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We would like to thank you for the clarification of your previous comments. The authors
agree, and in accordance with your suggestion, revised the CPUE effort plot to show

uncorrected time, and added further details for the rarefaction analysis.

Overleaf, you will find a point by point reply on how we addressed your comments in the
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changes highlighted in green.
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RCI1. Catch per unit analysis: the correction for sampling effort per time you used, dividing number of
individuals with time the trap was deployed, may be inappropriate. The correction would be fine, if
amphipods were dripping into the trap constantly, and if the densitiy of ampihpods was even.
However, time that amphipods reach the trap depends on time the odor is spread and walking speed.
The first hours amphipods may rapidly reach the trap, but more distant individuals arrive with larger
and larger lag. This might mean that in your correction nominator increases eg logarithmically and
denominator increases linearly, and that traps deployed for longer periods will be corrected
“disproportionally more” than traps deployed for shorter periods. Please consider this aspect in your
discussion

Our reply: Line 374 onward, shows an amended CPUE graph which has not been corrected for time.
The paragraph describing the CPUE results was also amended (line 505 onward).

RC2. Rarefaction curves: describe your procedure better: how many subsamples were taken, what was
the sizes of random subsamples, how many times you run rarefactions and so on, hence the
parameters of the procedure.

Our reply: Line 295, paragraph describing the rarefaction was amended to state it was run on the
longer than 15 mm fraction indicated in Table 2.0, and curves were generated using the default
parameters of the “rarefy” function in R.

All comments from the edits directly within the PDF were addressed.

Other comments:

Tectovallopsis -> Tectovalopsis changed throughout.

Valettietta tenuipes -> Paralicella tenuipes changed throughout
Species authorities added throughout.

Figures 5a and 5b redone.

2|Page



57

58

59

60

61

62

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

79

80

81
82

Biogeography and community structure of abyssal
scavenging Amphipoda (Crustacea) in the Pacific
Ocean.

Patel, Tasnim.! 2, Robert, Henri.!, D'Udekem D'Acoz, Cedric.?, Martens,

Koen.!?, De Mesel, Ilse.!, Degraer, Steven.'? & Schon, Isa.!>*

! Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment,
Aquatic and Terrestrial Ecology, Vautierstraat 29, B-1000 Brussels, Gulledelle 100, 1000
Brussels and 3e en 23e linieregimentsplein, 8400 Qostende, Belgium.

2 University of Ghent, Dept Biology, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium

3 Royal Belgian Institute of Natural Sciences, Operational Directorate Taxonomy &
Phylogeny, Vautierstraat 29, B-1000 Brussels, Belgium.

* University of Hasselt, Research Group Zoology, Agoralaan Building D, B-3590
Diepenbeek, Belgium.

Corresponding author: Ms. Tasnim Patel - tpatel@naturalsciences.be

3|Page



83
84

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101

102
103
104

105
106
107
108
109
110
111

Abstract

In 2015, we have collected more than 60,000 scavenging amphipod specimens during two
expeditions to the Clarion-Clipperton fracture Zone (CCZ), in the Northeast (NE) Pacific and
to the DISturbance and re-COLonisation (DisCOL) Experimental Area (DEA), a simulated
mining impact disturbance proxy in the Peru basin, Southeast (SE) Pacific. Here, we compare
biodiversity patterns of the larger specimens (> 15 mm) within and between these two
oceanic basins. Eight scavenging amphipod species are shared between these two areas, thus
indicating connectivity. We further provide evidence that disturbance proxies seem to
negatively affect scavenging amphipod biodiversity, as illustrated by a reduced alpha
biodiversity in the DEA (Simpson Index (D) = 0.62), when compared to the CCZ (D = 0.73)
and particularly of the disturbance site in the DEA and the site geographically closest to it.
Community compositions of the two basins differs, as evidenced by a Non-Metric
Dimensional Scaling (NMDS) analysis of beta biodiversity. The NMDS also shows a further
separation of the disturbance site (D1) from its neighbouring, undisturbed reference areas
(D2, D3, D4 and D5) in the DEA. A single species, Abyssorchomene gerulicorbis
(Shulenberger & Barnard, 1976), dominates the DEA with 60% of all individuals.

Keywords

JPIO Ecological Aspects of Deep-sea mining, Clarion Clipperton Fracture Zone, CCZ, DisCOL
Experimental Area (DEA), Amphipoda.
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Introduction

The abyssal deep sea (3000 - 6000 m) represents the largest ecosystem on the planet, with the
abyssal seafloor covering approximately 54% of the Earth’s solid surface (Rex et al. 1993;
Gage & Tyler, 1991). Since it is one of the least investigated ecosystems, there are still
extensive gaps in our knowledge of deep-sea fauna (German et al. 2011). Marine research has
thus far focused on coastal areas, hydrothermal vents or chemosynthetic habitats, whereas
open-ocean abyssal plains have been less extensively investigated (Ramirez-Llodra et al.
2010). This is unsurprising given the challenges of sampling this remote environment, which
is impeded by several confounding factors. For example, deep-sea sampling is both
financially expensive and labour intensive, and furthermore, constrained by the challenge of
deploying equipment at low temperatures (0.01 - 4.0°C) and at high hydrostatic pressures
(Sweetman et al. 2017). Therefore, to date very little of the deep sea has been sampled, and
the oversampling in the North Atlantic basin has created a biased knowledge base (McClain
& Hardy, 2010). Consequently, and owing to the low availability of data on deep-sea
biodiversity, and with the inherent risk of under-sampling, it is difficult to estimate species

richness in the deep sea.

