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Abstract

In 2015, we have collected more than 60,000 scavenging amphipod specimens during two
expeditions to the Clarion-Clipperton fracture Zone (CCZ), in the Northeast (NE) Pacific and
to the DISturbance and re-COLonisation (DisCOL) Experimental Area (DEA), a simulated
mining impact disturbance proxy in the Peru basin, Southeast (SE) Pacific. Here, we compare
biodiversity patterns of the larger specimens (> 15 mm) within and between these two
oceanic basins. Eight scavenging amphipod species are shared between these two areas, thus
indicating connectivity. We further provide evidence that disturbance proxies seem to
negatively affect scavenging amphipod biodiversity, as illustrated by a reduced alpha
biodiversity in the DEA (Simpson Index (D) = 0.62), when compared to the CCZ (D = 0.73)
and particularly of the disturbance site in the DEA and the site geographically closest to it.
Community compositions of the two basins differs, as evidenced by a Non-Metric
Dimensional Scaling (NMDS) analysis of beta biodiversity. The NMDS also shows a further
separation of the disturbance site (D1) from its neighbouring, undisturbed reference areas
(D2, D3, D4 and D5) in the DEA. A single species, Abyssorchomene gerulicorbis, dominates
the DEA with 60% of all individuals.

Keywords

JPIO Ecological Aspects of Deep-sea mining, Clarion Clipperton Fracture Zone, CCZ, DisCOL
Experimental Area (DEA), Amphipoda.
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Introduction

The abyssal deep sea (3000 - 6000 m) represents the largest ecosystem on the planet, with the
abyssal seafloor covering approximately 54% of the Earth’s solid surface (Rex et al. 1993;
Gage & Tyler, 1991). Since it is one of the least investigated ecosystems, there are still
extensive gaps in our knowledge of deep-sea fauna (German et al. 2011). Marine research has
thus far focused on coastal areas, hydrothermal vents or chemosynthetic habitats, whereas
open-ocean abyssal plains have been less extensively investigated (Ramirez-Llodra et al.
2010). This is unsurprising given the challenges of sampling this remote environment, which
is impeded by several confounding factors. For example, deep-sea sampling is both
financially expensive and labour intensive, and furthermore, constrained by the challenge of
deploying equipment at low temperatures (0.01 - 4.0°C) and at high hydrostatic pressures
(Sweetman et al. 2017). Therefore, to date very little of the deep sea has been sampled, and
the oversampling in the North Atlantic basin has created a biased knowledge base (McClain
& Hardy, 2010). Consequently, and owing to the low availability of data on deep-sea
biodiversity, and with the inherent risk of under-sampling, it is difficult to estimate species

richness in the deep sea.

In the traditional view of the deep sea, the abyss was considered to be homogeneous and
many species were thought to have large biogeographical ranges, their dispersal aided by an
apparent lack of barriers (Sanders, 1968). This hypothesis was challenged by the discovery of
chemosynthetic habitats e.g. hydrothermal vents (Lonsdale, 1977), cold seeps (Paull et al.
1984), seasonal fluctuations in primary productivity (Billett et al. 1983) and erratic whale-
falls (Smith et al. 1989). All of this research has demonstrated that the deep sea is an
extremely heterogeneous environment and is controlled by many factors, including:
Particulate Organic Carbon (POC) flux, water depth, flow regime, current circulation,
seafloor topography (Laver et al. 1985) and also historical factors e.g. the opening of ocean
basins (i.e. rifting), sea-level rise and fall, and periods of deep-sea anoxia (Smith et al. 2006).
All of these can result in a mosaic of different communities (Levin et al. 2001), many of

which do not follow a latitudinal gradient (Brandt et al. 2007).

It has also been established that dispersal ability of species on the one hand, and their actual
geographic and bathymetric distribution range on the other, are not always linked, and are

often dependent on habitat suitability, fragmentation, and ecological flexibility (Lester et al.
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2007; Liow 2007). Therefore, although the deep-seafloor includes some of the largest
contiguous features on the planet, the populations of many deep-sea species are spatially
fragmented, and may become increasingly so with continued human disturbance (Hilario et

al. 2015).

In the last decade, there has been an increased demand for exploitation of deep-sea resources
e.g. rare earth element (REE) extraction (such as those concentrated in manganese nodule
provinces) (Ramirez-Llodra et al. 2011). As a result, ecologists are increasingly asked to
assess the ecological risks of these mining activities and to provide sustainable solutions for

its mitigation, in order to prevent adverse changes to the deep-sea ecosystem (ISA, 2017).

