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Abstract. The response of the terrestrial Net Ecosystem Ex-
change (NEE) ofCO2 to climate variations and trends may
crucially determine the future climate trajectory. Here wedi-
rectly quantify this response on interannual time scales, by
building a linear regression of interannual NEE anomalies5

against observed air temperature anomalies into an atmo-
spheric inverse calculation based on long-term atmospheric
CO2 observations. This allows us to estimate the sensitiv-
ity of NEE to interannual variations in temperature (seen as
climate proxy) resolved in space and with season. As this10

sensitivity comprises both direct temperature effects andef-
fects of other climate variables co-varying with temperature,
we interpret it as “interannual climate sensitivity”. We find
distinct seasonal patterns of this sensitivity in the northern
extratropics, that are consistent with the expected seasonal15

responses of photosynthesis, respiration, and fire. Withinun-
certainties, these sensitivity patterns are consistent with in-
dependent inferrences from eddy covariance data. On large
spatial scales, northern extratropical as well as tropicalinter-
annual NEE variations inferred from the NEE-T regression20

are very similar to the estimates of an atmospheric inversion
with explicit interannual degrees of freedom. The results of
this study offer a way to benchmark ecosystem process mod-
els in more detail than existing effective global climate sensi-
tivities. The results can also be used to gap-fill or extrapolate25

observational records, or to separate interannual variations
from longer-term trends.

1 Introduction

About a quarter of the carbon dioxide (CO2) emitted to the
atmosphere by human fossil fuel burning and cement man-30

ufacturing is currently taken up by the terrestrial biosphere
(Le Quéré et al., 2016), thereby slowing down the rise of at-
mosphericCO2 levels and thus mitigating climate change.
The magnitude of this terrestrial Net Ecosystem Exchange
(NEE) of CO2, however, is subject to substantial variabil-35

ity and trends, to a large part as a response to variations and
trends in climate. Due to this feedback loop, the response of
NEE to climate may crucially determine the future climate
trajectory (Friedlingstein et al., 2001), yet present-daycou-
pled climate–carbon cycle models strongly disagree on its40

strength (Friedlingstein et al., 2014).
To reduce these uncertainties, observations of present-

day year-to-year variations have been used as a constraint
on the unobservable longer-term changes (Cox et al., 2013;
Mystakidis et al., 2017), using the finding that these mod-45

els show a close link between the climate–carbon cycle re-
sponses at year-to-year and centennial time scales. It can-
not be known, however, to which extent this link indeed
holds in reality (Mystakidis et al., 2017). While carbon cy-
cle anomalies on the year-to-year time scale are clearly at-50

tributable to climate anomalies (through the variable oc-
currance of sunny/cloudy, warm/cold, wet/dry days or peri-
ods), additional longer-term trends may arise as a response
to growing nitrogen andCO2 fertilization, to slow warm-
ing, to expanding or shrinking vegetation, to adaptation of55

ecosystems, to shifts in species composition, or to changing
human agricultural practices and fire suppression. Some of
these processes may also slowly change the strength of the
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short-term climate–carbon cycle responses over time. More-
over, both year-to-year and decadal/centennial carbon cycle
changes are overlaid by the much larger periodic variability
(day/night cycle, seasonal cycle). When using observations
to constrain the climate–carbon cycle responses, therefore, it5

is essential to employ observational records spanning time
periods as long as possible to get statistically significantre-
sults, and to separate the signals on seasonal, interannual, and
decadal time scales (compare Rafelski et al., 2009).

Variability and trends of terrestrial carbon exchange have10

been observed through a variety of sustained measure-
ments, including local measurements by eddy covariance
towers measuring ecosystem fluxes (e.g., Baldocchi et al.,
2001; Baldocchi, 2003) and indirect measurements by
satellites recording changes in vegetation properties (e.g.,15

Myeni et al., 1997). The longest observational records are the
atmosphericCO2 measurements, started in the late 1950s
at Mauna Loa (Hawaii) and South Pole by Keeling et al.
(2005) and since then extended into a network of more
than 100CO2 sampling locations worldwide. Based on the20

Mauna Loa long-term record considered to reflect global
CO2 fluxes, a close link between atmosphericCO2 growth
rate and tropical temperature variations has been established
(e.g., Wang et al., 2013). Using measurements from Bar-
row (Alaska) conceivably reflecting variations in borealCO225

fluxes, similar relationships have been suggested for high-
latitude ecosystems (e.g., Piao et al., 2017).

Extending these analyses, the aim of this study is to di-
rectly quantify the contributions of the different seasonsand
different climatic zones to the response of NEE to interan-30

nual climatic variations, in order to obtain more process-
relevant information. To this end, we combine a linear
regression between NEE and climate anomalies with an
“atmospheric inversion” (e.g., Newsam and Enting, 1988;
Rayner et al., 1999; Rödenbeck et al., 2003; Baker et al.,35

2006; Peylin et al., 2013) which quantitatively disentangles
the atmosphericCO2 signal into its contributions from the
various regions and times of origin, and allows us to make
use of multiple long-term atmosphericCO2 records. In addi-
tion to the atmospheric data, eddy covariance data are used40

for independent verification.

2 Method

2.1 The standard inversion

As a starting point, we use the existing Bayesian atmospheric
CO2 inversion implemented in the Jena CarboScope, run45

s85oc_v4.1s (update of Rödenbeck et al., 2003; Rödenbeck,
2005, see http://www.BGC-Jena.mpg.de/CarboScope/). It
estimates spatially and temporally explicitCO2 fluxes be-
tween the Earth surface and the atmosphere, based on atmo-
sphericCO2 measurements from 23 stations (marked with50

* in Table 1) each of which spans the entire analysis period

(chosen here to be 1985-2016 when more data are available,
see Rödenbeck et al. (2018) for runs over 1957-2016). Using
an atmospheric tracer transport model to simulate the atmo-
sphericCO2 field that would arise from a given flux field, the 55

inversion algorithm finds the flux field that leads to the clos-
est match between observed and simulatedCO2 mole frac-
tions. In addition, the estimation is regularized by a-priori
constraints meant to suppress excessive spatial and high-
frequency variability in the flux field. The a-priori settings 60

do not involve any information from biosphere process mod-
els. Fossil fuel fluxes are fixed to accounting-based values.
In the particular run s85oc_v4.1s used here, ocean fluxes are
fixed to estimates based on an interpolation of surface-ocean
pCO2 data (Jena CarboScope run oc_v1.5). A more detailed65

technical specification, including references and highlighting
changes with respect to earlier Jena CarboScope versions, is
given in Appendix A.

For reference in Sect. 2.2 below, we mention here that this
standard inversion calculation represents the total surface-to- 70

atmosphereCO2 flux f as a decomposition

f = f
adj
NEE,LT+ f

adj
NEE,Seas+ f

adj
NEE,IAV + f fix

Ocean+ f fix
Foss (1)

into adjustable long-term mean terrestrial NEE (f
adj
NEE,LT),

adjustable large-scale seasonal NEE anomalies (f
adj
NEE,Seas),

adjustable interannual and shorter-term NEE anomalies75

(fadj
NEE,IAV), the prescribed ocean fluxes (f fix

Ocean), and the pre-
scribed fossil fuel emissions (f fix

Foss). All these terms represent
spatio-temporal fields.

This standard inversion will be used as a reference to com-
pare the results of the NEE-T inversion introduced below80

(Sect. 2.2) at large spatial scales. Further, we used its es-
timated NEE variations in preparatory tests to confirm that
NEE-T correlations actually exist, and to determine the de-
grees of freedom needed to accomodate their spatio-temporal
heterogeneity. 85

2.2 The NEE-T inversion

Compared to the standard inversion (run s85oc_v4.1s), the
NEE-T inversion (base run s04XocNEET_v4.1s) uses the
same transport model and the same prescribed data-based
CO2 fluxes of the ocean (f fix

Ocean) and fossil fuel emissions 90

(f fix
Foss). It also possesses the same adjustable degrees of free-

dom representing the long-term meanCO2 fluxes (term
f

adj
NEE,LT) and its large-scale seasonality (f

adj
NEE,Seas).

