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Abstract. The response of the terrestrial Net Ecosystem Ex-1  Introduction

change (NEE) ofZO to climate variations and trends may

crucially determine the future climate trajectory. Heredire ~ About a quarter of the carbon dioxid€(Q-) emitted to the
rectly quantify this response on interannual time scalgs, b atmosphere by human fossil fuel burning and cement mas-
building a linear regression of interannual NEE anomaliesufacturing is currently taken up by the terrestrial biosghe
against observed air temperature anomalies into an atmaile Quéré et al., 2016), thereby slowing down the rise of at-
spheric inverse calculation based on long-term atmospherimosphericCO- levels and thus mitigating climate change.
CO, observations. This allows us to estimate the sensitiv-The magnitude of this terrestrial Net Ecosystem Exchange
ity of NEE to interannual variations in temperature (seen agNEE) of CO,, however, is subject to substantial variabil-ss
climate proxy) resolved in space and with season. As thisty and trends, to a large part as a response to variations and
sensitivity comprises both direct temperature effectsefrd trends in climate. Due to this feedback loop, the response of
fects of other climate variables co-varying with temper@tu  NEE to climate may crucially determine the future climate
we interpret it as “interannual climate sensitivity”. Wedin trajectory (Friedlingstein et al., 2001), yet present-day-
distinct seasonal patterns of this sensitivity in the nemh pled climate—carbon cycle models strongly disagree on its
extratropics, that are consistent with the expected s@hson strength (Friedlingstein et al., 2014).

responses of photosynthesis, respiration, and fire. Within To reduce these uncertainties, observations of present-
certainties, these sensitivity patterns are consistetft i day year-to-year variations have been used as a constraint
dependent inferrences from eddy covariance data. On largen the unobservable longer-term changes (Cox et al., 2013;
spatial scales, northern extratropical as well as tropitaf- Mystakidis et al., 2017), using the finding that these mods
annual NEE variations inferred from the NEE-T regressionels show a close link between the climate—carbon cycle re-
are very similar to the estimates of an atmospheric invarsio sponses at year-to-year and centennial time scales. It can-
with explicit interannual degrees of freedom. The results 0 not be known, however, to which extent this link indeed
this study offer a way to benchmark ecosystem process modholds in reality (Mystakidis et al., 2017). While carbon cy-
els in more detail than existing effective global climatasie  cle anomalies on the year-to-year time scale are clearly at-
tivities. The results can also be used to gap-fill or extragol tributable to climate anomalies (through the variable oc-
observational records, or to separate interannual vani&ti currance of sunny/cloudy, warm/cold, wet/dry days or peri-
from longer-term trends. ods), additional longer-term trends may arise as a response
to growing nitrogen andCO- fertilization, to slow warm-

ing, to expanding or shrinking vegetation, to adaptation of
ecosystems, to shifts in species composition, or to changin
human agricultural practices and fire suppression. Some of
these processes may also slowly change the strength of the
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short-term climate—carbon cycle responses over time. More(chosen here to be 1985-2016 when more data are available,
over, both year-to-year and decadal/centennial carbole cyc see Rédenbeck et al. (2018) for runs over 1957-2016). Using
changes are overlaid by the much larger periodic varighbilit an atmospheric tracer transport model to simulate the atmo-
(day/night cycle, seasonal cycle). When using observationsphericCOs field that would arise from a given flux field, the ss
to constrain the climate—carbon cycle responses, thergfor inversion algorithm finds the flux field that leads to the clos-
is essential to employ observational records spanning timest match between observed and simuldtés, mole frac-
periods as long as possible to get statistically significant tions. In addition, the estimation is regularized by a-prio
sults, and to separate the signals on seasonal, interaandal constraints meant to suppress excessive spatial and high-
decadal time scales (compare Rafelski et al., 2009). frequency variability in the flux field. The a-priori sett®g e
Variability and trends of terrestrial carbon exchange havedo not involve any information from biosphere process mod-
been observed through a variety of sustained measuresls. Fossil fuel fluxes are fixed to accounting-based values.
ments, including local measurements by eddy covariancén the particular run s850c_v4.1s used here, ocean fluxes are
towers measuring ecosystem fluxes (e.g., Baldocchi et alfixed to estimates based on an interpolation of surfacerocea
2001; Baldocchi, 2003) and indirect measurements bypCO, data (Jena CarboScope run oc_v1.5). A more detailed
satellites recording changes in vegetation properties.,(e. technical specification, including references and higdftligy
Myeni et al., 1997). The longest observational recordsteget changes with respect to earlier Jena CarboScope verssons, i
atmosphericCO, measurements, started in the late 1950sgiven in Appendix A.
at Mauna Loa (Hawaii) and South Pole by Keeling etal. Forreference in Sect. 2.2 below, we mention here that this
(2005) and since then extended into a network of morestandard inversion calculation represents the total seffa-
than 100CO, sampling locations worldwide. Based on the atmospher€ O, flux f as a decomposition
Mauna Loa long-term record considered to reflect global i , , . .
CO, fluxes, a close link between atmosphefi©, growth £ = fige 11+ e seast Fiek 1av + fsean frcss (1)
rate and tropical temperature variations has been edtallis _
(e.g., Wang etal., 2013). Using measurements from Barinto adjustable long-term mean terrestrial NEﬁ‘é’E,LT),
row (Alaska) conceivably reflecting variations in bor€a, adjustable large-scale seasonal NEE anomaﬁ%%é Coad:
fluxes, similar relationships have been suggested for highadjustable interannual and shorter-term NEE anomalies
latitude ecosystems (e.g., Piao et al., 2017). _ (f39_ ), the prescribed ocean fluxe..), and the pre-
Extending these analyses, the aim of this study is 10 di-g¢riped fossil fuel emissiongfE.). All these terms represent
rectly quantify the contributions of the different seasand spatio-temporal fields.
different climatic zones to the response of NEE to interan- ' s standard inversion will be used as a reference to com-
nual climatic variations, in order to obtain more process-pare the results of the NEE-T inversion introduced belows
relevant information. To this end, we combine a linear sect 2.2) at large spatial scales. Further, we used its es-
regression between NEE and climate anomalies with afinated NEE variations in preparatory tests to confirm that
“atmospheric inversion” (e.g., Newsam and Enting, 1988, g T correlations actually exist, and to determine the de-

Rayner etal.,, 1999; Rodenbeck etal., 2003; Baker etal.grees of freedom needed to accomodate their spatio-teipora
2006; Peylin et al., 2013) which quantitatively disent@sgl heterogeneity. .

the atmospheri€ O signal into its contributions from the

various regions and times of origin, and allows us to make2 2 The NEE-T inversion

use of multiple long-term atmosphefitO, records. In addi-

tion to the atmospheric data, eddy covariance data are usedompared to the standard inversion (run s85oc_v4.1s), the

for independent verification. NEE-T inversion (base run sO4XocNEET v4.1s) uses the
same transport model and the same prescribed data-based
CO, fluxes of the oceanff,.) and fossil fuel emissions s

2 Method (fix.). It also possesses the same adjustable degrees of free-
dom representing the long-term me&tO, fluxes (term
2.1 The standard inversion f,ﬁng',_T) and its large-scale seasonalifﬁgE’Seag.

