

1 **Biogeography and community structure of**
2 **abyssal scavenging Amphipoda (Crustacea) in**
3 **the Pacific Ocean.**

4
5 Patel, Tasnim.^{1, 2}, Robert, Henri.¹, D'Udekem D'Acoz, Cedric.³, Martens,
6 Koen.^{1,2}, De Mesel, Ilse.¹, Degraer, Steven.^{1,2} & Schön, Isa.^{1, 4}

7
8 ¹ Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environment,
9 Aquatic and Terrestrial Ecology, Vautierstraat 29, B-1000 Brussels, Gulledele 100, 1000
10 Brussels and 3e en 23e linieregimentsplein, 8400 Oostende, Belgium.

11 ² University of Ghent, Dept Biology, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium

12 ³ Royal Belgian Institute of Natural Sciences, Operational Directorate Taxonomy &
13 Phylogeny, Vautierstraat 29, B-1000 Brussels, Belgium.

14 ⁴ University of Hasselt, Research Group Zoology, Agoralaan Building D, B-3590
15 Diepenbeek, Belgium.

16
17 Corresponding author: Ms. Tasnim Patel - tpatel@naturalsciences.be

26
27

28 **Abstract**

29

30 In 2015, we have collected more than 60,000 scavenging amphipod specimens during two
31 expeditions to the Clarion-Clipperton fracture Zone (CCZ), in the Northeast (NE) Pacific and
32 to the DISturbance and re-COLONisation (DisCOL) Experimental Area (DEA), a simulated
33 mining impact disturbance proxy in the Peru basin, Southeast (SE) Pacific. Here, we compare
34 biodiversity patterns of the larger specimens (> 15 mm) within and between these two
35 oceanic basins. Eight scavenging amphipod species are shared between these two areas, thus
36 indicating connectivity. We further provide evidence that disturbance proxies seem to
37 negatively affect scavenging amphipod biodiversity, as illustrated by a reduced alpha
38 biodiversity in the DEA (Simpson Index (D) = 0.62), when compared to the CCZ (D = 0.73)
39 and particularly of the disturbance site in the DEA and the site geographically closest to it.
40 Community compositions of the two basins differs, as evidenced by a Non-Metric
41 Dimensional Scaling (NMDS) analysis of beta biodiversity. The NMDS also shows a further
42 separation of the disturbance site (D1) from its neighbouring, undisturbed reference areas
43 (D2, D3, D4 and D5) in the DEA. A single species, *Abyssorchromene gerulicorbis*, dominates
44 the DEA with 60% of all individuals.

45 **Keywords**

46

47 JPIO Ecological Aspects of Deep-sea mining, Clarion Clipperton Fracture Zone, CCZ, DisCOL
48 Experimental Area (DEA), Amphipoda.

49

50

51

52

53

54

55

56

57 **Introduction**

58

59 The abyssal deep sea (3000 - 6000 m) represents the largest ecosystem on the planet, with the
60 abyssal seafloor covering approximately 54% of the Earth's solid surface (Rex et al. 1993;
61 Gage & Tyler, 1991). Since it is one of the least investigated ecosystems, there are still
62 extensive gaps in our knowledge of deep-sea fauna (German et al. 2011). Marine research has
63 thus far focused on coastal areas, hydrothermal vents or chemosynthetic habitats, whereas
64 open-ocean abyssal plains have been less extensively investigated (Ramirez-Llodra et al.
65 2010). This is unsurprising given the challenges of sampling this remote environment, which
66 is impeded by several confounding factors. For example, deep-sea sampling is both
67 financially expensive and labour intensive, and furthermore, constrained by the challenge of
68 deploying equipment at low temperatures (0.01 - 4.0°C) and at high hydrostatic pressures
69 (Sweetman et al. 2017). Therefore, to date very little of the deep sea has been sampled, and
70 the oversampling in the North Atlantic basin has created a biased knowledge base (McClain
71 & Hardy, 2010). Consequently, and owing to the low availability of data on deep-sea
72 biodiversity, and with the inherent risk of under-sampling, it is difficult to estimate species
73 richness in the deep sea.

