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Abstract 1 

One known bias in current Earth System Models (ESMs) is the underestimation of global mean 2 

soil carbon (C) transit time (τsoil), which quantifies the age of the C atoms at the time they leave 3 

the soil. However, it remains unclear where such underestimations are located globally. Here, we 4 

constructed a global database of measured τsoil across 187 sites to evaluated results from twelve 5 

ESMs. The observations showed that the estimated τsoil was dramatically shorter from the soil 6 

incubations studies in the laboratory environment (Median = 4 years; interquartile range = 1 to 25 7 

years) than that derived from field in-situ measurements (31; 5 to 84 years) with the shifts of stable 8 

isotopic C (13C) or the stock-over-flux approach. In comparison with the field observations, the 9 

multi-model ensemble simulated a shorter median (19 years) and a smaller spatial variation (6 to 10 

29 years) of τsoil across the same site locations. We then found a significant and negative linear 11 

correlation between the in-situ measured τsoil and mean annual air temperature. The 12 

underestimations of modeled τsoil are mainly located in cold and dry biomes, especially tundra and 13 

desert. Furthermore, we showed that one ESM (i.e., CESM) has improved its τsoil estimate by 14 

incorporation of the soil vertical profile. These findings indicate that the spatial variation of τsoil is 15 

a useful benchmark for ESMs, and we recommend more observations and modeling efforts on soil 16 

C dynamics in regions limited by temperature and moisture. 17 

18 
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1 Introduction 1 

Carbon (C) cycle feedback to climate change is highly uncertain in current Earth System Models 2 

(ESMs) (Friedlingstein et al., 2006, Bernstein et al., 2008, Ciais et al., 2013, Bradford et al., 2016), 3 

which largely stems from their diverse simulations of C exchanges among the atmosphere, 4 

vegetation, and soil (Luo et al., 2016, Smith et al., 2016, Mishra et al., 2017). Soil organic carbon 5 

(SOC) represents the largest terrestrial carbon pool, which stores at least three times as much as 6 

the atmospheric and vegetation C reservoirs (Parry et al., 2007, Bloom et al., 2016). However, a 7 

five- to six-fold difference in soil C stocks among ESMs or offline global land surface model has 8 

been found (Todd-Brown et al., 2013, Luo et al., 2016). It is difficult to reduce or even diagnose 9 

this uncertainty, as many processes collectively affect the time of C atoms transit the soil system 10 

(i.e., transit time; τsoil) (Sierra et al., 2017, Spohn and Sierra, 2018,). Some recent attempts at 11 

evaluating and diagnosing the modeled SOC in ESMs have shown significant simulation 12 

uncertainties in the τsoil (Todd-Brown et al., 2013, Carvalhais et al., 2014, He et al., 2016, Koven 13 

et al., 2017). For example, there is a fourfold difference in the simulated τsoil among the ESMs 14 

from the 5th phase of Coupled Model Intercomparison Project (CMIP5) (Todd-Brown et al., 2013). 15 

A recent data-driven analysis has suggested that the current ESMs have substantially 16 

underestimated the τsoil by 16-17 times at the global scale (He et al., 2016). Therefore, identifying 17 

the locations of such underestimations is critical to improve the predictive ability of ESMs on 18 

terrestrial C cycle, and the construction of a benchmarking database of available observations is 19 

urgently needed (Koven et al., 2017). 20 

The terms of transit time, turnover time and age of soil C have been muddled in diagnosing 21 

the models (Sierra et al., 2017). The diagnostic times derived from observational data are based on 22 

the different assumptions and mainly derived from four approaches. The first approach commonly 23 

defined as “turnover time”, calculated by the division of SOC stock by C fluxes such as net primary 24 

productivity (NPP) or heterotrophic respiration (Rh). It assumes the soil system as a time-invariant 25 

linear system in a steady state (Bolin et al., 1973, Sanderman et al., 2003, Six and Jastrow, 2012). 26 

The second approach is based on the shifts in stable isotopic C (13C) after successive changes in 27 

C3−C4 vegetation, together with additional information from the disturbed and undisturbed soils 28 

