

1 Response to Reviewer 1: Dr. Cene Fiser

2

3 **Manuscript Title: Biogeography and community structure of 1 abyssal**
4 **scavenging Amphipoda (Crustacea) in the Pacific Ocean.**

5

Ref: bg-2018-347

6

Journal: BioGeosciences

7 Dear Dr Fiser,

8 We would like to thank you for the clarification of your previous comments. The authors
9 agree, and in accordance with your suggestion, revised the CPUE effort plot to show
10 uncorrected time, and added further details for the rarefaction analysis.

11 Overleaf, you will find a point by point reply on how we addressed your comments in the
12 revised version of our manuscript. Attached also is a copy of the manuscript with track
13 changes highlighted in green.

14 With Kind Regards, also on behalf of the co-authors,

15 Tasnim Patel.

16

17

18

19

20

21

22

23

24

26 RC1. Catch per unit analysis: the correction for sampling effort per time you used, dividing number of
27 individuals with time the trap was deployed, may be inappropriate. The correction would be fine, if
28 amphipods were dripping into the trap constantly, and if the density of amphipods was even.
29 However, time that amphipods reach the trap depends on time the odor is spread and walking speed.
30 The first hours amphipods may rapidly reach the trap, but more distant individuals arrive with larger
31 and larger lag. This might mean that in your correction nominator increases eg logarithmically and
32 denominator increases linearly, and that traps deployed for longer periods will be corrected
33 "disproportionally more" than traps deployed for shorter periods. Please consider this aspect in your
34 discussion

35 **Our reply:** Line 374 onward, shows an amended CPUE graph which has not been corrected for time.
36 The paragraph describing the CPUE results was also amended (line 505 onward).

37 RC2. Rarefaction curves: describe your procedure better: how many subsamples were taken, what was
38 the sizes of random subsamples, how many times you run rarefactions and so on, hence the
39 parameters of the procedure.

40 **Our reply:** Line 295, paragraph describing the rarefaction was amended to state it was run on the
41 longer than 15 mm fraction indicated in Table 2.0, and curves were generated using the default
42 parameters of the "rarefy" function in R.

43 All comments from the edits directly within the PDF were addressed.

44

45 **Other comments:**

46 *Tectovallopsis* -> *Tectovallopsis* changed throughout.

47 *Valettieta tenuipes* -> *Paralicella tenuipes* changed throughout

48 Species authorities added throughout.

49 Figures 5a and 5b redone.

50

51

52

53

54

55

56

57 Biogeography and community structure of abyssal
58 scavenging Amphipoda (Crustacea) in the Pacific
59 Ocean.

60

61 Patel, Tasnim.^{1, 2}, Robert, Henri.¹, D'Udekem D'Acoz, Cedric.³, Martens,
62 Koen.^{1,2}, De Mesel, Ilse.¹, Degraer, Steven.^{1,2} & Schön, Isa.^{1, 4}

63

64 ¹ Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment,
65 Aquatic and Terrestrial Ecology, Vautierstraat 29, B-1000 Brussels, Gulledele 100, 1000
66 Brussels and 3e en 23e linieregimentsplein, 8400 Oostende, Belgium.

67 ² University of Ghent, Dept Biology, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium

68 ³ Royal Belgian Institute of Natural Sciences, Operational Directorate Taxonomy &
69 Phylogeny, Vautierstraat 29, B-1000 Brussels, Belgium.

70 ⁴ University of Hasselt, Research Group Zoology, Agoralaan Building D, B-3590
71 Diepenbeek, Belgium.

72

73 Corresponding author: Ms. Tasnim Patel - tpatel@naturalsciences.be

74

75

76

77

78

79

80

81

82

83 **Abstract**

84

85 In 2015, we have collected more than 60,000 scavenging amphipod specimens during two
86 expeditions to the Clarion-Clipperton fracture Zone (CCZ), in the Northeast (NE) Pacific and
87 to the DISturbance and re-COLONisation (DisCOL) Experimental Area (DEA), a simulated
88 mining impact disturbance proxy in the Peru basin, Southeast (SE) Pacific. Here, we compare
89 biodiversity patterns of the larger specimens (> 15 mm) within and between these two
90 oceanic basins. Eight scavenging amphipod species are shared between these two areas, thus
91 indicating connectivity. We further provide evidence that disturbance proxies seem to
92 negatively affect scavenging amphipod biodiversity, as illustrated by a reduced alpha
93 biodiversity in the DEA (Simpson Index (D) = 0.62), when compared to the CCZ (D = 0.73)
94 and particularly of the disturbance site in the DEA and the site geographically closest to it.
95 Community compositions of the two basins differs, as evidenced by a Non-Metric
96 Dimensional Scaling (NMDS) analysis of beta biodiversity. The NMDS also shows a further
97 separation of the disturbance site (D1) from its neighbouring, undisturbed reference areas
98 (D2, D3, D4 and D5) in the DEA. A single species, *Abyssorchromene gerulicorbis*
99 (Shulenberger & Barnard, 1976), dominates the DEA with 60% of all individuals.

100 **Keywords**

101

102 JPIO Ecological Aspects of Deep-sea mining, Clarion Clipperton Fracture Zone, CCZ, DisCOL
103 Experimental Area (DEA), Amphipoda.

104

105

106

107

108

109

110

111

112 **Introduction**

113

114 The abyssal deep sea (3000 - 6000 m) represents the largest ecosystem on the planet, with the
115 abyssal seafloor covering approximately 54% of the Earth's solid surface (Rex et al. 1993;
116 Gage & Tyler, 1991). Since it is one of the least investigated ecosystems, there are still
117 extensive gaps in our knowledge of deep-sea fauna (German et al. 2011). Marine research has
118 thus far focused on coastal areas, hydrothermal vents or chemosynthetic habitats, whereas
119 open-ocean abyssal plains have been less extensively investigated (Ramirez-Llodra et al.
120 2010). This is unsurprising given the challenges of sampling this remote environment, which
121 is impeded by several confounding factors. For example, deep-sea sampling is both
122 financially expensive and labour intensive, and furthermore, constrained by the challenge of
123 deploying equipment at low temperatures (0.01 - 4.0°C) and at high hydrostatic pressures
124 (Sweetman et al. 2017). Therefore, to date very little of the deep sea has been sampled, and
125 the oversampling in the North Atlantic basin has created a biased knowledge base (McClain
126 & Hardy, 2010). Consequently, and owing to the low availability of data on deep-sea
127 biodiversity, and with the inherent risk of under-sampling, it is difficult to estimate species
128 richness in the deep sea.

129

130 In the traditional view of the deep sea, the abyss was considered to be homogeneous and
131 many species were thought to have large biogeographical ranges, their dispersal aided by an
132 apparent lack of barriers (Sanders, 1968). This hypothesis was challenged by the discovery of
133 chemosynthetic habitats e.g. hydrothermal vents (Lonsdale, 1977), cold seeps (Paull et al.
134 1984), seasonal fluctuations in primary productivity (Billett et al. 1983) and erratic whale-
135 falls (Smith et al. 1989). All of this research has demonstrated that the deep sea is an
136 heterogeneous environment and is controlled by many factors, including: Particulate Organic
137 Carbon (POC) flux, water depth, flow regime, current circulation, seafloor topography (Laver
138 et al. 1985) and also historical factors e.g. the opening of ocean basins (i.e. rifting), sea-level
139 rise and fall, and periods of deep-sea anoxia (Smith et al. 2006). All of these can result in a
140 mosaic of different communities (Levin et al. 2001), many of which do not follow a
141 latitudinal gradient (Brandt et al. 2007).

142

143 It has also been established that dispersal ability of species on the one hand, and their actual
144 geographic and bathymetric distribution range on the other, are not always linked, and are
145 often dependent on habitat suitability, fragmentation, and ecological flexibility (Lester et al.

146 2007; Liow 2007). Therefore, although the deep-seafloor includes some of the largest
147 contiguous features on the planet, the populations of many deep-sea species are spatially
148 fragmented, and may become increasingly so with continued human disturbance (Hilario et
149 al. 2015).

150

151 In the last decade, there has been an bigger demand for exploitation of deep-sea resources e.g.
152 rare earth element (REE) extraction (such as those concentrated in manganese nodule
153 provinces) (Ramirez-Llodra et al. 2011). As a result, ecologists are increasingly asked to
154 assess the ecological risks of these mining activities and to provide sustainable solutions for
155 its mitigation, in order to prevent adverse changes to the deep-sea ecosystem (ISA, 2017).

156

157 Glover et al. (2001) showed that abyssal sediments can contain high biodiversity with more
158 than 100 species of meiofaunal invertebrates (e.g. nematodes, copepods) and protists (e.g.
159 foraminifers) found every square meter. In spite of this, our knowledge on the deep-sea
160 ecosystem structure and functioning is still limited, and there is a paucity of data on the
161 distribution, drivers and origins of deep-sea communities at global scales. This is especially
162 true for deep-sea invertebrates, including Amphipoda (Barnard 1961; Thurston 1990).

163

164 Although recent morphological and molecular studies have shed new light on the distribution
165 and habitat niches of certain benthic-pelagic amphipods (e.g. *Eurythenes*) (Havermans, 2016;
166 Narahara-Nakano et al. 2017), there is little published so far on how widespread other
167 amphipod species may be. This lack of information on species richness and ecological
168 uniqueness hampers the answering of crucial questions on recoverability of anthropogenic
169 impacts. Ultimately this impedes ecologists from providing advice on sustainable deep-sea
170 mining practices, thus, underpinning the need for this dedicated deep-sea ecosystem research.

171

172 Here, we present distribution patterns of scavenging deep-sea amphipod communities, with
173 the first comparisons of their biogeography and community structures in two oceanic basins.
174 These two basins are the research areas for simulating/studying the anthropogenic impacts of
175 deep-sea nodule mining.

176

177 We are investigating whether there are differences and similarities in the species
178 compositions of the two basins (e.g. richness, abundances), and further exploit a disturbance
179 experiment to compare the biodiversity of this mining impact proxy to the undisturbed

180 reference areas. We discuss the possible implications of our findings; aiming to use them to
181 formulate recommendations regarding the pending deep-sea mining of manganese nodule
182 activities in the NE Pacific ecosystem.

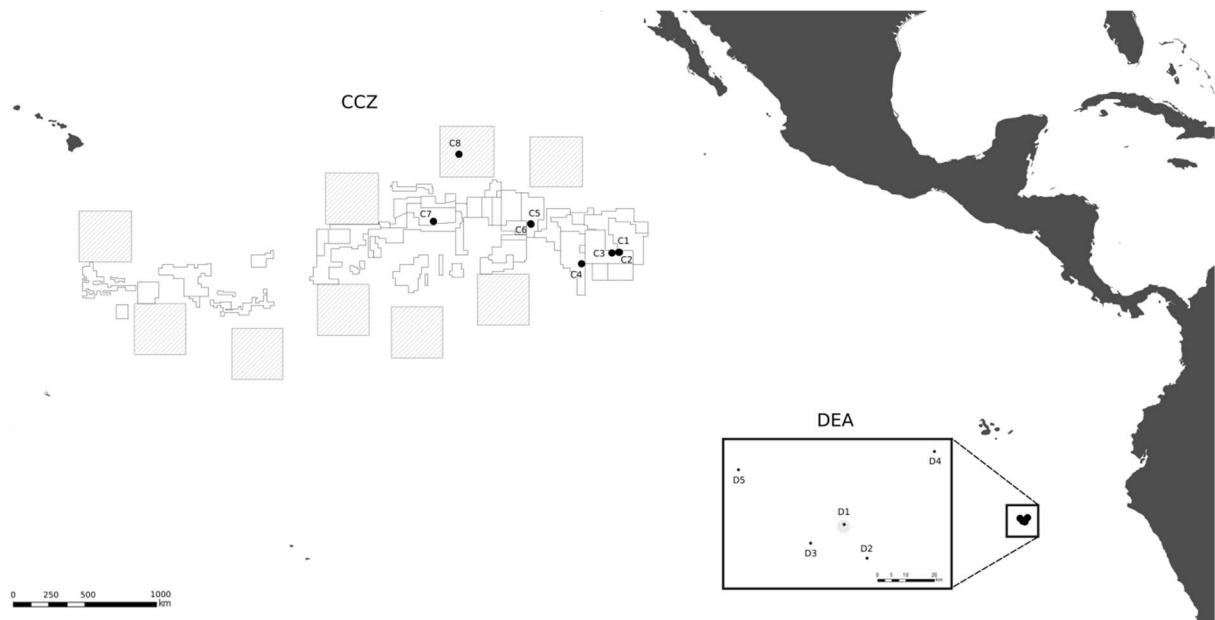
183 **Material and Methods**

184

185 ***Study area***

186

187 We investigated the amphipod communities of two oceanic basins (Figure 1); (i) the Clarion-
188 Clipperton Fracture Zone (CCZ, six million km², 7000 km wide), an economically important
189 manganese nodule field in the NE Pacific, comprising several different contractor claim
190 areas, (who to date, have exploration licences only), and nine designated Areas of Particular
191 Ecological Interest (APEIs) as designated by the International Seabed Authority (ISA)
192 (Lodge et al, 2014) and (ii) the DISturbance and re-COLONisation (DisCOL) Experimental
193 Area (DEA, 11 km², 4 km wide), a mining disturbance proxy (also containing manganese
194 nodules) in the Peru Basin in the SE Pacific. In 1989, the DEA sediment bed was artificially
195 disturbed using a plough-harrow to create 78 track marks (Appendix 1) (Thiel, 1992).. These
196 are supposed to simulate the type of disruption which would be caused by a commercial
197 mining operation This baseline study was a new approach in deep-sea risk assessment and is
198 still ongoing today, providing us with crucial data from this long-term ecological experiment.