The NEE-T inversion differs only by replacing the ex-
As a starting point, we use the existing Bayesian atmospheriplicitly time-dependent interannual NEE variationﬁ,%g@'w) %
COq inversion implemented in the Jena CarboScope, runwith a linear NEE-T regression term plus residual terms,
s850c_v4.1s (update of Rodenbeck et al., 2003; Rt‘)denbeck%1 d ad
2005, see http:/Aww.BGC-Jena.mpg.de/CarboScope/). Ifneeiav  —  Ynee-TW(T — Tirsseas+peca+Trent (2)
estimates spatially and temporally expli€iD- fluxes be- _\fadi adj adj
tween the Earth surface and the atmosphere, based on atmo- =) e oy fie rena - fvee scrrens
sphericCO, measurements from 23 stations (marked with T represents the monthly spatio-temporal field of air

* in Table 1) each of which spans the entire analysis periodtemperature, taken from GISS (Hansenetal.,, 20106;


http://www.BGC-Jena.mpg.de/CarboScope/
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GISTEMP Team, 2017), interpolated to the spatial grid and — Further, as the NEE field from the standard inversion

daily time steps of the inversion (Appendix A). Its longfter contains a strong increase in seasonal cycle amplitude
mean, mean seasonal cycle, and decadal variations ingludin in northern extratropical latitudes (earlier described in
linear trend T 1+seas+Deca+Trendn@ve been subtracted to only Graven et al. (2013); Welp et al. (2016)) which is ex-
retain interannual (including non-seasonal month-to-impn pected to not (solely) arise from changes in the temper-
anomalies. The scalar is a temporal weighting being ature seasonal cycle, we decoupled this mode of vari-
within the analysis period 1985-2016 and zero outside; ability from the regression by adding it as an explicitlye
this ensures that the regression is specifically referring t adjustable ternﬁﬁ‘é’ESCTrend For each degree of freedom

this period. The interannual temperature anomaly field is iy the mean seasonality telﬁﬁé'E seadn EQ. (1)), the ad-
multiplied by unknown (i.e., adjustable by the inversion) ditional termfﬁ?gscnendcomains the same mode mul-

scaling faCthSYNEE'T (the NE.E'T regression coefficients). tiplied by At and having its own adjustable strength pa-
These scaling factors are identical in each year of the rameter N

inversion, but are allowed to vary smoothly both seasonally

(with a correlation length of about 3 weeks, such thatany further residual modes of variability (including NEE
Ynee-T contains 13 independent degrees of freedom in timeyariations related to variations in other environmentalets
repeated every year) and spatially (with correlation Ieagt yncorrelated t@r variations, non-linear responses, memory
of about 160&m in longitude direction and 80@m in  effects and internal ecosystem dynamics, errors in the em-
latitude direction, imposing a spatial smoothing 9e 1 ployed T field, errors of the a-priori fixed ocean and fossilo
over the same spatial scales as the smoothing imposeglie| terms, as well as effects of transport model errors) are
on the interannual flux anomali€§ee , in the standard ot explicitly accounted for, as we lack sufficient a-priori
inversion). The need for seasonal and spatial resolution oformation to model them explicitly. To the extend that they
nee-r has been inferred from analysis of the standard in-are uncorrelated t& variations, they will stay in the data
version results (Sect. 2.1). The a-priori spatial and te@@po esidual of the inversion. s
correlations are imposed of\ee.t to prevent a localization In contrast to the standard inversion using 23 stations with
of inverse adjustments in the vicinity of the atmosperic temporally homogeneous records over 1985-2016, the NEE-
stations. In contrast to the standard inversion, howevers inversion uses atmospheric data from 89 stations (Table 1)
where the a-priori correlations lead to a smooth NEE field,partia"y with shorter records but spatially covering thehg
the NEE result of the NEE-T inversion still retains struetur more evenly (including stations in northern Siberia angro s
on the pixel and monthly scale from the temperature field.jcal America). While the standard inversion with explicitly
By having only 13 degrees of freedom in the time dimension,time-dependent degrees of freedom can develop spurious
the introduction of the regression term also regularizes th NEE variations when stations pop in or out with time, the
inversion further compared with the explicitinteranneaht  major interannual variability from the NEE-T inversion is
of the standard inversion, which has 796 degrees of freedor@oming from the regression term using its degrees of free-
in the time dimension. dom (ynee.1) repeatedly each year, such that any data point
Eq. (2) also contains adjustable residual terms (2nd lme) t jnfluences all years of the calculation period simultangous
accomodate modes of variability from the atmosph€i@,  Therefore, the NEE-T inversion is not prone to spurious-vari
signals that cannot be explicitly represented by the regresations from a temporally changing station network.
sion term and might therefore be at risk of being aliased into
spurious adjustments tg\ge_t: 2.3 Sensitivity cases %

— Outside the non-zero period 1985-2016 of the regres-The algorithm uses several inputs carrying uncertainties,
sion term, interannual NEE variations are representetand contains several parameters that are not well deter-
by a standard interannual terfjg ,, With weights  mined from a-priori available information. Therefore, we
(1 —w) opposite to those of the regression term. also ran an ensemble of sensitivity cases. In each such sen-

A sitivity case, one of the uncertain elements of the algos

— An adjustable linear trendgk 1., is needed because rithm is changed within ranges that may be considered as
trends have explicitly been removed frol For V- pjausible as the base case: (1) longer spatial a-priori cor-
ery pixel,fygg 1renqiS Proportional to the time difference  relations (2.4 times in longitude direction and 1.6 times in
At since the beginning of the calculation period, multi- |atitude direction) foryyeet, (2) 4 weeks (rather than 3
plied by an unknown trend parameter to be adjusted byweeks) temporal a-priori correlation length scale4@ge 1, o0
the inversion (Wlth Zero prior). The trend parameters are(3) halved a_priori uncertainty range fquEE—T1 (4) using
correlated with each other in space with the same correpceanCO, fluxes from the PlankTOMS5 ocean biogeochem-
lation length scale as the mean and interannual variabilical process model (Buitenhuis et al., 2010) instead of the
ity components of the standard inversion (efie .t  fluxes based opCO, measurements, (5) taking the grid-
andf,f}(é'E’,Av in Eq. (1)). ded monthly land temperature field from Berkeley Earths
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(www.BerkeleyEarth.org, accessed 2017-11-29) instead oferms of Eq. (2)) and the employed temperature field of the
the GISS data set, and (6) using ERA-Interim meteorologi-inversions, in the same way and subsampled at the same
cal fields (Dee et al., 2011) to drive the atmospheric trarispo months as for the EC data. A perfect match betwegi:
model rather than NCEP meteorological fields. andg¥: + cannot be expected nevertheless because (iii) sen-

Eight additional sensitivity cases have been run to demonsitivities from the inversion even at its smallest resolsedle
strate coherent information in the atmospheric data. The se-the pixel scale— represent a mixture of ecosystem types in
of 89 stations used in the base case was divided into 8 mutudnknown proportions, while the EC data represent a specific
ally exclusive parts (Table 1). In each of the sensitivitgess ~ ecosystem type, (iv) NEE from the inversion includes the ef-
one of these parts was omitted, leaving sets of 73 to 82 refects of disturbances such as fire, which are absent from the
maining stations. By this construction, all these 8 runi sti EC data, and (v) there may be local trends in the ecosys-
have global data coverage, but every station is absent in onem behaviour observed by the EC data due to aging or slow
of the runs. If the results would depend on any particular sta species shifts, which average out on the larger spatiaéscaks
tion without being backed up by other stations, then the runseen by the atmospheric inversion.
omitting this station would show substantial differenaanfir
the base run.

The range of results from this ensemble of sensitivity case® Results
will be shown as uncertainty range around the base case.