The NEE-T inversion differs only by replacing the ex-
plicitly time-dependent interannual NEE variations (f

adj
NEE,IAV) 95

with a linear NEE-T regression term plus residual terms,

f
adj
NEE,IAV → γ

adj
NEE-Tw(T−TLT+Seas+Deca+Trend) (2)

+(1−w)fadj
NEE,IAV + f

adj
NEE,Trend+ f

adj
NEE,SCTrend

T represents the monthly spatio-temporal field of air
temperature, taken from GISS (Hansen et al., 2010;100

http://www.BGC-Jena.mpg.de/CarboScope/
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GISTEMP Team, 2017), interpolated to the spatial grid and
daily time steps of the inversion (Appendix A). Its long-term
mean, mean seasonal cycle, and decadal variations including
linear trend (TLT+Seas+Deca+Trend) have been subtracted to only
retain interannual (including non-seasonal month-to-month)5

anomalies. The scalarw is a temporal weighting being1
within the analysis period 1985-2016 and zero outside;
this ensures that the regression is specifically referring to
this period. The interannual temperature anomaly field is
multiplied by unknown (i.e., adjustable by the inversion)10

scaling factorsγNEE-T (the NEE-T regression coefficients).
These scaling factors are identical in each year of the
inversion, but are allowed to vary smoothly both seasonally
(with a correlation length of about 3 weeks, such that
γNEE-T contains 13 independent degrees of freedom in time,15

repeated every year) and spatially (with correlation lengths
of about 1600km in longitude direction and 800km in
latitude direction, imposing a spatial smoothing onγNEE-T
over the same spatial scales as the smoothing imposed
on the interannual flux anomaliesfadj

NEE,IAV in the standard20

inversion). The need for seasonal and spatial resolution of
γNEE-T has been inferred from analysis of the standard in-
version results (Sect. 2.1). The a-priori spatial and temporal
correlations are imposed onγNEE-T to prevent a localization
of inverse adjustments in the vicinity of the atmosperic25

stations. In contrast to the standard inversion, however,
where the a-priori correlations lead to a smooth NEE field,
the NEE result of the NEE-T inversion still retains structure
on the pixel and monthly scale from the temperature field.
By having only 13 degrees of freedom in the time dimension,30

the introduction of the regression term also regularizes the
inversion further compared with the explicit interannual term
of the standard inversion, which has 796 degrees of freedom
in the time dimension.

Eq. (2) also contains adjustable residual terms (2nd line) to35

accomodate modes of variability from the atmosphericCO2

signals that cannot be explicitly represented by the regres-
sion term and might therefore be at risk of being aliased into
spurious adjustments toγNEE-T:

– Outside the non-zero period 1985-2016 of the regres-40

sion term, interannual NEE variations are represented
by a standard interannual termfadj

NEE,IAV with weights
(1−w) opposite to those of the regression term.

– An adjustable linear trend (fadj
NEE,Trend) is needed because

trends have explicitly been removed fromT. For ev-45

ery pixel,fadj
NEE,Trendis proportional to the time difference

∆t since the beginning of the calculation period, multi-
plied by an unknown trend parameter to be adjusted by
the inversion (with zero prior). The trend parameters are
correlated with each other in space with the same corre-50

lation length scale as the mean and interannual variabil-
ity components of the standard inversion (i.e., asf

adj
NEE,LT

andfadj
NEE,IAV in Eq. (1)).

– Further, as the NEE field from the standard inversion
contains a strong increase in seasonal cycle amplitude55

in northern extratropical latitudes (earlier described in
Graven et al. (2013); Welp et al. (2016)) which is ex-
pected to not (solely) arise from changes in the temper-
ature seasonal cycle, we decoupled this mode of vari-
ability from the regression by adding it as an explicitly60

adjustable termfadj
NEE,SCTrend. For each degree of freedom

in the mean seasonality termfadj
NEE,Seasin Eq. (1)), the ad-

ditional termf
adj
NEE,SCTrendcontains the same mode mul-

tiplied by∆t and having its own adjustable strength pa-
rameter. 65

Any further residual modes of variability (including NEE
variations related to variations in other environmental drivers
uncorrelated toT variations, non-linear responses, memory
effects and internal ecosystem dynamics, errors in the em-
ployedT field, errors of the a-priori fixed ocean and fossil70

fuel terms, as well as effects of transport model errors) are
not explicitly accounted for, as we lack sufficient a-prioriin-
formation to model them explicitly. To the extend that they
are uncorrelated toT variations, they will stay in the data
residual of the inversion. 75

In contrast to the standard inversion using 23 stations with
temporally homogeneous records over 1985-2016, the NEE-
T inversion uses atmospheric data from 89 stations (Table 1)
partially with shorter records but spatially covering the globe
more evenly (including stations in northern Siberia and trop- 80

ical America). While the standard inversion with explicitly
time-dependent degrees of freedom can develop spurious
NEE variations when stations pop in or out with time, the
major interannual variability from the NEE-T inversion is
coming from the regression term using its degrees of free-85

dom (γNEE-T) repeatedly each year, such that any data point
influences all years of the calculation period simultaneously.
Therefore, the NEE-T inversion is not prone to spurious vari-
ations from a temporally changing station network.

2.3 Sensitivity cases 90

The algorithm uses several inputs carrying uncertainties,
and contains several parameters that are not well deter-
mined from a-priori available information. Therefore, we
also ran an ensemble of sensitivity cases. In each such sen-
sitivity case, one of the uncertain elements of the algo-95

rithm is changed within ranges that may be considered as
plausible as the base case: (1) longer spatial a-priori cor-
relations (2.4 times in longitude direction and 1.6 times in
latitude direction) forγNEE-T, (2) 4 weeks (rather than 3
weeks) temporal a-priori correlation length scale forγNEE-T, 100

(3) halved a-priori uncertainty range forγNEE-T, (4) using
oceanCO2 fluxes from the PlankTOM5 ocean biogeochem-
ical process model (Buitenhuis et al., 2010) instead of the
fluxes based onpCO2 measurements, (5) taking the grid-
ded monthly land temperature field from Berkeley Earth105
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(www.BerkeleyEarth.org, accessed 2017-11-29) instead of
the GISS data set, and (6) using ERA-Interim meteorologi-
cal fields (Dee et al., 2011) to drive the atmospheric transport
model rather than NCEP meteorological fields.

Eight additional sensitivity cases have been run to demon-5

strate coherent information in the atmospheric data. The set
of 89 stations used in the base case was divided into 8 mutu-
ally exclusive parts (Table 1). In each of the sensitivity cases,
one of these parts was omitted, leaving sets of 73 to 82 re-
maining stations. By this construction, all these 8 runs still10

have global data coverage, but every station is absent in one
of the runs. If the results would depend on any particular sta-
tion without being backed up by other stations, then the run
omitting this station would show substantial difference from
the base run.15

The range of results from this ensemble of sensitivity cases
will be shown as uncertainty range around the base case.

2.4 Comparison to eddy covariance data

For comparison of the estimated sensitivitiesγNEE-T against
independent information, we also calculate NEE-T relation-20

ships from eddy covariance (EC) measurements. We use
NEE and co-measured air temperature records from the
FLUXNET2015 data set (https://fluxnet.fluxdata.org). EC
sites (Table 2) have been chosen based on having long
records (at least 12 years; 2 sites with 11 years were included25

too to have more ecosystem types represented). Crop sites
have not been included because their flux variability may
strongly depend on crop rotation.

We start from the half-hourly or hourly data sets (variables
NEE_CUT_REF and TA_F_MDS, respectively). Records30

classified as “measured” (QC flag = 0) or “good quality gap-
fill” (QC flag = 1) in both variables are averaged over each
month. Months with data coverage of90% or less are dis-
carded from the statistical analysis.