74

75 In the traditional view of the deep sea, the abyss was considered to be homogeneous and
76 many species were thought to have large biogeographical ranges, their dispersal aided by an
77 apparent lack of barriers (Sanders, 1968). This hypothesis was challenged by the discovery of
78 chemosynthetic habitats e.g. hydrothermal vents (Lonsdale, 1977), cold seeps (Paull et al.
79 1984), seasonal fluctuations in primary productivity (Billett et al. 1983) and erratic whale-
80 falls (Smith et al. 1989). All of this research has demonstrated that the deep sea is an
81 extremely heterogeneous environment and is controlled by many factors, including:
82 Particulate Organic Carbon (POC) flux, water depth, flow regime, current circulation,
83 seafloor topography (Laver et al. 1985) and also historical factors e.g. the opening of ocean
84 basins (i.e. rifting), sea-level rise and fall, and periods of deep-sea anoxia (Smith et al. 2006).
85 All of these can result in a mosaic of different communities (Levin et al. 2001), many of
86 which do not follow a latitudinal gradient (Brandt et al. 2007).

87

88 It has also been established that dispersal ability of species on the one hand, and their actual
89 geographic and bathymetric distribution range on the other, are not always linked, and are
90 often dependent on habitat suitability, fragmentation, and ecological flexibility (Lester et al.

91 2007; Liow 2007). Therefore, although the deep-seafloor includes some of the largest
92 contiguous features on the planet, the populations of many deep-sea species are spatially
93 fragmented, and may become increasingly so with continued human disturbance (Hilario et
94 al. 2015).

95

96 In the last decade, there has been an increased demand for exploitation of deep-sea resources
97 e.g. rare earth element (REE) extraction (such as those concentrated in manganese nodule
98 provinces) (Ramirez-Llodra et al. 2011). As a result, ecologists are increasingly asked to
99 assess the ecological risks of these mining activities and to provide sustainable solutions for
100 its mitigation, in order to prevent adverse changes to the deep-sea ecosystem (ISA, 2017).

101

102 Glover et al. (2001) showed that abyssal sediments can contain high biodiversity with more
103 than 100 species of meiofaunal invertebrates (e.g. nematodes, copepods) and protists (e.g.
104 foraminifers) found every square meter. In spite of this, our knowledge on the deep-sea
105 ecosystem structure and functioning is still limited, and there is a paucity of data on the
106 distribution, drivers and origins of deep-sea communities at global scales. This is especially
107 true for the biogeography of deep-sea Amphipoda (Barnard 1961; Thurston 1990) and other
108 invertebrates.

109

110 Although recent morphological and molecular studies have shed new light on the distribution
111 and habitat niches of certain benthic-pelagic amphipods (e.g. *Eurythenes*) (Havermans, 2016;
112 Narahara-Nakano et al. 2017), there is little published so far on how widespread other
113 amphipod species may be. This lack of information on species richness and ecological
114 uniqueness hampers the answering of crucial questions on recoverability of anthropogenic
115 impacts. Ultimately this impedes ecologists from providing advice on sustainable deep-sea
116 mining practices, thus, underpinning the need for this dedicated deep-sea ecosystem research.

117

118 Here, we present distribution patterns of scavenging deep-sea amphipod communities, with
119 the first comparisons of their biogeography and community structures in two oceanic basins.
120 These two basins are the research areas for simulating/studying the anthropogenic impacts of
121 deep-sea nodule mining.

122

123 We are investigating whether there are differences and similarities in the species
124 compositions of the two basins (e.g. richness, abundances), and further exploit a disturbance

125 experiment to compare the biodiversity of this mining impact proxy to the undisturbed
126 reference areas. We discuss the possible implications of our findings; aiming to use them to
127 formulate recommendations regarding the pending deep-sea mining of manganese nodule
128 activities in the NE Pacific ecosystem.