3.1 How does the “interannual climate sensitivity”

2.4 Comparison to eddy covariance data YneeT Vary in space and by season?

For comparison of the estimated sensitivitiggg_1 against ~ As a starting point, we present the results of the NEE-T inw
independent information, we also calculate NEE-T relation version in terms ofyyge.t, Which is the local regression co-
ships from eddy covariance (EC) measurements. We usefficient between interannual variations in NEE and temper-
NEE and co-measured air temperature records from thature, resolved seasonally (Sect. 2.2). Age.r does not
FLUXNET2015 data set (https://fluxnet.fluxdata.org). EC only reflect direct temperature responses but also response
sites (Table 2) have been chosen based on having lontp other environmental variables that co-vary with temperas
records (at least 12 years; 2 sites with 11 years were indludeture (such as water availability, incoming solar radiatjove
too to have more ecosystem types represented). Crop sitagfer to it as “interannual climate sensitivity”.
have not been included because their flux variability may Fig. 1 presents the seasonal and spatial patterns of the “in-
strongly depend on crop rotation. terannual climate sensitivity” as Hovmoller Diagrams,\sho
We start from the half-hourly or hourly data sets (variablesing longitudinally averagedy\ gzt in dependence on lati- e
NEE_CUT_REF and TA_F_MDS, respectively). Recordstude and month-of-year. The longitudinal average is taken
classified as “measured” (QC flag = 0) or “good quality gap- separately over North and South America (left panel), Eu-
fill" (QC flag = 1) in both variables are averaged over eachrope and Africa (middle panel), and Asia and Australia (righ
month. Months with data coverage 9% or less are dis- panel), respectively. This representation summarizegshe
carded from the statistical analysis. sential variations ofyyge_1, s it is found to be relatively uni- s
For each EC site and each month of the year, all availabldorm across longitude within the individual continents t(no
monthly CO;, flux values from the different years were re- shown).
gressed against the corresponding monthly air temperature In essentially alihorthern extratropical landareas (north
values, using ordinary least squares regression. Thidsyiel of about 38 N), we estimate negativeyee.t in spring (and,
sensitivities as regression slopglsee ;= ANEEFC/ATEC,  to a lesser extent, autumn), consistent with photosyrghesi
We also calculated the confidence interval of the slope forbeing temperature limited such that higher-than-nornral te
the confidence levelo%, reflecting the uncertainty @f£¢: peratures lead to more negative NEE (i.e., larger-thammabr
given the scatter of the monthly values around a linear rela-CO- uptake) and vice versa. Warmer conditions tend to co-
tionship. incide with higher incoming solar radiation in May and/or
The sensitivitiesyyger from the inversion andsEE. ; June in the northern extratropics (according to a coritati o
from the explicit linear regression are not fully compaeabl analysis of CRUNCEPV7 data, not shown), which would tend
mathematically because (i) the time period (and to some exto amplify the direct temperature effect. In summer, when
tent the frequency filtering) are different, and (ii) the koip photosynthesis is not limited by temperature any more, we
linear regression of the total NEE is not only influenced by find positiveyyge_ Values. Such positiveyge.t IS consis-
the year-to-year variations but also by the ratio of NEEdren tent with enhanced respiration in warmer summers, but also
and temperature trend whileyze 1 has deliberately been with the fact that warmer-than-normal periods are often als
made insensitive to the trend (Sect. 2.2). Therefore, we alsdryer leading to reduced photosynthetic uptake or enhanced
calculated sensitivitieg)tz + from the total monthly-mean fire activity. In winter, NEE is not found to respond much to
non-fossilCOs, flux (i.e., including regression and residual interannual climate variations. The interpretation of $ka-
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sonality of vyee.t is confirmed by its latitude dependence: each other. The linear approximation of the NEE-T inversion
Consistent with the later spring and shorter summer in thds able to distinguish extratropical and tropical behawviou s
higher northern latitudes, the period of negatiyg gt starts For a further split into smaller regions, in particular ajon
later there, and the period of positiyg et is shorter. longitude, interannual NEE variations from standard and
In the Tropics we find stronger and less systematic vari- NEE-T inversions stay similar, but deviations get largeat(n
ations inyyge1- However, as indicated by the missing stip- shown). This could indicate that the limits of the linear NEE
pling, we also find larger disagreement between our sensitivT relationship start to kick in at these scales. However, the
ity cases designed to embrace plausible ranges for the-esseNEE variations cannot be expected to be well constrained
tial inputs and parameters in the algorithm (Sect. 2.3)sThi from the atmospheric data at the regional scale any more.
reveals that the seasonal variationsyje.t are of limited  Thus, the discrepancy can also be caused by the standard in-
robustness here. Nevertheless, a clear feature in thesrigpi  version, while the NEE-T inversion could be the more real-
the dominance of positiveyge.t values. istic one by profiting from the pixel-scale information adde es
In extratropical South America and Africghe seasonal through the temperature field, as discussed in Sect. 4.1.
pattern has similarities with the northern extratropicetern
shifted by 6 months. The patternAwstraliais difficult to in- 3.3 Are the estimated patterns ofyyge. compatible
terpret, but also not very robust. Larger errors in the semuith with ecosystem-scale eddy covariance data?
extratropics may concievably arise because the much smalle
land area involves a much smaller number of degrees of freeFig. 3 compares “interannual climate sensitivities” (oate)
dom available to satisfy the data constraints (remembeér thacalculated by the NEE-T inversion with those calculated in-
the oceanic flux cannot be adjusted in this inversion, whiledependently from eddy covariance (EC) data for each month
the pCO2-based ocean prior flux is actually less well con- of the year (abscissa). Each panel represents an EC site,
strained in the southern extratropics due to the much smalleroughly arranged by ecosystem types and latitudes. The or-

density ofpCO, data). ange line with the surrounding gray band give the sensitiv-
ities ynge.r from the various NEE-T inversion runs as inz
3.2 How much interannual variability of NEE can be Fig. 2 taken at the respective pixels enclosing the EC sites.
reproduced by the seasonally resolved linear The black dots are the sensitivitig§ge 1 calculated by ex-
regressionto T? plicit linear regression of monthly EC flux records against

the co-measured monthly air temperature (Sect. 2.4).

The assumed linear relationship between NEE anomalies and To allow a fairer comparison between inversion results and
air temperature anomalies around their respective selason&C data, additional color dots give sensitivitigl§c ; calcu-
cycles represents a strong abstraction of the complex undefated from the NEE-T inversion results in the same way and
lying physiological and ecosystem processes. Nevertheles subsampled at the same months as for the EC data (Sect. 2.4).
the interannual variations of global total NEE estimated by At most EC sites, the sensitivities calculated by the ineers
the NEE-T inversion is very similar to that estimated by the itself (vyge.1, Orange lines) or by explicit regression after-s
standard inversion (Fig. 2, top left). The agreement is con-wards gl 1, orange dots) mostly agree within the confi-
firmed by high correlation (Fig. 2, top right). For interpget  dence interval of the regression. This shows that the compar
tion, we note that variations in the global totaD,, flux are  ison of inversion and EC sensitivities is meaningful despit
very well constrained from atmosphefi©, observations at  their differences in meaning and calculation (in particula
time scales longer than the atmospheric mixing time (abouthe trend influence (issue (i) in Sect. 2.4) gff¥c + turns <«
4 years) (Ballantyne et al., 2012). Variations on the year-out to be relatively small because the explicit regressias
to-year scale are tightly constrained already (Peylin.et al only done over the limited time period spanned by the EC
2013). We thus use the glob@lO, flux from the standard records).
inversion having explicit interannual degrees of freedsm a Despite their completely independent sources of informa-
benchmark. Since the ocean flux is identical in both standardion and their remaining incompatibilities (Sect. 2.4 #en-
and NEE-T inversion runs, the high level of agreement insitivities from the EC data and the atmospheric NEE-T in-
Fig. 2 (top) means that the spatially and seasonally redolve version have a similar order of magnitude as well as simi-
linear NEE-T regression provides already a good approximaidar seasonal patterns for a majority of EC sites (Fig. 3). For
tion to global interannual NEE variations. most sites/months, the sensitivities agree within thenfieo