For each EC site and each month of the year, all available35

monthlyCO2 flux values from the different years were re-
gressed against the corresponding monthly air temperature
values, using ordinary least squares regression. This yields
sensitivities as regression slopesgEC

NEE-T=∆NEEEC /∆TEC.
We also calculated the confidence interval of the slope for40

the confidence level90%, reflecting the uncertainty ofgEC
NEE-T

given the scatter of the monthly values around a linear rela-
tionship.

The sensitivitiesγNEE-T from the inversion andgEC
NEE-T

from the explicit linear regression are not fully comparable45

mathematically because (i) the time period (and to some ex-
tent the frequency filtering) are different, and (ii) the explicit
linear regression of the total NEE is not only influenced by
the year-to-year variations but also by the ratio of NEE trend
and temperature trend whileγNEE-T has deliberately been50

made insensitive to the trend (Sect. 2.2). Therefore, we also
calculated sensitivitiesgInv

NEE-T from the total monthly-mean
non-fossilCO2 flux (i.e., including regression and residual

terms of Eq. (2)) and the employed temperature field of the
inversions, in the same way and subsampled at the same55

months as for the EC data. A perfect match betweengEC
NEE-T

andgInv
NEE-T cannot be expected nevertheless because (iii) sen-

sitivities from the inversion even at its smallest resolvedscale
–the pixel scale– represent a mixture of ecosystem types in
unknown proportions, while the EC data represent a specific60

ecosystem type, (iv) NEE from the inversion includes the ef-
fects of disturbances such as fire, which are absent from the
EC data, and (v) there may be local trends in the ecosys-
tem behaviour observed by the EC data due to aging or slow
species shifts, which average out on the larger spatial scales 65

seen by the atmospheric inversion.

3 Results

3.1 How does the “interannual climate sensitivity”
γNEE-T vary in space and by season?

As a starting point, we present the results of the NEE-T in-70

version in terms ofγNEE-T, which is the local regression co-
efficient between interannual variations in NEE and temper-
ature, resolved seasonally (Sect. 2.2). AsγNEE-T does not
only reflect direct temperature responses but also responses
to other environmental variables that co-vary with tempera- 75

ture (such as water availability, incoming solar radiation), we
refer to it as “interannual climate sensitivity”.

Fig. 1 presents the seasonal and spatial patterns of the “in-
terannual climate sensitivity” as Hovmöller Diagrams, show-
ing longitudinally averagedγNEE-T in dependence on lati- 80

tude and month-of-year. The longitudinal average is taken
separately over North and South America (left panel), Eu-
rope and Africa (middle panel), and Asia and Australia (right
panel), respectively. This representation summarizes thees-
sential variations ofγNEE-T, as it is found to be relatively uni- 85

form across longitude within the individual continents (not
shown).

In essentially allnorthern extratropical landareas (north
of about 35◦ N), we estimate negativeγNEE-T in spring (and,
to a lesser extent, autumn), consistent with photosynthesis 90

being temperature limited such that higher-than-normal tem-
peratures lead to more negative NEE (i.e., larger-than-normal
CO2 uptake) and vice versa. Warmer conditions tend to co-
incide with higher incoming solar radiation in May and/or
June in the northern extratropics (according to a correlation 95

analysis of CRUNCEPv7 data, not shown), which would tend
to amplify the direct temperature effect. In summer, when
photosynthesis is not limited by temperature any more, we
find positiveγNEE-T values. Such positiveγNEE-T is consis-
tent with enhanced respiration in warmer summers, but also100

with the fact that warmer-than-normal periods are often also
dryer leading to reduced photosynthetic uptake or enhanced
fire activity. In winter, NEE is not found to respond much to
interannual climate variations. The interpretation of thesea-

www.BerkeleyEarth.org
https://fluxnet.fluxdata.org
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sonality ofγNEE-T is confirmed by its latitude dependence:
Consistent with the later spring and shorter summer in the
higher northern latitudes, the period of negativeγNEE-T starts
later there, and the period of positiveγNEE-T is shorter.

In the Tropics, we find stronger and less systematic vari-5

ations inγNEE-T. However, as indicated by the missing stip-
pling, we also find larger disagreement between our sensitiv-
ity cases designed to embrace plausible ranges for the essen-
tial inputs and parameters in the algorithm (Sect. 2.3). This
reveals that the seasonal variations inγNEE-T are of limited10

robustness here. Nevertheless, a clear feature in the tropics is
the dominance of positiveγNEE-T values.

In extratropical South America and Africa, the seasonal
pattern has similarities with the northern extratropical pattern
shifted by 6 months. The pattern inAustraliais difficult to in-15

terpret, but also not very robust. Larger errors in the southern
extratropics may concievably arise because the much smaller
land area involves a much smaller number of degrees of free-
dom available to satisfy the data constraints (remember that
the oceanic flux cannot be adjusted in this inversion, while20

the pCO2-based ocean prior flux is actually less well con-
strained in the southern extratropics due to the much smaller
density ofpCO2 data).

3.2 How much interannual variability of NEE can be
reproduced by the seasonally resolved linear25

regression to T?

The assumed linear relationship between NEE anomalies and
air temperature anomalies around their respective seasonal
cycles represents a strong abstraction of the complex under-
lying physiological and ecosystem processes. Nevertheless,30

the interannual variations of global total NEE estimated by
the NEE-T inversion is very similar to that estimated by the
standard inversion (Fig. 2, top left). The agreement is con-
firmed by high correlation (Fig. 2, top right). For interpreta-
tion, we note that variations in the global totalCO2 flux are35

very well constrained from atmosphericCO2 observations at
time scales longer than the atmospheric mixing time (about
4 years) (Ballantyne et al., 2012). Variations on the year-
to-year scale are tightly constrained already (Peylin et al.,
2013). We thus use the globalCO2 flux from the standard40

inversion having explicit interannual degrees of freedom as a
benchmark. Since the ocean flux is identical in both standard
and NEE-T inversion runs, the high level of agreement in
Fig. 2 (top) means that the spatially and seasonally resolved
linear NEE-T regression provides already a good approxima-45

tion to global interannual NEE variations.
Almost the same level of agreement is also found for a split

of the global NEE into a northern extratropical and a tropical
plus southern extratropical contribution (Fig. 2, middle and
bottom). Due to the faster atmospheric mixing within the ex-50

tratropical hemispheres compared to the mixing across lati-
tudes, these two NEE contributions are expected to be rela-
tively well constrained by atmospheric data independentlyof

each other. The linear approximation of the NEE-T inversion
is able to distinguish extratropical and tropical behaviour. 55

For a further split into smaller regions, in particular along
longitude, interannual NEE variations from standard and
NEE-T inversions stay similar, but deviations get larger (not
shown). This could indicate that the limits of the linear NEE-
T relationship start to kick in at these scales. However, the60

NEE variations cannot be expected to be well constrained
from the atmospheric data at the regional scale any more.
Thus, the discrepancy can also be caused by the standard in-
version, while the NEE-T inversion could be the more real-
istic one by profiting from the pixel-scale information added 65

through the temperature field, as discussed in Sect. 4.1.

3.3 Are the estimated patterns ofγNEE-T compatible
with ecosystem-scale eddy covariance data?

Fig. 3 compares “interannual climate sensitivities” (ordinate)
calculated by the NEE-T inversion with those calculated in-70

dependently from eddy covariance (EC) data for each month
of the year (abscissa). Each panel represents an EC site,
roughly arranged by ecosystem types and latitudes. The or-
ange line with the surrounding gray band give the sensitiv-
ities γNEE-T from the various NEE-T inversion runs as in 75

Fig. 2 taken at the respective pixels enclosing the EC sites.
The black dots are the sensitivitiesgEC

NEE-T calculated by ex-
plicit linear regression of monthly EC flux records against
the co-measured monthly air temperature (Sect. 2.4).