(Balesdent et al., 1987; Zhang et al., 2015). The third approach is based on simulating soil C 29 

dynamics with linear models by assimilating the observational data from laboratory incubations of 30 



 

 4 

soil samples (Xu et al., 2016). The last approach derives the weighted inverse of the first-order 1 

cycling rate by fitting a one- or multiple-pool linear model to field observations of radiocarbon 2 

(14C) (Trumbore et al., 1993, Fröberg et al., 2011). The diagnostic times derived from the former 3 

three approaches indicate the transit times which are the mean ages of C atoms leaving the carbon 4 

pools during the certain time (Rasmussen et al., 2016). Lu et al., (2018) has evaluated the deviation 5 

between C transit and turnover times with the CABLE model. Their results have shown that the 6 

global latitudinal pattern of C transit and turnover times are consistent under the steady-state 7 

assumption and autonomous conditions except 8% of divergence in the northern high latitudes 8 

(>60° N). However, the diagnostic time calculated by the radiocarbon signal indicates the average 9 

age of C atoms stored in the C pools. Although radiocarbon has been widely used to quantify the 10 

age or transit time of soil C, its validity has been challenged by some recent theoretical analyses 11 

(Sierra et al., 2017, Metzler et al., 2018). Rasmussen et al., (2016) has marked off the transit time 12 

and mean system age in a mathematic way and further applied into the CASA model. Also, the 13 

methodological uncertainty is large especially when these approaches are applied to estimate the 14 

τsoil of different soil fractions (Feng et al., 2016). Thus, this study mainly collects the τsoil from the 15 

approaches of stock-over-flux, 13C changes and lab incubations in the further analyses.  16 

In this study, we first construct a database from the literatures which reported the τsoil (Fig. 1a, 17 

Supplementary materials on Text S1). Then, the database is used to evaluate the simulated τsoil by 18 

the ESMs in the CMIP5. The SOC τsoil were calculated under the homogenous one-pool 19 

assumption at the steady state for all studies. Data from observations and CMIP5 ensemble were 20 

then used to calculate the τsoil based on both one-pool and three-pool models. Many ESMs, e.g., 21 

CESM, have released new versions in the recent years, so we also evaluate whether the simulated 22 

τsoil has been improved. In the case of CESM, one of its major developments on the soil C cycling 23 

is the vertically resolved soil biogeochemical scheme (Koven et al., 2013). Thus, we employ a 24 

matrix approach developed by Huang et al., (2017) to examine the impact of the vertically resolved 25 

soil biogeochemical scheme on the simulated τsoil by CESM. 26 

2 Materials and Methods 27 

2.1 A global database of site-level τsoil 28 
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We collected the literatures that reported the τsoil based on measurements (Supplementary 1 

Materials on Text1): (1) δ13C shifts after successive changes in C3−C4 vegetation, (2) 2 

measurements of CO2 production in laboratory SOC incubation over at least seven months, and (3) 3 

simultaneously measurements of SOC stock and heterotrophic respiration (stock-over-flux). We 4 

constructed a database containing the measured τsoil from 187 sites across the globe (Fig.1). Based 5 

on the homogenous assumption, the soil system is a time-invariant linear system at the steady state. 6 

The τsoil derived from this database is under one-pool assumption. The information of climate (e.g., 7 

mean annual temperature and precipitation) was also collected from the literatures or extracted 8 

from the WorldClim database version 1.4 (http://worldclim.org/) if they were not available. The 9 

WorldClim dataset provided a set of free global climate data for ecological modelling and 10 

Geographic Information System analyzing with a spatial resolution of 0.86 km2 (Hutchinson et al., 11 

2004). We extracted the mean temperature and precipitation by averaging the monthly climate data 12 

over 1990−2000 for those observational sites with missing climate information. The classes of 13 

biomes were processed to match the seven biomes classification adopted by the MODIS land cover 14 

product MCD12C1 (NASA LP DAAC 2008, Friedl et al., 2010) and Todd-Brown et al. (2013) 15 