In the traditional view of the deep sea, the abyss was considered to be homogeneous and
many species were thought to have large biogeographical ranges, their dispersal aided by an
apparent lack of barriers (Sanders, 1968). This hypothesis was challenged by the discovery of
chemosynthetic habitats e.g. hydrothermal vents (Lonsdale, 1977), cold seeps (Paull et al.
1984), seasonal fluctuations in primary productivity (Billett et al. 1983) and erratic whale-
falls (Smith et al. 1989). All of this research has demonstrated that the deep sea is an
heterogeneous environment and is controlled by many factors, including: Particulate Organic
Carbon (POC) flux, water depth, flow regime, current circulation, seafloor topography (Laver
et al. 1985) and also historical factors e.g. the opening of ocean basins (i.e. rifting), sea-level
rise and fall, and periods of deep-sea anoxia (Smith et al. 2006). All of these can result in a
mosaic of different communities (Levin et al. 2001), many of which do not follow a

latitudinal gradient (Brandt et al. 2007).

It has also been established that dispersal ability of species on the one hand, and their actual
geographic and bathymetric distribution range on the other, are not always linked, and are

often dependent on habitat suitability, fragmentation, and ecological flexibility (Lester et al.
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2007; Liow 2007). Therefore, although the deep-seafloor includes some of the largest
contiguous features on the planet, the populations of many deep-sea species are spatially
fragmented, and may become increasingly so with continued human disturbance (Hilario et

al. 2015).

In the last decade, there has been an bigger demand for exploitation of deep-sea resources e.g.
rare earth element (REE) extraction (such as those concentrated in manganese nodule
provinces) (Ramirez-Llodra et al. 2011). As a result, ecologists are increasingly asked to
assess the ecological risks of these mining activities and to provide sustainable solutions for

its mitigation, in order to prevent adverse changes to the deep-sea ecosystem (ISA, 2017).

Glover et al. (2001) showed that abyssal sediments can contain high biodiversity with more
than 100 species of meiofaunal invertebrates (e.g. nematodes, copepods) and protists (e.g.
foraminifers) found every square meter. In spite of this, our knowledge on the deep-sea
ecosystem structure and functioning is still limited, and there is a paucity of data on the
distribution, drivers and origins of deep-sea communities at global scales. This is especially

true for deep-sea invertebrates, including Amphipoda (Barnard 1961; Thurston 1990).

Although recent morphological and molecular studies have shed new light on the distribution
and habitat niches of certain bentho-pelagic amphipods (e.g. Eurythenes) (Havermans, 2016;
Narahara-Nakano et al. 2017), there is little published so far on how widespread other
amphipod species may be. This lack of information on species richness and ecological
uniqueness hampers the answering of crucial questions on recoverability of anthropogenic
impacts. Ultimately this impedes ecologists from providing advice on sustainable deep-sea

mining practices, thus, underpinning the need for this dedicated deep-sea ecosystem research.

Here, we present distribution patterns of scavenging deep-sea amphipod communities, with
the first comparisons of their biogeography and community structures in two oceanic basins.
These two basins are the research areas for simulating/studying the anthropogenic impacts of

deep-sea nodule mining.

We are investigating whether there are differences and similarities in the species
compositions of the two basins (e.g. richness, abundances), and further exploit a disturbance

experiment to compare the biodiversity of this mining impact proxy to the undisturbed
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reference areas. We discuss the possible implications of our findings; aiming to use them to
formulate recommendations regarding the pending deep-sea mining of manganese nodule

activities in the NE Pacific ecosystem.

Material and Methods

Study area

We investigated the amphipod communities of two oceanic basins (Figure 1); (i) the Clarion-
Clipperton Fracture Zone (CCZ, six million km?, 7000 km wide), an economically important
manganese nodule field in the NE Pacific, comprising several different contractor claim
areas, (who to date, have exploration licences only), and nine designated Areas of Particular
Ecological Interest (APEIs) as designated by the International Seabed Authority (ISA)
(Lodge et al, 2014) and (ii) the DISturbance and re-COLonisation (DisCOL) Experimental
Area (DEA, 11 km?, 4 km wide), a mining disturbance proxy (also containing manganese
nodules) in the Peru Basin in the SE Pacific. In 1989, the DEA sediment bed was artificially
disturbed using a plough-harrow to create 78 track marks (Appendix 1) (Thiel, 1992).. These
are supposed to simulate the type of disruption which would be caused by a commercial
mining operation This baseline study was a new approach in deep-sea risk assessment and is

still ongoing today, providing us with crucial data from this long-term ecological experiment.
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ccz

Figure 1: Geographic locations of the two study areas, the Clarion-Clipperton fracture
Zone (CCZ) (Northeast Pacific) and the DISturbance and re-COLonisation (DisCOL)
Experimental Area (DEA) (Peru Basin, Southeast Pacific). There are nine Areas of
Particular Ecological Interest (APEIs) in the CCZ region, which are illustrated by 400 x 400
km? white boxes. Grey boxes indicate the various contractor claim areas in the CCZ. We
deployed eight amphipod traps across the CCZ, which is 16,000 km? and 7000 km wide, and
five in the DEA, which encompasses 11 km? with a width of 4 km.