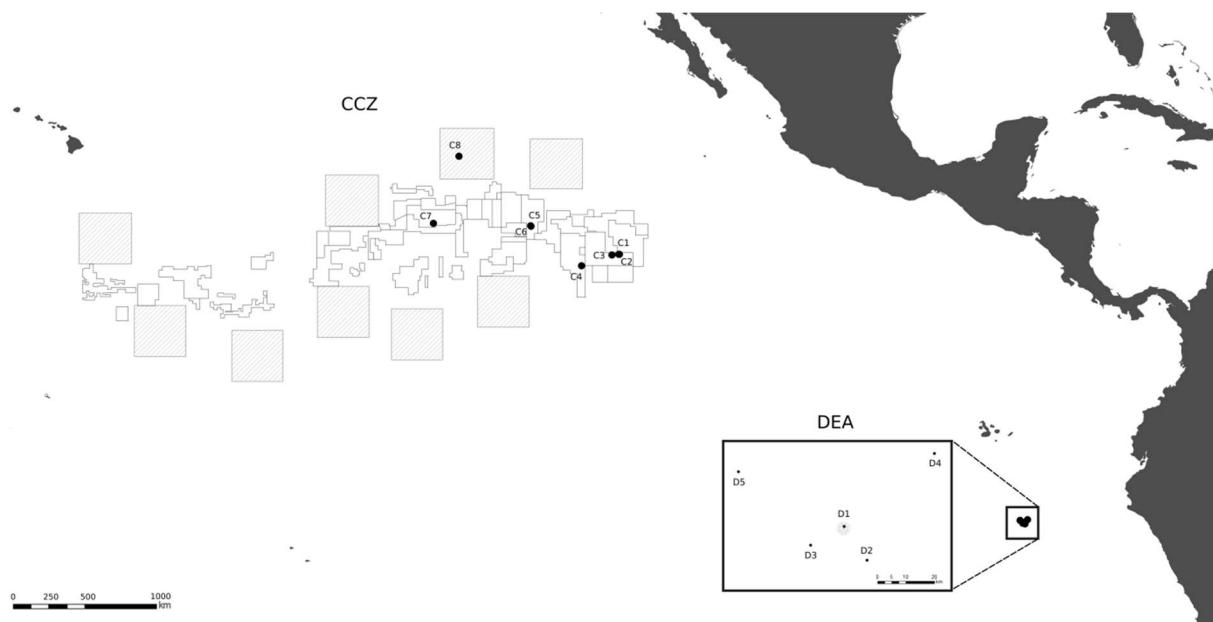
129 **Material and Methods**

130

131 ***Study area***

132

133 We investigated the amphipod communities of two oceanic basins (Figure 1); (i) the Clarion-
134 Clipperton Fracture Zone (CCZ, six million km², 7000 km wide), an economically important
135 manganese nodule field in the NE Pacific, comprising several different contractor claim
136 areas, (who to date, have exploration licences only), and nine designated Areas of Particular
137 Ecological Interest (APEIs) as designated by the International Seabed Authority (ISA)
138 (Lodge et al, 2014) and (ii) the DISturbance and re-COLONisation (DisCOL) Experimental
139 Area (DEA, 11 km², 4 km wide), a mining disturbance proxy (also containing manganese
140 nodules) in the Peru Basin in the SE Pacific. In 1989, the DEA sediment bed was artificially
141 disturbed using a plough-harrow to create 78 track marks. These are supposed to simulate the
142 type of disruption which would be caused by a commercial mining operation (Appendix 1)
143 (Thiel, 1992). This baseline study was a new approach in deep-sea risk assessment and is still
144 ongoing today, providing us with crucial data from this long-term ecological experiment.


145

146

147

148

149

150

151 **Figure 1: Geographic locations of the two study areas, the Clarion-Clipperton fracture**
 152 **Zone (CCZ) (Northeast Pacific) and the DisTurbance and re-COLonisation (DisCOL)**
 153 **Experimental Area (DEA) (Peru Basin, Southeast Pacific).** There are nine Areas of
 154 Particular Ecological Interest (APEIs) in the CCZ region, which are illustrated by 400 x 400
 155 km² white boxes. Grey boxes indicate the various contractor claim areas in the CCZ. We
 156 deployed eight amphipod traps across the CCZ, which is 16,000 km² and 7000 km wide, and
 157 five in the DEA, which encompasses 11 km² with a width of 4 km.

158

159 *Sampling*

160

161 In 2015 (26 years after the first impact in the DEA in 1989), two research expeditions with
 162 the “RV Sonne” visited the CCZ (cruise SO239) and revisited the DEA (cruise SO242-1 &
 163 SO242-2), to assess if and how the deep-sea faunal communities had recovered within the
 164 DEA, and to attempt to quantify their recolonization potential.

165

166 Amphipod samples were taken from the CCZ and DEA using a free-fall lander (120 x 120 x
 167 120 cm), to which four plastic traps were attached (two 20 x 25 x 40 cm traps with four cm
 168 openings and two 25 x 40 x 60 cm traps with eight cm openings), baited for each station with
 169 an 800 g mixture of mackerel, squid and shrimp. Using this specially designed deep-sea
 170 sampling equipment, more than 60,000 specimens of scavenging amphipods were collected
 171 from the CCZ and the DEA sites.