199

200

201

202

203

204

205

206 **Figure 1: Geographic locations of the two study areas, the Clarion-Clipperton fracture**
 207 **Zone (CCZ) (Northeast Pacific) and the DisTurbance and re-COLONisation (DisCOL)**
 208 **Experimental Area (DEA) (Peru Basin, Southeast Pacific).** There are nine Areas of
 209 Particular Ecological Interest (APEIs) in the CCZ region, which are illustrated by 400 x 400
 210 km² white boxes. Grey boxes indicate the various contractor claim areas in the CCZ. We
 211 deployed eight amphipod traps across the CCZ, which is 16,000 km² and 7000 km wide, and
 212 five in the DEA, which encompasses 11 km² with a width of 4 km.

213

214 ***Sampling***

215

216 In 2015 (26 years after the first impact in the DEA in 1989), two research expeditions with
 217 the “RV Sonne” visited the CCZ (cruise SO239) and revisited the DEA (cruise SO242-1 &
 218 SO242-2), to assess if and how the deep-sea faunal communities had recovered within the
 219 DEA, and to attempt to quantify their recolonization potential.

220

221 Amphipod samples were taken from the CCZ and DEA using a free-fall lander (120 x 120 x
 222 120 cm), to which four plastic traps were attached (two 20 x 25 x 40 cm traps with four cm
 223 openings and two 25 x 40 x 60 cm traps with eight cm openings), baited for each station with
 224 an 800 g mixture of mackerel, squid and shrimp. Using this specially designed deep-sea
 225 sampling equipment, more than 60,000 specimens of scavenging amphipods were collected
 226 from the CCZ and the DEA sites.

227

228 The baited trap was deployed eight times across the CCZ at a depth range of 4116 - 4932 m
 229 (samples C1 - C8), and five times in the DEA at a depth range of 4078 - 4307 m (samples D1

230 - D5; Figure 1, Table 1). In the CCZ, we sampled within three different contractor claim
231 areas (Table 1) to obtain a pre-disturbance baseline, and to then compare it with one of the
232 nine protected APEIs around the CCZ. In contrast, in the DEA, sampling was conducted once
233 within the disturbed area (D1), twice 10 km away (D2, D3) and twice 40 km away (D4, D5)
234 from D1 in four surrounding reference areas (see Figure 1).

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258 **Table 1: Station overview.**

259 Codes refer to the codes used in this paper in figures 1, 3, 4, 6 and Table 3. The original
 260 station code represents the cruise codes from (SO239 and SO232-1). Depth refers to water
 261 depth (m) on deployment. Nodule presence/absence information is known only for stations
 262 D3 and D4.

Deployment Code	Original Station Code	Depth (m)	Known geological features	Remarks	Residence Time (h:m:s)
C1	SO239-33	4122	Plains	German claim	100:20:00
C2	SO239-37	4116	Plains	German claim	125:49:00
C3	SO239-63	4354	Plains	German claim	66:07:00
C4	SO239-96	4388	Seamount	Inter Ocean Metals (IOM) claim	63:02:00
C5	SO239-123	4529	Plains	Belgian claim	26:12:00
C6	SO239-139	4516	Plains North/South + seamount to west	Belgian claim	56:33:00
C7	SO239-173	4934	Plains	French claim	79:40:00
C8	SO239-205	4855	Plains	Area of Particular Ecological Interest (APEI)	55:59:00
D1	SO242/1-8	4146	Plains	Disturbed	44:26:33
D2	SO242/1-30	4307	Plains	Undisturbed Reference	51:11:18
D3	SO242/1-55	4043	Seamount No nodules	Undisturbed Reference	25:09:09
D4	SO242/1-68	4078	Seamount No nodules	Undisturbed Reference	65:20:46
D5	SO242/1-106	4269	Plains	Undisturbed Reference	47:00:50

263

264

265

266

267

268

269

270

271 **Processing**

272

273 On recovery of the lander, all traps were disconnected and placed in pre-cooled (4°C) buckets
274 of filtered seawater. All specimens were washed on board in a cool-climate laboratory (4°C),
275 morphologically pre-sorted and fixed in molecular grade (95%) ethanol, before being stored
276 at -20°C.

277

278 Detailed sorting and identification was performed using the morphological species concept
279 (Futuyama, 1998) and the keys of Lowry & Killagen (2014) and Schulenberger & Barnard
280 (1976), to separate the samples into taxonomic “morphotypes”. The larger fraction (> 15 mm
281 length) has been identified to the lowest possible taxonomic resolution. Species not assigned
282 with certainty are denoted here by as affiliated species (e.g. *genus* aff. *species*) or conferred
283 species (e.g. *genus* cf. *species*).

284

285 Specimens with a size of less than 15 mm length were excluded from the analysis because
286 these were mostly juveniles and their morphological differences were not sufficiently
287 pronounced to allow an accurate identification to the species or even genus level. Some
288 pelagic amphipods were collected accidentally and omitted. Finally, genera containing
289 multiple (and as yet) unidentified species have been summarised as “spp.”

290

291 **Statistical analyses**

292

293 Our null hypothesis (H_0) here is that there are no differences in the amphipod biodiversity of
294 the two basins. To test this hypothesis, we firstly calculated the alpha biodiversity of the two
295 basins was using the Simpson Index (D) (Simpson, 1949) (Appendix 4). Rarefaction was run
296 on the longer than 15 mm fraction using default parameters. Individual-based curves were
297 generated using the rarefy function of the vegan package in R 2.3.0 (R Core Team, 2013;
298 Gotelli, 2001) to compare species richness across all thirteen sampling stations and to test for
299 the completeness of sampling.

300

301 Secondly, to compare the beta biodiversity, we estimated the variability of the community
302 compositions between sites. The Bray-Curtis dissimilarity metric (Bray & Curtis, 1957), was
303 used to calculate differences between community compositions based on species densities,
304 and the results were then visualised in 2D using a Non-Metric Dimensional Scaling (NMDS)

305 plot. The ANOSIM function in the vegan package of R (R Core Team, 2013; Taguchi & Ono,
306 2005) was used to test the statistical significance of the differences in species compositions
307 between the two study areas.

308

309

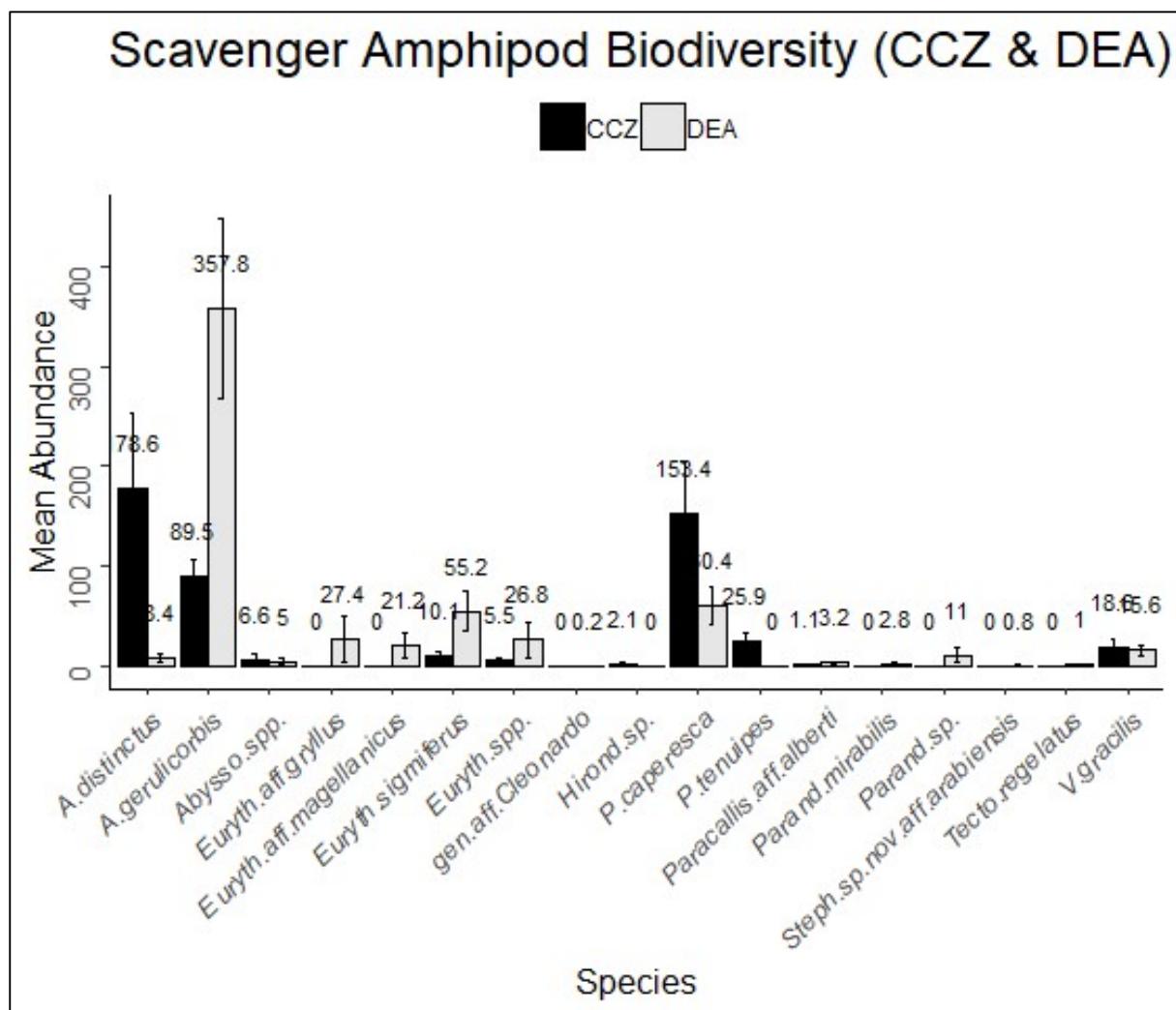
310 **Results**

311

312 ***Basin biodiversity***

313

314 In total, 6916 scavenging amphipods (> 15 mm) were collected from the thirteen trap
315 deployments in the two study areas, representing a total of seventeen morphotypes (Figure 2).
316 In the CCZ, we collected 3932 individuals, which represent ten morphotypes. Five of these
317 have been identified to the species level: *Abyssorchromene distinctus* (Birstein & Vinogradov,
318 1960), *Abyssorchromene gerulicorbis* (Shulenberger & Barnard, 1976), *Eurythenes sigmiferus*
319 (d'Udekem d'Acoz & Havermans, 2015), *Paralicella caperesca* (Shulenberger & Barnard,
320 1976) and *Paralicella tenuipes* (Chevreux, 1908). Two are affiliated to a species
321 (*Paracallisoma* aff. *alberti* and *Valettietta* cf. *gracilis*) and the remaining three are at least
322 affiliated to a genus (Tables 2a and 2b). The 2984 individuals from the DEA represent fifteen
323 morphotypes. Six of these have been identified to the species level: *Abyssorchromene*
324 *distinctus* (Birstein & Vinogradov, 1960), *Abyssorchromene gerulicorbis* (Shulenberger &
325 Barnard, 1976), *Eurythenes sigmiferus* (d'Udekem d'Acoz & Havermans, 2015), *Paralicella*
326 *caperesca* (Shulenberger & Barnard, 1976), *Parandaniexis mirabilis* (Schellenberg, 1929)
327 and *Tectovalopsis regelatus* (Barnard & Ingram, 1990). A further five which have been
328 affiliated to a species: *Eurythenes* aff. *gryllus*, *Eurythenes* aff. *magellanicus*, *Paracallisoma*
329 aff. *alberti*, *Stephonyx* sp. nov. aff. *arabiensis* and *Valettietta* cf. *gracilis* and the remaining
330 four identified to at least an affiliated genus (Tables 2a and 2b).