Sampling

In 2015 (26 years after the first impact in the DEA in 1989), two research expeditions with
the “RV Sonne” visited the CCZ (cruise SO239) and revisited the DEA (cruise SO242-1 &
S0242-2), to assess if and how the deep-sea faunal communities had recovered within the

DEA, and to attempt to quantify their recolonization potential.

Amphipod samples were taken from the CCZ and DEA using a free-fall lander (120 x 120 x
120 cm), to which four plastic traps were attached (two 20 x 25 x 40 cm traps with four cm
openings and two 25 x 40 x 60 cm traps with eight cm openings), baited for each station with
an 800 g mixture of mackerel, squid and shrimp. Using this specially designed deep-sea
sampling equipment, more than 60,000 specimens of scavenging amphipods were collected

from the CCZ and the DEA sites.

The baited trap was deployed eight times across the CCZ at a depth range of 4116 - 4932 m
(samples C1 - C8), and five times in the DEA at a depth range of 4078 - 4307 m (samples D1
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- D5; Figure 1, Table 1). In the CCZ, we sampled within three different contractor claim
areas (Table 1) to obtain a pre-disturbance baseline, and to then compare it with one of the
nine protected APEIs around the CCZ. In contrast, in the DEA, sampling was conducted once
within the disturbed area (D1), twice 10 km away (D2, D3) and twice 40 km away (D4, D5)

from D1 in four surrounding reference areas (see Figure 1).
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Table 1: Station overview.

Codes refer to the codes used in this paper in figures 1, 3, 4, 6 and Table 3. The original
station code represents the cruise codes from (SO239 and SO232-1). Depth refers to water
depth (m) on deployment. Nodule presence/absence information is known only for stations

D3 and D4.
Deployment Original Station | Depth (m) | Known Remarks Residence
Code geological Time (h:m:s)
Code features
C1 S0239-33 4122 Plains German claim 100:20:00
Cc2 S0239-37 4116 Plains German claim 125:49:00
C3 S0239-63 4354 Plains German claim 66:07:00
C4 S50239-96 4388 Seamount Inter Ocean Metals (IOM) 63:02:00
claim
Cs5 S0239-123 4529 Plains Belgian claim 26:12:00
C6 S0O239-139 4516 Plains Belgian claim 56:33:00
North/South
+ seamount to
west
Cc7 S0239-173 4934 Plains French claim 79:40:00
C8 S0239-205 4855 Plains Area of Particular Ecological 55:59:00
Interest (APEI)
D1 S0242/1-8 4146 Plains Disturbed 44:26:33
D2 S0242/1-30 4307 Plains Undisturbed Reference 51:11:18
D3 S0242/1-55 4043 Seamount Undisturbed Reference 25:09:09
No nodules
D4 S0242/1-68 4078 Seamount Undisturbed Reference 65:20:46
No nodules
D5 S0242/1-106 4269 Plains Undisturbed Reference 47:00:50
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Processing

On recovery of the lander, all traps were disconnected and placed in pre-cooled (4°C) buckets
of filtered seawater. All specimens were washed on board in a cool-climate laboratory (4°C),
morphologically pre-sorted and fixed in molecular grade (95%) ethanol, before being stored

at -20°C.

Detailed sorting and identification was performed using the morphological species concept
(Futuyama, 1998) and the keys of Lowry & Killagen (2014) and Schulenberger & Barnard
(1976), to separate the samples into taxonomic “morphotypes”. The larger fraction (> 15 mm
length) has been identified to the lowest possible taxonomic resolution. Species not assigned
with certainty are denoted here by as affiliated species (e.g. genus aff. species) or conferred

species (e.g. genus cf. species).

Specimens with a size of less than 15 mm length were excluded from the analysis because
these were mostly juveniles and their morphological differences were not sufficiently

pronounced to allow an accurate identification to the species or even genus level-

Statistical analyses

Our null hypothesis (Ho) here is that there are no differences in the amphipod biodiversity of
the two basins. To test this hypothesis, we firstly calculated the alpha biodiversity of the two

basins was using the Simpson Index (D) (Simpson, 1949) (Appendix 4). _

stations and to test for

the completeness of sampling.