172

173 The baited trap was deployed eight times across the CCZ at a depth range of 4116 - 4932 m
 174 (samples C1 - C8), and five times in the DEA at a depth range of 4078 – 4307 m (samples D1

175 - D5; Figure 1, Table 1). In the CCZ, we sampled within three different contractor claim
176 areas (Table 1) to obtain a pre-disturbance baseline, and to then compare it with one of the
177 nine protected APEIs around the CCZ. In contrast, in the DEA, sampling was conducted once
178 within the disturbed area (D1), twice 10 km away (D2, D3) and twice 40 km away (D4, D5)
179 from D1 in four surrounding reference areas (see Figure 1).

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203 **Table 1: Station overview.**

204 Codes refer to the codes used in this paper in figures 1, 3, 4, 6 and Table 3. The original
 205 station code represents the cruise codes from (SO239 and SO232-1). Depth refers to water
 206 depth (m) on deployment. Nodule presence/absence information is known only for stations
 207 D3 and D4.

Deployment Code	Original Station Code	Depth (m)	Known geological features	Remarks	Residence Time (h:m:s)
C1	SO239-33	4122	Plains	German claim	100:20:00
C2	SO239-37	4116	Plains	German claim	125:49:00
C3	SO239-63	4354	Plains	German claim	66:07:00
C4	SO239-96	4388	Seamount	Inter Ocean Metals (IOM) claim	63:02:00
C5	SO239-123	4529	Plains	Belgian claim	26:12:00
C6	SO239-139	4516	Plains North/South + seamount to west	Belgian claim	56:33:00
C7	SO239-173	4934	Plains	French claim	79:40:00
C8	SO239-205	4855	Plains	Area of Particular Ecological Interest (APEI)	55:59:00
D1	SO242/1-8	4146	Plains	Disturbed	44:26:33
D2	SO242/1-30	4307	Plains	Undisturbed Reference	51:11:18
D3	SO242/1-55	4043	Seamount No nodules	Undisturbed Reference	25:09:09
D4	SO242/1-68	4078	Seamount No nodules	Undisturbed Reference	65:20:46
D5	SO242/1-106	4269	Plains	Undisturbed Reference	47:00:50

208

209

210

211

212

213

214

215

216 ***Processing***

217

218 On recovery of the lander, all traps were disconnected and placed in pre-cooled (4°C) buckets
219 of filtered seawater. All specimens were washed on board in a cool-climate laboratory (4°C),
220 morphologically pre-sorted and fixed in molecular grade (95%) ethanol, before being stored
221 at -20°C.

222

223 Detailed sorting and identification was performed using the morphological species concept
224 (Futuyama, 1998) and the keys of Lowry & Killagen (2014) and Schulenberger & Barnard
225 (1976), to separate the samples into taxonomic “morphotypes”. The larger fraction (> 15 mm
226 length) has been identified to the lowest possible taxonomic resolution. Species not assigned
227 with certainty are denoted here by as affiliated species (e.g. *genus* aff. *species*) or conferred
228 species (e.g. *genus* cf. *species*).

229

230 Specimens with a size of less than 15 mm length were excluded from the analysis, primarily
231 because these were mostly juveniles, and their morphological differences were not
232 sufficiently pronounced to allow an accurate identification to the species or even genus level.
233 Also, all pelagic amphipod specimens were omitted which were accidentally caught when the
234 sampling equipment was retrieved to the sea surface. Genera containing multiple and as yet
235 unidentified species have been summarised as “spp.”

236

237 ***Statistical analyses***

238

239 Our null hypothesis (H_0) here is that there are no differences in the amphipod biodiversity of
240 the two basins. To test this hypothesis, we firstly calculated the alpha biodiversity of the two
241 basins was using the Simpson Index (D) (Simpson, 1949) (Appendix 4). Individual-based
242 rarefaction curves were generated using the rarefy function of the vegan package in R 2.3.0
243 (R Core Team, 2013; Gotelli, 2001) to compare species richness across all thirteen sampling
244 stations and to test for the completeness of sampling.

245

246 Secondly, to compare the beta biodiversity, we estimated the variability of the community
247 compositions between sites. The Bray-Curtis dissimilarity metric (Bray & Curtis, 1957), was
248 used to calculate differences between community compositions based on species densities,
249 and the results were then visualised in 2D using a Non-Metric Dimensional Scaling (NMDS)

250 plot. The ANOSIM function in the vegan package of R (R Core Team, 2013; Taguchi & Ono,
251 2005) was used to test the statistical significance of the differences in species compositions
252 between the two study areas.