331

332 There are eight morphotypes shared between the basins: *Abyssorchromene distinctus* (Birstein
333 & Vinogradov, 1960), *Abyssorchromene gerulicorbis* (Shulenberger & Barnard, 1976),
334 *Abyssorchromene* spp., *Eurythenes sigmiferus* (d'Udekem d'Acoz & Havermans, 2015),
335 *Eurythenes* spp., *Paracallisoma* aff. *alberti*, *Paralicella caperesca* (Shulenberger & Barnard,
336 1976) and *Valettietta* cf. *gracilis* (Figure 2).

337

338 Two morphotypes were found only in the CCZ (*Hirondellea* sp. & *Paralicella tenuipes*
339 (Chevreux, 1908), and seven morphotypes were found only in the DEA (*Eurythenes* aff.
340 *gryllus*, *Eurythenes* aff. *magellanicus*, gen. aff. *Cleonardo*, *Parandania* sp., *Parandaniexis*
341 *mirabilis* (Schellenberg, 1929), *Stephonyx* sp. nov. aff. *arabiensis*, and *Tectovalopsis*
342 *regelatus* (Barnard & Ingram, 1990) (Table 2).

343

344

345

346 **Figure 2: Histogram showing the species assemblage for the scavenging community in**
 347 **the Clarion-Clipperton fracture Zone (CCZ) (black) and the DisCOL Experimental**
 348 **Area (DEA) (grey). The abundances of 17 morphotypes are shown.**

349

350

351

352

353

354

355

356

357

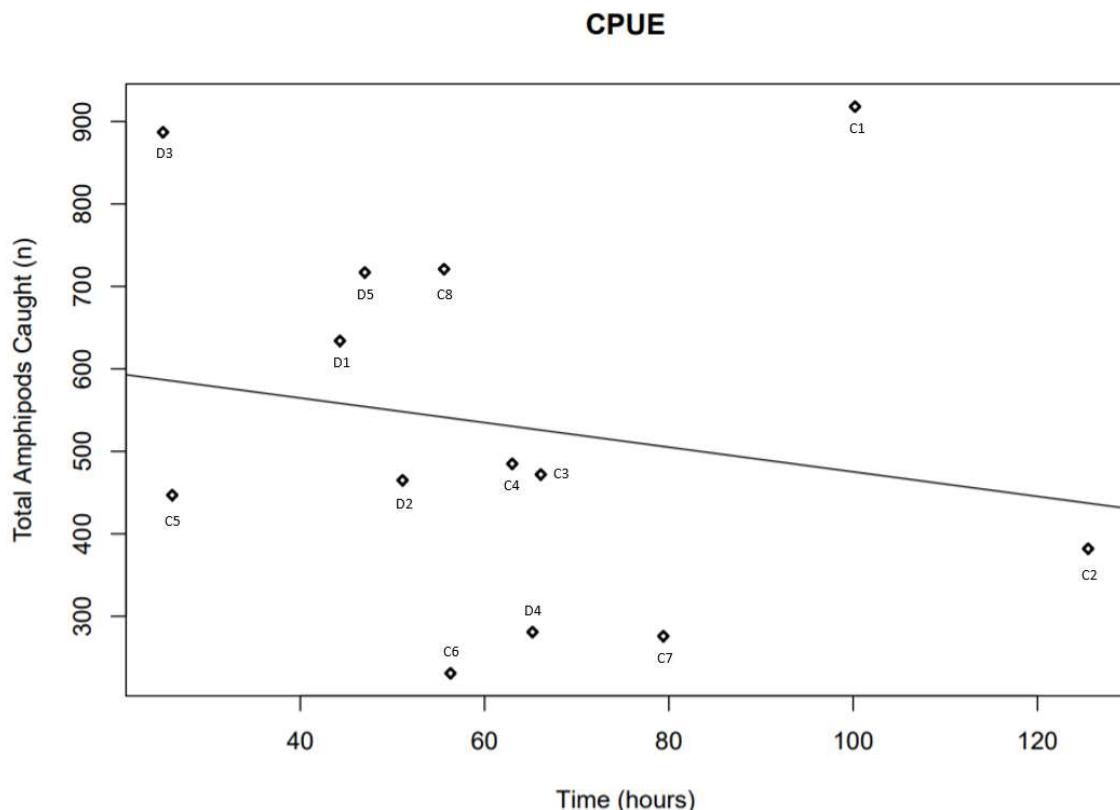
358

359 **Table 2a: Overview of morphotypes across the Clarion-Clipperton fracture Zone (CCZ)**
 360 **and DisCOL Experimental Area (DEA).**

	Clarion-Clipperton fracture Zone	DisCOL Experimental Area
Total unique morphotypes collected	17 (10 found in the CCZ, 15 found in the DEA)	
Species possibly unique to this basin	2	7
Shared species between basins		8

361
 362 **Table 2b: Distribution and abundances of morphotypes across the Clarion-Clipperton**
 363 **fracture Zone (CCZ) and DisCOL Experimental Area (DEA).** Green = shared, Orange =
 364 DEA only, Blue = CCZ only.

Taxa	C1	C2	C3	C4	C5	C6	C7	C8	D1	D2	D3	D4	D5
<i>Abyssorchromene distinctus</i>	629	312	180	170	64	47	2	25	9	3	25	0	5
<i>Abyssorchromene gerulicorbis</i>	73	47	48	107	71	65	184	121	351	143	522	178	595
<i>Abyssorchromene</i> spp.	0	0	50	0	0	3	0	0	5	20	0	0	0
<i>Eurythenes</i> aff. <i>gryllus</i>									119	0	9	0	9
<i>Eurythenes</i> aff. <i>magellanicus</i>									0	0	59	0	47
<i>Eurythenes</i> <i>sigmiferus</i>	9	3	35	11	12	5	0	6	30	61	127	36	22
<i>Eurythenes</i> spp.	6	3	2	0	0	20	1	12	0	91	3	39	1
gen. aff. <i>Cleonardo</i>									1	0	0	0	0
<i>Hirondellea</i> sp.	0	2	0	0	0	0	5	10					
<i>Paracallisoma</i> aff. <i>alberti</i>	0	0	0	0	0	2	1	6	10	4	0	1	1
<i>Paralicella</i> <i>caperesca</i>	104	4	114	152	255	75	63	460	86	108	80	21	7
<i>Paralicella</i> <i>tenuipes</i>	22	0	14	42	43	9	19	58					
<i>Parandania</i> sp.									5	2	42	5	1
<i>Parandaniexis</i> <i>mirabilis</i>									11	0	3	0	0
<i>Stephonyx</i> sp. nov. aff. <i>arabiensis</i>									0	4	0	0	0
<i>Tectovalopsis</i> <i>regelatus</i>									5	0	0	0	0
<i>Valettieta</i> cf. <i>gracilis</i>	75	11	29	3	2	5	1	23	2	29	17	1	29


365
 366
 367
 368
 369
 370
 371
 372

373 **Sampling completeness**

374

375 Due to differences in allocated ship-times (CCZ cruise being 52 days and the DEA cruise
376 being 29 days), the trap deployments were not identical, making it necessary to check the
377 effect of the different deployment times. The resulting Catch Per Unit Effort (CPUE) plot
378 (Figure 3,) shows that there is no relationship between the length of time the trap was at the
379 seafloor and total number of amphipods caught. There is a moderate but statistically
380 insignificant negative correlation with increasing deployment times ($R = -0.05, p = 0.551$).

381

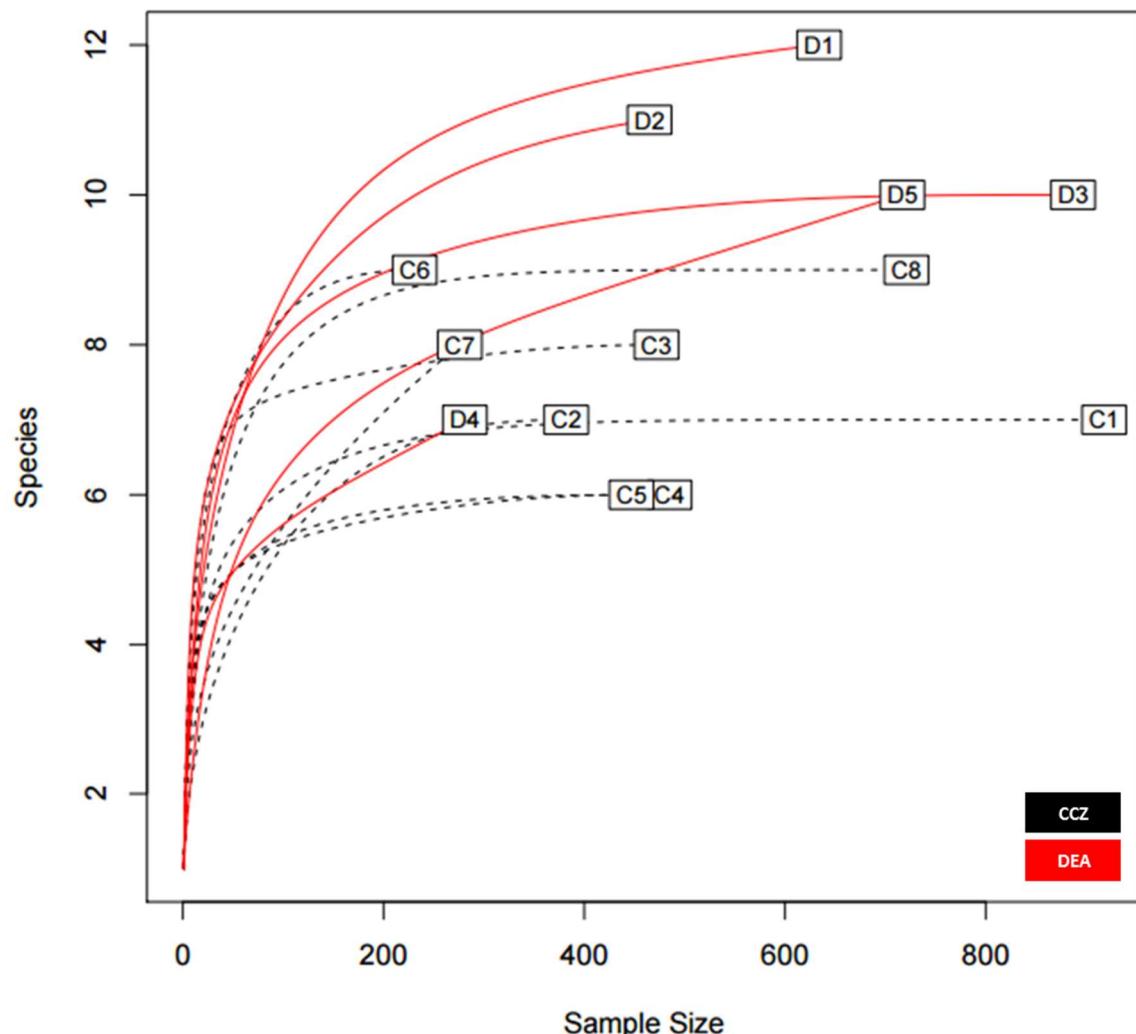
382

383 **Figure 3: Catch Per Unit Effort (CPUE) illustrating the correlation between sampling**
384 **time and number of individuals collected.** Only the longer than 15mm fraction was
385 included here.