(Fig. S1): (1) tropical forest including evergreen broadleaf forest between 25° N and 25° S; (2) 16 

temperate forest including deciduous broadleaf, evergreen broadleaf outside of 25° N and 25° S 17 

and mixed forest south of 50° N; (3) boreal forest including evergreen needleleaf forest, deciduous 18 

needleleaf forest, mixed forest north of 50° N; (4) grassland and shrubland including woody 19 

savanna south of 50° N, savanna and grasslands south of 55° N; (5) deserts and savanna including 20 

barren or sparsely vegetated, open shrubland south of 55° N, and closed shrubland south of 50° N; 21 

(6) Tundra; and (7) Croplands. Other land cover types like permanent wetland, urban, and bare 22 

land were not included in this study. 23 

2.2 Outputs of Earth system models from CMIP5 24 

The historical simulation outputs of 12 ESMs participating CMIP5 from 1850 to 1860 25 

(https://esgf-data.dkrz.de/search/cmip5-dkrz/) were analyzed in this study (Table S1). For each 26 

model, the SOC, litter C, NPP, and Rh were extracted from the outputs in historical simulations 27 

(cSoil, cLitter, npp, and rh, respectively, from the CMIP5 variable list). The litter and soil carbon 28 

were summed as the bulk soil carbon stock. Among the 12 models, only the inmcm4 model did 29 

not output NPP, so we calculated it as gross primary production minus autotrophic respiration. 30 

Due to the diverse spatial resolutions among the models, we aggregated the results of different 31 

http://worldclim.org/
https://esgf-data.dkrz.de/search/cmip5-dkrz/
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models to 1° × 1° with the nearest interpolation method (Fig.S2). The τsoil of SOC was calculated 1 

as the ratio of carbon stock over flux (NPP or Rh): 2 

τsoil =
SOC

flux
                   (1) 3 

2.3 Estimated the SOC τsoil with a three-pool model 4 

To examine whether the major findings of this data-model comparison is affected by the one-pool 5 

homogenous assumption, we fitted a three-pool model with observational data and model 6 

ensemble outputs at the biome level. In this study, a three-pool C model consisted of fast, slow, 7 

and passive pools and carbon transfers among three pools (Fig. S3a). This model shares the same 8 

framework with the CENTURY and the Terrestrial Ecosystem models (Bolker et al., 1998; Liang 9 

et al., 2015). The dynamics of soil carbon pools follow first-order differential kinetics. The total 10 

C stocks and CO2 efflux from observations and CMIP5 ensemble were separated into pool-specific 11 

decomposition rates by the deconvolution analysis (Fig. S3a, Liang et al., 2015). We assumed the 12 

total soil carbon input equals to total soil respiration at the steady state. 13 

Based on the theoretical analysis, the dynamics of the three-pool can be mathematically 14 

described by matrix equation (Luo et al., 2003; Xia et al., 2013) as: 15 

dC(t)

dt
=I(t)-AKC(t)                 (2) 16 

where the matrix C(t) = (C1(t), C2(t), C3(t))
T is used to describe soil carbon pool sizes. A is a matrix 17 

given by:  18 

A = (

-1 f
12

f
13

f
21

-1 0

f
31

f
32

-1

)                 (3) 19 

The elements fij are carbon transfer coefficients, indicating the fractions of the C entering i-th 20 

(row) pool from j-th (column) pool. K is a 3 × 3 diagonal matrix indicating the decomposition rates 21 

(the amounts of C per unit mass leaving each of the pools per year). The matrix of K is given by: 22 

K = diag (k1, k2, k3).  23 

The parameters in the three-pool model were estimated based on Bayesian probabilistic 24 

inversion (equation (4)). The posterior probability density function P(θ|Z) of model parameters 25 

(θ) can be represented by the prior probability density function (P(θ)) and a likelihood function 26 
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(P(Zlθ)) (Liang et al., 2015; Xu et al., 2016). The likelihood function was calculated by the 1 

minimum error between observed and modelled values with equation (5). In this study, we adopted 2 

the prior ranges of model parameter from Liang et al. (2015). 3 

P(θ|Z) ∝ P(Z|θ)∙P(θ)                 (4) 4 

P(Z|θ)∝exp {-
1

2σi
2(t)
∑ ∑ [Zi(t)-Xi(t)]