Almost the same level of agreement is also found for a splitdence intervals. The level of agreement roughly depends &n
of the global NEE into a northern extratropical and a tropica ecosystem type and latitude:
plus southern extratropical contribution (Fig. 2, middiela
bottom). Due to the faster atmospheric mixing within the ex- — Generally good consistency is found in high northern
tratropical hemispheres compared to the mixing across lati latitudes (line 1 of panels in Fig. 3) and at evergreen
tudes, these two NEE contributions are expected to be rela-  needleleaf forest (ENF) sites in temperate northern lati-
tively well constrained by atmospheric data independesftly tudes (line 2 and rightmost part of line 3). 105
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— At mixed forest (MF) and decidious broadleaf forest than station-to-station differences (compare last paggof

(DBF) sites in temperate northern latitudes (left part of Sect. 3.2).

line 3 and line 4), consistency is mostly good as well, Note that, as EC data measure fluxes on small spatial

though some months in spring or summer have morescales (a few 100 meters), the EC flux variations themselves

negativegl¥e + sensitivities from EC data (e.g., DE- cannot directly be compared to the inversion results reps

Hai, DK-Sor, BE-Bra). However, the behaviour of DBF resenting NEE over (sub)continental scales and integyatin

ecosystems is not an important contribution to larger-over many ecosystem types and climate regimes. In con-

scale NEE variability because DBF ecosystems onlytrast to the fluxes, however, derived relationships (such as
cover11% to 25% of the area around the sites shown. the NEE-T relationships considered here) may well be able
to bridge this scale gap. 60
Besides the interannual variations, the NEE-T inversion
Iso reproduces the small negative trend in NEE through its
residual temfﬁ‘é‘E’Trendin Eq. (2) (Fig. 2). Likewise, it repro-

— At the tropical and southern extratropical sites (lastduces the northern extratropical increase in seasonag cycl
line), the comparison does not yield conclusive informa- amplitude through its residual terffige screngnOt shown).
tion, because the confidence intervals of the regression
are much larger than the seasonal variations of both in4.2 NEE variations in the tropics
version and EC results. We can only state thagfie .
andgFS: ; sensitivities do not contradict each other sta- In contrast to the northern extratropics, we did not find con-
tistically. Some qualitative consistency is found at the clusive seasonal patterns 9fie r in the tropics (Sect. 3.1).
Australian EBF site, even though the dominant vegeta-However, despite the substantial uncertainty range\@t.+
tion round the site is shrubland (abati%). (Fig. 1), the sensitivity cases reproduce almost identical

) . o . terannual NEE variations in the tropics (see the narrow gray
Thoggh thls_companson partlly remains mconcluswe.(as th_eoand round the NEE-T estimate in Fig. 2, bottom left).
c_onfldence intervals at tropical and southern hemisphericryis underlines that pan-tropical NEE variations are dhtua
sites are large, agyer and giger are not actually fully el constrained from the atmospheric data, while the sea-
comparable (Sect. 2.4), and as by far not all areas and domyga) differences inyyee.r arise to compensate for the set-rs
inating ecosystem types are represented), it does suieort t ;5 gitferences among the sensitivity cases. As shown below
resylts of the NEE-T inversion at least in the northern éxtra (Sect. 4.3), all the seasonally differepize.; estimates cor-
ropics. respond to a similar effective sensitivity (having a positi
value) on yearly time scales. Due to this, the NEE-T inver-
sion is found to possess predictive skill on the time scale of
El Nifio / Southern Oscillation (R6denbeck et al., 2018).
4.1 NEE variations in the northern extratropics The positive effectiveyyge.r in the tropics (Sect. 3.1)

is consistent with the strong positive correlation of atmo-

Given that we found robust seasonal patternggf_which ~ sphericCO4 growth with large-scale tropical annual tem-
can be interpreted in terms of the fundamental physiolog-perature (Wang et al., 2013). This is unlikely to arise froms
ical processes (Sect. 3.1), that these patterns are compat direct temperature effect, however, because processstud
ble with inferrences from independent ecosystem-scalg edd(e.g., Meir et al., 2008; Bonal et al., 2008; Alden et al.,&01
covariance (EC) measurements (Sect. 3.3), and that the copoint to water availability, rather than temperature, as th
responding interannual NEE variations are compatible withdominant control on the ecosystem scale. This is also con-
the atmospheric constraint on the most reliable large scalefirmed by the large confidence intervals of the NEE-T regress
(Sect. 3.2), we conclude that the linear dependence of NEEion of the EC data from the only tropical site available here
anomalies on air temperature anomalies (as climate proxyJGF-Guy, leftmost on last line of Fig. 3). A strong corredati
represents a meaningful approximative empirical descripto temperature can still arise statistically due to therggro
tion of the northern extratropical biosphere. The compati-link of temperature and precipitation anomalies over large
bility of the NEE-T relationships inferred from large-seal spatial scales (Berg et al., 2014). Moreover, vapour pressus
atmospheric constraints and ecosystem-scale EC coristraindeficit (VPD) controlling photosynthesis responds to tem-
of dominating vegetation types suggests that the regianal operature variations particularly strongly in the warm toagp
continental NEE variations are to a substantial degreealue tclimate due to the non-linearity of the VPD(T) dependence
local variations linked to local climate anomalies; othisev  (Monteith and Unsworth, 1990). Further, T is spatially co-
the NEE-T inversion could not have worked. Given that, we herent over much larger areas in the tropics while variabib
expect the NEE-T inversion to provide more realistic intera ity in water availability is local and averges out over large
nual NEE variations on regional scales than the standard inspatial scales (Jung et al., 2017). Nevertheless, evereet dir
version which smoothly interpolates NEE on scales smalletemperature effect in the tropics was found by Clark et al.

— Generally good consistency within the confidence in-
terval is also found at sites of various other ecosystem,
types in temperate northern latitudes (line 5).

4 Discussion
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(2013) at least for a component flux of NEE (wood produc- time periods and the different time series treatments (in pa

tion) in 12-year plot data. ticular, to the extent to which decadal variability has beeg
removed). Fig. 4, however, reveals another reason of the dis
4.3 An extended benchmark for process models crepancies: The sensitivity of the Mauna Loa growth rate

(middle one of the hashed blue bars) is larger than that of the

Empirical data-based relationships between interannk& N  global flux (solid bars). This cannot be due to a deficiency
variations and air temperature variations have been peapos of the inversions to fit Mauna Loa’s variability, because thes
in the literature as benchmarks to evaluate biogeochemicainodelled Mauna Loa sensitivities (hashed bars next to the
process models. For example, Cox et al. (2013) calculated amiddle blue bar) agree well with the observed one. Thus, a
effective global climate sensitivity &f1+0.9PgC yr 1K1 sensitivity calculated from the Mauna Loa growth rate (as in
over 1960-2010, regressing the annu#D, growth rate  Cox etal., 2013) somewhat overestimates the sensitivity of
observed at the station Mauna Loa (Hawaii) (taken as ahe global flux. The Mauna Loa sensitivity is still much close e
proxy for the global totalCO, flux) against 30 N-30° S to that of the globalCO- flux than sensitivities calculated
(both land and ocean) averaged air temperature (after defrom most other stations: Southern extratropical statiies
trending both time series by subtracting an 11-year run-South Pole (or from the Mauna Loa and South Pole mean as
ning mean). In a similar way (using the average atmo-in Wang et al., 2014) lead to a substantial underestimaition (
spheric growth rate from a varying set of background sites,is unclear why the sensitivity reported by Wang et al. (2014}
a slightly different time series treatment, and®B4-24° S for the recent 1992-2011 period is nevertheless even higher
land temperature), Wang et al. (2013) obtained a value othan our Mauna Loa value), while northern extratropical sta
3.5+ 0.6PgCyr—tK~! over 1959-2011. Wang et al. (2014) tions like Point Barrow lead to an even stronger overestima-
regressed the mean Mauna Loa and South 6le growth tion than Mauna Loa. This suggests that using a varying mix-
rates against 2ZN-23 S vegetated land temperature over ture of stations (as in Wang et al., 2013) can induce further
moving 20-year windows and reported effective global cli- errors, in particular when possible changes in sensitaity
mate sensitivities betweeb4 4+ 0.4PgCyr—'K—! during considered. We note that the atmospheric inversions bene-
1960-1979 and.4 4 0.4PgC yr~'K~! during 1992-2011. fit from using multiple station records, because the trartspo