Glover et al. (2001) showed that abyssal sediments can contain high biodiversity with more
than 100 species of meiofaunal invertebrates (e.g. nematodes, copepods) and protists (e.g.
foraminifers) found every square meter. In spite of this, our knowledge on the deep-sea
ecosystem structure and functioning is still limited, and there is a paucity of data on the
distribution, drivers and origins of deep-sea communities at global scales. This is especially
true for the biogeography of deep-sea Amphipoda (Barnard 1961; Thurston 1990) and other

invertebrates.

Although recent morphological and molecular studies have shed new light on the distribution
and habitat niches of certain bentho-pelagic amphipods (e.g. Eurythenes) (Havermans, 2016;
Narahara-Nakano et al. 2017), there is little published so far on how widespread other
amphipod species may be. This lack of information on species richness and ecological
uniqueness hampers the answering of crucial questions on recoverability | of anthropogenic
impacts. Ultimately this impedes ecologists from providing advice on sustainable deep-sea

mining practices, thus, underpinning the need for this dedicated deep-sea ecosystem research.

Here, we present distribution patterns of scavenging deep-sea amphipod communities, with
the first comparisons of their biogeography and community structures in two oceanic basins.
These two basins are the research areas for simulating/studying the anthropogenic impacts of

deep-sea nodule mining.

We are investigating whether there are differences and similarities in the species

compositions of the two basins (e.g. richness, abundances), and further exploit a disturbance
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experiment to compare the biodiversity of this mining impact proxy to the undisturbed
reference areas. We discuss the possible implications of our findings; aiming to use them to
formulate recommendations regarding the pending deep-sea mining of manganese nodule

activities in the NE Pacific ecosystem.

Material and Methods

Study area

We investigated the amphipod communities of two oceanic basins (Figure 1); (i) the Clarion-
Clipperton Fracture Zone (CCZ, six million km?, 7000 km wide), an economically important
manganese nodule field in the NE Pacific, comprising several different contractor claim
areas, (who to date, have exploration licences only), and nine designated Areas of Particular
Ecological Interest (APEIs) as designated by the International Seabed Authority (ISA)
(Lodge et al, 2014) and (ii) the DISturbance and re-COLonisation (DisCOL) Experimental
Area (DEA, 11 km?, 4 km wide), a mining disturbance proxy (also containing manganese
nodules) in the Peru Basin in the SE Pacific. In 1989, the DEA sediment bed was artificially
disturbed using a plough-harrow to create 78 track marks. These are supposed to simulate the
type of disruption which would be caused by a commercial mining operation (Appendix 1)
(Thiel, 1992). This baseline study was a new approach in deep-sea risk assessment and is still

ongoing today, providing us with crucial data from this long-term ecological experiment.
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Figure 1: Geographic locations of the two study areas, the Clarion-Clipperton fracture
Zone (CCZ) (Northeast Pacific) and the DISturbance and re-COLonisation (DisCOL)
Experimental Area (DEA) (Peru Basin, Southeast Pacific). There are nine Areas of
Particular Ecological Interest (APEIls) in the CCZ region, which are illustrated by 400 x 400
km? white boxes. Grey boxes indicate the various contractor claim areas in the CCZ. We
deployed eight amphipod traps across the CCZ, which is 16,000 km? and 7000 km wide, and
five in the DEA, which encompasses 11 km? with a width of 4 km.

Sampling

In 2015 (26 years after the first impact in the DEA in 1989), two research expeditions with
the “RV Sonne” visited the CCZ (cruise SO239) and revisited the DEA (cruise SO242-1 &
S0242-2), to assess if and how the deep-sea faunal communities had recovered within the

DEA, and to attempt to quantify their recolonization potential.

Amphipod samples were taken from the CCZ and DEA using a free-fall lander (120 x 120 x
120 cm), to which four plastic traps were attached (two 20 x 25 x 40 cm traps with four cm
openings and two 25 x 40 x 60 cm traps with eight cm openings), baited for each station with
an 800 g mixture of mackerel, squid and shrimp. Using this specially designed deep-sea
sampling equipment, more than 60,000 specimens of scavenging amphipods were collected

from the CCZ and the DEA sites.

The baited trap was deployed eight times across the CCZ at a depth range of 4116 - 4932 m
(samples C1 - C8), and five times in the DEA at a depth range of 4078 — 4307 m (samples D1
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- D5; Figure 1, Table 1). In the CCZ, we sampled within three different contractor claim
areas (Table 1) to obtain a pre-disturbance baseline, and to then compare it with one of the
nine protected APEIs around the CCZ. In contrast, in the DEA, sampling was conducted once
within the disturbed area (D1), twice 10 km away (D2, D3) and twice 40 km away (D4, D5)

from D1 in four surrounding reference areas (see Figure 1).
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Table 1: Station overview.