2
t∈obs(Z)

n
i=1 }           (5) 5 

where Zi(t) and Xi(t) are the observed and modelled transit times, and the σi
2(t) is the standard 6 

deviation of measurements. The posterior probability density function of the parameters was 7 

constructed with two steps: a proposing step and a moving step. In the first step, the dataset was 8 

generated based on the previously accepted data with a proposal distribution: 9 

θ
new

=θ
new

+
d(θmax-θmin)

D
                 (6) 10 

where θmax and θmin  are the maximum and minimum values of the given parameters, d is the 11 

random variable between -0.5 and 0.5 with uniform distribution, D is used to control the proposing 12 

step size in this study. In the moving step, the new data θnew is tested against the Metropolis criteria 13 

to quantify whether it should be accepted or rejected. The parameters of posterior probability 14 

density function were constructed by the Metropolis-Hasting algorithm. The Metropolis-Hasting 15 

algorithm was run 50,000 times for observed data. Accepted parameter values were used in the 16 

further analysis. 17 

Based on the concepts of mean age and mean transit time published by Rasmussen et al., (2016) 18 

and Lu et al., (2018), the mean carbon age defined as the whole time periods the carbon atoms 19 

stored in the carbon pools, and then the mean age of carbon a̅i(t) in a certain carbon pool i could 20 

be calculated with equation (7): 21 

a̅i(t)=1+ 
∑ (a̅j(t)-

3
i=1 a̅i(t))∙fij(t)∙Ci-a̅j(t)∙Ii(t)

Ci
              (7) 22 

where the fij(t) are the carbon fraction transfer coefficients from j-th to i-th pools, Ii (t) is the 23 

external input into the i-th carbon pool. The transit time τi(t) was defined as the mean age of 24 

carbon atoms leaving the carbon pool at a specific time: 25 

τi(t)= ∑ f
i
(t)∙a

i
(t)d

i=1                  (8) 26 
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where the f
i
(t) is the fraction of carbon with mean age ai(t). 1 

2.4 Matrix approach through CLM4.5 and CLM4.5_noV 2 

The Community Land Model Version 4.5 (CLM4.5) is the terrestrial component of Community 3 

Earth System Model (CESM). This version mainly consists of exchanges among different carbon 4 

and nitrogen pools and other biogeochemical cycles, as well as includes a vertical dimension of 5 

soil carbon and nitrogen transformations (Koven et al., 2013). The matrix approach was applied to 6 

extract the soil module from original CLM4.5 which could evaluate which processes influence τsoil 7 

in the model (Huang et al., 2017). Once get the total C pool and Rh in each pool, we can calculate 8 

the τsoil with the equation (1). We represented the structure of SOC as 7 carbon pools as i) one 9 

coarse woody debris (CWD) pool, ii) three litter pools (litter1, litter2 and litter3) and iii) three soil 10 

carbon pools (soil1, soil2, and soil3). In this matrix, C is transferred from three litter pools and 11 

CWD to three soil pools with different transfer rates. In each layer, these transfer rates are regulated 12 

by the transfer coefficients and fractions. C inputs from litterfall were allocated into different C 13 

compartments by modifications by soil environmental factors (temperature, moisture, nitrogen and 14 

soil oxygen) and vertical transfer process. To understand whether the incorporation of soil vertical 15 

profile affect the simulation of τsoil, we compared the results based on matrix approach with (i.e., 16 