The inversion results presented here allow to extend theseodel links the atmospheriCO- signals to their different
benchmarks in two ways. As a first extension, we canareas of origin, rather than the instantaneous link of the ab
evaluate to which extent the interannual variations in lo- mospheric signals to the global flux as in the direct use of
cal or averaged atmospheri@O, growth rates are indeed station records.
equivalent to the interannual variations in the globalltota Care is also needed in the interpretation of the estimated
CO- flux (as implicitly assumed in the above-mentioned effective sensitivities: The sensitivity of the toi@O, flux
studies), and to which extent the global to@0D-, flux is (solid bars) underestimates that of global NEE only (horiss
indeed representative for global terrestrial NEE or, evenzontally hashed bars), because the ocean flux is subshantial
more specifically, for tropical NEE. This can be evaluated anti-correlated to NEE on the interannual time scale. The
here because all these time series (spatially explic, sensitivity of tropical-only NEE (vertically hashed bais)
fluxes with all their contributions, as well as the corre- smaller than that of global NEE, though the reduction is less
sponding atmospheri€O, variations at the measurement than according to the ratio of land area, confirming the doms
stations) are available within the inversion calculatidn.  inance of tropical NEE variations.
ensure a mutually consistent treatment of these time se- As a second extension of process model benchmarking,
ries, we used running yearly averages (January-throughthe data-based estimates of the spatially and seasonally re
December, February-through-next-January, etc.) of the flu solved~yyge_t from the NEE-T inversion can directly be em-
time series and running yearly differences (next-Januaryployed as target values, by regressing the NEE simulated by
minus-January, next-February-minus-February, etc.timul the terrestrial biosphere or Earth system model against the
plied by 2.12PgCppm~—! (Ballantyne et al., 2012)) of the model temperature for individual small regions and seasons
atmospheri€C O, time series, respectively. All these interan- across the years 1985-2016 and comparing these model-
nual time series were then regressed over 1985-2016 againderived local and season-specific sensitivities to the-data
annual tropical land temperature (28-25° S) derived from  based values presented here (using the ensemble of sensi-
the same temperature field without decadal variations ab usetivity cases as a measure of uncertaintyyiGg.7)- Impor-
in the NEE-T inversion. The resulting effective climate sen tantly, before regressing, the model NEE and temperature
sitivities are shown in Fig. 4. The sensitivities of the tota fields need to be deseasonalized, detrended, and filtered in
COs flux (solid bars in the middle) calculated from the stan- the same way as done for the observed temperature in the
dard inversion (black) or from the NEE-T inversion (orange) NEE-T inversion (Sect. 2.2), because the numeriggle.t 105
are similar to each other, and fall in between the values byalues are somewhat specific to the chosen filtering, in par-
Cox et al. (2013) and Wang et al. (2013). Part of the discrep-icular to the exact way to remove decadal variations (as is
ancies between these results can be attributed to theatiffer the case also for the effective global climate sensitivétry t
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gets by Cox et al. (2013), Wang et al. (2013), and Wang et al. mer (consistent with a water-limited photosynthesis) in
(2014)). For the northern extratropics, whegg-c_t is quite all northern extratropical ecosystems (Sect. 3.1).
robustly constrained and shows distinct spatial and seéson . ) )

patterns (Sect. 3.1), this offers a much more detailed bench — Despite the complexity of the underlying plant and
mark of the process representation in the models than the ex- ~ €C0SYStém processes, the spatially and seasonally re-
isting single-valued effective climate sensitivity of thiebal solved linear regression of NEE against temperature
CO, growth rate. For the tropics, unfortunatelyyee 1 is anom_alles (taken as climate proxy), fitted to -atmo-
not constrained well enough to do that, but due to the fact ~ SPhericCO. data, can reproduce a large fraction of
that pan-tropical NEE variations are nevertheless quite ro NEE's interannual variations, at least in the northern ex-
bust (Sect. 4.2), the effective climate sensitivity of foap tratropics. This conclusion is based on the agreement of

NEE from Fig. 4 ¢.2PgCyr—'K~! with a range across the the inferred NEE variations with a time-explicit atmo-eo
sensitivity cases d§.8...4.4PgCyr— K1) may be used as spheric inversion at well-constraint large spatial scales

a specifically tropical target instead. (Sect. 3.2), and the consistency ®fzc.r with inde-
pendent calculations from eddy covariance data at small

4.4 Could the results be improved by using a spatial scales (Sect. 3.3). Among the reasons for this po-
multivariate regression against further climatic tentially surprising finding is that the regression is onlys
variables? applied to the interannual anomalies of NEE around its

mean seasonal cycle (rather than to the full range of sea-

We tested the algorithm also with precipitation (P) or solar sonal temperature variations), and that the different be-
radiation as explanatory variables, individually or in tirul haviours in different seasons have been accounted for.
variate combinations (not shown). While, for example, an
NEE-P inversion had almost as good an explanatory power as The results of the NEE-T inversion can be applied to
the NEE-T inversion, a multivariate NEE-T-P inversion did benchmark process models of the land biosphere or Earth
not explain much more NEE variations than the univariateSystem models: The spatially and seasonally resolved-inter
NEE-T inversion did already. This confirms the strong back-annual climate sensitivityyyee.r can be calculated from the
ground correlations of air temperature with the other ctama model output (using detrended NEE over the period 1985-
variables on interannual time scales. It also means thata mu2016 for consistency) and compared to the values presented
tivariate regression would _despite a mathematica”ylumiq here; this allows a more detailed benchmark for the north-
partitioning into contributions of the individual explanay ~ €rn extratropical ecosystem processes than existingtietfec
variables— likely not yield an uniquely interpretable itte ~ global sensitivities. Further, as its adjustable degréé=e-
tion of NEE variability to different causes. dom are identically applied every year, the regressionstie

Given that, a univariate NEE-T inversion seems advan-way to bridge temporal gaps in the atmospheli@, records;
tageous because T ||ke|y has data sets best constrained t'bg/transfers information from the recent data-rich yeats in
observations. As a regression is confined to the variabilitythe more data-sparse past. Similarly, the NEE-T regression
present in the explanatory variables, using less well aleser ~ allows to forecast th€ O, flux for some years, if forecasted
or even modelled variables (as would be the case for precipair temperatures (and extrapolations of fossil fuel eroissi

itation or cloud cover) involves the risk of contamination. ~ and the ocean exchange) are available. As another appliea-
tion, the regression may help to uncover smaller decadal

_ trends in the atmosphericO-, signal by separating them
5 Conclusions and outlook from the larger interannual responses of NEE. Extending the