Codes refer to the codes used in this paper in figures 1, 3, 4, 6 and Table 3. The original
station code represents the cruise codes from (SO239 and SO232-1). Depth refers to water
depth (m) on deployment. Nodule presence/absence information is known only for stations

D3 and D4.
Deployment Original Station | Depth (m) | Known Remarks Residence
Code geological Time (h:m:s)
Code features
C1 S0239-33 4122 Plains German claim 100:20:00
Cc2 S0239-37 4116 Plains German claim 125:49:00
C3 S0239-63 4354 Plains German claim 66:07:00
C4 S50239-96 4388 Seamount Inter Ocean Metals (IOM) 63:02:00
claim
Cs5 S0239-123 4529 Plains Belgian claim 26:12:00
C6 S0O239-139 4516 Plains Belgian claim 56:33:00
North/South
+ seamount to
west
Cc7 S0239-173 4934 Plains French claim 79:40:00
C8 S0239-205 4855 Plains Area of Particular Ecological 55:59:00
Interest (APEI)
D1 S0242/1-8 4146 Plains Disturbed 44:26:33
D2 S0242/1-30 4307 Plains Undisturbed Reference 51:11:18
D3 S0242/1-55 4043 Seamount Undisturbed Reference 25:09:09
No nodules
D4 S0242/1-68 4078 Seamount Undisturbed Reference 65:20:46
No nodules
D5 S0242/1-106 4269 Plains Undisturbed Reference 47:00:50
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Processing

On recovery of the lander, all traps were disconnected and placed in pre-cooled (4°C) buckets
of filtered seawater. All specimens were washed on board in a cool-climate laboratory (4°C),
morphologically pre-sorted and fixed in molecular grade (95%) ethanol, before being stored
at -20°C.

Detailed sorting and identification was performed using the morphological species concept
(Futuyama, 1998) and the keys of Lowry & Killagen (2014) and Schulenberger & Barnard
(1976), to separate the samples into taxonomic “morphotypes”. The larger fraction (> 15 mm
length) has been identified to the lowest possible taxonomic resolution. Species not assigned
with certainty are denoted here by as affiliated species (e.g. genus aff. species) or conferred

species (e.g. genus cf. species).

Specimens with a size of less than 15 mm length were excluded from the analysis, primarily
because these were mostly juveniles, and their morphological differences were not
sufficiently pronounced to allow an accurate identification to the species or even genus level.
Also, all pelagic amphipod specimens were omitted which were accidentally caught when the
sampling equipment was retrieved to the sea surface. Genera containing multiple and as yet

unidentified species have been summarised as “spp.”

Statistical analyses

Our null hypothesis (Ho) here is that there are no differences in the amphipod biodiversity of
the two basins. To test this hypothesis, we firstly calculated the alpha biodiversity of the two
basins was using the Simpson Index (D) (Simpson, 1949) (Appendix 4). Individual-based
rarefaction curves were generated using the rarefy function of the vegan package in R 2.3.0
(R Core Team, 2013; Gotelli, 2001) to compare species richness across all thirteen sampling

stations and to test for the completeness of sampling.

Secondly, to compare the beta biodiversity, we estimated the variability of the community
compositions between sites. The Bray-Curtis dissimilarity metric (Bray & Curtis, 1957), was
used to calculate differences between community compositions based on species densities,

and the results were then visualised in 2D using a Non-Metric Dimensional Scaling (NMDS)
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Results

Basin biodiversity

In total, 6916 scavenging amphipods (> 15 mm) were collected from the thirteen trap
deployments in the two study areas, representing nineteen morphotypes (Figure 2). In the
CCZ, we collected 3932 individuals, which represent ten morphotypes. Five of these have
been identified to the species level: Abyssorchomene distinctus, A. gerulicorbis, Eurythenes
sigmiferus, Paralicella caperesca and Valettietta tenuipes. A further two are affiliated to a
species: Paracallisoma aff. alberti and Valettietta ct. gracilis, and the remaining three are at
least affiliated to a genus (Tables 2a and 2b). The 2984 individuals from the DEA represent
eighteen morphotypes. Six of these have been identified to the species level: Abyssorchomene
distinctus, A. gerulicorbis, Eurythenes sigmiferus, Paralicella caperesca, Parandaniexis
mirabilis and Tectovallopsis regelatus. A further five which have been affiliated to a species:
Eurythenes sp. 2. aff. gryllus, Eurythenes sp. 4. aff. magellanicus, Paracallisoma aff. alberti,
Stephonyx sp. nov. aff. arabiensis and Valettietta cf. gracilis and the remaining seven

identified to at least an affiliated genus (Tables 2a and 2b).

There are eight morphotypes shared between the basins: Abyssorchomene distinctus, A.
gerulicorbis, Abyssorchomene spp., Eurythenes sigmiferus, Eurythenes spp., Paracallisoma

aff. alberti, Paralicella caperesca and Valettietta cf. gracilis (Figure 2).

