zones, representing around two thirds of the total 389 

Welsh saltmarsh area, calculated directly from map summary data (Fig. S7-S29, Supplement). 390 

However, future work could boost the scope of the SCSP by validating SOC stock predictions 391 

for pioneer communities common across Europe (Spartina and Salicornia), that may differ 392 

markedly in biotic indicators of SOC stock such as root biomass (Keiffer and Ungar, 2002; 393 
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Schwarz et al., 2015). At present, pioneer communities are defined by simplified soil type 394 

alone (see panel D in Fig. 2). Common to many ecosystem service mapping tools, the SCSP 395 

tool assumes linearity of the relationship between area and ecosystem service, this however 396 

is uncertain (Barbier et al., 2008; Koch et al., 2009), and should be the next frontier of 397 

ecosystem service research.  398 

While the SCSP tool has advantages in terms of translating ecology into practitioner-ready 399 

information, something that is increasingly being demanded of ecologists (see Chapin, 2017, 400 

and the Special Issue on ‘translational ecology’ in Frontiers in Ecology and Environment, 401 

December 2017), such an approach also has some limitations. Namely, in the process of 402 

translating ground level observations of ecosystem benefits (e.g. SOC stocks) into large-scale 403 

maps, there is some information that gets ‘lost in translation’ (sensu Jackson et al., 2017). In 404 

the case of this study, we were inherently limited by the need to use a reduced number of 405 

the simplest variables available to any practitioner (e.g. vegetation community type), and at 406 

the same time, variables that feature in national cartographic programmes (e.g. coarse soil 407 

categories maps). Even so, the simple models selected for the SCSP tool explained ~50% of 408 

the variation in surface SOC stock in the studied salt marshes. However, there is still another 409 

50% that we do not account for in this work. We know some of this variation is explained by 410 

the need to use simplified soil categories (instead of soil texture) and the inability to use root 411 

biomass and plant species richness as variables in the final tool (as these variables need more 412 

expertise to estimate, and do not feature in an available GIS layer). The rest of the variation 413 

in surface SOC stock might be attributed to  differences in marsh elevation within the tidal 414 

frame, or in the geomorphological context of the marsh (e.g. fringing or estuarine, and if 415 

estuarine, near the mouth of the estuary or towards the head of the estuary) (Arriola and 416 
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Cable, 2017),  level of urbanisation of the catchment (Deegan et al., 2012), past history of the 417 

marsh (Kelleway et al., 2017), whether the marsh sits in a dynamic or stable area, level of 418 

disturbance/exposure it is being subjected to (Macredie et al., 2013), among other factors. 419 

Despite the caveats listed above, this study has demonstrated the ability to predict up to half 420 

the variation in saltmarsh surface SOC stock from very simple environmental metrics. 421 

 422 
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