386

387

388


389

390

391

392 The rarefaction results (Figure 4) show that the curves for nine stations reach a plateau,
393 indicating that sampling effort was sufficient to assess diversity levels. These include all CCZ
394 stations except C7. In contrast, four of the five curves for the DEA (stations D1, D2, D4 and
395 D5) are unsaturated.

396

397

398 **Figure 4: Species rarefaction curves for each of the 13 trap stations across both areas,**
399 **the Clarion-Clipperton fracture Zone and the DisCOL Experimental Area. Only**
400 **individuals longer than 15 mm were considered here.**

401

402

403

404

405

406 ***Biodiversity***

407

408 Figures 5a and b show that the scavenging community in the CCZ is dominated by three
409 species, *A. distinctus* (Birstein & Vinogradov, 1960) (36%), *A. gerulicorbis* (Shulenberger &
410 Barnard, 1976) (18%) and *Paralicella caperesca* (Shulenberger & Barnard, 1976) (31%),
411 whereas, in contrast, the DEA scavenging community is dominated by a single species, *A.*
412 *gerulicorbis* (Shulenberger & Barnard, 1976), accounting for almost 60% of all specimens.
413 The Simpson Index (D) for the entire CCZ area is (with 0.73), higher than the 0.62 that was
414 calculated for the whole of the DEA area (Table 3). The biodiversity of each individual
415 station was further explored (Table 3). In the CCZ, the lowest biodiversity was found at C3
416 and C6 ($D = 0.23$) and the highest at C2 ($D = 0.67$), respectively. In the DEA, the lowest
417 biodiversity of $D = 0.36$ was found at station D1 (the site of the actual disturbance) and just
418 south of the disturbance site at D2 (0.21), while the highest biodiversity was observed at D5
419 ($D = 0.61$) (Table 3).

420

421

422

423

424

425

426

427

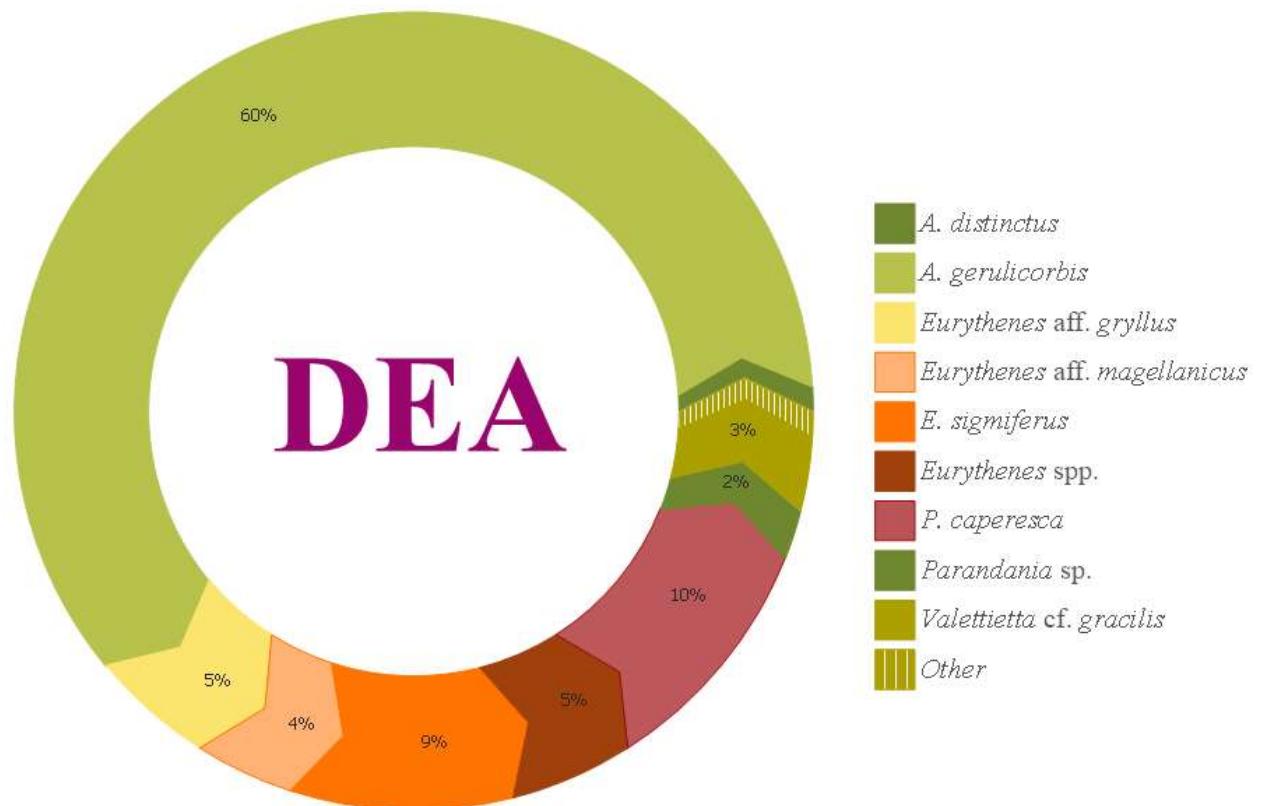
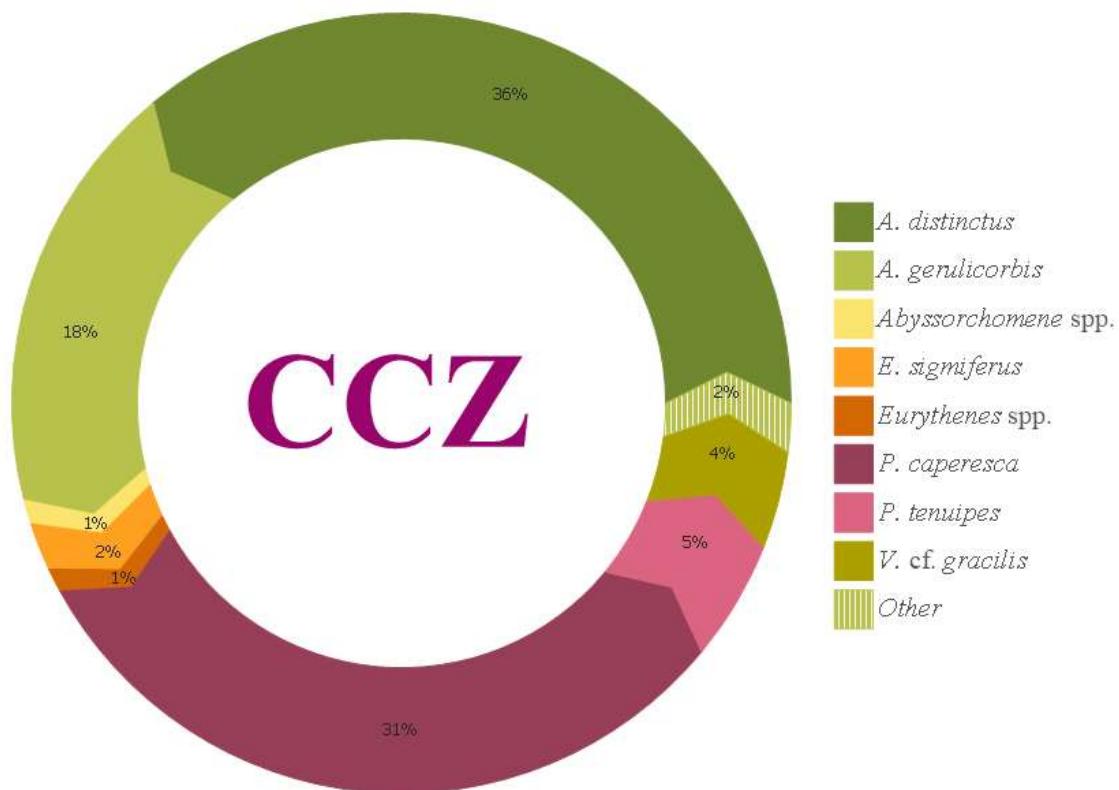
428

429

430

431

432



433

434

435

436

437

439 **Figures 5a and b: Relative species abundances in the Clarion-Clipperton fracture Zone**
440 **and the DisCOL Experimental Area.** These abundances represent the longer than 15mm
441 subsample of the scavenging amphipod community.

442

443 **Table 3: Comparison of biodiversity calculated using the Simpson Index (D), for the**
444 **Clarion-Clipperton fracture Zone and DisCOL Experimental Area, and D for each**
445 **station is shown for further comparisons within these areas.**

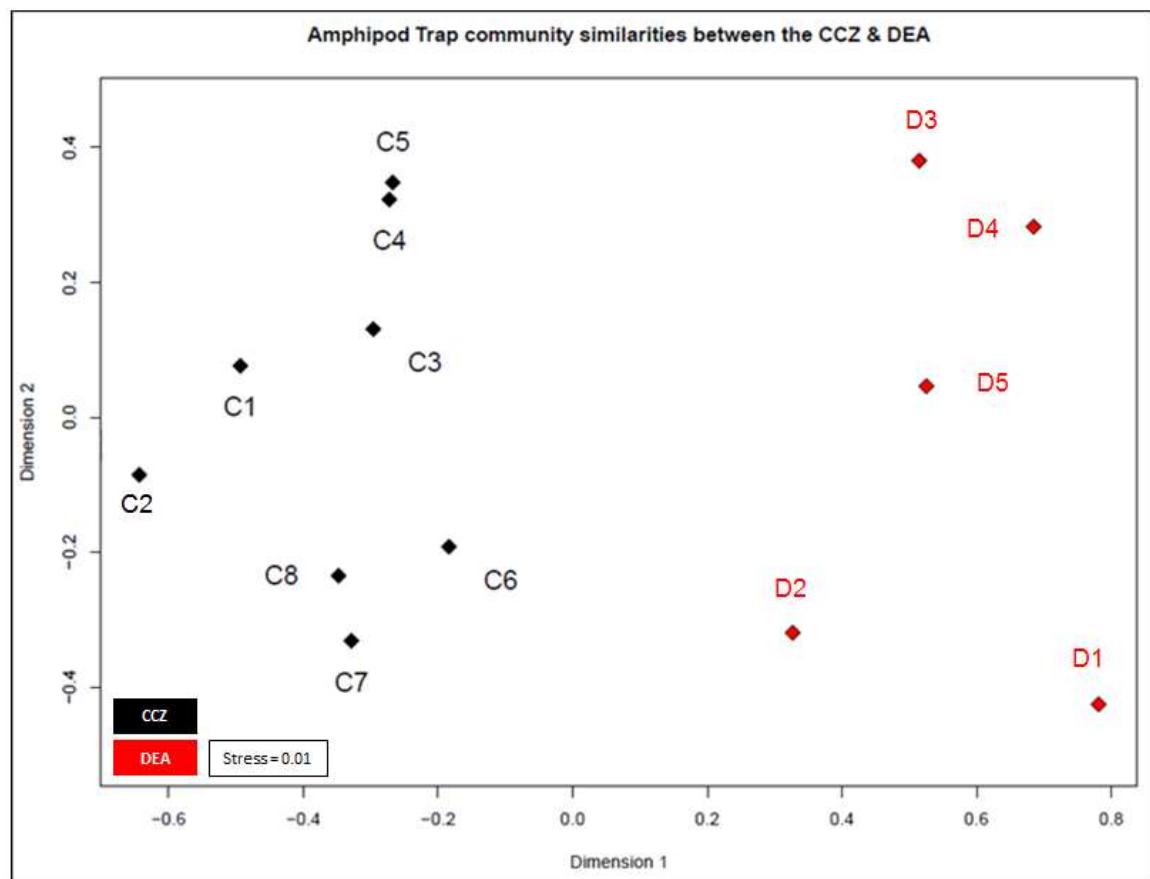
Simpson Index (D) whole Clarion-Clipperton Fracture Zone	0.73
Simpson Index (D) whole DisCOL Experimental Area	0.62
C1 (D)	0.41
C2 (D)	0.68
C3 (D)	0.23
C4 (D)	0.27
C5 (D)	0.38
C6 (D)	0.23
C7 (D)	0.45
C8 (D)	0.44
D1 disturbed (D)	0.36
D2 ref 1 (D)	0.21
D3 ref 2 (D)	0.38
D4 ref 3 (D)	0.44
D5 ref 4 (D)	0.61

446

447

448

449


450

451 **Species composition**

452

453 The NMDS shows that the communities of the two basins are clearly separated (ANOSIM: p
454 = 0.002); Figure 6). The disturbed area in the DEA (D1) is showing a clear difference to the
455 four reference areas (D2 - 5). When the communities between the two basins are compared,
456 D2 appears to be most similar to the CCZ community, and more specifically to C6, C7 and
457 C8. The reliability of the data ranking is supported by a low stress value of 0.01.