To allow a fairer comparison between inversion results and80

EC data, additional color dots give sensitivitiesgInv
NEE-T calcu-

lated from the NEE-T inversion results in the same way and
subsampled at the same months as for the EC data (Sect. 2.4).
At most EC sites, the sensitivities calculated by the inversion
itself (γNEE-T, orange lines) or by explicit regression after-85

wards (gInv
NEE-T, orange dots) mostly agree within the confi-

dence interval of the regression. This shows that the compar-
ison of inversion and EC sensitivities is meaningful despite
their differences in meaning and calculation (in particular,
the trend influence (issue (ii) in Sect. 2.4) ongInv

NEE-T turns 90

out to be relatively small because the explicit regressionsare
only done over the limited time period spanned by the EC
records).

Despite their completely independent sources of informa-
tion and their remaining incompatibilities (Sect. 2.4), the sen- 95

sitivities from the EC data and the atmospheric NEE-T in-
version have a similar order of magnitude as well as simi-
lar seasonal patterns for a majority of EC sites (Fig. 3). For
most sites/months, the sensitivities agree within their confi-
dence intervals. The level of agreement roughly depends on100

ecosystem type and latitude:

– Generally good consistency is found in high northern
latitudes (line 1 of panels in Fig. 3) and at evergreen
needleleaf forest (ENF) sites in temperate northern lati-
tudes (line 2 and rightmost part of line 3). 105
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– At mixed forest (MF) and decidious broadleaf forest
(DBF) sites in temperate northern latitudes (left part of
line 3 and line 4), consistency is mostly good as well,
though some months in spring or summer have more
negativegInv

NEE-T sensitivities from EC data (e.g., DE-5

Hai, DK-Sor, BE-Bra). However, the behaviour of DBF
ecosystems is not an important contribution to larger-
scale NEE variability because DBF ecosystems only
cover11% to 25% of the area around the sites shown.

– Generally good consistency within the confidence in-10

terval is also found at sites of various other ecosystem
types in temperate northern latitudes (line 5).

– At the tropical and southern extratropical sites (last
line), the comparison does not yield conclusive informa-
tion, because the confidence intervals of the regression15

are much larger than the seasonal variations of both in-
version and EC results. We can only state that thegInv

NEE-T
andgEC

NEE-T sensitivities do not contradict each other sta-
tistically. Some qualitative consistency is found at the
Australian EBF site, even though the dominant vegeta-20

tion round the site is shrubland (about45%).

Though this comparison partly remains inconclusive (as the
confidence intervals at tropical and southern hemispheric
sites are large, asgInv

NEE-T andgEC
NEE-T are not actually fully

comparable (Sect. 2.4), and as by far not all areas and dom-25

inating ecosystem types are represented), it does support the
results of the NEE-T inversion at least in the northern extrat-
ropics.

4 Discussion

4.1 NEE variations in the northern extratropics30

Given that we found robust seasonal patterns ofγNEE-T which
can be interpreted in terms of the fundamental physiolog-
ical processes (Sect. 3.1), that these patterns are compati-
ble with inferrences from independent ecosystem-scale eddy
covariance (EC) measurements (Sect. 3.3), and that the cor-35

responding interannual NEE variations are compatible with
the atmospheric constraint on the most reliable large scales
(Sect. 3.2), we conclude that the linear dependence of NEE
anomalies on air temperature anomalies (as climate proxy)
represents a meaningful approximative empirical descrip-40

tion of the northern extratropical biosphere. The compati-
bility of the NEE-T relationships inferred from large-scale
atmospheric constraints and ecosystem-scale EC constraints
of dominating vegetation types suggests that the regional or
continental NEE variations are to a substantial degree due to45

local variations linked to local climate anomalies; otherwise
the NEE-T inversion could not have worked. Given that, we
expect the NEE-T inversion to provide more realistic interan-
nual NEE variations on regional scales than the standard in-
version which smoothly interpolates NEE on scales smaller50

than station-to-station differences (compare last paragraph of
Sect. 3.2).

Note that, as EC data measure fluxes on small spatial
scales (a few 100 meters), the EC flux variations themselves
cannot directly be compared to the inversion results rep-55

resenting NEE over (sub)continental scales and integrating
over many ecosystem types and climate regimes. In con-
trast to the fluxes, however, derived relationships (such as
the NEE-T relationships considered here) may well be able
to bridge this scale gap. 60

Besides the interannual variations, the NEE-T inversion
also reproduces the small negative trend in NEE through its
residual termfadj

NEE,Trendin Eq. (2) (Fig. 2). Likewise, it repro-
duces the northern extratropical increase in seasonal cycle
amplitude through its residual termfadj

NEE,SCTrend(not shown). 65

4.2 NEE variations in the tropics

In contrast to the northern extratropics, we did not find con-
clusive seasonal patterns ofγNEE-T in the tropics (Sect. 3.1).
However, despite the substantial uncertainty range ofγNEE-T
(Fig. 1), the sensitivity cases reproduce almost identicalin- 70

terannual NEE variations in the tropics (see the narrow gray
band round the NEE-T estimate in Fig. 2, bottom left).
This underlines that pan-tropical NEE variations are actually
well constrained from the atmospheric data, while the sea-
sonal differences inγNEE-T arise to compensate for the set-75

up differences among the sensitivity cases. As shown below
(Sect. 4.3), all the seasonally differentγNEE-T estimates cor-
respond to a similar effective sensitivity (having a positive
value) on yearly time scales. Due to this, the NEE-T inver-
sion is found to possess predictive skill on the time scale of80

El Niño / Southern Oscillation (Rödenbeck et al., 2018).
The positive effectiveγNEE-T in the tropics (Sect. 3.1)

is consistent with the strong positive correlation of atmo-
sphericCO2 growth with large-scale tropical annual tem-
perature (Wang et al., 2013). This is unlikely to arise from85

a direct temperature effect, however, because process studies
(e.g., Meir et al., 2008; Bonal et al., 2008; Alden et al., 2016)
point to water availability, rather than temperature, as the
dominant control on the ecosystem scale. This is also con-
firmed by the large confidence intervals of the NEE-T regres-90

sion of the EC data from the only tropical site available here
(GF-Guy, leftmost on last line of Fig. 3). A strong correlation
to temperature can still arise statistically due to the strong
link of temperature and precipitation anomalies over larger
spatial scales (Berg et al., 2014). Moreover, vapour pressure 95

deficit (VPD) controlling photosynthesis responds to tem-
perature variations particularly strongly in the warm tropical
climate due to the non-linearity of the VPD(T) dependence
(Monteith and Unsworth, 1990). Further, T is spatially co-
herent over much larger areas in the tropics while variabil-100

ity in water availability is local and averges out over larger
spatial scales (Jung et al., 2017). Nevertheless, even a direct
temperature effect in the tropics was found by Clark et al.
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(2013) at least for a component flux of NEE (wood produc-
tion) in 12-year plot data.

4.3 An extended benchmark for process models

Empirical data-based relationships between interannual NEE
variations and air temperature variations have been proposed5

in the literature as benchmarks to evaluate biogeochemical
process models. For example, Cox et al. (2013) calculated an
effective global climate sensitivity of5.1±0.9PgCyr−1K−1

over 1960-2010, regressing the annualCO2 growth rate
observed at the station Mauna Loa (Hawaii) (taken as a10

proxy for the global totalCO2 flux) against 30◦ N–30◦ S
(both land and ocean) averaged air temperature (after de-
trending both time series by subtracting an 11-year run-
ning mean). In a similar way (using the average atmo-
spheric growth rate from a varying set of background sites,15

a slightly different time series treatment, and 24◦ N–24◦ S
land temperature), Wang et al. (2013) obtained a value of
3.5± 0.6PgCyr−1K−1 over 1959-2011. Wang et al. (2014)
regressed the mean Mauna Loa and South PoleCO2 growth
rates against 23◦ N–23◦ S vegetated land temperature over20

moving 20-year windows and reported effective global cli-
mate sensitivities between3.4± 0.4PgCyr−1K−1 during
1960-1979 and5.4± 0.4PgCyr−1K−1 during 1992-2011.