253

254

255 **Results**

256

257 ***Basin biodiversity***

258

259 In total, 6916 scavenging amphipods (> 15 mm) were collected from the thirteen trap
260 deployments in the two study areas, representing nineteen morphotypes (Figure 2). In the
261 CCZ, we collected 3932 individuals, which represent ten morphotypes. Five of these have
262 been identified to the species level: *Abyssorchromene distinctus*, *A. gerulicorbis*, *Eurythenes*
263 *sigmiferus*, *Paralicella caperesca* and *Valettietta tenuipes*. A further two are affiliated to a
264 species: *Paracallisoma* aff. *alberti* and *Valettietta* cf. *gracilis*, and the remaining three are at
265 least affiliated to a genus (Tables 2a and 2b). The 2984 individuals from the DEA represent
266 eighteen morphotypes. Six of these have been identified to the species level: *Abyssorchromene*
267 *distinctus*, *A. gerulicorbis*, *Eurythenes sigmiferus*, *Paralicella caperesca*, *Parandaniexis*
268 *mirabilis* and *Tectovallopsis regelatus*. A further five which have been affiliated to a species:
269 *Eurythenes* sp. 2. aff. *gryllus*, *Eurythenes* sp. 4. aff. *magellanicus*, *Paracallisoma* aff. *alberti*,
270 *Stephonyx* sp. nov. aff. *arabiensis* and *Valettietta* cf. *gracilis* and the remaining seven
271 identified to at least an affiliated genus (Tables 2a and 2b).

272

273 There are eight morphotypes shared between the basins: *Abyssorchromene distinctus*, *A.*
274 *gerulicorbis*, *Abyssorchromene* spp., *Eurythenes sigmiferus*, *Eurythenes* spp., *Paracallisoma*
275 aff. *alberti*, *Paralicella caperesca* and *Valettietta* cf. *gracilis* (Figure 2).

276

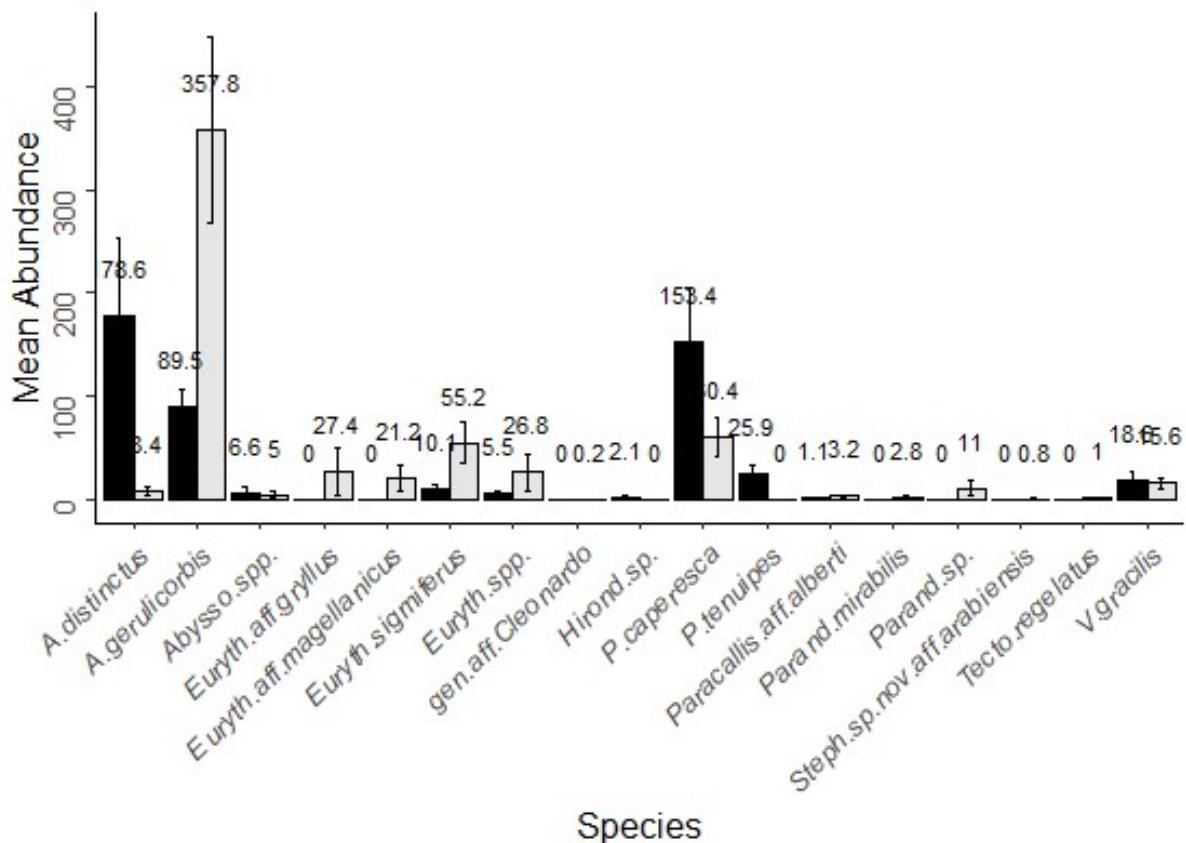
277 Two morphotypes were found only in the CCZ (*Hirondellea* sp. & *Valettietta tenuipes*), and
278 eight morphotypes were found only in the DEA (*Eurythenes* sp. 1-4, gen. aff. *Cleonardo*,
279 *Parandaniexis mirabilis*, *Stephonyx* sp. nov. aff. *arabiensis*, and *Tectovallopsis regelatus*)
280 (Table 2).