458

460 **Figure 6 : NMDS plot** showing the beta biodiversity (dis/similarities) for each of the thirteen
461 amhipod trap sampling stations associated with the two basins, Clarion-Clipperton fracture
462 Zone (CCZ) (black) and the DisCOL Experimental Area (DEA) (red). Data are supported by
463 a low stress value of 0.01.

464

465

466 **Discussion**

467

468 ***An unexplored ecosystem***

469 Although the most recent and comprehensive analysis of the Animal diversity of the World's
470 oceans estimates a total of less than a million species over all depths (Appeltans et al. 2012),
471 it is not currently known how many species inhabit the deep-sea. Regarding amphipods, only
472 328 benthic, demersal and benthopelagic species, belonging to 144 genera and 39 families.
473 Over 7000 marine amphipod species have been found below 2000 m. These numbers are
474 reduced to 173 known species, 87 genera and 37 families at depths below 3000 m, and 100
475 known species, 66 genera and 31 families are known to occur below 4000 m (Vader 2005;
476 Brandt et al, 2012).

477

478 ***Lysianassoidea and their biogeography***

479

480 The superfamily Lysianassoidea constitutes an important part of the abyssal amphipod fauna.
481 Also, in our sampling, lysianassoid amphipods were collected in large numbers (99% of the
482 samples taken in both basins). As a superfamily, they comprise 23% of all the species found
483 below 2000 m, 35% of the species found below 3000 m and 31% of the species found below
484 4000 m (Brandt et al. 2012).

485

486 Many species in the Lysianassoidea occur in multiple abyssal basins, and some even have
487 worldwide distributions (Thurston 1990). Despite the Ocean Biogeographic Information
488 System (OBIS) database containing 615,650 records of Amphipoda, many of these are shelf
489 or pelagic species, with very few records from the CCZ and DEA (OBIS, 2017). Here, we
490 provide additional data for the known bathymetric range of the seven amphipods which we
491 have identified to species level (*Abyssorchromene distinctus* (Birstein & Vinogradov, 1960),
492 *Abyssorchromene gerulicorbis* (Shulenberger & Barnard, 1976), *Eurythenes sigmiferus*
493 (d'Udekem d'Acoz & Havermans, 2015), *Paralicella caperesca* (Shulenberger & Barnard,
494 1976), *Paralicella tenuipes* (Chevreux, 1908), *Parandaniexis mirabilis* (Schellenberg, 1929)
495 & *Tectovalopsis regelatus* (Barnard & Ingram, 1990) (Table 2b). In addition, we have found
496 two possibly new species of *Eurythenes*, previously not known from these basins, which we
497 plan to analyse further in the future.

498 While we only sampled *Hirondellea* sp. and *Paralicella tenuipes* (Chevreux, 1908) in the
499 CCZ, *Eurythenes* aff. *gryllus*, *Eurythenes* aff. *magellanicus*, gen. aff. *Cleonardo*, *Parandania*
500 sp., *Parandaniexis mirabilis* (Schellenberg, 1929), *Stephonyx* sp. nov. aff. *arabiensis*, and
501 *Tectovalopsis regelatus* (Barnard & Ingram, 1990) only in the DEA, we cannot conclude
502 based on the current data only if these species are unique to their respective basins without
503 confirming these distribution patterns with additional sampling campaigns.

504

505 Despite the sampling campaign in the CCZ being twice as long as the DEA, the number of
506 individuals/species collected does not correlate positively with deployment effort. We posit
507 that this is rather an effect of abiotic and organic factors, such as the productivity-driven
508 gradients in the CCZ, which decrease from East-West and from North-South (Hannides &
509 Smith, 2003).

510

511 ***Biodiversity within basins***

512

513 Figures 5a & b show clearly that the DEA scavenging community has reduced abundances of
514 all species including *A. distinctus* (Birstein & Vinogradov, 1960) (1%) and *P. caperesca*
515 (Shulenberger & Barnard, 1976) (7%), and is now dominated by a single species, *A.*
516 *gerulicorbis* (Shulenberger & Barnard, 1976), accounting for 60% of the DEA community.
517 This indicates an interesting resilience and flexibility in the latter species. Similar patterns
518 have been observed in Potter Cove (Seefeldt et al. 2017), where following glacial retreat, a
519 change in sedimentation rates led to the dominance of a single amphipod scavenging species,
520 *Cheirimedon femoratus* (Pfeffer, 1888).

521

522 The assemblages of the two basins have some overlap in their biodiversity (as is exemplified
523 by the eight shared morphotypes). However, the sampling stations and the two basins as a
524 whole are heterogeneous in their species compositions.

525

526 Thus, we can observe some negative influence (possibly attributed to the disturbance in the
527 DEA) on the scavenging amphipod community. This reduced biodiversity is reflected in the
528 higher Simpson Index (*D*) for the CCZ (0.73) as compared to the DEA (*D* = 0.62; Table 3).

529

530 To explore whether this reduced diversity in the DEA was truly a result of the simulated
531 disturbance, *D* was also calculated for each sampling station within each basin (Table 3).

532 In the CCZ, the APEI (C8) shows a moderate level of biodiversity ($D = 0.44$), indicating that
533 it is not optimally-placed for representing the biodiversity of the scavenging amphipod
534 community of the CCZ. Additionally, this pre-existing lower biodiversity (in comparison to
535 the contractor claim areas), indicates that the APEI may not serve well as a refugium for
536 amphipods post-disturbance. However, due to the fact that only one of the eight APEIs have
537 been investigated thus far, this APEI along with the remaining eight APEIs would need to be
538 (re-) sampled.

539

540 Within the DEA, the lowest biodiversities are observed at the site of the disturbance (D1) and
541 south of it (D2; Table 3), indicating that the reduced biodiversity in the DEA could indeed be
542 caused by the simulated disturbance in 1989 (Thiel, 1992).

543

544 The highest abundances in the DEA were collected from station D5 ($n = 717$); this station
545 also has the highest Simpson Index within the DEA ($D = 0.61$) (Table 3). Side-scan sonar
546 imaging shows a seamount range to the North West (NW) of the disturbed area (D1)
547 (Appendix 3). Although the relief change is only 150m, the range extends laterally for several
548 kilometres (SO242-1 Cruise report, 2016) hampering dispersal across barriers such as sills,
549 canyons and ridges (Smith, et al. 2006; Blankenship et al. 2006; Etter et al. 2011). However,
550 recent studies have shown that due to their mobile nature, geographic isolation alone would
551 not pose a true barrier to benthopelagic amphipod species (Havermans, 2016; Ritchie et al.
552 2017), and thus, cannot explain why such a high number of large scavenging individuals was
553 collected at station D5.

554

555 ***Community similarities***

556

557 Scavenging amphipods are resilient and dispersive, but most importantly, they are highly
558 mobile (Ingram and Hessler 1983; Lörz et al. 2018). Often driven by their search for erratic
559 deposited feeding opportunities (Smith et al. 1989), they are probably less constrained by
560 local environmental abiotic conditions and seafloor topography.

561

562 Beta diversity can be regarded as the dissimilarities in species composition between spatially
563 different communities. As an indication for beta biodiversity, the NMDS (Figure 6) shows a
564 significant separation in the similarity index between the two basins (ANOSIM $p = 0.002$).
565 However, despite the dispersive and resilient nature of scavenging amphipods, their

566 biodiversity appears to have been affected by the disturbance experiment as evidenced by the
567 NMDS (Figure 6), where the disturbed area (D1) and the area closest to it (D2) are separated
568 from the remaining three reference sites (D3, D4 and D5).

569

570 In the CCZ, stations C1, C2, C3, C4 and C5 form one cluster in the NMDS (Figure 6), and
571 stations C6, C7 and C8 a second cluster. The CCZ is a geomorphologically very
572 heterogeneous region, with seamounts of 200 m altitude running from north-south. A barrier
573 of this height would be expected to affect sedimentation rates, nodule presence and currents.
574 Furthermore, the difference in depth from the eastern edge (3950m) and the western edge
575 (5150 m) is more than 1200 m. These combined factors very likely give rise to different
576 trends in species composition (Glover, et al. 2015). However, since it has been established
577 that benthopelagic amphipods are less sensitive to such barriers (Havermans, 2016), at this
578 stage, other biotic (e.g. the productivity gradient) and abiotic factors causing this separation
579 cannot be excluded as alternative explanations.

580

581 ***Dispersal and connectivity***

582

583 Whilst the NMDS (Figure 6) illustrates a visual separation of the two basins, there is also
584 some similarity in the amphipod fauna between the two areas, (as is obvious by the eight
585 shared species), indicating that the dispersal extent for these eight species might range up to
586 at least 3000 km. However, this hypothesis will need to be confirmed with subsequent
587 molecular analyses.

588

589

590 Abyssal amphipods have been shown to be able to travel actively at speeds of almost 4
591 cm/sec (Laver, 1985), even at temperatures as low as 3°C (Kankaanpää et al. 1995). It is
592 obvious that they are sufficiently strong to swim up weak currents since they can be found
593 several hundred meters above the seafloor searching pelagically for mates (e.g. *Eurythenes*
594 *gryllus* occurring up to 1800 m above the seafloor) (Thurston 1990; Havermans et al. 2013)
595 or following food-falls (Baldwin and Smith 1987).

596

597 However, it is apparent that the dispersal of abyssal amphipods is not always contingent on
598 current direction, but also on passive dispersal. Amphipods can also be carried passively over
599 long distances by stronger currents e.g. (the circumpolar current of the Southern Ocean)

600 (Laver et al. 1985), but even weaker deep-sea currents have been suggested as a mechanism
601 for deep-sea dispersal of amphipods (e.g. *Eurythenes gryllus* (Schüller and Ebbe 2007)). This
602 coupled with their ability to follow odour-plumes (Ide et al. 2006; Premke, 2003),
603 significantly increases the probability and extent of their dispersal (Conlan 1991; Highsmith,
604 1985). Specialist feeding adaptations for several species in our assemblages have been
605 reported in Havermans & Smetacek, 2018). For example, the semi-tubular flap-like molars of
606 the genera *Hirondellea* and *Eurythenes*, and the distendable foregut (*Abyssorchromene*) and
607 midgut (*Paralicella*). It is not clear from our study in the absence of POC data for the areas of
608 the trap deployments whether the biogeography of these specialised feeders is linked to the
609 productivity gradients in these two basins.