The inversion results presented here allow to extend these
benchmarks in two ways. As a first extension, we can25

evaluate to which extent the interannual variations in lo-
cal or averaged atmosphericCO2 growth rates are indeed
equivalent to the interannual variations in the global total
CO2 flux (as implicitly assumed in the above-mentioned
studies), and to which extent the global totalCO2 flux is30

indeed representative for global terrestrial NEE or, even
more specifically, for tropical NEE. This can be evaluated
here because all these time series (spatially explicitCO2

fluxes with all their contributions, as well as the corre-
sponding atmosphericCO2 variations at the measurement35

stations) are available within the inversion calculation.To
ensure a mutually consistent treatment of these time se-
ries, we used running yearly averages (January-through-
December, February-through-next-January, etc.) of the flux
time series and running yearly differences (next-January-40

minus-January, next-February-minus-February, etc., multi-
plied by 2.12PgCppm−1 (Ballantyne et al., 2012)) of the
atmosphericCO2 time series, respectively. All these interan-
nual time series were then regressed over 1985-2016 against
annual tropical land temperature (25◦ N–25◦ S) derived from45

the same temperature field without decadal variations as used
in the NEE-T inversion. The resulting effective climate sen-
sitivities are shown in Fig. 4. The sensitivities of the total
CO2 flux (solid bars in the middle) calculated from the stan-
dard inversion (black) or from the NEE-T inversion (orange)50

are similar to each other, and fall in between the values by
Cox et al. (2013) and Wang et al. (2013). Part of the discrep-
ancies between these results can be attributed to the different

time periods and the different time series treatments (in par-
ticular, to the extent to which decadal variability has been55

removed). Fig. 4, however, reveals another reason of the dis-
crepancies: The sensitivity of the Mauna Loa growth rate
(middle one of the hashed blue bars) is larger than that of the
global flux (solid bars). This cannot be due to a deficiency
of the inversions to fit Mauna Loa’s variability, because the60

modelled Mauna Loa sensitivities (hashed bars next to the
middle blue bar) agree well with the observed one. Thus, a
sensitivity calculated from the Mauna Loa growth rate (as in
Cox et al., 2013) somewhat overestimates the sensitivity of
the global flux. The Mauna Loa sensitivity is still much closer 65

to that of the globalCO2 flux than sensitivities calculated
from most other stations: Southern extratropical stationslike
South Pole (or from the Mauna Loa and South Pole mean as
in Wang et al., 2014) lead to a substantial underestimation (it
is unclear why the sensitivity reported by Wang et al. (2014)70

for the recent 1992-2011 period is nevertheless even higher
than our Mauna Loa value), while northern extratropical sta-
tions like Point Barrow lead to an even stronger overestima-
tion than Mauna Loa. This suggests that using a varying mix-
ture of stations (as in Wang et al., 2013) can induce further75

errors, in particular when possible changes in sensitivityare
considered. We note that the atmospheric inversions bene-
fit from using multiple station records, because the transport
model links the atmosphericCO2 signals to their different
areas of origin, rather than the instantaneous link of the at- 80

mospheric signals to the global flux as in the direct use of
station records.

Care is also needed in the interpretation of the estimated
effective sensitivities: The sensitivity of the totalCO2 flux
(solid bars) underestimates that of global NEE only (hori-85

zontally hashed bars), because the ocean flux is substantially
anti-correlated to NEE on the interannual time scale. The
sensitivity of tropical-only NEE (vertically hashed bars)is
smaller than that of global NEE, though the reduction is less
than according to the ratio of land area, confirming the dom-90

inance of tropical NEE variations.
As a second extension of process model benchmarking,

the data-based estimates of the spatially and seasonally re-
solvedγNEE-T from the NEE-T inversion can directly be em-
ployed as target values, by regressing the NEE simulated by95

the terrestrial biosphere or Earth system model against the
model temperature for individual small regions and seasons
across the years 1985-2016 and comparing these model-
derived local and season-specific sensitivities to the data-
based values presented here (using the ensemble of sensi-100

tivity cases as a measure of uncertainty inγNEE-T). Impor-
tantly, before regressing, the model NEE and temperature
fields need to be deseasonalized, detrended, and filtered in
the same way as done for the observed temperature in the
NEE-T inversion (Sect. 2.2), because the numericalγNEE-T 105

values are somewhat specific to the chosen filtering, in par-
ticular to the exact way to remove decadal variations (as is
the case also for the effective global climate sensitivity tar-
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gets by Cox et al. (2013), Wang et al. (2013), and Wang et al.
(2014)). For the northern extratropics, whereγNEE-T is quite
robustly constrained and shows distinct spatial and seasonal
patterns (Sect. 3.1), this offers a much more detailed bench-
mark of the process representation in the models than the ex-5

isting single-valued effective climate sensitivity of theglobal
CO2 growth rate. For the tropics, unfortunately,γNEE-T is
not constrained well enough to do that, but due to the fact
that pan-tropical NEE variations are nevertheless quite ro-
bust (Sect. 4.2), the effective climate sensitivity of tropical10

NEE from Fig. 4 (4.2PgCyr−1K−1 with a range across the
sensitivity cases of3.8 . . .4.4PgCyr−1K−1) may be used as
a specifically tropical target instead.

4.4 Could the results be improved by using a
multivariate regression against further climatic15

variables?

We tested the algorithm also with precipitation (P) or solar
radiation as explanatory variables, individually or in multi-
variate combinations (not shown). While, for example, an
NEE-P inversion had almost as good an explanatory power as20

the NEE-T inversion, a multivariate NEE-T-P inversion did
not explain much more NEE variations than the univariate
NEE-T inversion did already. This confirms the strong back-
ground correlations of air temperature with the other climate
variables on interannual time scales. It also means that a mul-25

tivariate regression would –despite a mathematically unique
partitioning into contributions of the individual explanatory
variables– likely not yield an uniquely interpretable attribu-
tion of NEE variability to different causes.

Given that, a univariate NEE-T inversion seems advan-30

tageous because T likely has data sets best constrained by
observations. As a regression is confined to the variability
present in the explanatory variables, using less well observed
or even modelled variables (as would be the case for precip-
itation or cloud cover) involves the risk of contamination.35

5 Conclusions and outlook

The response of Net Ecosystem Exchange (NEE) to climate
anomalies has been estimated by linear regression against
anomalies in air temperature (T) within an atmospheric inver-
sion based on a set of long-term atmosphericCO2 observa-40

tions. The resulting spatially and seasonally resolved regres-
sion coefficientsγNEE-T are interpreted as a “interannual cli-
mate sensitivity”, comprising the direct temperature response
as well as responses to covarying anomalies in other environ-
mental conditions (e.g., moisture, radiation) (Sect. 4.4).45

– The inferred “interannual climate sensitivity”γNEE-T
shows distinct and interpretable patterns along latitude
and season. In particular, we find negativeγNEE-T dur-
ing spring and autumn (consistent with a temperature-
limited photosynthesis) and positiveγNEE-T during sum-50

mer (consistent with a water-limited photosynthesis) in
all northern extratropical ecosystems (Sect. 3.1).

– Despite the complexity of the underlying plant and
ecosystem processes, the spatially and seasonally re-
solved linear regression of NEE against temperature55

anomalies (taken as climate proxy), fitted to atmo-
sphericCO2 data, can reproduce a large fraction of
NEE’s interannual variations, at least in the northern ex-
tratropics. This conclusion is based on the agreement of
the inferred NEE variations with a time-explicit atmo- 60

spheric inversion at well-constraint large spatial scales
(Sect. 3.2), and the consistency ofγNEE-T with inde-
pendent calculations from eddy covariance data at small
spatial scales (Sect. 3.3). Among the reasons for this po-
tentially surprising finding is that the regression is only65

applied to the interannual anomalies of NEE around its
mean seasonal cycle (rather than to the full range of sea-
sonal temperature variations), and that the different be-
haviours in different seasons have been accounted for.