CLM4.5) or without (i.e., CLM4.5_noV) the soil vertical transfer process. 17 

In the CLM4.5, soil C dynamics was simulated with 10 soil layers, and the same organic 18 

matter pools among different vertical soil layers are allowed to mix mainly through diffusion and 19 

advection. The matrix approach determinates the soil dynamic of each SOC pool by simulating 20 

the first-order kinetics as equation (9): 21 

dC(t)

dt
=B(t)I(t)-Aξ(t)KC(t)-V(t)C(t)             (9) 22 

where the C(t) is the organic C pool size at time t. I(t) is the total organic C inputs while B(t) is the 23 

vector of partitioning coefficients. K is a diagonal matrix which representing the intrinsic 24 

decomposition rate of each C pool. The decomposition rate in the matrix approach is modified by 25 

the transfer matrix A and environmental scalars ξ. The scalar matrix ξ shown in equation (10) is 26 

the environmental factor to modify the SOC intrinsic decomposition rate. Each scalar matrix 27 
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combines temperature (ξT), water (ξW), oxygen (ξO), depth (ξD) and nitrogen (ξN) controlled scalar 1 

on SOC decay. 2 

ξ
'
=ξTξ

W
ξOξDξN                  (10) 3 

A is the horizontal C transfer matrix which quantifies C movement among different C pools shown 4 

as matrix (10). The non-diagonal entries Aij shown in matrix (10) represent the fraction of C 5 

moves from the j-th to the i-th pool. In CLM4.5 and CLM4.5_noV, transfer coefficients are the 6 

same in each soil layer. 7 

A = 

(

 
 
 
 
 

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 f
44

0 0 0

0 f
52

f
53

0 f
55

f
56

f
57

0 0 0 f
64

f
65

f
66

0

0 0 0 0 f
75

f
76

f
77)

 
 
 
 
 

            (11) 8 

V(t) is the vertical C transfer coefficient matrix among different soil layers, each of the diagonal 9 

blocks is a tridiagonal matrix that describes transfers coefficient with Vij(t) . In this section, 10 

CLM4.5_noV assumes no vertical transfers in all pools. Therefore, V(t) for CLM4.5_noV is a 11 

blank matrix in the simulation. In the contrast, CLM4.5 was assigned by a matrix with vertical 12 

transfers in each C pool. As the vertical transfer rates among different C pool categories in CLM4.5, 13 

the matrix shown as matrix (12). 14 

V(t) = 

(

 
 
 
 
 

0 0 0 0 0 0 0

0 V22(t) 0 0 0 0 0

0 0 V33(t) 0 0 0 0

0 0 0 V44(t) 0 0 0

0 0 0 0 V55(t) 0 0

0 0 0 0 0 V66(t) 0

0 0 0 0 0 0 V77(t))

 
 
 
 
 

       (12) 15 

2.4 Statistical analyses. 16 

The median and interquartile were used for the quantification of both observational and modelling 17 

results due to the probability distribution of τsoil is not normal. To test the difference in τsoil among 18 
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three approaches, we first normalized the data with the log-transformation and then applied the 1 

one-way ANOVA with multi-comparison technique (Fig. 1b insert). The linear regression and 2 

correlation analyses were performed in R (3.2.1; R development Core team, 2015).  3 

The Gaussian kernel density estimation was used to obtain the distributions of observed transit 4 

times (Sheather & Marron, 1990; Saoudi et al., 1997). The Gaussian kernel density estimation is 5 

a non-parametric approach to estimate the probability density function of a random variable. Let 6 

(x1,x2,⋯, xn) denote the observed SOC τsoil with density function f as below: 7 

f ̂
h
(x)=

1

nh
∑ K(

x-xi

h
)n

i=1                  (13) 8 

where K is the non-negative function than integrates to one and has mean zero, and h > 0 is a 9 

smoothing parameter called the bandwidth. The bandwidth for approaches of stable isotope 13C, 10 

stock-over-flux and incubation are: 48.61, 35.13, 2.62, respectively. 11 

3 Results and discussion 12 

3.1 τsoil and its spatial variation by different approaches 13 

The one-way ANOVA with multi-comparison analysis showed no significant difference in the log-14 

transformed τsoil between the methods of 13C (Median = 60 years; interquartile range =  8 to 29 15 

years) and stock-over-flux (16; 3 to 156 years, Fig. 1b). The range of these field in-situ 16 

measurements (31; 5 to 84 years) is comparable to a former estimate of mean SOC turnover time 17 