Two morphotypes were found only in the CCZ (Hirondellea sp. & Valettietta tenuipes), and
eight morphotypes were found only in the DEA (Eurythenes sp. 1-4, gen. aff. Cleonardo,
Parandaniexis mirabilis, Stephonyx sp. nov. aff. arabiensis, and Tectovallopsis regelatus)

(Table 2).
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Figure 2: Histogram showing the species assemblage for the scavenging community in
the Clarion-Clipperton fracture Zone (CCZ) (black) and the DisCOL Experimental
Area (DEA) (grey). The abundances of 17 morphotypes are shown.
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303 Table 2a: Overview of morphotypes across the Clarion-Clipperton fracture Zone (CCZ)
304 and DisCOL Experimental Area (DEA).

Clarion-Clipperton fracture | DisCOL Experimental Area

Zone

Total unique morphotypes
17 (10 found in the CCZ, 15 found in the DEA)
collected

Species possibly unique to 2 7

this basin

Shared species between

basins

305

306

307 Table 2b: Distribution and abundances of morphotypes across the Clarion-Clipperton
308 fracture Zone (CCZ) and DisCOL Experimental Area (DEA). Green = shared, Yellow =
309  DEA only, Blue = CCZ only.

310
Taxa Cl C2 C3 C4 C5 C6C7 C8 D1 D2 D3 D4 D5
Abyssorchomene.distinctus 629 312 180 170 64 47 2 25 9 3 25 0 5
Abyssorchomene.gerulicorbis 73 47 48 107 71 65 184 121 351 143 522 178 595
Abyssorchomene .spp. 0O 05 O O3 0O O 52 0 0 O
Eurythenes .aff. gryllus 119 0 9 0 9
Eurythenes .aff. magellanicus 0 0 59 0 47
Eurythenes.sigmiferus 9 3 35 11 12 5 0 6 30 61 127 36 22
Eurythenes .spp. 6 3 2 0 020 1 12 0 91 3 39 1
gen.aff.Cleonardo 1 0 0 O
Paracallisoma .aff.alberti 0O 0 0 O O 2 1 6 10 4 0 1 1
Paralicella.caperesca 104 4 114 152 255 75 63 460 86 108 80 21
Parandania .sp. 5 2 42 5 1
Parandaniexis. mirabilis 11 0 3 0 O
Stephonyx .sp.nov.aff.arabiensis 0O 4 0 0 O
Tectovallopsis.regelatus 5 0 0 0 O

311 Valettietta .cf.gracilis 75 11 29 3 2 5 1 23 2 29 17 1 29

312

313

314
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Sampling completeness

Due to differences in allocated ship-times (CCZ cruise being 52 days and the DEA cruise
being 29 days), the trap deployments were not identical, making it necessary to normalise
deployment times. The resulting Catch Per Unit Effort (CPUE) plot (Figure 3,) shows that,
with the exception of C5, all stations in the DEA yielded higher abundances/hr than the CCZ.
The highest numbers of individuals/hr were collected at station D3. Overall, there is a
moderate negative exponential correlation with increasing deployment times (R = 0.67, p =

0.01).

CPUE

40
35 D3
30
25

20

15 . CPUE (total amphis/hr) —— Expon. (CPUE (total amphis/hr))

10

R?=0.6309

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

Figure 3: Catch Per Unit Effort (CPUE) illustrating the correlation between sampling
time and number of individuals collected. Only the > 15mm fraction was included here to

estimate number of collected individuals.
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The rarefaction results (Figure 4) show that the curves for nine stations reach a plateau,
indicating that sampling effort was sufficient to assess diversity levels. These include all CCZ
stations except C7. In contrast, four of the five curves for the DEA (stations D1, D2, D4 and
D5) are unsaturated.

12
I

10

Species

| T T T |
0 200 400 600 800

Sample Size

Figure 4: Species rarefaction curves for each of the 13 trap stations across both areas,
the Clarion-Clipperton fracture Zone and the DisCOL Experimental Area. Only

individuals greater than 15 mm were considered here.
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Biodiversity

Figures 5a and b show that the scavenging community in the CCZ is dominated by three
species, 4. distinctus (36%), A. gerulicorbis (18%) and Paralicella caperesca (31%),
whereas, in contrast, the DEA scavenging community is dominated by a single species, 4.
gerulicorbis, accounting for almost 60% of all specimens. The Simpson Index (D) for the
entire CCZ area is (with 0.73), higher than the 0.616 that was calculated for the whole of the
DEA area (Table 3). The biodiversity of each individual station was further explored (Table
3). In the CCZ, the lowest biodiversity was found at C3 and C6 (D = 0.23) and the highest at
C2 (D = 0.67), respectively. In the DEA, the lowest biodiversity of D = 0.36 was found at
station D1 (the site of the actual disturbance) and just south of the disturbance site at D2

(0.21), while the highest biodiversity was observed at D5 (D = 0.61) (Table 3).
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Figures 5a and b: Relative species abundances in the Clarion-Clipperton fracture Zone

and the DisCOL Experimental Area. These abundances represent the greater than 15mm

fraction of the scavenging amphipod community only.