610

611 The lack of a clear dispersal pattern is obvious from Figure 6, where station D2 is the station
612 clustering closest with the CCZ basin in terms of species composition despite the fact that
613 station D5 is geographically the shortest distance away from the CCZ.

614

615 Recent research on *Eurythenes gryllus* has demonstrated that it thrives in every ocean with a
616 wide (pelagic – hadal) depth range. However, assumptions that individual morphotypes of
617 this species belong to the same genetic lineage have been challenged (Havermans et al. 2013
618 & Havermans, 2016). Ritchie et al. (2016) demonstrated with microsatellite markers
619 heterozygote deficiency in *Paralicella tenuipes* (Chevreux, 1908), which they attributed to
620 cryptic diversity. It is likely that the connectivity of the eight species we observed as being
621 shared between the CCZ and DEA (based on traditional morphological methods), can be
622 explained by the presence of one or more cryptic amphipod species, which are being tested in
623 our future molecular research.

624

625 Unfortunately, in the absence of data on deep-sea currents in the study area, especially
626 between the CCZ and DEA, it is not yet possible to fully explain the drivers and mechanisms
627 of amphipod dispersal between these particular basins.

628

629

630

631

632

633

634 ***The DisCOL Experimental Area as a proxy***

635

636 Higher abundances of scavenging amphipods were collected from the CCZ (3932
637 individuals) as opposed to the DEA (2984 individuals). Yet, we have identified more
638 morphotypes in the DEA (18) than in the CCZ (10), indicating that the DEA is more
639 speciose, and thus, more biodiverse.

640

641 Although the DEA is more speciose, many of its morphotypes were collected in low
642 abundances, with several of these being singletons or doubletons (collected from one or two
643 sampling stations only). This is reflected in the rarefaction curves (Figure 4), which indicate
644 thorough sampling in the CCZ with all but station C7 reaching asymptotes. In contrast, four
645 stations in the DEA (D1, D2, D4 and D5) are unsaturated. This pattern suggests firstly that
646 the less abundant species which are present at fewer stations only may not necessarily be rare
647 species and secondly, that there could be as yet undetected biodiversity in the DEA.
648 Therefore, the effects of mining impact could be even more pronounced than we observed in
649 this study. However, as the seafloor environment is subject to seasonal fluctuations (Billett et
650 al. 1983), it is hard to predict exactly what the effects will be at this stage.

651

652 Our preliminary (basin-scale) comparison of the scavenging communities of the two study
653 areas shows that even if the DEA is a small-scale disturbance experiment, it is a very diverse
654 area. Thus, the DEA is a well-chosen site for monitoring the impacts of disturbance and
655 instrumental in its role as a proxy to assess impending mining activities in the CCZ.

656

657 ***Future research***

658

659 At several stations in both basins, we collected amphipods in very high abundances (C1, C8,
660 D3 & D5) (Table 2b). Since biotic production is contingent on the sinking flux of particles
661 from the euphotic zone (Sweetman, 2017), the biodiversity differences at each of the thirteen
662 stations could be driven by Particulate Organic Carbon (POC) or erratic whale-falls (Smith et
663 al. 1989). However, not all feeding behaviour of scavenging amphipods is based on
664 opportunistic or erratic availability of nutrients (Havermans & Smetacek, 2018). During
665 future sampling campaigns, the POC of these areas should be monitored, along with
666 experiments on different types of food-fall in addition to obtaining side-scan sonar and

667 abiotic data. This will provide a more comprehensive view of the food types required for
668 these species to thrive in the deep sea.

669

670 It is not clear from our results whether substrate type (i.e. nodule/non-nodule) has any effect
671 on the amphipod communities (Smith and Demopoulos, 2003) since this kind of data is only
672 available for stations D3 and D4. To answer this question, resampling of the study areas in
673 combination with an Ocean Floor Observation System (OFOBS) (video/camera) is required.

674

675 Although our study only addresses the scavenging amphipod species longer than 15 mm, we
676 already find indications for a disturbance effect in the DEA. It is obvious that scavenging
677 amphipods are only one of several benthic-pelagic indicator groups. Other truly benthic
678 groups such as sponges or less dispersive amphipods (e.g. collected by epibenthic sledge
679 (EBS)) may demonstrate an even more pronounced impact of mining activities and should be
680 investigated in future studies.

681

682 With the application of molecular techniques to identify cryptic species (Delić et al, 2017),
683 more realistic estimates of biodiversity can be obtained (Schön et al. 2012), improving our
684 current knowledge of the biodiversity of this area. If these improved estimates of biodiversity
685 also include cryptic species, it is possible that the biological impact of manganese nodule
686 mining on amphipod and other deep-sea faunal communities may turn out to be even higher.

687 **Conclusions**

688

689 In summary, this study on the scavenging amphipod community of two abyssal oceanic
690 basins has demonstrated that amphipods are present in high abundances across the CCZ and
691 DEA, with eight shared species and some species possibly being unique to their respective
692 basin.

693 Our results have indicated that the simulated mining experiment probably had an impact on
694 the biodiversity of these scavenging amphipods, as demonstrated by the low D of the DEA
695 overall, at the disturbance site itself (D1), and the 60% dominance of *A. gerulicorbis*
696 (Shulenberger & Barnard, 1976) in this region.

697 Given the scarcity of sampling and industry experience of marine habitats at these depths, the
698 formulation of effective regulations is challenging (International Seabed Authority, 2017).

699 Nonetheless, our study provides the first results on possible effects of disturbance activities
700 on the abyssal amphipod biodiversity of deep-sea basins.

701 **Sample and data availability**

702 Biological samples pertaining to this manuscript are stored at the Royal Belgian Institute of
703 Natural Sciences, and the data discussed in the manuscript are submitted to PANGEA.

704 **Acknowledgements**

705

706 The authors would like to acknowledge the Belgian Science and Policy Office (BELSPO) and the
707 German Federal Ministry of Research and Education for funding. We would also like to thank the
708 crew of the Research Vessel “Sonne”, the University of Ghent (Ghent, Belgium) and Zohra
709 Elouaazizi (Brussels, Belgium) for help in the lab. This study would not have been possible without
710 their support.

711

712

713

714

715

716

717

718

719

720

721 **References**

722

723 Appeltans, W., Boxshall, G., Bouchet, P., Vanhoorneb., Decock, W., Warren, A., Collinsa.,
724 Kroh A., Schmidt-Rhaesa, A., Berta, A., Barber, A., Todaro, A., Gittenberger, A.,
725 Hoeksema, B., Swalla, B., Neuhaus, B., Hayward, B., Self-Sullivan, C., Fransen, C.,
726 Messing, C., Erséus, C., Emig, C., Boyko, C., Mah, C., Millsc., Nielsen, C., Jaume,
727 D., Fautin, D., Domning, D. P., Gibson, D., Lazarus, D., Gordon, D., Opresko, D.,
728 Schwabe, E., Mac-Pherson E., Thuesen, E., Dahdouh-Guebas, F., Anderson, G.,
729 Poore, G., Williams, G., Walker-Smith, G., Read, G., Lambert, G., Paulay, G.,
730 Segers, H., Furuya, H., Bartsch, I., Van Der Land, J., Reimer, J. D., Vanaverbeke, J.,
731 Saiz-aiz, Saito, J., Sair, J. D., Pilger, J., Norenburg, J., Kolb, J., Schnabel, K. E.,
732 Meland, K., Fauchald, K., Cheng, L., Van Ofwe-Gen L., Błażewicz-Paszkowycz,
733 M., Rius, M., Curini-Galletti, M., Schotte, M., Tasker, M. L., Angel, M. V., Osawa,
734 M., Longshaw M., Guiry, M., Bailly, N., De Voogd, N., Bruce N., Shenkar, N.,
735 Garcia-Alvarez, O., McLaughlin, P., Kirk, P., Davie, P., Ng, P. K. L., Schuchert P.,
736 Uetz P., Bock P., Pugh P., Lemaitre, Kristensen R., Van Soest, Bray, R., Bamber,
737 R. N., Da Rocha, R. M., Hopcroft R., Stöhr, S., De Grave, S., Gerken, S., Gofas, S.,
738 Tyler, S., Ahyong, S., Wilson, S., Brando S. N., Koenemann, S., Feist, S., Cairns, S.,
739 Timm, T., Cribb, T., Molodtsova, T., Chan, T.-Y., Iseto, T., Artois, T., Scarabino, V.,
740 Siegel, V., Eschmeyer, W., Hummon, W., Perrin W., Sterrer, W., Hernandez, F.,
741 Mees J., Costello, M. J.: The Magnitude of Global Marine Biodiversity, *Curr. Biol.*,
742 22, 2189–2202, 2012.

743

744 Baldwin, R. J. & Smith, K. L. Jr.: Temporal variation in the catch rate, length, color, and sex
745 of the necrophagous amphipod, *Eurythenes gryllus*, from the central and eastern North
746 Pacific, *Deep Sea Res. (part 1 Oceanogr. Res. Pap.)*, 34, 425–439, 1987.

747

748 Barnard, J. L.: Gammaridean Amphipoda from depth of 400 to 6000 m, *Galathea. Rep.*, 5,
749 23–128, 1961.

750

751 Barnard, J. L. & Karaman, G.: The Families and Genera of Marine Gammaridean Amphipoda
752 (Except Marine Gammaroids), *Rec. Aust. Mus. Suppl.* 13., 1–866, 1991.

753

754 Belyaev, G. M.: Deep-Sea Ocean Trenches and Their Fauna. Nauka Publishing House,
755 Moscow, 385 pp, 1989.

756

757 Billett, D. S. M., Lampitt, R. S., Rice, A. L. & Mantoura, R. F. C.: Seasonal sedimentation of
758 phytoplankton to the deep-sea benthos, *Nature*, 302, 520–522. 1983.

759 Blankenship, L. E. & Levin, L. A.: Extreme food webs: Foraging strategies and diets of
760 scavenging amphipods from the ocean's deepest 5 kilometers, *Limnol. Oceanogr.*, 52,
761 1685–1697, 2007.

762

763 Blankenship, L. E., Yayanos, A. A., Cadien, D. B., and Levin, L. A.: Vertical zonation
764 patterns of scavenging amphipods from the Hadal zone of the Tonga and Kermadec
765 Trenches, *Deep-Sea Res. Pt. I*, 53, 48–61, doi:10.1016/j.dsr.2005.09.006, 2006.

766

767 Brandt, A., Gooday A. J., Brix S. B., Brökeland, W., Cedhagen, T., Choudhury, M.,
768 Cornelius, N., Danis, B., De Mesel, I., Diaz R. J., Gillan D. C., Ebbe B., Howe J.,
769 Janussen, D., Kaiser, S., Linse, K., Malyutina, M., Brando, S., Pawlowski, J. &
770 Raupach, M.: The So Deep Sea: First Insights Into Biodiversity And Biogeography.
771 *Nature*, 447, 307–311, 2007.

772

773 Bray, J. R. & J. T. Curtis.: An ordination of upland forest communities of southern
774 Wisconsin, *Ecol. Mono.*, 27, 325–349, 1957.

775

776 Brenke, N.: An epibenthic sledge for operations on marine soft bottom and bedrock, *Mar.*
777 *Technol. Soc. J.*, 39, 10–21, 2005. hdl.handle.net/10.4031/002533205787444015.

778

779 Carmona, L., Malaquias, M. A. E., Gosliner, T. M., Pola, M. & Cervera, J. L. Amphi-Atlantic
780 distributions and cryptic species in Sacoglossan sea slugs, *J. Molluscan Stud.*, 77,
781 401–412, 2011.

782

783 Conlan K. E.: Precopulatory mating behavior and sexual dimorphism in the amphipod
784 *Crustacea*, *Hydrobiologia*, 223, 255–282, 1991.