(48 with 24 to 107 years) across twenty long-term experiments in temperate ecosystems using the 18 

13C labelling approach (Schmidt et al., 2011). However, the estimates of τsoil from laboratory 19 

studies (4; 1 to 15 year) was significantly shorter than the other two methods (Fig. 1b). It suggests 20 

that the τsoil could be underestimated by the measurements from the laboratory incubations studies. 21 

Thus, the τsoil from the laboratory incubation studies were excluded in the following analyses. 22 

We then integrated the estimates of τsoil based on the 13C, and stock-over-flux approaches to 23 

examine the inter-biome difference. As shown by Figure 2b, the longest τsoil was found in desert 24 

and shrubland (170; 58 to 508) and tundra (159; 39 to 649 years). Boreal forest (58; 25 to 170 25 

years) has longer τsoil than the temperate (44; 13 to 89 years) and tropical forests (15; 9 to 130 26 

years). Grassland and savanna had short (35; 21 to 57 years) and croplands had moderate (62; 21 27 

to 120 years) τsoil in comparison with other biomes (Fig. 2). 28 
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3.2 Modelled τsoil in the CMIP5 ensemble and its estimation biases 1 

The longest ensemble mean τsoil of multiple models were found in dry and cold regions (Fig. 2). 2 

In comparison with the integrated observations from 13C and stock over flux, the modelled τsoil 3 

were significantly shorter across all biomes (Fig. 2b insert). The negative bias was larger in dry 4 

(desert, grassland, and savanna) and cold (tundra and boreal forest) regions than tropical and 5 

temperate forests. The longest modelled τsoil appeared in the tundra ecosystem with the median of 6 

64 years. The modelled median τsoil were also shorter than observations in tropical forest (9 years), 7 

temperate forests (13 years), boreal forest (24 years), grassland/savanna (25 years), desert and 8 

shrubland (58 years) and croplands (27 years) (Fig. 2). In comparison with the observations, the 9 

models obviously underestimated the τsoil in the cold and dry biomes (Fig. 2b). A recent global 10 

data-model comparison study at the 0.5° × 0.5° resolution has also detected a similar spatial pattern 11 

of underestimation bias in ecosystem C turnover time (Carvalhais et al., 2014), but its magnitudes 12 

of bias in the cold regions are much smaller than that found in this study.  13 

By grouping the τsoil into different climatic categories, we found that the observed τsoil 14 

significantly covaried with MAT (y = -5.28x+156.04, r2 = 0.48, P <0.01) and MAP (y= -15 

68.19x+1222.6, r2 = 0.60, P<0.01) (Fig. 3). These results support the previous findings of negative 16 

covariations between τsoil and temperature at both the site and global levels (Trumbore et al. 1996). 17 

Although there is no significant correlation between τsoil and MAP in the observations, the models 18 

produced negative correlations of τsoil with MAT (r2 = 0.24, P < 0.05) and MAP (r2 = 0.44, P < 19 

0.05) (Fig. 3). 20 

3.3 Estimation the τsoil with a three-pool model  21 

With the three-pool model, the total C stocks and CO2 efflux from observations and CMIP5 22 

ensemble were separated into pool-specific decomposition rates by the deconvolution analysis (Fig. 23 

S3a, Liang et al., 2015). Seven out of eleven parameters were constrained for tropical forest and 24 

cropland (Fig. S4, Fig. S9). Eight out of eleven parameters were constrained for temperate, boreal 25 

forest and desert & shrubland (Fig. S5, S6, S8). Five out of eleven parameters were constrained 26 

for tundra ecosystem (Fig. S7). For grassland and savanna, seven out of eleven parameters were 27 

constrained (Fig. S10).  28 

The longest simulated τsoil appeared in tundra (167 years) and desert (135 years) (Fig. 4, Table 29 