Table 3: Comparison of biodiversity calculated using the Simpson Index (D), for the
Clarion-Clipperton fracture Zone and DisCOL Experimental Area, and D for each

station is shown for further comparisons within these areas.

Simpson Index (D) whole 0.73
Clarion-Clipperton Fracture

Zone

Simpson Index (D) whole 0.62
DisCOL Experimental Area

Cl (D) 0.41
C2 (D) 0.68
C3 (D) 0.23
C4 (D) 0.27
C5 (D) 0.38
C6 (D) 0.23
C7 (D) 0.45
C8 (D) 0.44
D1 disturbed (D) 0.36
D2 ref 1 (D) 0.21
D3 ref 2 (D) 0.38
D4 ref 3 (D) 0.44
D5 ref 4 (D) 0.61
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406  Species composition

407

408  The NMDS shows that the communities of the two basins are clearly separated (ANOSIM: p
409  =0.002); Figure 6). The disturbed area in the DEA (D1) is showing a clear difference to the
410  four reference areas (D2 - 5). When the communities between the two basins are compared,
411 D2 appears to be most similar to the CCZ community, and more specifically to C6, C7 and
412  C8. The reliability of the data ranking is supported by a low stress value of 0.01.

413
Amphipod Trap community similarities between the CCZ & DEA
D3
= C5 a
.
L
™ —
o
»
* C3
o~ L 3 D5
§ o | C1
@ (-]
[=
€
a *
c2
s - +
C8 o C6 D2
* L
D1
3 c7
ez ¢
=n
] T I I ] I I I
-06 -0.4 -02 0.0 02 0.4 06 0.8
Dimension 1
414

415  Figure 6 : NMDS plot showing the beta biodiversity (dis/similarities) for each of the thirteen
416  amphipod trap sampling stations associated with the two basins, Clarion-Clipperton fracture
417  Zone (CCZ) (black) and the DisCOL Experimental Area (DEA) (red). Data are supported by
418  alow stress value of 0.01.
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Discussion

An unexplored ecosystem

Although the most recent and comprehensive analysis of the Animal diversity of the World’s
oceans estimates a total of less than a million species over all depths (Appeltans et al. 2012),
it is not currently known how many species actually inhabit the deep-sea. Regarding
amphipods, only 328 benthic, demersal and benthopelagic species, belonging to 144 genera
and 39 families. Over 7000 marine amphipod species have been found below 2000 m. These
numbers are reduced to 173 known species, 87 genera and 37 families at depths below 3000
m, and 100 known species, 66 genera and 31 families are known to occur below 4000 m

(Vader 2005; Brandt et al, 2012).

Lysianassoidea and their biogeography

The superfamily Lysianassoidea constitutes an important part of the abyssal amphipod fauna.
Also, in our sampling, lysianassoid amphipods were collected in large numbers (99% of the
samples taken in both basins). As a superfamily, they comprise 23% of all the species found
below 2000 m, 35% of the species found below 3000 m and 31% of the species found below
4000 m (Brandt et al. 2012).

Many species in the Lysianassoidea occur in multiple abyssal basins, and some even have
worldwide distributions (Thurston 1990). Despite the Ocean Biogeographic Information
System (OBIS) database containing 615,650 records of Amphipoda, many of these are shelf
or pelagic species, with very few records from the CCZ and DEA (OBIS, 2017). Here, we
provide additional data for the known bathymetric range of the seven amphipods which we
have identified to species level (Abyssorchomene distinctus, Abyssorchomene gerulicorbis,
Eurythenes sigmiferus, , Paralicella caperesca, Paralicella tenuipes Parandaniexis mirabilis
& Tectovallopsis regelatus) (Table 2b). In addition, we have found two possibly new species
of Eurythenes, previously not known from these basins, which we plan to analyse further in

the future.

While we only sampled Hirondellea sp. and Paralicella tenuipes in the CCZ, Eurythenes aff.

gryllus, Eurythenes aff. magellanicus, gen. aff. Cleonardo, Parandania sp., Parandaniexis

20| Page



453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

mirabilis, Stephonyx sp. nov. aff. arabiensis, and Tectovallopsis regelatus only in the DEA,
we cannot conclude based on the current data only if these species are unique to their
respective basins without confirming these distribution patterns with additional sampling

campaigns.