785

786 Delić, T., Trontelj, P., Rendoš, M. & Fišer., C.: The importance of naming cryptic species
787 and the conservation of endemic subterranean amphipods. *Sci. Rep.*, 7, 3391, 2017.
788 <https://doi.org/10.1038/s41598-017-02938-z>

789

790 Etter, R. J., Boyle, E. E., Glazier, A., Jennings, R. M., Dutra, E. & Chase. M. R.
791 “Phylogeography of a Pan-Atlantic Abyssal Protobranch Bivalve: Implications for
792 Evolution in the Deep Atlantic.” *Molecular Ecology* 20 (4): 829–843, 2011.
793 doi:<http://dx.doi.org/10.1111/j.365-294X.2010.04978.x>.

794

795 France, D. & Kocher, T.: Geographic and bathymetric patterns of mitochondrial 16S rRNA
796 sequence divergence among deep-sea amphipods, *Eurythenes gryllus*. *Mar. Biol.*, 126,
797 633–643, 1996.

798

799 Futuyma, D. J.: *Evolutionary Biology*, ed. 3. Sinauer Associates, Sunderland MA, 751 pp.,
800 1998.

801

802 Gage, J. D. & Tyler, P. A.: *Deep-Sea Biology: a natural history of organisms at the deep-sea*
803 floor, Vol. Cambridge University press, Cambridge, 1991.

804

805 German C. R., Ramirez-Llodra, E., Baker, M. C., Tyler, P. A., and the Chess Scientific
806 Steering Committee.: Deep-Water Chemosynthetic Ecosystem Research during the
807 Census of Marine Life Decade and Beyond: A Proposed Deep Ocean Road Map,
808 *PLoS ONE*, 6, 2011. doi:10.1371/journal.pone.0023259.

809

810 Glover, A., Paterson, G., Bett, B., Gage, J., Sibuet, M., Shearer, M., Hawkins, L.: Patterns in
811 polychaete abundance and diversity from the Madeira Abyssal Plain, northeast
812 Atlantic. *Deep Sea Res. (part 1 Oceanogr. Res. Pap.)*, 48, 217–236, 2001.

813

814 Glover, A., Smith, C. R., Paterson, G. J. L., Wilson, G. D. F., Hawkins, L. & Shearer, M.:
815 Polychaete species diversity in the central Pacific abyss: local and regional patterns,
816 and relationships with productivity, *Mar. Ecol. Prog. Ser.*, 240, 157–170, 2002.

817

818 Gotelli, N. J. & Colwell, R., K.: Quantifying Biodiversity: Procedures and Pitfalls in the
819 Measurement and Comparison of Species Richness.", Ecol. Lett., 4, 379–91, 2001.
820 doi:10.1046/j.1461-0248.2001.00230.

821

822 Hannides, A., Smith, C. R.: The northeast abyssal Pacific plain. In: Biogeochemistry of
823 Marine Systems, K. B. Black and G. B Shimmield, eds., CRC Press, Boca Raton,
824 Florida, 208-237, 2003.

825

826 Havermans, C.: Have we so far only seen the tip of the iceberg? Exploring species diversity
827 and distribution of the giant amphipod *Eurythenes*, Biodiversity, 2016.
828 DOI: 10.1080/14888386.2016.1172257

829

830 Havermans, C & Smetacek, V. Bottom-up and top-down triggers of diversification: A new
831 look at the evolutionary ecology of scavenging amphipods in the deep sea. Progress in
832 Oceanogprahy, 164, 37-51, 2018.

833

834 Havermans, C., Sonet, G., d'Udekem d'Acoz, C., Nagy, Z. T., Martin, P., Brix, S., Riehl, T.,
835 Agrawal, S. & Held, C.: Genetic and morphological divergences in the cosmopolitan
836 deep-sea amphipod *Eurythenes gryllus* reveal a diverse abyss and a bipolar species.
837 PLoS ONE, 8, e74218, 2013.

838

839 Held, C. & Wägele, J. W.: Cryptic speciation in the giant Antarctic isopod *Glyptonotus*
840 *antarcticus* (Isopoda: Valvirfera: Chaetiliidae), Sci. Mar. 69 (Suppl. 2), 175–181,
841 2005.

842

843 Highsmith, R.: Floating and algal rafting as potential dispersal mechanisms in brooding
844 invertebrates, Mar. Ecol. Prog. Ser., 25, 169–179, 1985.

845

846 Hilário, A., Metaxas, A., Gaudron, S. M. ,Howell, K. L., Mercier, A., Mestre, N. C., Ross, R.
847 E. ,Thurnherr, A. M. & Young, C.: Estimating dispersal distance in the deep
848 sea:challenges and applications to marine reserves, Front. Mar. Sci., 2, 2015.
849 doi:10.3389/ fmars.2015.00006.

850 Ide, K., Takahashi, K., Nakano, T., & Minoru, S. & Omori, M. Chemoreceptive foraging in a
851 shallow-water scavenging lysianassid amphipod: Role of amino acids in the location
852 of carrion in *Scopelochirus onagawae*. *Marine Ecology-progress Series*, 2006.
853 MAR ECOL-PROGR SER. 317. 193-202. 10.3354/meps317193.

854

855 International Seabed Authority. A Discussion Paper on Developing a Regulatory Framework
856 for Mineral Exploitation in the Area (Env. Matt.), 1–102, 2017.

857

858 Kankaanpää, H., Laurén, M., Mattson, M. & Lindström, M.: Effects of bleached kraft mill
859 effluents on the swimming activity of *Monoporeia affinis* (Crustacea, Pmphiopoda)
860 lindström, *Chemosphere*, 31, 4455–4473, 1995.

861

862 Laver, M. B., Olsson, M. S., Edelman, J. L. & Smith K. L. Jr.: Swimming rates of scavenging
863 deep-sea amphipods recorded with a free-vehicle video camera. *Deep-Sea Res. II*,
864 32, 1135–1142, 1985.

865

866 Lester, S. E., Ruttenberg, B. I., Gaines, S. D. & Kinlan B. P.: The relationship between
867 dispersal ability and geographic range size. *Ecol. Lett.*, 10, 745–758, 2007.

868

869 Levin, L. A., Etter, R.J., Rex, M. A., Gooday, A. J., Smith, C. R., Pineda, J., Stuart, C. T.,
870 Hessler, R. R. & Pawson, D.: Environmental influences on regional deep-sea species
871 diversity, *Annu. Rev. Ecol. Evol. Syst.*, 32, 51–93, 2001.

872

873 Liow, L. H.: Does versatility as measured by geographic range, bathymetric range and
874 morphological variability contribute to taxon longevity? *Glob. Ecol. Bio.*, 16, 117–
875 128, 2007.

876

877 Lodge, M., Johnson, D., Le Gurun, G., Wengler, M., Weaver, P. & Gunn, V.: Seabed mining:
878 International Seabed Authority environmental management plan for the Clarion–
879 Clipperton Zone. *A partnership approach*, Mar. Pol., 49, 66–72, 2014.

880

881 Lonsdale, P.: Clustering of suspension-feeding macrobenthos near abyssal hydrothermal
882 vents at oceanic spreading centers, *Deep-Sea Res.*, 24, 857–863, 1977.

883 Lörz A-N, Jaźdżewska AM, Brandt A. A new predator connecting the abyssal with the hadal
884 in the Kuril-Kamchatka Trench, NW Pacific. Costello M, ed. PeerJ. 2018;6:e4887.
885 doi:10.7717/peerj.4887.

886

887 Managing Impacts of Deep Sea Resource Exploitation (MIDAS) Summary Report:
888 Biodiversity in the Clarion-Clipperton Zone, 1–2, 2016.

889

890 McClain, C. R. & Hardy, S. M.: The dynamics of biogeographic ranges in the deep sea, Proc.
891 Roy. Soc. B: Bio. Sci., 277, 3533–3546, 2010.

892

893 Narahara-Nakano, Y., Nakano, T. & Tomikawa, K. Deep-sea amphipod genus *Eurythenes*
894 from Japan, with a description of a new *Eurythenes* species from off Hokkaido
895 (Crustacea: Amphipoda: Lysianassoidea), Marine Biodiversity, 1867-1616, 2017. Mar
896 Biodiv DOI 10.1007/s12526-017-0758-4

897

898 Paull, C. K., Hecker, B., Commeau, R., Freeman-Lynde, R. P., Neumann, C., Corso, W. P.,
899 Golubic, S., Hook, J. E., Sikes, E. & Curray, J.: Biological communities at the Florida
900 escarpment resemble hydrothermal vent taxa, Science, 226, 965–967, 1984.

901 Premke K, Muyakshin S, Klages M & Wegner J. Evidence for long-range chemoreceptive
902 tracking of food odour in deep-sea scavengers by scanning sonar data. J Exp Mar Biol
903 Ecol, 285:283–294, 2003.

904

905 R Core Team. R: A language and environment for statistical computing. R Foundation for
906 Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, 2013.
907 URL <http://www.R-project.org/>.

908

909 Ramirez-Llodra, E., Brandt, A., Danovaro, R., De Mol, B., Escobar, E., German, C. R.,
910 Levin, L. A., Martinez Arbizu, P., Menot, L., Buhl-Mortensen, P., Narayanaswamy,
911 B. E., Smith, C. R., Tittensor, D. P., Tyler, P. A., Vanreusel, A. & Vecchione, M.:
912 Deep, diverse and definitely different: unique attributes of the world's largest
913 ecosystem, Biogeosciences, 7, 2851–2899, 2010.

914

915 Ramirez-Llodra, E., Tyler, P. A., Baker, M. C., Bergstad, O. A., Clark, M. R. & Escobar, E.:
916 Man and the last great wilderness: human impact on the Deep Sea, PLoS ONE, 6,
917 2011. doi:10.1371/journal.pone.0022588.

918

919 Rex, M. A., Stuart, C. T., Hessler, R., R., Allen, J. A., Sanders, H. L. & Wilson, G. D. F.:
920 Global-scale latitudinal patterns of species diversity in the deep-sea benthos, Nature,
921 365, 636–639, 1993.

922 Ritchie, H., Jamieson, A. J. & Piertney, S. B. Isolation and Characterization of Microsatellite
923 DNA Markers in the Deep-Sea Amphipod *Paralicella tenuipes* by Illumina MiSeq
924 Sequencing, Journal of Heredity, 367 – 371, 2016.

925

926 Sanders H. L.: Marine benthic diversity: a comparative study, Am. Nat., 102, 243–282, 1968.

927

928 Schön I, Pinto R. L., Halse, S., Smith, A. J. & Martens, K.: Cryptic Species in Putative
929 Ancient Asexual Darwinulids (Crustacea, Ostracoda), PLoS ONE, 7, e39844.
930 doi:10.1371/journal.pone.0039844. 2012.

931

932 Schulenberger, E. & Barnard, J. L.: Clarification of the Abyssal Amphipod, *Paralicella*
933 *tenuipes* Chevreux, Crustaceana, 31, 267–274, 1976.

934

935 Schüller, M. & Ebbe, B.: Global distributional patterns of selected deep-sea Polychaeta
936 (Annelida) from the Southern Ocean, Deep-Sea Res. II, 54, 1737–1751, 2007.

937

938 Simpson, E. H.: Measurement of diversity, Nature, 163, 688, 1949.

939

940 Smith, C. R., Kukert, H., Wheatcroft, R. A., Jumars, P. A. & Deming, J. W.: Vent fauna on
941 whale remains, Nature, 341, 27–28, 1989.

942

943 Smith, C. R. & A.W. J. Demopoulos.: Ecology of the deep Pacific Ocean floor. In:
944 Ecosystems of the World Volume 28: Ecosystems of the Deep Ocean, P. A. Tyler,
945 ed., Elsevier, Amsterdam, pp. 179–218, 2003.

946

947 Smith, C. R., Drazen J. & Mincks, S. L.: Deep-sea Biodiversity and Biogeography:
948 Perspectives from the Abyss. International Seabed Authority Seamount Biodiversity
949 Symposium, 1–13, 2006.