) calculation to the full period of atmosphel@), measure-
The response of Net Ecosystem Exchange (NEE) to climatgnenis (since the late 1950ies, see Rodenbeck et al. (2018)),

anomalies has been estimated by linear regression againgfe can investigate possible decadal changes in the interan-
anomalies in air temperature (T) within an atmospherictinve 41 climate sensitivityyyee. -

sion based on a set of long-term atmosphe€liz, observa- The inversion results are available for use in collaboeativ
tions. The resulting spatially and seasonally resolvedeseg projects from the Jena CarboScope website

sion coefficientsyyge.t are interpreted as a “interannual cli- http://Aww.BGC-Jena.mpg.de/CarboScope/. .
mate sensitivity”, comprising the direct temperature cese

as well as responses to covarying anomalies in other environ
mental conditions (e.g., moisture, radiation) (Sect..4.4) Appendix A: More specification details of the inversion

algorithm
— The inferred “interannual climate sensitivity§yge_t

shows distinct and interpretable patterns along latitudeThis appendix first reviews the base set-up and implemen-
and season. In particular, we find negatiyg-_t dur- tation of the Jena CarboScope atmosphélig, inversion

ing spring and autumn (consistent with a temperature-in its current version v4.1, from which the particular runs.
limited photosynthesis) and positiwgge.r during sum-  used in this study are derived (Sect. Al). Sect. A2 gives
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differences of the run s850c_v4.1s used as standard invespatio-temporal’O- flux field as a linear function of a vec-
sion here. The further differences of the NEE-T inversion tor of independent adjustable dimensionless parameténs wi
s850cNEET_v4.1s have already been described in Sect. 2.Zero mean and unit variance. This makes it easy to specify,
For more details, formulas, or deeper explanations, thee.g., time-scale dependent statistical properties, ointals
reader is referred to the technical report Rodenbeck (2005) taneously specify temporal and spatial a-priori corretai s
The prior flux of allland NEE componentis zero. This
Al The Jena CarboScope atmospheri€O. inversion means that the “error” of this prior is identical with the
va4.l land CO, flux itself, i.e., the a-priori probability density de-
) o ) ) scribes expected statistical properties of NEE. Its arjpuio-
The Jena CarboScoi&), inversion is a linear Bayesian at-  certainties are proportional to the fraction of vegetatedil
mospheric inversion, estimating land-atmosphere andecea a4 in each pixel, taken as the sum of ‘crop’, 'dbf’, 'dnf’,
atmosphereCO- fluxes from long-term atmosphericO- 'ebf’, "enf’, 'grass’, and 'shrub’ fractions from SYNMAP
mole fraction_measyrements (Rbdenbgck, 2005). As t_he_Jen@,ung etal., 2006). The results of the v4.1 inversions on
CarboScope is particularly focused on interannual vamati  |5rger spatial scales are still quite similar to versiongva.
flux estimates are only used over time periods homoge yhich still used spatial patterns of a-priori uncertaidgr s

neously covered by all data records, to avoid Spurious jJumpsjyeqd from model output), confirming that the variability sva
(or changes in the amplitude of variations) that can result,: 4riven by these spatial patterns. The largest diffezasic

from changes of the station set over time. To deal with they4 1 results to previous versions is a smaller amplitude of

fact that many of today’s measurement stations came into OPjterannual variations in the tropical land fluxes.
eration at various points in time during the last decades, th  \gg adjustments are split into the temporal mean, a

Jena CarboScope provides several runs, either over 10n9g5e_scale mean seasonality, and (interannual) vamtio
periods (the longest one currently being 1976-2016) withre |5rge-scale mean seasonality has a-priori correfation

only a few stations, or runs with more stations (currently Up ¢ ahout3825km longitudinally, 1275 km latitudinally, and
to 59) but correspondingly shorter periods. Despite thése d 1,6t 4 weeks in time. The correlation lengths of the other

ferent “periods of validity”, however, all base runs are-car 1, filux contributions are abod600km longitudinally and 7
ried out over 1955-2017, which includes time for spin-up 5p4ut 800km latitudinally: and in the “variations” part 2

and spin-down to minimize “edge effects”. The Jena Car-yyeeks in time. For practical reasons, the temporal variatio
boScope inversion is regularly updated, mostly yearly €0 in i, g adjustable terms are implemented as Fourier series.
clude the latest year of measurements. These updates maye temporal correlations can then simply be implemented
also involve some changes in the station sets according 9y gownweighting the a-priori uncertainties of the Fouriet
data availability, as well as changes in the inversion get-U moqes with higher frequencies according to the spectrum
and implementation details. All results are available 8¢ U .,rresponding to the desired autocorrelation functiore Th
in collaborative projects from the Jena CarboScope Webs't%plit into long-term, seasonal, and non-seasonal corimits:
http://www.BGC-Jena.mpg.de/CarboScope/. can be implemented just by only activating the correspond-
The follovymg provides some spemﬁcguon dgtans as of t_heing part of the Fourier series. Note that not only the “mean
current version v4..1 of the CarboScope inversion, alsotpoin seasonality” part but also the “variations” part contaiea-s
ing out changes with respect to the previous version v3.8.  gona| Fourier terms, to allow seasonal variability alsoeo b

adjusted on the smaller spatial scales.
Ocean fluxesre implemented analoguosly to land NEE,

The CO, fluxes have a daily time resolution and are repre-With a-priori uncertainties proportional to the ocean frace
sented on the grid of the transport model 4° x 5°, see tion, and slightly longer a-priori spatial correlationdbgat
below). 1912km longitudinally and aboup56km latitudinally). In

contrast to land NEE, however, the mean spatial flux pattern
Al.2 Prior information and its mean seasonal cycle are not adjusted, but prescribed

to the mean seasonal cycle of the flux estimates oc_v1.4 (up-
Bayesian prior information is used to regularize the other-date of Rédenbeck et al., 2014) based on an interpolation
wise underdetermined estimation. However, none of the baef pCO, data from the SOCATv4 data base (Bakker et al.,
sic CarboScope inversion runs involves any informatiomfro  2016). Only the (interannual) ocean flux variability can be
terrestrial and oceanic carbon cycle models, in order tstra  adjusted by the inversion in the basic v4.1 runs (see the dif-
parently base the results on atmospheric information auisl th ference in the present “standard inverion” in Sect. A2 bglowso
to allow independent comparison to process models or to em- Thefossil fuel emissioprior is taken from monthly values
pirical models like the NEE-T inversion. of CDIAC (Andres et al., 2016). The years after 2013 have

The a-priori probability distribution of the fluxes is notdi been extrapolated by global scaling factors based on the ra-

rectly implemented through a covariance matrix, but indi- tios in the emission totals from Le Quéré et al. (2016, update
rectly through a statistical “flux model” that expresses the

Al.1 Grid resolution
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for year 2016). There are no inverse adjustments to fosdil fu again (rather than ERA-Interim) as only NCEP is currently

emissions. available before 1980.
The cost function minimizatiomses the Conjugate Gra-
Al.3 Data treatment dient algorithm, enhanced by a re-orthonormalizationraftes

each iteration to avoid the usual degradation of the conver-
The CarboScope inversion uses the individual data points irgence rate. The re-orthonormalization requires to stoge th
the atmosphericCO, records (flask pair values or hourly state vectors and gradients of all iterations performedchvh
averages, respectively). In order to avoid that the in-situhowever opens the additional possibility to re-calculdie t
records with hourly data dominate the result, a “data dgnsit solution also for tighter prior constraints without the dee e
weighting” has been implemented. It artificially increafes  to run the iterative minimization again. It also accumuate
model-data mismatch uncertainty of data points from densenformation about the a-posteriori covariance matrix vigpo
records in such a way that weekly periods of data alwaysthe actual calculation of matrix elements generally neads f

have the same impact on the results. ther dedicated iterations.
The individualCO, data points arescreened for outliers
by a “2¢ criterion” (newly introduced in CarboScope version A2 The standard inversion s850c_v4.1s 6

v4.1): A pre-run of the inversion is done, using the base Car-

boScope set-up and a large set of stations potentially msed iln comparison to the basic v4.1 runs (Sect. A1), the pasicul
later runs. Then, th€ O, mole fraction residuals between a run s850c_v4.1s involves 3 specifics or differences, respec
forward run from the posterior fluxes and the data are considtively:

ered. For each station, data points are removed if theid+esi ~ The station set s85v21 is used, comprising the 23 stations
ual is larger than 2 standard deviations across all reschfal marked with * in Table 1. 7
that station. This procedure is similar to the outlier flaggi The calculation is done over the shorter period 1980-2017
done routinely by many atmospheric data providers. By do-(indicated by the appended “s” in the version tag).