Catch Per Unit Effort

Despite the sampling campaign in the CCZ being twice as long as the DEA, the number of
individuals/species collected does not correlate positively with deployment effort. We assume
that this is rather an effect of abiotic and organic factors, such as the productivity-driven
gradients in the CCZ, which decrease from East-West and from North-South (Hannides &
Smith, 2003). This lack of correlation is supported by our findings for station C2 (with the
shortest deployment time), which shows the highest Simpson Index of all thirteen stations (D
= 0.67). Further evidence comes from the patterns visualised in Figure 3, which shows a

correlation of R = 0.67 for Catch Per Unit Effort (CPUE) and deployment times.

Biodiversity within basins

Figures 5a & b show clearly that the DEA scavenging community has reduced abundances of
all species including 4. distinctus (1%) and P. caperesca (7%), and is now dominated by a
single species, 4. gerulicorbis, accounting for 60% of the DEA community. This indicates an
interesting resilience and flexibility in the latter species. Similar patterns have been observed
in Potter Cove (Seefeldt et al. 2017), where following glacial retreat, a change in
sedimentation rates led to the dominance of a single amphipod scavenging species,

Cheirimedon femoratus.

Although the assemblage of the two basins has some overlap in its amphipod diversity (as is
exemplified by the eight shared morphotypes), the sampling stations (and the two basins) are

heterogeneous concerning species compositions of the subdominant and rarer species
Thus, we can observe some negative influence (possibly attributed to the disturbance in the

DEA) on the scavenging amphipod community. This reduced biodiversity is reflected in the

higher Simpson Index (D) for the CCZ (0.73) as compared to the DEA (D = 0.62; Table 3).
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To explore whether this reduced diversity in the DEA was truly a result of the simulated
disturbance, D was also calculated for each sampling station within each basin (Table 3).

In the CCZ, the APEI (C8) shows a moderate level of biodiversity (D = 0.44), indicating that
it is not optimally-placed for representing the biodiversity of the scavenging amphipod
community of the CCZ. Additionally, this pre-existing lower biodiversity (in comparison to
the contractor claim areas), indicates that the APEI may not serve well as a refugium for
amphipods post-disturbance. However, due to the fact that only one of the eight APEIs have
been investigated thus far, this APEI along with the remaining eight APEIs would need to be
(re-) sampled.

Within the DEA, the lowest biodiversities are observed at the site of the disturbance (D1) and
south of it (D2; Table 3), indicating that the reduced biodiversity in the DEA could indeed be
caused by the simulated disturbance in 1989 (Thiel, 1992).

The highest abundances in the DEA were collected from station D5 (n = 717); this station
also has the highest Simpson Index within the DEA (D = 0.61) (Table 3). Side-scan sonar
imaging shows a seamount range to the North West (NW) of the disturbed area (D1)
(Appendix 3). Although the relief change is only 150m, the range extends laterally for several
kilometres (SO242-1 Cruise report, 2016) hampering dispersal across barriers such as sills,
canyons and ridges (Smith, et al. 2006; Blankenship et al. 2006; Etter et al. 2011). However,
recent studies have shown that due to their mobile nature, geographic isolation alone would
not pose a true barrier to bentho-pelagic amphipod species (Havermans, 2016; Ritchie et al.
2017), and thus, cannot explain why such a high number of large scavenging individuals was

collected at station D5.

Community similarities

Scavenging amphipods are resilient and dispersive, but most importantly, they are highly
mobile (Ingram and Hessler 1983} Lorz et al. 2018). Often driven by their search for erratic
deposited feeding opportunities (Smith et al. 1989), they are probably less constrained by

local environmental abiotic conditions and seafloor topography.

Beta diversity can be regarded as the dissimilarities in species composition between spatially

different communities. As an indication for beta biodiversity, the NMDS (Figure 6) shows a
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521  significant separation in the similarity index between the two basins (ANOSIM p = 0.002).
522  However, despite the dispersive and resilient nature of scavenging amphipods, their

523  biodiversity appears to have been affected by the disturbance experiment as evidenced by the
524  NMDS (Figure 6), where the disturbed area (D1) and the area closest to it (D2) are separated
525  from the remaining three reference sites (D3, D4 and D5).

526

527  Inthe CCZ, stations C1, C2, C3, C4 and C5 form one cluster in the NMDS (Figure 6), and
528  stations C6, C7 and C8 a second cluster. The CCZ is a geomorphologically very

529  heterogeneous region, with seamounts of 200 m altitude running from north-south. A barrier
530 of'this height would be expected to affect sedimentation rates, nodule presence and currents.
531  Furthermore, the difference in depth from the eastern edge (3950m) and the western edge
532 (5150 m) is more than 1200 m. These combined factors very likely give rise to different

533 trends in species composition (Glover, et al. 2015). However, since it has been established
534  that bentho-pelagic amphipods are less sensitive to such barriers (Havermans, 2016), at this
535  stage, other biotic (e.g. the productivity gradient) and abiotic factors causing this separation
536  cannot be excluded as alternative explanations.