The results of the NEE-T inversion can be applied to70

benchmark process models of the land biosphere or Earth
system models: The spatially and seasonally resolved inter-
annual climate sensitivityγNEE-T can be calculated from the
model output (using detrended NEE over the period 1985-
2016 for consistency) and compared to the values presented75

here; this allows a more detailed benchmark for the north-
ern extratropical ecosystem processes than existing effective
global sensitivities. Further, as its adjustable degrees of free-
dom are identically applied every year, the regression offers a
way to bridge temporal gaps in the atmosphericCO2 records; 80

it transfers information from the recent data-rich years into
the more data-sparse past. Similarly, the NEE-T regression
allows to forecast theCO2 flux for some years, if forecasted
air temperatures (and extrapolations of fossil fuel emissions
and the ocean exchange) are available. As another applica-85

tion, the regression may help to uncover smaller decadal
trends in the atmosphericCO2 signal by separating them
from the larger interannual responses of NEE. Extending the
calculation to the full period of atmosphericCO2 measure-
ments (since the late 1950ies, see Rödenbeck et al. (2018)),90

we can investigate possible decadal changes in the interan-
nual climate sensitivityγNEE-T.

The inversion results are available for use in collaborative
projects from the Jena CarboScope website
http://www.BGC-Jena.mpg.de/CarboScope/. 95

Appendix A: More specification details of the inversion
algorithm

This appendix first reviews the base set-up and implemen-
tation of the Jena CarboScope atmosphericCO2 inversion
in its current version v4.1, from which the particular runs100

used in this study are derived (Sect. A1). Sect. A2 gives

http://www.BGC-Jena.mpg.de/CarboScope/
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differences of the run s85oc_v4.1s used as standard inver-
sion here. The further differences of the NEE-T inversion
s85ocNEET_v4.1s have already been described in Sect. 2.2.

For more details, formulas, or deeper explanations, the
reader is referred to the technical report Rödenbeck (2005).5

A1 The Jena CarboScope atmosphericCO2 inversion
v4.1

The Jena CarboScopeCO2 inversion is a linear Bayesian at-
mospheric inversion, estimating land-atmosphere and ocean-
atmosphereCO2 fluxes from long-term atmosphericCO210

mole fraction measurements (Rödenbeck, 2005). As the Jena
CarboScope is particularly focused on interannual variations,
flux estimates are only used over time periods homoge-
neously covered by all data records, to avoid spurious jumps
(or changes in the amplitude of variations) that can result15

from changes of the station set over time. To deal with the
fact that many of today’s measurement stations came into op-
eration at various points in time during the last decades, the
Jena CarboScope provides several runs, either over longer
periods (the longest one currently being 1976-2016) with20

only a few stations, or runs with more stations (currently up
to 59) but correspondingly shorter periods. Despite these dif-
ferent “periods of validity”, however, all base runs are car-
ried out over 1955-2017, which includes time for spin-up
and spin-down to minimize “edge effects”. The Jena Car-25

boScope inversion is regularly updated, mostly yearly to in-
clude the latest year of measurements. These updates may
also involve some changes in the station sets according to
data availability, as well as changes in the inversion set-up
and implementation details. All results are available for use30

in collaborative projects from the Jena CarboScope website
http://www.BGC-Jena.mpg.de/CarboScope/.

The following provides some specification details as of the
current version v4.1 of the CarboScope inversion, also point-
ing out changes with respect to the previous version v3.8.35

A1.1 Grid resolution

TheCO2 fluxes have a daily time resolution and are repre-
sented on the grid of the transport model (≈ 4◦ × 5◦, see
below).

A1.2 Prior information40

Bayesian prior information is used to regularize the other-
wise underdetermined estimation. However, none of the ba-
sic CarboScope inversion runs involves any information from
terrestrial and oceanic carbon cycle models, in order to trans-
parently base the results on atmospheric information and thus45

to allow independent comparison to process models or to em-
pirical models like the NEE-T inversion.

The a-priori probability distribution of the fluxes is not di-
rectly implemented through a covariance matrix, but indi-
rectly through a statistical “flux model” that expresses the50

spatio-temporalCO2 flux field as a linear function of a vec-
tor of independent adjustable dimensionless parameters with
zero mean and unit variance. This makes it easy to specify,
e.g., time-scale dependent statistical properties, or to simul-
taneously specify temporal and spatial a-priori correlations. 55

The prior flux of all land NEE componentsis zero. This
means that the “error” of this prior is identical with the
landCO2 flux itself, i.e., the a-priori probability density de-
scribes expected statistical properties of NEE. Its a-priori un-
certainties are proportional to the fraction of vegetated land 60

area in each pixel, taken as the sum of ’crop’, ’dbf’, ’dnf’,
’ebf’, ’enf’, ’grass’, and ’shrub’ fractions from SYNMAP
(Jung et al., 2006). The results of the v4.1 inversions on
larger spatial scales are still quite similar to version v3.8
(which still used spatial patterns of a-priori uncertaintyde- 65

rived from model output), confirming that the variability was
not driven by these spatial patterns. The largest difference of
v4.1 results to previous versions is a smaller amplitude of
interannual variations in the tropical land fluxes.

NEE adjustments are split into the temporal mean, a70

large-scale mean seasonality, and (interannual) variations.
The large-scale mean seasonality has a-priori correlations
of about3825km longitudinally,1275km latitudinally, and
about 4 weeks in time. The correlation lengths of the other
two flux contributions are about1600km longitudinally and 75

about 800km latitudinally; and in the “variations” part 2
weeks in time. For practical reasons, the temporal variations
in all adjustable terms are implemented as Fourier series.
The temporal correlations can then simply be implemented
by downweighting the a-priori uncertainties of the Fourier80

modes with higher frequencies according to the spectrum
corresponding to the desired autocorrelation function. The
split into long-term, seasonal, and non-seasonal contributions
can be implemented just by only activating the correspond-
ing part of the Fourier series. Note that not only the “mean85

seasonality” part but also the “variations” part contains sea-
sonal Fourier terms, to allow seasonal variability also to be
adjusted on the smaller spatial scales.

Ocean fluxesare implemented analoguosly to land NEE,
with a-priori uncertainties proportional to the ocean frac- 90

tion, and slightly longer a-priori spatial correlations (about
1912km longitudinally and about956km latitudinally). In
contrast to land NEE, however, the mean spatial flux pattern
and its mean seasonal cycle are not adjusted, but prescribed
to the mean seasonal cycle of the flux estimates oc_v1.4 (up-95

date of Rödenbeck et al., 2014) based on an interpolation
of pCO2 data from the SOCATv4 data base (Bakker et al.,
2016). Only the (interannual) ocean flux variability can be
adjusted by the inversion in the basic v4.1 runs (see the dif-
ference in the present “standard inverion” in Sect. A2 below). 100

Thefossil fuel emissionprior is taken from monthly values
of CDIAC (Andres et al., 2016). The years after 2013 have
been extrapolated by global scaling factors based on the ra-
tios in the emission totals from Le Quéré et al. (2016, update

http://www.BGC-Jena.mpg.de/CarboScope/
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for year 2016). There are no inverse adjustments to fossil fuel
emissions.