281

282

283

284


285

286

287

Scavenger Amphipod Biodiversity (CCZ & DEA)

■ CCZ □ DEA

288

289

290 **Figure 2: Histogram showing the species assemblage for the scavenging community in**
291 **the Clarion-Clipperton fracture Zone (CCZ) (black) and the DisCOL Experimental**
292 **Area (DEA) (grey). The abundances** of 17 morphotypes **are shown.**

293

294

295

296

297

298

299

300

301

302

303 **Table 2a: Overview of morphotypes across the Clarion-Clipperton fracture Zone (CCZ)**
 304 **and DisCOL Experimental Area (DEA).**

	Clarion-Clipperton fracture Zone	DisCOL Experimental Area
Total unique morphotypes collected	17 (10 found in the CCZ, 15 found in the DEA)	
Species possibly unique to this basin	2	7
Shared species between basins		8

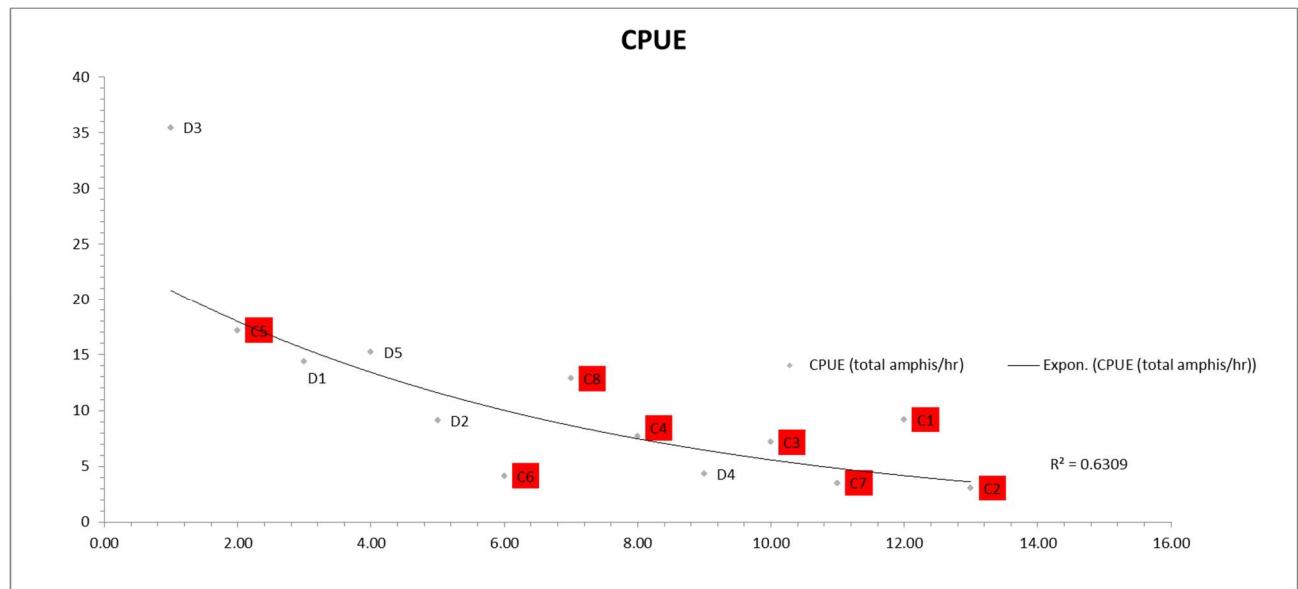
305
 306

307 **Table 2b: Distribution and abundances of morphotypes across the Clarion-Clipperton**
 308 **fracture Zone (CCZ) and DisCOL Experimental Area (DEA).** Green = shared, Yellow =
 309 **DEA only, Blue = CCZ only.**

310

Taxa	C1	C2	C3	C4	C5	C6	C7	C8	D1	D2	D3	D4	D5
<i>Abyssorchomene.distinctus</i>	629	312	180	170	64	47	2	25	9	3	25	0	5
<i>Abyssorchomene.gerulicorbis</i>	73	47	48	107	71	65	184	121	351	143	522	178	595
<i>Abyssorchomene.spp.</i>	0	0	50	0	0	3	0	0	5	20	0	0	0
<i>Eurythenes.aff.gryllus</i>									119	0	9	0	9
<i>Eurythenes.aff.magellanicus</i>									0	0	59	0	47
<i>Eurythenes.sigmiferus</i>	9	3	35	11	12	5	0	6	30	61	127	36	22