Secondly, to compare the beta biodiversity, we estimated the variability of the community
compositions between sites. The Bray-Curtis dissimilarity metric (Bray & Curtis, 1957), was
used to calculate differences between community compositions based on species densities,

and the results were then visualised in 2D using a Non-Metric Dimensional Scaling (NMDS)
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305 plot. The ANOSIM function in the vegan package of R (R Core Team, 2013; Taguchi & Ono,
306  2005) was used to test the statistical significance of the differences in species compositions
307  between the two study areas.
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Results

Basin biodiversity

In total, 6916 scavenging amphipods (> 15 mm) were collected from the thirteen trap
deployments in the two study areas, representing a total of seventeen morphotypes (Figure 2).
In the CCZ, we collected 3932 individuals, which represent ten morphotypes. Five of these
have been identified to the species level: Abyssorchomene distinctus (Birstein & Vinogradov,
1960), Abyssorchomene gerulicorbis (Shulenberger & Barnard, 1976), Eurythenes sigmiferus
(d'Udekem d'Acoz & Havermans, 2015), Paralicella caperesca (Shulenberger & Barnard,
1976) and Paralicella tenuipes (Chevreux, 1908). Two are affiliated to a species
(Paracallisoma aff. alberti and Valettietta cf. gracilis) and the remaining three are at least
affiliated to a genus (Tables 2a and 2b). The 2984 individuals from the DEA represent fifteen
morphotypes. Six of these have been identified to the species level: Abyssorchomene
distinctus (Birstein & Vinogradov, 1960), Abyssorchomene gerulicorbis (Shulenberger &
Barnard, 1976), Eurythenes sigmiferus (d'Udekem d'Acoz & Havermans, 2015), Paralicella
caperesca (Shulenberger & Barnard, 1976), Parandaniexis mirabilis (Schellenberg, 1929)
and Tectovalopsis regelatus (Barnard & Ingram, 1990). A further five which have been
affiliated to a species: Eurythenes aff. gryllus, Eurythenes atf. magellanicus, Paracallisoma
aff. alberti, Stephonyx sp. nov. aff. arabiensis and Valettietta cf. gracilis and the remaining

four identified to at least an affiliated genus (Tables 2a and 2b).

There are eight morphotypes shared between the basins: Abyssorchomene distinctus (Birstein
& Vinogradov, 1960), Abyssorchomene gerulicorbis (Shulenberger & Barnard, 1976),
Abyssorchomene spp., Eurythenes sigmiferus (d'Udekem d'Acoz & Havermans, 2015),
Eurythenes spp., Paracallisoma aff. alberti, Paralicella caperesca (Shulenberger & Barnard,

1976) and Valettietta cf. gracilis (Figure 2).

Two morphotypes were found only in the CCZ (Hirondellea sp. & Paralicella tenuipes
(Chevreux, 1908), and seven morphotypes were found only in the DEA (Eurythenes aff.
gryllus, Eurythenes aff. magellanicus, gen. aff. Cleonardo, Parandania sp., Parandaniexis
mirabilis (Schellenberg, 1929), Stephonyx sp. nov. aff. arabiensis, and Tectovalopsis
regelatus (Barnard & Ingram, 1990) (Table 2).
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Figure 2: Histogram showing the species assemblage for the scavenging community in
the Clarion-Clipperton fracture Zone (CCZ) (black) and the DisCOL Experimental
Area (DEA) (grey). The abundances of 17 morphotypes are shown.
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Table 2a: Overview of morphotypes across the Clarion-Clipperton fracture Zone (CCZ)
and DisCOL Experimental Area (DEA).

Total unique morphotypes
collected

Species possibly unique to
this basin

Shared species between

basins

Table 2b: Distribution and abundances of morphotypes across the Clarion-Clipperton

fracture Zone (CCZ) and DisCOL Experimental Area (DEA). Green = shared, Orange =

DEA only, Blue = CCZ only.

Clarion-Clipperton

fracture Zone

DisCOL Experimental
Area
17 (10 found in the CCZ, 15 found in the DEA)

Taxa

Abyssorchomene distinctus
Abvssorchomene gerulicorbis
Abvssorchomene spp.
Eurythenes aff. gryllus
Eurythenes aff. magellanicus
Eurythenes sigmiferus
Eurvthenes spp.

gen. aff. Cleonardo
Hirondellea .sp.
Paracalilisoma aft. alberti
Paralicella caperesca
Paralicella tenuipes
Parandania sp.

Parandaniexis mirabilis

Tectovalopsis regelatiis
Valettietta cf. gracilis
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Sampling completeness

Due to differences in allocated ship-times (CCZ cruise being 52 days and the DEA cruise
being 29 days), the trap deployments were not identical, making it necessary to check the

effect of the different deployment times. _
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Figure 3: Catch Per Unit Effort (CPUE) illustrating the correlation between sampling
time and number of individuals collected. Only the longer than 15mm fraction was

included here.
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The rarefaction results (Figure 4) show that the curves for nine stations reach a plateau,
indicating that sampling effort was sufficient to assess diversity levels. These include all CCZ
stations except C7. In contrast, four of the five curves for the DEA (stations D1, D2, D4 and
D5) are unsaturated.
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Figure 4: Species rarefaction curves for each of the 13 trap stations across both areas,
the Clarion-Clipperton fracture Zone and the DisCOL Experimental Area. Only

individuals longer than 15 mm were considered here.
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Biodiversity