A1.3 Data treatment

The CarboScope inversion uses the individual data points in
the atmosphericCO2 records (flask pair values or hourly5

averages, respectively). In order to avoid that the in-situ
records with hourly data dominate the result, a “data density
weighting” has been implemented. It artificially increasesthe
model-data mismatch uncertainty of data points from dense
records in such a way that weekly periods of data always10

have the same impact on the results.
The individualCO2 data points arescreened for outliers

by a “2σ criterion” (newly introduced in CarboScope version
v4.1): A pre-run of the inversion is done, using the base Car-
boScope set-up and a large set of stations potentially used in15

later runs. Then, theCO2 mole fraction residuals between a
forward run from the posterior fluxes and the data are consid-
ered. For each station, data points are removed if their resid-
ual is larger than 2 standard deviations across all residuals of
that station. This procedure is similar to the outlier flagging20

done routinely by many atmospheric data providers. By do-
ing it within the inversion, the deficiencies of the transport
model to reproduce small-scale circulation are taken into ac-
count to some extent. The procedure can also be understood
as an approximate way to implement a non-Gaussian prob-25

ability density for the model-data mismatch: As residuals
larger than2σ are very unlikely in the Gaussian distribution,
an inversion assuming Gaussian model-data mismatches will
respond strongly to “outliers” to reduce these mismatches;in
contrast, the “2σ screening” effectively assigns an infinitely30

large uncertainty to these data points. The results mostly stay
similar after this screening, but some flux anomalies get re-
moved. In most cases, these anomalies were unrobust, in that
they were dampened much faster than other anomalies when
increasing the strength of the prior constraint (parameterµ35

in Rödenbeck (2005)). For example, many of the spikes in
theCO2 record of station KEY and their effect on theCO2

flux estimates for northern temperate America are removed
by the screening. We interpret these spikes as influence of
local fossil fuel emissions, which would be mistaken by the40

inverison as regional signals. This interpretation is supported
by the fact that more and more of these spikes occur in the
more recent decades. The introduction of the2σ screening
made it possible to re-add further stations with pronounced
spikes, such as station TAP.45

A1.4 Further implementation details

Atmospheric tracer transport in the global Carbo-
Scope inversions is simulated by the TM3 model
(Heimann and Körner, 2003) (resolution≈ 4◦ × 5◦ ×

19 layers) driven by meteorological fields from the NCEP50

reanalysis (Kalnay et al., 1996). NCEP is used since v4.1

again (rather than ERA-Interim) as only NCEP is currently
available before 1980.

The cost function minimizationuses the Conjugate Gra-
dient algorithm, enhanced by a re-orthonormalization after 55

each iteration to avoid the usual degradation of the conver-
gence rate. The re-orthonormalization requires to store the
state vectors and gradients of all iterations performed, which
however opens the additional possibility to re-calculate the
solution also for tighter prior constraints without the need 60

to run the iterative minimization again. It also accumulates
information about the a-posteriori covariance matrix, though
the actual calculation of matrix elements generally needs fur-
ther dedicated iterations.

A2 The standard inversion s85oc_v4.1s 65

In comparison to the basic v4.1 runs (Sect. A1), the particular
run s85oc_v4.1s involves 3 specifics or differences, respec-
tively:

The station set s85v21 is used, comprising the 23 stations
marked with * in Table 1. 70

The calculation is done over the shorter period 1980-2017
(indicated by the appended “s” in the version tag).

The entireOcean flux(including interannual variations)
is fixed to the CarboScope estimates oc_v1.5 (update of
Rödenbeck et al., 2014) based on an interpolation ofpCO2 75

data from the SOCATv5 data base (Bakker et al., 2016).
Fixed ocean fluxes are used here because atmospheric inver-
sions are known to have limited capability to correctly assign
signals to land or ocean (Peylin et al., 2013). While this error
is relatively small for the land fluxes, it means a large rel-80

ative error for the ocean fluxes, because the ocean variabil-
ity is much smaller than the land variability. ThepCO2 data
offer a much closer constraint on oceanCO2 fluxes in well-
observed regions (northern extratropics, tropical Pacific), and
constrain at least some features (seasonality, decadal trends) 85

in most ocean areas. (For the NEE-T inversion, fixed ocean
fluxes are particularly beneficial because they avoid the need
of time-dependent degrees of freedom.)
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Table 1. AtmosphericCO2 measurement stations used in the NEE-T inversion. The smaller set of stations used in the standard inversion is labelled by an as-
terisk. The 8 parts individually omitted in sensitivity tests are separated by horizontal lines. Institutions are referenced by: AEMET: Gomez-Pelaez and Ramos (2011);
BGC: Thompson et al. (2009); CSIRO: Francey et al. (2003); EC: Worthy (2003); FMI: Kilkki et al. (2015); HMS: Haszpra et al. (2001); IAFMS: Colombo and Santaguida
(1994); JMA: Watanabe et al. (2000); LSCE: Monfray et al. (1996); NIES: Tohjima etal. (2008); NIPR: Morimoto et al. (2003); NOAA: Conway et al. (1994); Saitama:
http://www.pref.saitama.lg.jp/b0508/cess-english/index.html;SAWS: Labuschagne et al. (2003); SIO: Keeling et al. (2005), Manning and Keeling (2006); UBA: Levin et al. (1995).
Appended letters give record type: (f): flask data, mostly weekly; (h): in-situ data, mostly hourly; (d): in-situ data, day-time only; (n): in-situ data, night-time only.

Code Latitude Longitude Height Institution
(◦) (◦) (m a.s.l.)

*CMN 44.18 10.70 2165 IAFMS(n)
*LJO 32.87 -117.25 15 SIO(f)
*ASC -7.97 -14.40 88 NOAA(f)
*BHD -41.40 174.90 85 SIO(f)
*BRW 71.32 -156.61 13 NOAA(h,f), SIO(f)
*CHR 1.70 -157.16 3 NOAA(f)
*MID 28.21 -177.37 10 NOAA(f)
*MLO 19.53 -155.57 3417 NOAA(h,f), SIO(f)
*SPO -89.97 -24.80 2816 NOAA(h,f), SIO(f)
*SYO -69.00 39.58 29 NIPR(h)
*KER -29.03 -177.15 2 SIO(f)

ESP 49.38 -126.54 27 CSIRO(f), EC(f)
MQA -54.48 158.97 13 CSIRO(f)
RYO 39.03 141.83 230 JMA(d)
MNM 24.30 153.97 8 JMA(d)
MHD 53.32 -9.81 18 NOAA(f)
RPB 13.16 -59.43 19 NOAA(f)
UTA 39.90 -113.72 1332 NOAA(f)
HUN 46.95 16.64 353 HMI(d), NOAA(f)

AZR 38.76 -27.23 23 NOAA(f)
HBA -75.58 -26.61 24 NOAA(f)
LEF 45.93 -90.26 791 NOAA(f)
SEY -4.68 55.53 6 NOAA(f)
CPT -34.35 18.48 230 SAWS(d)
PAL 67.96 24.12 565 FMI(d), NOAA(f)
WLG 36.28 100.91 3852 NOAA(f)
HAT 24.05 123.80 10 NIES(f)
SBL 43.93 -60.01 5 EC(d,f)
CRZ -46.43 51.85 202 NOAA(f)
SGP 36.71 -97.49 348 NOAA(f)
SUM 72.60 -38.42 3214 NOAA(f)

WES 54.93 8.32 12 UBA(d)
AVI 17.75 -64.75 5 NOAA(f)
EIC -27.15 -109.44 63 NOAA(f)
ICE 63.40 -20.29 124 NOAA(f)
TIK 71.60 128.89 29 NOAA(f)
CVR 16.86 -24.87 10 BGC(f)
ZOT301 60.80 89.35 301 a.gr. BGC(d,f)
POCN30 29.48 -134.24 20 NOAA(f)
POCN20 19.69 -132.68 20 NOAA(f)
POCN10 9.68 -140.37 20 NOAA(f)
POC000 0.60 -150.35 20 NOAA(f)
POCS10 -10.02 -3.61 20 NOAA(f)
POCS20 -20.28 0.08 20 NOAA(f)
POCS30 -29.68 -0.04 20 NOAA(f)

Code Latitude Longitude Height Institution
(◦) (◦) (m a.s.l.)