ing it within the inversion, the deficiencies of the trangpor ~ The entireOcean flux(including interannual variations)
model to reproduce small-scale circulation are taken into a is fixed to the CarboScope estimates oc_v1.5 (update of
count to some extent. The procedure can also be understodgédenbeck et al., 2014) based on an interpolatiop(@®,
as an approximate way to implement a non-Gaussian probdata from the SOCATVS data base (Bakker etal., 2016).
ability density for the model-data mismatch: As residuals Fixed ocean fluxes are used here because atmospheric inver-
larger tharo are very unlikely in the Gaussian distribution, Sions are known to have limited capability to correctly gssi

an inversion assuming Gaussian model-data mismatches wifignals to land or ocean (Peylin et al., 2013). While thisrerro
respond Strong|y to “outliers” to reduce these mismatcimes; is relatively small for the land ﬂuxeS, it means a |arge relso
contrast, the 2o screening” effectively assigns an infinitely ative error for the ocean fluxes, because the ocean variabil-
large uncertainty to these data points. The results mostyy s ity is much smaller than the land variability. Th€O, data
similar after this screening, but some flux anomalies get re-0ffer a much closer constraint on oced®; fluxes in well-
moved. In most cases, these anomalies were unrobust, in th@Pserved regions (northern extratropics, tropical Pg¢éitd
they were dampened much faster than other anomalies whegPnstrain at least some features (seasonality, decadalkjre s
increasing the strength of the prior constraint (parameter in most ocean areas. (For the NEE-T inversion, fixed ocean
in Rodenbeck (2005)). For example, many of the spikes influxes are particularly beneficial because they avoid the nee
the CO,, record of station KEY and their effect on thgD,  of time-dependent degrees of freedom.)

flux estimates for northern temperate America are removed

by the screening. We interpret these spikes as influence of

local fossil fuel emissions, which would be mistaken by the Competing interests

inverison as regional signals. This interpretation is sufgul

by the fact that more and more of these spikes occur in thd he authors declare that they have no conflict of interest.
more recent decades. The introduction of Baescreening

made it possible to re-add further stations with pronounced
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Table 1. Atmospheric CO, measurement stations used in the NEE-T inversion. The smaller set of statsen in the standard inversion is labelled by an as-
terisk. The 8 parts individually omitted in sensitivity tests are separayedidsizontal lines. Institutions are referenced by: AEMET: Gomez-Pelaez and Ramog);(201
BGC: Thompson et al. (2009); CSIRO: Francey et al. (2003); EC: Worthy (2008); Kilkki et al. (2015); HMS: Haszpra et al. (2001); IAFMS: Colombo and Sanidgu
(1994); JMA: Watanabe etal. (2000); LSCE: Monfray et al. (1996); NIES: Tohjinah e2008); NIPR: Morimoto et al. (2003); NOAA: Conway et al. (1994); Saitama:
http://www.pref.saitama.lg.jp/b0508/cess-english/index.hBAWS: Labuschagne et al. (2003); SIO: Keeling et al. (2005), Manning and Keelfg);2JBA: Levin et al. (1995).
Appended letters give record type: (f): flask data, mostly weekly; (h): in-situ dastlynrmurly; (d): in-situ data, day-time only; (n): in-situ data, nightdionly.

Code Latitude  Longitude Height  Institution Code Latitude  Longitude Height  Institution
©) (°) (masl) ©) °) (mas.l)

*CMN 44.18 10.70 2165 IAFMS(n) *ALT 82.47 -62.42 202 CSIRO(f), EC(f),
*LJO 32.87 -117.25 15  SIo(f) NOAA(f)
*ASC -7.97 -14.40 88  NOAA(f) *CBA 55.21 -162.71 41 NOAA(f), SIO(f)
*BHD -41.40 174.90 85 SIO(f) *CGO -40.67 144.70 130 CSIRO(f), NOAA(f)
*BRW 71.32 -156.61 13 NOAA(h,f), SIO(f) *GMI 13.39 144.66 6 NOAA(f)
*CHR 1.70 -157.16 3 NOAA(f) *1ZO 28.30 -16.50 2367 AEMET(h)
*MID 28.21 -177.37 10 NOAA(f) *KEY 25.67 -80.18 4 NOAA(f)
*MLO  19.53 -155.57 3417  NOAA(h,f), SIO(f) *KUM 19.51 -154.82 22 NOAA(f), SIO(f)
*SPO -89.97 -24.80 2816 NOAA(h,f), SIO(f) *NWR 40.04 -105.60 3526 NOAA(f)
*SYO  -69.00 39.58 29  NIPR(h) *PSA -64.92 -64.00 12 NOAA(), SIO(f)
*KER -29.03 -177.15 2 SIO(f) *SHM 52.72 174.11 27 NOAA(f)

*SMO -14.24 -170.57 51 NOAA(h,f), SIO(f)
ESP 49.38 -126.54 27  CSIRO(f), EC(f) *AMS -37.80 77.54 55  LSCE(d)
MQA -54.48 158.97 13 CSIRO(f)
RYO 39.03 141.83 230 JMA(d) CFA -19.28 147.06 5 CSIRO(f)
MNM 24.30 153.97 8  JMA(d) MAA -67.62 62.87 42  CSIRO(f)
MHD 53.32 -9.81 18  NOAA(f) SIS 60.18 -1.26 31 BGC(f), CSIRO(f)
RPB 13.16 -59.43 19 NOAA(f) SCH 47.92 7.92 1205 UBA(n)
UTA 39.90 -113.72 1332 NOAA(f) BMW 32.26 -64.88 46 NOAA(f)
HUN 46.95 16.64 353 HMI(d), NOAA(f) TAP 36.72 126.12 21 NOAA(f)

UUM 44.45 111.10 1012 NOAA(f)
AZR 38.76 -27.23 23 NOAA(f)
HBA -75.58 -26.61 24 NOAA(f) ASK 23.26 5.63 2715 NOAA(f)
LEF 45.93 -90.26 791 NOAA(f) TDF -54.86 -68.40 20 NOAA(f)
SEY -4.68 55.53 6 NOAA(f) WIS 30.41 34.92 319 NOAA(f)
CPT -34.35 18.48 230 SAWS(d) ZEP 78.91 11.89 479 NOAA(f)
PAL 67.96 24.12 565  FMI(d), NOAA(f) FSD 49.88 -81.57 250 EC(d)
WLG 36.28 100.91 3852 NOAA(f) YON 24.47 123.02 30 JMA(d)
HAT 24.05 123.80 10 NIES(f) COl 43.15 145.50 45 NIES(f)
SBL 43.93 -60.01 5 EC(,f) CYA -66.28 110.52 55  CSIRO(f)
CRZ -46.43 51.85 202 NOAA(f) THD 41.04 -124.15 112 NOAA(f)
SGP 36.71 -97.49 348 NOAA(f)
SUM 72.60 -38.42 3214  NOAA(f) CiB 41.81 -4.93 848  NOAA(f)