Figures 5a and b show that the scavenging community in the CCZ is dominated by three
species, 4. distinctus (Birstein & Vinogradov, 1960) (36%), A. gerulicorbis (Shulenberger &
Barnard, 1976) (18%) and Paralicella caperesca (Shulenberger & Barnard, 1976) (31%),
whereas, in contrast, the DEA scavenging community is dominated by a single species, 4.
gerulicorbis (Shulenberger & Barnard, 1976), accounting for almost 60% of all specimens.
The Simpson Index (D) for the entire CCZ area is (with 0.73), higher than the 0.62 that was
calculated for the whole of the DEA area (Table 3). The biodiversity of each individual
station was further explored (Table 3). In the CCZ, the lowest biodiversity was found at C3
and C6 (D = 0.23) and the highest at C2 (D = 0.67), respectively. In the DEA, the lowest
biodiversity of D = (0.36 was found at station D1 (the site of the actual disturbance) and just
south of the disturbance site at D2 (0.21), while the highest biodiversity was observed at D5
(D =0.61) (Table 3).
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Figures 5a and b: Relative species abundances in the Clarion-Clipperton fracture Zone

and the DisCOL Experimental Area. These abundances represent the longer than 15mm

subsample of the scavenging amphipod community.

Table 3: Comparison of biodiversity calculated using the Simpson Index (D), for the
Clarion-Clipperton fracture Zone and DisCOL Experimental Area, and D for each

station is shown for further comparisons within these areas.

Simpson Index (D) whole 0.73
Clarion-Clipperton Fracture

Zone

Simpson Index (D) whole 0.62
DisCOL Experimental Area

Cl (D) 0.41
C2 (D) 0.68
C3 (D) 0.23
C4 (D) 0.27
C5 (D) 0.38
C6 (D) 0.23
C7 (D) 0.45
C8 (D) 0.44
D1 disturbed (D) 0.36
D2 ref 1 (D) 0.21
D3 ref 2 (D) 0.38
D4 ref 3 (D) 0.44
D5 ref 4 (D) 0.61
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453  The NMDS shows that the communities of the two basins are clearly separated (ANOSIM: p
454  =0.002); Figure 6). The disturbed area in the DEA (D1) is showing a clear difference to the
455  four reference areas (D2 - 5). When the communities between the two basins are compared,
456 D2 appears to be most similar to the CCZ community, and more specifically to C6, C7 and
457  C8. The reliability of the data ranking is supported by a low stress value of 0.01.
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460  Figure 6 : NMDS plot showing the beta biodiversity (dis/similarities) for each of the thirteen
461  amphipod trap sampling stations associated with the two basins, Clarion-Clipperton fracture
462  Zone (CCZ) (black) and the DisCOL Experimental Area (DEA) (red). Data are supported by
463  alow stress value of 0.01.
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Discussion

An unexplored ecosystem

Although the most recent and comprehensive analysis of the Animal diversity of the World’s
oceans estimates a total of less than a million species over all depths (Appeltans et al. 2012),
it is not currently known how many species inhabit the deep-sea. Regarding amphipods, only
328 benthic, demersal and benthopelagic species, belonging to 144 genera and 39 families.
Over 7000 marine amphipod species have been found below 2000 m. These numbers are
reduced to 173 known species, 87 genera and 37 families at depths below 3000 m, and 100
known species, 66 genera and 31 families are known to occur below 4000 m (Vader 2005;

Brandt et al, 2012).

Lysianassoidea and their biogeography

The superfamily Lysianassoidea constitutes an important part of the abyssal amphipod fauna.
Also, in our sampling, lysianassoid amphipods were collected in large numbers (99% of the
samples taken in both basins). As a superfamily, they comprise 23% of all the species found
below 2000 m, 35% of the species found below 3000 m and 31% of the species found below
4000 m (Brandt et al. 2012).

Many species in the Lysianassoidea occur in multiple abyssal basins, and some even have
worldwide distributions (Thurston 1990). Despite the Ocean Biogeographic Information
System (OBIS) database containing 615,650 records of Amphipoda, many of these are shelf
or pelagic species, with very few records from the CCZ and DEA (OBIS, 2017). Here, we
provide additional data for the known bathymetric range of the seven amphipods which we
have identified to species level (4byssorchomene distinctus (Birstein & Vinogradov, 1960),
Abyssorchomene gerulicorbis (Shulenberger & Barnard, 1976), Eurythenes sigmiferus
(d'Udekem d'Acoz & Havermans, 2015), Paralicella caperesca (Shulenberger & Barnard,
1976), Paralicella tenuipes (Chevreux, 1908), Parandaniexis mirabilis (Schellenberg, 1929)
& Tectovalopsis regelatus (Barnard & Ingram, 1990) (Table 2b). In addition, we have found
two possibly new species of Eurythenes, previously not known from these basins, which we

plan to analyse further in the future.
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While we only sampled Hirondellea sp. and Paralicella tenuipes (Chevreux, 1908) in the
CCZ, Eurythenes aff. gryllus, Eurythenes aff. magellanicus, gen. aff. Cleonardo, Parandania

sp., Parandaniexis mirabilis (Schellenberg, 1929), Stephonyx sp. nov. aff. arabiensis, and

regelatus (Barnard & Ingram, 1990) only in the DEA, we cannot conclude

based on the current data only if these species are unique to their respective basins without

confirming these distribution patterns with additional sampling campaigns.