<i>Eurythenes.spp.</i>	6	3	2	0	0	20	1	12	0	91	3	39	1
gen.aff. <i>Cleonardo</i>									1	0	0	0	0
<i>Hirondellea.sp.</i>	0	2	0	0	0	0	5	10					
<i>Paracallisoma.aff.alberti</i>	0	0	0	0	0	2	1	6	10	4	0	1	1
<i>Paralicella.caperesca</i>	104	4	114	152	255	75	63	460	86	108	80	21	7
<i>Paralicella.tenuipes</i>	22	0	14	42	43	9	19	58					
<i>Parandania.sp.</i>									5	2	42	5	1
<i>Parandaniexis.mirabilis</i>									11	0	3	0	0
<i>Stephonyx.sp.nov.aff.arabiensis</i>									0	4	0	0	0
<i>Tectovallopis.regelatus</i>									5	0	0	0	0
<i>Valettieta.cf.gracilis</i>	75	11	29	3	2	5	1	23	2	29	17	1	29

311
 312


313
 314

315 **Sampling completeness**

316

317 Due to differences in allocated ship-times (CCZ cruise being 52 days and the DEA cruise
318 being 29 days), the trap deployments were not identical, making it necessary to normalise
319 deployment times. The resulting Catch Per Unit Effort (CPUE) plot (Figure 3,) shows that,
320 with the exception of C5, all stations in the DEA yielded higher abundances/hr than the CCZ.
321 The highest numbers of individuals/hr were collected at station D3. Overall, there is a
322 moderate negative exponential correlation with increasing deployment times ($R = 0.67, p =$
323 0.01).

324

325

326 **Figure 3: Catch Per Unit Effort (CPUE) illustrating the correlation between sampling
327 time and number of individuals collected.** Only the > 15mm fraction was included here to
328 estimate number of collected individuals.