KzZD 44.26 76.22 506 NOAA(f)
WES 54.93 8.32 12 UBA(d) LLN 23.47 120.87 2867  NOAA(f)
AVI 17.75 -64.75 5  NOAA() NAT -5.66 -35.22 53  NOAA(f)
EIC -27.15 -109.44 63 NOAA(f) NMB -23.57 15.02 461 NOAA(f)
ICE 63.40 -20.29 124 NOAA(f) STM 66.00 2.00 3 NOAA(f)
TIK 71.60 128.89 29 NOAA(f) STP 50.00 145.00 0 SIO(f)
CVR 16.86 -24.87 10 BGC(f) BIK300  53.22 23.02 300a.gr. BGC(f)
ZOT301 60.80 89.35 301 a.gr. BGC(d,f) DDR 36.00 139.18 840 Saitama(n)
POCN30 29.48 -134.24 20 NOAA(f) KEF+RYF var. var. 0  JIMA(H)
POCN20 19.69 -132.68 20 NOAA(f) POCN25 25.20 -133.99 20 NOAA(f)
POCN10 9.68 -140.37 20  NOAA(H) POCN15 15.07 -135.22 20  NOAA(H)
POC000 0.60 -150.35 20 NOAA(f) POCNO5 4.80 -145.11 20  NOAA()
POCS10 -10.02 -3.61 20 NOAA(f) POCS05 -4.66 -4.24 20 NOAA(f)
POCS20 -20.28 0.08 20 NOAA(f) POCS15 -14.72 -0.15 20 NOAA(f)
POCS30 -29.68 -0.04 20 NOAA(f) POCS25 -25.01 -0.17 20  NOAA(f)
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Table 2. Eddy covariance sites used for comparison. For vegetation typevéddioes, see Fig. 3 (caption)

FLUXNET-ID Data period Latitude) Longitude () Vegetation type
AU-How 2001-2014 -12.4943 131.1523 WSA
AU-Tum 2001-2014 -35.6566 148.1517 EBF
BE-Bra 1996-2014 51.3092 4.5206 MF
BE-Vie 1996-2014 50.3051 5.9981 MF
CA-Man 1994-2008 55.8796 -98.4808 ENF
CH-Dav 1997-2014 46.8153 9.8559 ENF
DE-Hai 2000-2012 51.0792 10.4530 DBF
DE-Tha 1996-2014 50.9624 13.5652 ENF
DK-Sor 1996-2014 55.4859 11.6446 DBF
DK-ZaH 2000-2014 74.4732 -20.5503 GRA
Fl-Hyy 1996-2014 61.8474 24.2948 ENF
FI-Sod 2001-2014 67.3619 26.6378 ENF
FR-LBr 1996-2008 447171 -0.7693 ENF
FR-Pue 2000-2014 43.7414 3.5958 EBF
GF-Guy 2004-2014 5.2788 -52.9249 EBF
IT-Col 1996-2014 41.8494 13.5881 DBF
IT-Cpz 1997-2009 41.7052 12.3761 EBF
IT-Lav 2003-2014 45.9562 11.2813 ENF
IT-Ren 1998-2013 46.5869 11.4337 ENF
IT-SRo 1999-2012 43.7279 10.2844 ENF
NL-Loo 1996-2013 52.1666 5.7436 ENF
RU-Cok 2003-2014 70.8291 147.4943 OSH
RU-Fyo 1998-2014 56.4615 32.9221 ENF
US-Hal 1991-2012 42.5378 -72.1715 DBF
US-Los 2000-2014 46.0827 -89.9792 WET
US-Me2 2002-2014 44,4523 -121.5574 ENF
US-MMS 1999-2014 39.3232 -86.4131 DBF
US-NR1 1998-2014 40.0329 -105.5464 ENF
US-PFa 1995-2014 45,9459 -90.2723 MF
US-Syv 2001-2014 46.2420 -89.3477 MF
US-Ton 2001-2014 38.4316 -120.9660 WSA
US-umMB 2000-2014 45.5598 -84.7138 DBF
US-Var 2000-2014 38.4133 -120.9507 GRA
US-WCr 1999-2014 45.8059 -90.0799 DBF
ZA-Kru 2000-2010 -25.0197 31.4969 SAV
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Figure 1. “Interannual climate sensitivity¥,ze.7 in (¢C/m~2/yr)/K shown as Hovméller diagrams: Longitudinal averagesgf ; are

plotted as color over latitude (vertical) and month of the year (horizontak. Stippling indicates robustness: crosses mark values with
absolute deviations: 40 (¢C/m ™2 /yr) /K (1 color level) of all sensitivity cases from the base case.
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Figure 2. Left: Interannual anomalies of NEE integrated over all land (top), eontlextratropical land (middle), and tropical plus southern
land (bottom), as estimated by the standard inversion (Sect. 2.1, blagldifferent runs of the NEE-T inversion (Sect. 2.2, orange). The
gray band comprises the results of the sensitivity cases. Right: Taylgnadia quantifying the agreement between the NEE-T inversions
and the standard inversion. Due to the construction of the Taylor diagrayto¢, 2001), the horizontal position of a point gives the relative
fraction of the reference signal present in the test time series, whileettieal distance of this point from the horizontal axis gives the
relative amplitude (temporal standard deviation) of any additional sigomaponents uncorrelated to the reference signal.
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Figure 3. Comparison between the “interannual climate sensitivities” calculated thenmversion and from eddy covariance (EC) data,
for various sites with longer EC records. Black dots give the sensitivifs.+ calculated by linear regression of monthly E©, flux
data (FLUXNET2015 data set) against monthly air temperature co-meghatithe flux towers (months with data in only 6 years or less are
discarded). The error bars around the dots comprise the confiderceals of the regression slopes (at t¥% confidence level); if the
confidence interval is above 306C/m ™2 /yr)/K (i.e., larger than the typical seasonal range), the correspondirig lsmllow. Orange and
gray lines give the sensitivitieg, g1 taken directly from various NEE-T inversions (base and sensitivityscasén Fig. 2) at the respective
pixels enclosing the EC site locations. To allow a more direct comparisorebatiWEE-T inversion results and EC data, sensitivities for the
inversion (base case) have also been calculated by linear regressiothe total monthly-mean non-fossilO- flux and the temperature
field employed in the inversions, in the same way and subsampled at tieensanths as for the EC data; thas@er are shown as orange
dots. Panels are roughly ordered by latitude and land cover type (D&¢tdidus broadleaf forest, EBF: Evergreen broadleaf forest, ENF:
Evergreen needleleaf forest, GRA: Grassland, MF: Mixed foresH:@Hen Shrubland, SAV: Savanna, WET: Permanent wetland, WSA:
Woody Savanna). See Table 2 for EC site locations.
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Figure 4. Effective large-scale interannual climate sensitivities
(PgCyr—'K™') calculated from the standard inversion (black),
from the NEE-T inversion (orange), or from observed atmospheric
COx (blue). The sensitivities refers to interannual variations in the
CO3 growth rate at 3 selected atmospheric stations (Point Barrow,
Alaska (BRW), Mauna Loa, Hawaii (MLO) and South Pole (SPO),
diagonally hashed), in the global totaD exchange (solid bars), in
the global terrestrial NEE (horizontally hashed), or in tropical NEE
(25° N-9C* S, vertically hashed), all regressed against interannual
variations in air temperature averaged across tropical lantiN25

25° S) over 1985-2016. The red line surrounded by gray shading de-
notes the resuli.1 +0.9PgC yr*K~! by Cox et al. (2013), even
though calculated in a slightly different way.
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