Biodiversity within basins

Figures 5a & b show clearly that the DEA scavenging community has reduced abundances of
all species including 4. distinctus (Birstein & Vinogradov, 1960) (1%) and P. caperesca
(Shulenberger & Barnard, 1976) (7%), and is now dominated by a single species, A.
gerulicorbis (Shulenberger & Barnard, 1976), accounting for 60% of the DEA community.
This indicates an interesting resilience and flexibility in the latter species. Similar patterns
have been observed in Potter Cove (Seefeldt et al. 2017), where following glacial retreat, a
change in sedimentation rates led to the dominance of a single amphipod scavenging species,

Cheirimedon femoratus (Pfeffer, 1888).

Thus, we can observe some negative influence (possibly attributed to the disturbance in the
DEA) on the scavenging amphipod community. This reduced biodiversity is reflected in the

higher Simpson Index (D) for the CCZ (0.73) as compared to the DEA (D = 0.62; Table 3).

To explore whether this reduced diversity in the DEA was truly a result of the simulated

disturbance, D was also calculated for each sampling station within each basin (Table 3).
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In the CCZ, the APEI (C8) shows a moderate level of biodiversity (D = 0.44), indicating that
it is not optimally-placed for representing the biodiversity of the scavenging amphipod
community of the CCZ. Additionally, this pre-existing lower biodiversity (in comparison to
the contractor claim areas), indicates that the APEI may not serve well as a refugium for
amphipods post-disturbance. However, due to the fact that only one of the eight APEIs have
been investigated thus far, this APEI along with the remaining eight APEIs would need to be
(re-) sampled.

Within the DEA, the lowest biodiversities are observed at the site of the disturbance (D1) and
south of it (D2; Table 3), indicating that the reduced biodiversity in the DEA could indeed be
caused by the simulated disturbance in 1989 (Thiel, 1992).

The highest abundances in the DEA were collected from station D5 (n = 717); this station
also has the highest Simpson Index within the DEA (D = 0.61) (Table 3). Side-scan sonar
imaging shows a seamount range to the North West (NW) of the disturbed area (D1)
(Appendix 3). Although the relief change is only 150m, the range extends laterally for several
kilometres (SO242-1 Cruise report, 2016) hampering dispersal across barriers such as sills,
canyons and ridges (Smith, et al. 2006; Blankenship et al. 2006; Etter et al. 2011). However,
recent studies have shown that due to their mobile nature, geographic isolation alone would
not pose a true barrier to bentho-pelagic amphipod species (Havermans, 2016; Ritchie et al.
2017), and thus, cannot explain why such a high number of large scavenging individuals was

collected at station D5.

Community similarities

Scavenging amphipods are resilient and dispersive, but most importantly, they are highly
mobile (Ingram and Hessler 1983; Lorz et al. 2018). Often driven by their search for erratic
deposited feeding opportunities (Smith et al. 1989), they are probably less constrained by

local environmental abiotic conditions and seafloor topography.

Beta diversity can be regarded as the dissimilarities in species composition between spatially
different communities. As an indication for beta biodiversity, the NMDS (Figure 6) shows a
significant separation in the similarity index between the two basins (ANOSIM p = 0.002).

However, despite the dispersive and resilient nature of scavenging amphipods, their
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biodiversity appears to have been affected by the disturbance experiment as evidenced by the
NMDS (Figure 6), where the disturbed area (D1) and the area closest to it (D2) are separated

from the remaining three reference sites (D3, D4 and D5).

In the CCZ, stations C1, C2, C3, C4 and C5 form one cluster in the NMDS (Figure 6), and
stations C6, C7 and C8 a second cluster. The CCZ is a geomorphologically very
heterogeneous region, with seamounts of 200 m altitude running from north-south. A barrier
of this height would be expected to affect sedimentation rates, nodule presence and currents.
Furthermore, the difference in depth from the eastern edge (3950m) and the western edge
(5150 m) is more than 1200 m. These combined factors very likely give rise to different
trends in species composition (Glover, et al. 2015). However, since it has been established
that bentho-pelagic amphipods are less sensitive to such barriers (Havermans, 2016), at this
stage, other biotic (e.g. the productivity gradient) and abiotic factors causing this separation

cannot be excluded as alternative explanations.

Dispersal and connectivity

Whilst the NMDS (Figure 6) illustrates a visual separation of the two basins, there is also
some similarity in the amphipod fauna between the two areas, (as is obvious by the eight
shared species), indicating that the dispersal extent for these eight species might range up to
at least 3000 km. However, this hypothesis will need to be confirmed with subsequent

molecular analyses.

Abyssal amphipods have been shown to be able to travel actively at speeds of almost 4
cm/sec (Laver, 1985), even at temperatures as low as 3°C (Kankaanpda et al. 1995). It is
obvious that they are sufficiently strong to swim up weak currents since they can be found
several hundred meters above the seafloor searching pelagically for mates (e.g. Eurythenes
gryllus occurring up to 1800 m above the seafloor) (Thurston 1990; Havermans et al. 2013)
or following food-falls (Baldwin and Smith 1987).