950

951 Somero, G. N.: Adaptations to high hydrostatic pressure, Ann. rev. physiol., 54, 57–577.
952 1992.

953

954 Stuart, C., Rex, M. & Etter, R.: Large scale spatial and temporal patterns of deep-sea
955 biodiversity. Ecosystems of the World Volume 28: Ecosys. Deep Oc., P. A. Tyler, ed.,
956 Elsevier, Amsterdam, 295–311, 2003.

957

958 Taguchi Y. H. & Oono, Y.: Relational patterns of gene expression via non-metric
959 multidimensional scaling analysis, Bioinformatics, 21, 730–740, 2005.

960

961 Thiel, H.: Deep-sea Environmental Disturbance and Recovery Potential, Int. Revue ges.
962 Hydrobiol. Hydrogr., 77, 331–339, 1992. doi:10.1002/iroh.19920770213.

963

964 Thurston, M. H.: Abyssal necrophagous amphipods (Crustacea: Amphipoda) in the northeast
965 and tropical Atlantic Ocean, Prog. Oceanogr., 24, 257–274, 1990. doi:10.1016/0079-
966 6611(90)90036-2.

967

968 Vader, W.: How many amphipods species? 6th International Crustacean Congress, Glasgow,
969 Scotland, 18–22 July 2005, 143, 2005.

970

971 Wilson, G. D. F., Hessler R.: Speciation in the deep sea, Ann. Rev. Ecol. Syst., 18, 185–207,
972 1987.

973

974 Zardus, J. D., Etter, R. J., Chase, M. R., Rex, M. A. & Boyle, E. E. Bathymetric and
975 geographic population structure in the pan-Atlantic deep-sea bivalve *Deminucula*
976 *atacellana* (Schenck, 1939), Mol. Ecol., 15, 639–651, 2006.

977

978

979 **Figure captions**

980

981 **Figure 1: Geographic locations of the two study areas, the Clarion-Clipperton**
982 **fracture Zone (CCZ) (Northeast Pacific) and the DISturbance and re-COLonisation**
983 **(DisCOL) Experimental Area (DEA) (Peru Basin, Southeast Pacific).** There are nine
984 Areas of Particular Ecological Interest (APEIs) in the CCZ region, which are illustrated
985 by 400 x 400 km² white boxes. Grey boxes indicate the various contractor claim areas in
986 the CCZ. We deployed eight amphipod traps across the CCZ, which is 16,000 km² and
987 7000 km wide, and five in the DEA, which encompasses 11 km² with a width of 4 km.

988

989 **Figure 2: Histogram showing the species assemblage for the scavenging community**
990 **in the Clarion-Clipperton fracture Zone (CCZ) (black) and the DisCOL**
991 **Experimental Area (DEA) (grey).** The abundances of 17 morphotypes are shown.

992

993 **Figure 3: Catch Per Unit Effort (CPUE) illustrating the correlation between**
994 **sampling time and number of individuals collected.**

995

996 **Figure 4: Species rarefaction curves for each of the 13 trap stations across both**
997 **areas, the Clarion-Clipperton fracture Zone and the DisCOL Experimental Area.**
998 Only individuals longer than 15 mm were considered here.

999

1000 **Figures 5a and b: Relative species abundances in the Clarion-Clipperton fracture**
1001 **Zone and the DisCOL Experimental Area.** These abundances represent the longer than
1002 15mm fraction of the scavenging amphipod community only.

1003

1004 **Figure 6: NMDS plot** showing the beta biodiversity (dis/similarities) for each of the
1005 thirteen amphipod trap sampling stations associated with the two basins, Clarion-
1006 Clipperton fracture Zone (CCZ) (black) and the DisCOL Experimental Area (DEA) (red).
1007 Data are supported by a low stress value of 0.01.

1008

1009

1010 **Table captions**

1011

1012 **Table 1: Station overview.** Codes refer to the codes used in this paper in figures 1, 3, 4, 6
1013 and Table 3. The original station code represents the cruise codes from (SO239 and SO232-
1014 1). Depth refers to water depth (m) on deployment. Nodule presence/absence information is
1015 known only for stations D3 and D4.

1016 **Table 2a:** Overview of morphotypes across the Clarion-Clipperton fracture Zone (CCZ) and
1017 DisCOL Experimental Area (DEA).

1018 **Table 2b:** Overview of morphotypes across the Clarion-Clipperton fracture Zone (CCZ) and
1019 DisCOL Experimental Area (DEA).

1020 **Table 3:** Comparison of biodiversity calculated using the Simpson Index (D), for the
1021 Clarion-Clipperton fracture Zone and DisCOL Experimental Area, and D for each station is
1022 shown for further comparisons within these areas.

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033 **Appendix/Electronic Supplementary Information (ESM) captions**
1034

1035 **Appendix 1: Multibeam scan** - Showing the location of the 78 track marks created by the
1036 plough harrow in the DisCOL Experimental Area to simulate manganese nodule extraction
1037 activity (D1)

1038 **Appendix 2** – Photograph showing the baited free-fall lander trap designed and deployed by
1039 RBINS.

1040 **Appendix 3** - Side-scan sonar image of site D5 showing possible seamount barriers. View
1041 from NW (top) to SE (bottom). Contours are every 25 m. (Source: GEOMAR, 2015).

1042 **Appendix 4** – Calculation of alpha biodiversity used in this manuscript.

1043

1044

1045

1046

1047

1048

1049

1050

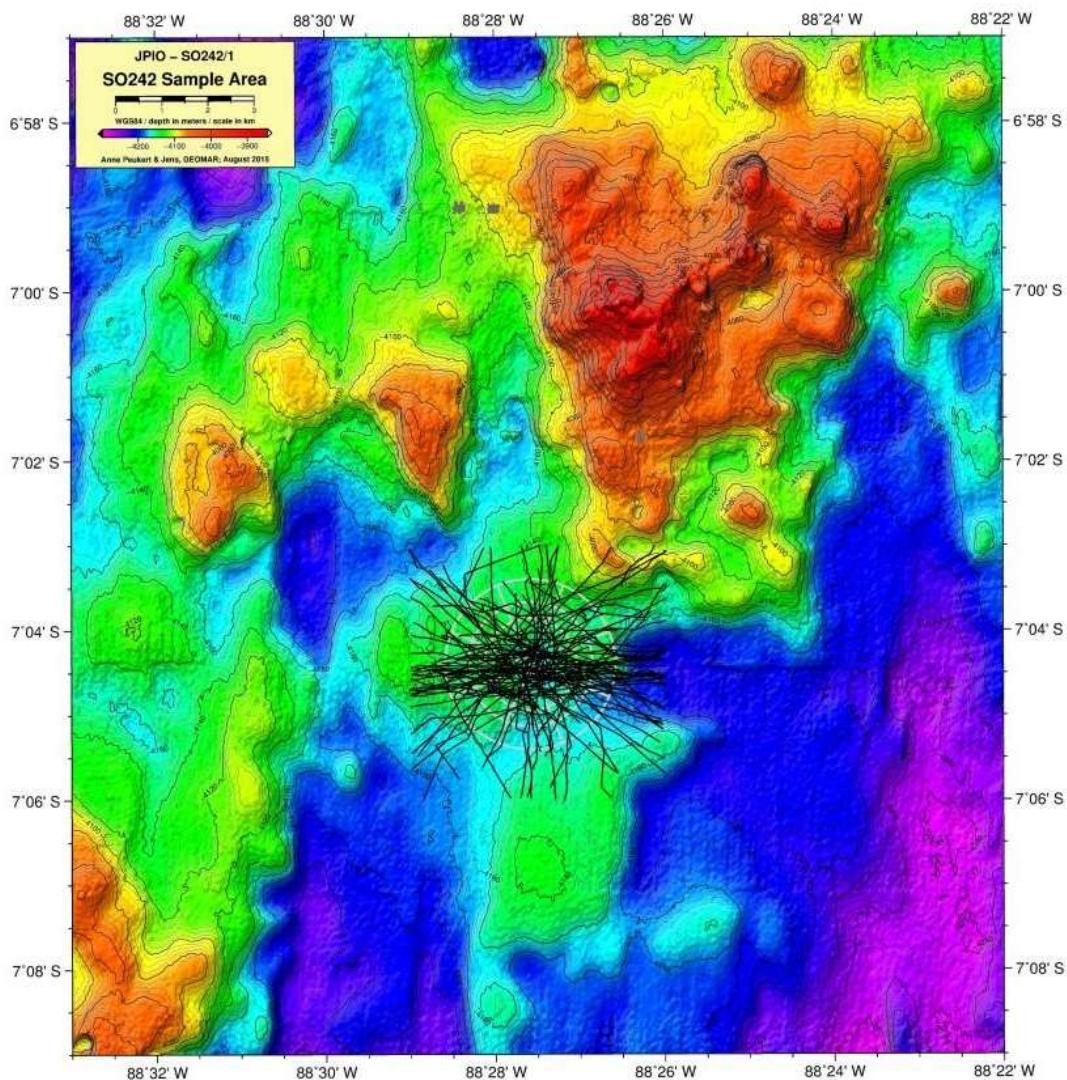
1051

1052

1053

1054

1055


1056

1057

1058

1059 **Appendix 1: Multibeam scan** - Showing the location of the 78 track marks created by the
1060 plough harrow in the DisCOL Experimental Area to simulate manganese nodule extraction
1061 activity.

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071 **Appendix 2** – Photograph showing the baited free-fall lander trap designed and deployed by
1072 RBINS.

1073

1074

1075

1076

1077

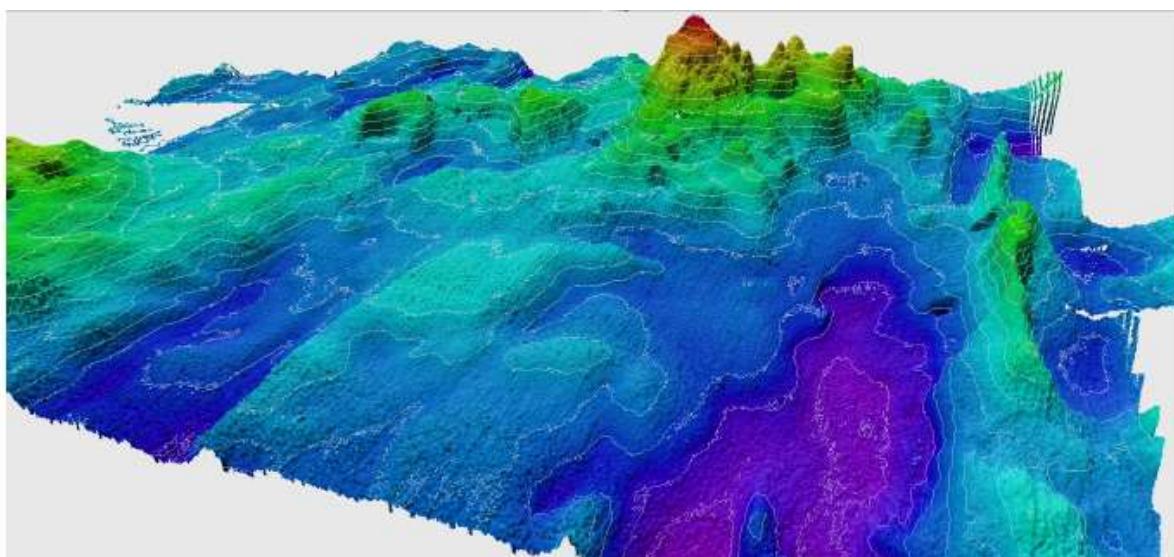
1078

1079

1080

1081

1082


1083

1084

1085

1086 **Appendix 3** - Side-scan sonar image of site D5 showing possible seamount barriers. View
1087 from NW (top) to SE (bottom). Contours are every 25 m. (Source: GEOMAR, 2015).

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100 **Appendix 4** - Calculation of alpha biodiversity used in this manuscript.

1101 Simpson Index

$$\text{Simpson Diversity Index (D)} = 1 - \frac{\sum n(n-1)}{N(N-1)}$$

1102

1103 D = Diversity Index

1104 n = number of individuals in each particular species

1105 N = Total number in community

1106 A high value of D indicates a high species diversity.

1107