*ALT 82.47 -62.42 202 CSIRO(f), EC(f),
NOAA(f)

*CBA 55.21 -162.71 41 NOAA(f), SIO(f)
*CGO -40.67 144.70 130 CSIRO(f), NOAA(f)
*GMI 13.39 144.66 6 NOAA(f)
*IZO 28.30 -16.50 2367 AEMET(h)
*KEY 25.67 -80.18 4 NOAA(f)
*KUM 19.51 -154.82 22 NOAA(f), SIO(f)
*NWR 40.04 -105.60 3526 NOAA(f)
*PSA -64.92 -64.00 12 NOAA(f), SIO(f)
*SHM 52.72 174.11 27 NOAA(f)
*SMO -14.24 -170.57 51 NOAA(h,f), SIO(f)
*AMS -37.80 77.54 55 LSCE(d)

CFA -19.28 147.06 5 CSIRO(f)
MAA -67.62 62.87 42 CSIRO(f)
SIS 60.18 -1.26 31 BGC(f), CSIRO(f)
SCH 47.92 7.92 1205 UBA(n)
BMW 32.26 -64.88 46 NOAA(f)
TAP 36.72 126.12 21 NOAA(f)
UUM 44.45 111.10 1012 NOAA(f)

ASK 23.26 5.63 2715 NOAA(f)
TDF -54.86 -68.40 20 NOAA(f)
WIS 30.41 34.92 319 NOAA(f)
ZEP 78.91 11.89 479 NOAA(f)
FSD 49.88 -81.57 250 EC(d)
YON 24.47 123.02 30 JMA(d)
COI 43.15 145.50 45 NIES(f)
CYA -66.28 110.52 55 CSIRO(f)
THD 41.04 -124.15 112 NOAA(f)

CIB 41.81 -4.93 848 NOAA(f)
KZD 44.26 76.22 506 NOAA(f)
LLN 23.47 120.87 2867 NOAA(f)
NAT -5.66 -35.22 53 NOAA(f)
NMB -23.57 15.02 461 NOAA(f)
STM 66.00 2.00 3 NOAA(f)
STP 50.00 145.00 0 SIO(f)
BIK300 53.22 23.02 300 a.gr. BGC(f)
DDR 36.00 139.18 840 Saitama(n)
KEF+RYF var. var. 0 JMA(f)
POCN25 25.20 -133.99 20 NOAA(f)
POCN15 15.07 -135.22 20 NOAA(f)
POCN05 4.80 -145.11 20 NOAA(f)
POCS05 -4.66 -4.24 20 NOAA(f)
POCS15 -14.72 -0.15 20 NOAA(f)
POCS25 -25.01 -0.17 20 NOAA(f)

http://www.pref.saitama.lg.jp/b0508/cess-english/index.html
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Table 2.Eddy covariance sites used for comparison. For vegetation type abbreviations, see Fig. 3 (caption)

FLUXNET-ID Data period Latitude (◦) Longitude (◦) Vegetation type

AU-How 2001–2014 -12.4943 131.1523 WSA
AU-Tum 2001–2014 -35.6566 148.1517 EBF
BE-Bra 1996–2014 51.3092 4.5206 MF
BE-Vie 1996–2014 50.3051 5.9981 MF
CA-Man 1994–2008 55.8796 -98.4808 ENF
CH-Dav 1997–2014 46.8153 9.8559 ENF
DE-Hai 2000–2012 51.0792 10.4530 DBF
DE-Tha 1996–2014 50.9624 13.5652 ENF
DK-Sor 1996–2014 55.4859 11.6446 DBF
DK-ZaH 2000–2014 74.4732 -20.5503 GRA
FI-Hyy 1996–2014 61.8474 24.2948 ENF
FI-Sod 2001–2014 67.3619 26.6378 ENF
FR-LBr 1996–2008 44.7171 -0.7693 ENF
FR-Pue 2000–2014 43.7414 3.5958 EBF
GF-Guy 2004–2014 5.2788 -52.9249 EBF
IT-Col 1996–2014 41.8494 13.5881 DBF
IT-Cpz 1997–2009 41.7052 12.3761 EBF
IT-Lav 2003–2014 45.9562 11.2813 ENF
IT-Ren 1998–2013 46.5869 11.4337 ENF
IT-SRo 1999–2012 43.7279 10.2844 ENF
NL-Loo 1996–2013 52.1666 5.7436 ENF
RU-Cok 2003–2014 70.8291 147.4943 OSH
RU-Fyo 1998–2014 56.4615 32.9221 ENF
US-Ha1 1991–2012 42.5378 -72.1715 DBF
US-Los 2000–2014 46.0827 -89.9792 WET
US-Me2 2002–2014 44.4523 -121.5574 ENF
US-MMS 1999–2014 39.3232 -86.4131 DBF
US-NR1 1998–2014 40.0329 -105.5464 ENF
US-PFa 1995–2014 45.9459 -90.2723 MF
US-Syv 2001–2014 46.2420 -89.3477 MF
US-Ton 2001–2014 38.4316 -120.9660 WSA
US-UMB 2000–2014 45.5598 -84.7138 DBF
US-Var 2000–2014 38.4133 -120.9507 GRA
US-WCr 1999–2014 45.8059 -90.0799 DBF
ZA-Kru 2000–2010 -25.0197 31.4969 SAV
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Figure 1. “Interannual climate sensitivity”γNEE-T in (gC/m−2/yr)/K shown as Hovmöller diagrams: Longitudinal averages ofγNEE-T are
plotted as color over latitude (vertical) and month of the year (horizontal). The stippling indicates robustness: crosses mark values with
absolute deviations≤ 40(gC/m−2/yr)/K (1 color level) of all sensitivity cases from the base case.
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Figure 2. Left: Interannual anomalies of NEE integrated over all land (top), northern extratropical land (middle), and tropical plus southern
land (bottom), as estimated by the standard inversion (Sect. 2.1, black) and different runs of the NEE-T inversion (Sect. 2.2, orange). The
gray band comprises the results of the sensitivity cases. Right: Taylor diagrams quantifying the agreement between the NEE-T inversions
and the standard inversion. Due to the construction of the Taylor diagram (Taylor, 2001), the horizontal position of a point gives the relative
fraction of the reference signal present in the test time series, while the vertical distance of this point from the horizontal axis gives the
relative amplitude (temporal standard deviation) of any additional signalcomponents uncorrelated to the reference signal.
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Figure 3. Comparison between the “interannual climate sensitivities” calculated fromthe inversion and from eddy covariance (EC) data,
for various sites with longer EC records. Black dots give the sensitivitiesg

EC
NEE-T calculated by linear regression of monthly ECCO2 flux

data (FLUXNET2015 data set) against monthly air temperature co-measured at the flux towers (months with data in only 6 years or less are
discarded). The error bars around the dots comprise the confidenceintervals of the regression slopes (at the90% confidence level); if the
confidence interval is above 300(gC/m−2/yr)/K (i.e., larger than the typical seasonal range), the corresponding dot is hollow. Orange and
gray lines give the sensitivitiesγNEE-T taken directly from various NEE-T inversions (base and sensitivity cases as in Fig. 2) at the respective
pixels enclosing the EC site locations. To allow a more direct comparison between NEE-T inversion results and EC data, sensitivities for the
inversion (base case) have also been calculated by linear regression from the total monthly-mean non-fossilCO2 flux and the temperature
field employed in the inversions, in the same way and subsampled at the same months as for the EC data; theseg

Inv
NEE-T are shown as orange

dots. Panels are roughly ordered by latitude and land cover type (DBF: Decidious broadleaf forest, EBF: Evergreen broadleaf forest, ENF:
Evergreen needleleaf forest, GRA: Grassland, MF: Mixed forest, OSH: Open Shrubland, SAV: Savanna, WET: Permanent wetland, WSA:
Woody Savanna). See Table 2 for EC site locations.
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Figure 4. Effective large-scale interannual climate sensitivities
(PgCyr−1K−1) calculated from the standard inversion (black),
from the NEE-T inversion (orange), or from observed atmospheric
CO2 (blue). The sensitivities refers to interannual variations in the
CO2 growth rate at 3 selected atmospheric stations (Point Barrow,
Alaska (BRW), Mauna Loa, Hawaii (MLO) and South Pole (SPO),
diagonally hashed), in the global totalCO2 exchange (solid bars), in
the global terrestrial NEE (horizontally hashed), or in tropical NEE
(25◦ N–90◦ S, vertically hashed), all regressed against interannual
variations in air temperature averaged across tropical land (25◦ N–
25◦ S) over 1985-2016. The red line surrounded by gray shading de-
notes the result5.1± 0.9PgCyr−1K−1 by Cox et al. (2013), even
though calculated in a slightly different way.