S3). Temperate forest (79 years) has longer τsoil than the boreal (66 years) and tropical forests (29 30 
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years). Grassland and savanna had short (53.8 years) and croplands had moderate (77 years) τsoil 1 

in comparison with other biomes. The τsoil calculated from the one- and three-pool models did not 2 

show large difference across all biomes. Also, estimates based on these two model structures 3 

showed the largest underestimation of τsoil in the tundra and desert (Fig. 4). 4 

3.4 Improved modeling of τsoil with vertically resolved SOC dynamics 5 

Given that many ESMs have further developed their representations of the soil biogeochemistry 6 

in recent years, we also examined whether the τsoil estimates have been improved by one of the 7 

CMIP5 models (i.e., CESM). It is encouraging that the biases of τsoil in dry and cold regions have 8 

been substantially reduced in the new land version of CESM (i.e., version 4.5 of the Community 9 

Land Model; CLM4.5). One major improvement in CLM4.5 is the vertically resolved SOC 10 

dynamics (Koven et al., 2013). The soil organic carbon is allowed to transfer through diffusion 11 

and advection up to 3.8 m within 10 layers. In each layer, the transfer rates are regulated by the 12 

environmental scalars (i.e. temperature, soil moisture and available oxygen). The τsoil simulated by 13 

CLM4.5 are longer than CLM4 (with median value 137 year & 21 year) especially in northern 14 

high latitudinal regions. By turning off the vertical C movements with a matrix approach (i.e., there 15 

is no vertical C transfer, thus, the vertical matrix is a zero matrix in equation (12)), we showed a 16 

similar pattern of underestimation on τsoil by CLM4.5 (i.e., CLM4.5_noV in Fig. 5). Huang et al., 17 

(2017) also reported the longer τsoil and high carbon storage capacity in northern high latitudes. 18 

Those result suggest that the vertically resolved soil biogeochemistry is promising in improving 19 

the τsoil estimates by ESMs. However, it should be noted that the spatial variation of τsoil is still 20 

largely underestimated by the CLM4.5 (Fig. 5b insert). 21 

Higher NPP values simulated by ESMs in the cold and dry regions have been reported by 22 

previous studies (Shao et al., 2013, Smith et al., 2016, Xia et al., 2017). The models produce high 23 

NPP in cold regions largely because they overestimate the efficiency of plant transferring 24 

assimilated C to growth (Xia et al., 2017). The CMIP5 models overestimate the precipitation and 25 

underestimate the dryland expansion by 4 folds during 1996-2005 (Ji et al., 2015), which could 26 

lead to high NPP and fast SOC turnover rates. These results suggest that once the NPP simulation 27 

is improved without the correction of the τsoil underestimation, the models will produce smaller 28 

SOC stock in the cold and dry ecosystems. 29 



 

 13 

This study shows that adding the vertical resolved biogeochemistry is a promising approach 1 

to correct the bias of τsoil in current models. However, other processes such as the microbial 2 

dynamics, SOC stabilization and nutrient cycles could affect the estimation of τsoil, but are so far 3 

fully considered by the CMIP5 models (Luo et al., 2016). For example, adding soil microbial 4 

dynamics could increase τsoil in cold regions by lowering the transfer proportion of decomposed 5 

SOC to the atmosphere (Wieder et al., 2013). By contrast, the incorporation of nitrogen cycles 6 

might shorten τsoil by increasing plant C transfers to short-lived litter pools (e.g., O-CN and 7 

CABLE model) (Gerber et al., 2010) or reducing litter C transfers to the slow soil C pools (e.g., 8 

LM3V model) (Xia et al., 2013). 9 

Large challenges still exist in using observations derived from different methods to constrain 10 

the modelled τsoil. Laboratory incubation studies report much shorter τsoil than other methods, 11 

mainly due to the optimized soil moisture and/or temperature during the soil incubation (Stewart 12 

et al., 2008; Feng et al., 2016). It suggests that the ESM models will largely underestimate τsoil if 13 

its turnover parameters are derived from laboratory incubation studies. It should be noted that the 14 

observations from the 13C and the stock-over-flux approaches in this study are derived for the bulk 15 

soil. However, SOC is commonly represented as multiple pools with different cycling rates in most 16 

of the CMIP5 models (Luo et al., 2016, Sierra et al., 2017, 2018, Metzler and Sierra, 2018). As 17 