However, it is apparent that the dispersal of abyssal amphipods is not always contingent on
current direction, but also on passive dispersal. Amphipods can also be carried passively over

long distances by stronger currents e.g. (the circumpolar current of the Southern Ocean)
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(Laver et al. 1985), but even weaker deep-sea currents have been suggested as a mechanism
for deep-sea dispersal of amphipods (e.g. Eurythenes gryllus (Schiiller and Ebbe 2007)). This
coupled with their ability to follow odour-plumes (Ide et al. 2006; Premke, 2003),
significantly increases the probability and extent of their dispersal (Conlan 1991; Highsmith,
1985). Specialist feeding adaptations for several species in our assemblages have been
reported in Havermans & Smetacek, 2018). For example, the semi-tubular flap-like molars of
the genera Hirondellea and Eurythenes, and the distendable foregut (4byssorchomene) and
midgut (Paralicella). 1t is not clear from our study in the absence of POC data for the areas of
the trap deployments whether the biogeography of these specialised feeders is linked to the

productivity gradients in these two basins.

The lack of a clear dispersal pattern is obvious from Figure 6, where station D2 is the station
clustering closest with the CCZ basin in terms of species composition despite the fact that

station D5 is geographically the shortest distance away from the CCZ.

Recent research on Eurythenes gryllus has demonstrated that it thrives in every ocean with a
wide (pelagic — hadal) depth range. However, assumptions that individual morphotypes of
this species belong to the same genetic lineage have been challenged (Havermans et al. 2013
& Havermans, 2016). Ritchie et al. (2016) demonstrated with microsatellite markers
heterozygote deficiency in Paralicella tenuipes (Chevreux, 1908), which they attributed to
cryptic diversity. It is likely that the connectivity of the eight species we observed as being
shared between the CCZ and DEA (based on traditional morphological methods), can be
explained by the presence of one or more cryptic amphipod species, which are being tested in

our future molecular research.
Unfortunately, in the absence of data on deep-sea currents in the study area, especially

between the CCZ and DEA, it is not yet possible to fully explain the drivers and mechanisms

of amphipod dispersal between these particular basins.
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The DisCOL Experimental Area as a proxy

Higher abundances of scavenging amphipods were collected from the CCZ (3932
individuals) as opposed to the DEA (2984 individuals). Yet, we have identified more
morphotypes in the DEA (18) than in the CCZ (10), indicating that the DEA is more

speciose, and thus, more biodiverse.

Although the DEA is more speciose, many of its morphotypes were collected in low
abundances, with several of these being singletons or doubletons (collected from one or two
sampling stations only). This is reflected in the rarefaction curves (Figure 4), which indicate
thorough sampling in the CCZ with all but station C7 reaching asymptotes. In contrast, four
stations in the DEA (D1, D2, D4 and D5) are unsaturated. This pattern suggests firstly that
the less abundant species which are present at fewer stations only may not necessarily be rare
species and secondly, that there could be as yet undetected biodiversity in the DEA.
Therefore, the effects of mining impact could be even more pronounced than we observed in
this study. However, as the seafloor environment is subject to seasonal fluctuations (Billett et

al. 1983), it is hard to predict exactly what the effects will be at this stage.

Our preliminary (basin-scale) comparison of the scavenging communities of the two study
areas shows that even if the DEA is a small-scale disturbance experiment, it is a very diverse
area. Thus, the DEA is a well-chosen site for monitoring the impacts of disturbance and

instrumental in its role as a proxy to assess impending mining activities in the CCZ.

Future research

At several stations in both basins, we collected amphipods in very high abundances (C1, C8,
D3 & D5) (Table 2b). Since biotic production is contingent on the sinking flux of particles
from the euphotic zone (Sweetman, 2017), the biodiversity differences at each of the thirteen
stations could be driven by Particulate Organic Carbon (POC) or erratic whale-falls (Smith et
al. 1989). However, not all feeding behaviour of scavenging amphipods is based on
opportunistic or erratic availability of nutrients (Havermans & Smetacek, 2018). During
future sampling campaigns, the POC of these areas should be monitored, along with

experiments on different types of food-fall in addition to obtaining side-scan sonar and
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abiotic data. This will provide a more comprehensive view of the food types required for

these species to thrive in the deep sea.

It is not clear from our results whether substrate type (i.e. nodule/non-nodule) has any effect
on the amphipod communities (Smith and Demopoulos, 2003) since this kind of data is only
available for stations D3 and D4. To answer this question, resampling of the study areas in

combination with an Ocean Floor Observation System (OFOBS) (video/camera) is required.

Although our study only addresses the scavenging amphipod species longer than 15 mm, we
already find indications for a disturbance effect in the DEA. It is obvious that scavenging
amphipods are only one of several bentho-pelagic indicator groups. Other truly benthic
groups such as sponges or less dispersive amphipods (e.g. collected by epibenthic sledge
(EBS)) may demonstrate an even more pronounced impact of mining activities and should be

investigated in future studies.