537

538  Dispersal and connectivity

539

540  Whilst the NMDS (Figure 6) illustrates a visual separation of the two basins, there is also
541  some similarity in the amphipod fauna between the two areas, (as is obvious by the eight
542  shared species), indicating that the dispersal extent for these eight species might range up to
543  atleast 3000 km. However, this hypothesis will need to be confirmed with subsequent

544  molecular analyses.

545

546

547  Abyssal amphipods have been shown to be able to travel actively at speeds of almost 4

548  cm/sec (Laver, 1985), even at temperatures as low as 3°C (Kankaanpda et al. 1995). It is
549  obvious that they are sufficiently strong to swim up weak currents since they can be found
550  several hundred meters above the seafloor searching pelagically for mates (e.g. Eurythenes
551  gryllus occurring up to 1800 m above the seafloor) (Thurston 1990; Havermans et al. 2013)
552  or following food-falls (Baldwin and Smith 1987).

553
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The DisCOL Experimental Area as a proxy

Higher abundances of scavenging amphipods were collected from the CCZ (3932
individuals) as opposed to the DEA (2984 individuals). Yet, we have identified more
morphotypes in the DEA (18) than in the CCZ (10), indicating that the DEA is more

speciose, and thus, more biodiverse.

Although the DEA is more speciose, many of its morphotypes were collected in low
abundances, with several of these being singletons or doubletons (collected from one or two
sampling stations only). This is reflected in the rarefaction curves (Figure 4), which indicate
thorough sampling in the CCZ with all but station C7 reaching asymptotes. In contrast, four
stations in the DEA (D1, D2, D4 and D5) are unsaturated. This pattern suggests firstly that
the less abundant species which are present at fewer stations only may not necessarily be rare
species and secondly, that there could be as yet undetected biodiversity in the DEA.
Therefore, the effects of mining impact could be even more pronounced than we observed in
this study. However, as the seafloor environment is subject to seasonal fluctuations (Billett et

al. 1983), it is hard to predict exactly what the effects will be at this stage.

Our preliminary (basin-scale) comparison of the scavenging communities of the two study
areas shows that even if the DEA is a small-scale disturbance experiment, it is a very diverse
area. Thus, the DEA is a well-chosen site for monitoring the impacts of disturbance and

instrumental in its role as a proxy to assess impending mining activities in the CCZ.

Future research

At several stations in both basins, we collected amphipods in very high abundances (C1, C8,
D3 & D5) (Table 2b). Since biotic production is contingent on the sinking flux of particles
from the euphotic zone (Sweetman, 2017), the biodiversity differences at each of the thirteen
stations could be driven by Particulate Organic Carbon (POC) or erratic whale-falls (Smith et
al. 1989). However, not all feeding behaviour of scavenging amphipods is based on
opportunistic or erratic availability of nutrients (Havermans & Smetacek, 2018). During
future sampling campaigns, the POC of these areas should be monitored, along with

experiments on different types of food-fall in addition to obtaining side-scan sonar and
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abiotic data. This will provide a more comprehensive view of the food types required for

these species to thrive in the deep sea.

It is not clear from our results whether substrate type (i.e. nodule/non-nodule) has any effect
on the amphipod communities (Smith and Demopoulos, 2003) since this kind of data is only
available for stations D3 and D4. To answer this question, resampling of the study areas in

combination with an Ocean Floor Observation System (OFOBS) (video/camera) is required.

Although our study only addresses the scavenging amphipod species longer than 15 mm, we
already find indications for a disturbance effect in the DEA. It is obvious that scavenging
amphipods are only one of several bentho-pelagic indicator groups. Other truly benthic
groups such as sponges or less dispersive amphipods (e.g. collected by epibenthic sledge
(EBS)) may demonstrate an even more pronounced impact of mining activities and should be

investigated in future studies.

With the application of molecular techniques to identify cryptic species (Deli¢ et al, 2017),
more realistic estimates of biodiversity can be obtained (Schon et al. 2012), improving our
current knowledge of the biodiversity of this area. If these improved estimates of biodiversity
also include cryptic species, it is possible that the biological impact of manganese nodule

mining on amphipod and other deep-sea faunal communities may turn out to be even higher.

Conclusions

In summary, this study on the scavenging amphipod community of two abyssal oceanic
basins has demonstrated that amphipods are present in high abundances across the CCZ and
DEA, with eight shared species and some species possibly being unique to their respective

basin.