synthesized by Sierra et al. (2017), the observations of τsoil are useful for a specific model once its 18 

pool structure is identified. This study also detect difference in the estimated τsoil between the one- 19 

and three-pool models (Fig. 4). Thus, model database, such as the bgc-md 20 

(https://github.com/MPIBGC-TEE/bgc-md), is a useful tool to improve the integration of 21 

observations and soil C models. An enhanced transparency of C-cycle model structure in ESMs is 22 

highly recommended, especially when they participate in the future model intercomparison 23 

projects such as the CMIP6 (Jones et al., 2016). 24 

4 Conclusions 25 

This study detected large underestimation biases of τsoil in ESMs in cold and dry biomes, especially 26 

the tundra and desert. Improving the modelling of SOC dynamics in these regions is important 27 

because the cold ecosystems (e.g., the permafrost regions) are critical for global C feedback to 28 

future climate change (Schuur et al., 2015) and the dry regions strongly regulate the interannual 29 

variability of land CO2 sink (Poulter et al., 2014, Ahlström et al., 2015). The current generation of 30 

https://github.com/MPIBGC-TEE/bgc-md
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ESMs represents the soil C processes with a similar model formulation as first-order C transfers 1 

among multiple pools (Sierra et al., 2015, Luo et al., 2016, Metzler and Sierra, 2018). Thus, 2 

tremendous research efforts are still required to attribute the underestimation biases of τsoil in 3 

current ESMs to their sources, such as the model structure, parameterization, and climate forcing. 4 

Reducing these biases would largely improve the accuracy of ESMs in the projection of future 5 

terrestrial C cycle and its feedback to climate change. Recent modelling activities aiming to 6 

increase the soil heterogeneity, e.g., soil vertical profile (Koven et al., 2013, 2017) and microbial 7 

dynamics (Allison et al., 2010, Wieder et al., 2013), are promising. Overall, this study shows the 8 

great spatial variation of τsoil in the natural ecosystems, and we recommend more research efforts 9 

to improve its representation by ESMs in the future. 10 
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 1 

Figure 1. Spatial distributions of observational sites for estimates of SOC transit time (τsoil, 2 

year). (a), The site locations of measurements with different approaches. (b), Probability 3 

density functions of τsoil measured by different approaches. Note that the left axis is for 13C 4 

and stock-over-flux approaches, and the right axis is for laboratory incubation studies. 5 
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 1 

Figure 2. Global spatial variation of SOC transit time (τsoil) with climate and the difference 2 

of τsoil estimation between observations and models. (a), Spatial variation of τsoil with mean 3 

annual temperature (MAT) and mean annual precipitation (MAP). (b), Comparisons of 4 

modelled against observed τsoil. Details for the classification of biomes are provided in the 5 

method section.  6 
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 1 

Figure 3. Relationships between SOC transit time (τsoil) and climate factors in both 2 

observations and CIMP5 models. The black solid lines show the negative correlation 3 

between τsoil and (a) mean annual temperature and (b) mean annual precipitation. The black 4 

dots indicate the aggregated τsoil over each category of MAT (y= -5.47x+1971.5, r2 = 0.49, 5 

P<0.01) or MAP (y= -68.19x+1222.6, r2 = 0.60, P<0.01). The red and blue dots present the 6 

mean value of the multiple models based on the ratios of carbon stock over NPP and Rh, 7 

respectively. 8 
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 1 

Figure 4. The SOC transit time (τsoil) calculated from the one- and three-pool models under 2 

the steady-state assumption. 3 
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 1 

Figure 5. Simulated SOC transit time (τsoil) by CLM4 (a; median global τsoil = 20.56 years), 2 

CLM4.5 (b; median global τsoil =127.50 years) and CLM4.5_noV (c; median global τsoil 3 

=22.24 years). The panel (d) shows the latitudinal spatial distribution of the mean τsoil of 4 

different models in desert and tundra. The insert figures in panels a-c compare the τsoil 5 

between models and observations. The bottom and top of the box represent the first and third 6 

quartiles. 7 
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