With the application of molecular techniques to identify cryptic species (Deli¢ et al, 2017),
more realistic estimates of biodiversity can be obtained (Schon et al. 2012), improving our
current knowledge of the biodiversity of this area. If these improved estimates of biodiversity
also include cryptic species, it is possible that the biological impact of manganese nodule

mining on amphipod and other deep-sea faunal communities may turn out to be even higher.

Conclusions

In summary, this study on the scavenging amphipod community of two abyssal oceanic
basins has demonstrated that amphipods are present in high abundances across the CCZ and
DEA, with eight shared species and some species possibly being unique to their respective

basin.

Our results have indicated that the simulated mining experiment probably had an impact on
the biodiversity of these scavenging amphipods, as demonstrated by the low D of the DEA
overall, at the disturbance site itself (D1), and the 60% dominance of A. gerulicorbis

(Shulenberger & Barnard, 1976) in this region.

Given the scarcity of sampling and industry experience of marine habitats at these depths, the

formulation of effective regulations is challenging (International Seabed Authority, 2017).
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Nonetheless, our study provides the first results on possible effects of disturbance activities

on the abyssal amphipod biodiversity of deep-sea basins.

Sample and data availability

Biological samples pertaining to this manuscript are stored at the Royal Belgian Institute of
Natural Sciences, and the data discussed in the manuscript are submitted to PANGEA.
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Figure captions

Figure 1: Geographic locations of the two study areas, the Clarion-Clipperton
fracture Zone (CCZ) (Northeast Pacific) and the DISturbance and re-COLonisation
(DisCOL) Experimental Area (DEA) (Peru Basin, Southeast Pacific). There are nine
Areas of Particular Ecological Interest (APEIs) in the CCZ region, which are illustrated
by 400 x 400 km? white boxes. Grey boxes indicate the various contractor claim areas in
the CCZ. We deployed eight amphipod traps across the CCZ, which is 16,000 km? and
7000 km wide, and five in the DEA, which encompasses 11 km? with a width of 4 km.

Figure 2: Histogram showing the species assemblage for the scavenging community
in the Clarion-Clipperton fracture Zone (CCZ) (black) and the DisCOL
Experimental Area (DEA) (grey). The abundances of 17 morphotypes are shown.

Figure 3: Catch Per Unit Effort (CPUE) illustrating the correlation between

sampling time and number of individuals collected.

Figure 4: Species rarefaction curves for each of the 13 trap stations across both
areas, the Clarion-Clipperton fracture Zone and the DisCOL Experimental Area.

Only individuals longer than 15 mm were considered here.

Figures 5a and b: Relative species abundances in the Clarion-Clipperton fracture
Zone and the DisCOL Experimental Area. These abundances represent the longer than

15mm fraction of the scavenging amphipod community only.

Figure 6: NMDS plot showing the beta biodiversity (dis/similarities) for each of the
thirteen amphipod trap sampling stations associated with the two basins, Clarion-
Clipperton fracture Zone (CCZ) (black) and the DisCOL Experimental Area (DEA) (red).

Data are supported by a low stress value of 0.01.
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Table captions

Table 1: Station overview. Codes refer to the codes used in this paper in figures 1, 3, 4, 6
and Table 3. The original station code represents the cruise codes from (SO239 and SO232-
1). Depth refers to water depth (m) on deployment. Nodule presence/absence information is

known only for stations D3 and D4.

Table 2a: Overview of morphotypes across the Clarion-Clipperton fracture Zone (CCZ) and
DisCOL Experimental Area (DEA).

Table 2b: Overview of morphotypes across the Clarion-Clipperton fracture Zone (CCZ) and
DisCOL Experimental Area (DEA).

Table 3: Comparison of biodiversity calculated using the Simpson Index (D), for the
Clarion-Clipperton fracture Zone and DisCOL Experimental Area, and D for each station is

shown for further comparisons within these areas.
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Appendix/Electronic Supplementary Information (ESM) captions

Appendix 1: Multibeam scan - Showing the location of the 78 track marks created by the
plough harrow in the DisCOL Experimental Area to simulate manganese nodule extraction

activity (D1)

Appendix 2 — Photograph showing the baited free-fall lander trap designed and deployed by
RBINS.

Appendix 3 - Side-scan sonar image of site D5 showing possible seamount barriers. View

from NW (top) to SE (bottom). Contours are every 25 m. (Source: GEOMAR, 2015).

Appendix 4 — Calculation of alpha biodiversity used in this manuscript.
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Appendix 1: Multibeam scan - Showing the location of the 78 track marks created by the
plough harrow in the DisCOL Experimental Area to simulate manganese nodule extraction
activity.
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1071  Appendix 2 — Photograph showing the baited free-fall lander trap designed and deployed by
1072 RBINS.
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Appendix 3 - Side-scan sonar image of site D5 showing possible seamount barriers. View
from NW (top) to SE (bottom). Contours are every 25 m. (Source: GEOMAR, 2015).
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Appendix 4 - Calculation of alpha biodiversity used in this manuscript.

Simpson Index

Simpson Diversity Index (D) =1 - yn(n-1) =
N(N-1)

D = Diversity Index
n = number of individuals in each particular species
N = Total number in community

A high value of D indicates a high species diversity.
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