Our results have indicated that the simulated mining experiment probably had an impact on
the biodiversity of these scavenging amphipods, as demonstrated by the low D of the DEA
overall, at the disturbance site itself (D1), and the 60% dominance of A. gerulicorbis in this

region.

Given the scarcity of sampling and industry experience of marine habitats at these depths, the

formulation of effective regulations is challenging (International Seabed Authority, 2017).
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Nonetheless, our study provides the first results on possible effects of disturbance activities

on the abyssal amphipod biodiversity of deep-sea basins.

Sample and data availability

Biological samples pertaining to this manuscript are stored at the Royal Belgian Institute of Natural
Sciences, and the data discussed in the manuscript are submitted to PANGEA.
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Figure captions

Figure 1: Geographic locations of the two study areas, the Clarion-Clipperton
fracture Zone (CCZ) (Northeast Pacific) and the DISturbance and re-COLonisation
(DisCOL) Experimental Area (DEA) (Peru Basin, Southeast Pacific). There are nine
Areas of Particular Ecological Interest (APEIs) in the CCZ region, which are illustrated
by 400 x 400 km? white boxes. Grey boxes indicate the various contractor claim areas in
the CCZ. We deployed eight amphipod traps across the CCZ, which is 16,000 km? and
7000 km wide, and five in the DEA, which encompasses 11 km? with a width of 4 km.

Figure 2: Histogram showing the species assemblage for the scavenging community
in the Clarion-Clipperton fracture Zone (CCZ) (black) and the DisCOL
Experimental Area (DEA) (grey). The abundances of 19 morphotypes are shown.

Figure 3: Catch Per Unit Effort (CPUE) illustrating the correlation between
sampling time and number of individuals collected. Only the > 15 mm fraction was

included here to estimate number of collected individuals.

Figure 4: Species rarefaction curves for each of the 13 trap stations across both
areas, the Clarion-Clipperton fracture Zone and the DisCOL Experimental Area.

Only individuals longer than 15 mm were considered here.

Figures 5a and b: Relative species abundances in the Clarion-Clipperton fracture
Zone and the DisCOL Experimental Area. These abundances represent the greater than

15mm fraction of the scavenging amphipod community only.

Figure 6: NMDS plot showing the beta biodiversity (dis/similarities) for each of the
thirteen amphipod trap sampling stations associated with the two basins, Clarion-
Clipperton fracture Zone (CCZ) (black) and the DisCOL Experimental Area (DEA) (red).

Data are supported by a low stress value of 0.01.
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Table captions

Table 1: Station overview. Codes refer to the codes used in this paper in figures 1, 3, 4, 6
and Table 3. The original station code represents the cruise codes from (SO239 and SO232-
1). Depth refers to water depth (m) on deployment. Nodule presence/absence information is

known only for stations D3 and D4.

Table 2a: Overview of morphotypes across the Clarion-Clipperton fracture Zone (CCZ) and
DisCOL Experimental Area (DEA).

Table 2b: Overview of morphotypes across the Clarion-Clipperton fracture Zone (CCZ) and
DisCOL Experimental Area (DEA).

Table 3: Comparison of biodiversity calculated using the Simpson Index (D), for the
Clarion-Clipperton fracture Zone and DisCOL Experimental Area, and D for each station is

shown for further comparisons within these areas.
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Appendix/Electronic Supplementary Information (ESM) captions

Appendix 1: Multibeam scan - Showing the location of the 78 track marks created by the
plough harrow in the DisCOL Experimental Area to simulate manganese nodule extraction

activity (D1)

Appendix 2 — Photograph showing the baited free-fall lander trap designed and deployed by
RBINS.

Appendix 3 - Side-scan sonar image of site D5 showing possible seamount barriers. View

from NW (top) to SE (bottom). Contours are every 25 m. (Source: GEOMAR, 2015).

Appendix 4 — Calculation of alpha biodiversity used in this manuscript.
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Appendix 1: Multibeam scan - Showing the location of the 78 track marks created by the
plough harrow in the DisCOL Experimental Area to simulate manganese nodule extraction
activity.
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1028  Appendix 2 — Photograph showing the baited free-fall lander trap designed and deployed by
1029 RBINS.
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1043  Appendix 3 - Side-scan sonar image of site D5 showing possible seamount barriers. View
1044  from NW (top) to SE (bottom). Contours are every 25 m. (Source: GEOMAR, 2015).
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Appendix 4 - Calculation of alpha biodiversity used in this manuscript.

Simpson Index

Simpson Diversity Index (D) =1 - yn(n-1) =
N(N-1)

D = Diversity Index
n = number of individuals in each particular species
N = Total number in community

A high value of D indicates a high species diversity.
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