329

330

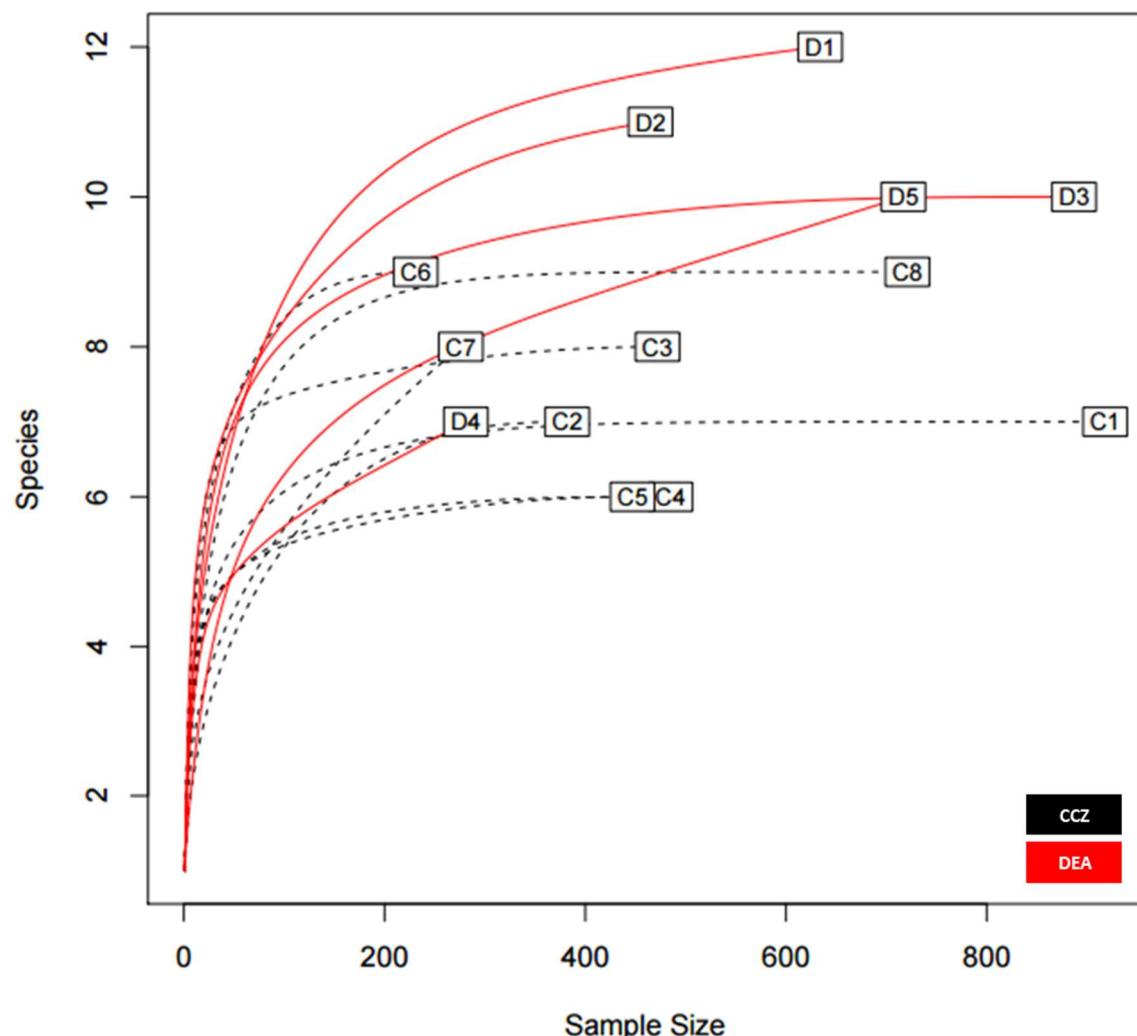
331

332

333

334

335


336

337

338

339 The rarefaction results (Figure 4) show that the curves for nine stations reach a plateau,
340 indicating that sampling effort was sufficient to assess diversity levels. These include all CCZ
341 stations except C7. In contrast, four of the five curves for the DEA (stations D1, D2, D4 and
342 D5) are unsaturated.

343

344

345 **Figure 4: Species rarefaction curves for each of the 13 trap stations across both areas,**
346 **the Clarion-Clipperton fracture Zone and the DisCOL Experimental Area. Only**
347 **individuals greater than 15 mm were considered here.**

348

349

350

351

352

353 ***Biodiversity***

354

355 Figures 5a and b show that the scavenging community in the CCZ is dominated by three
356 species, *A. distinctus* (36%), *A. gerulicorbis* (18%) and *Paralicella caperesca* (31%),
357 whereas, in contrast, the DEA scavenging community is dominated by a single species, *A.*
358 *gerulicorbis*, accounting for almost 60% of all specimens. The Simpson Index (D) for the
359 entire CCZ area is (with 0.73), higher than the 0.616 that was calculated for the whole of the
360 DEA area (Table 3). The biodiversity of each individual station was further explored (Table
361 3). In the CCZ, the lowest biodiversity was found at C3 and C6 ($D = 0.23$) and the highest at
362 C2 ($D = 0.67$), respectively. In the DEA, the lowest biodiversity of $D = 0.36$ was found at
363 station D1 (the site of the actual disturbance) and just south of the disturbance site at D2
364 (0.21), while the highest biodiversity was observed at D5 ($D = 0.61$) (Table 3).

365

366

367

368

369

370

371

372

373

374

375

376

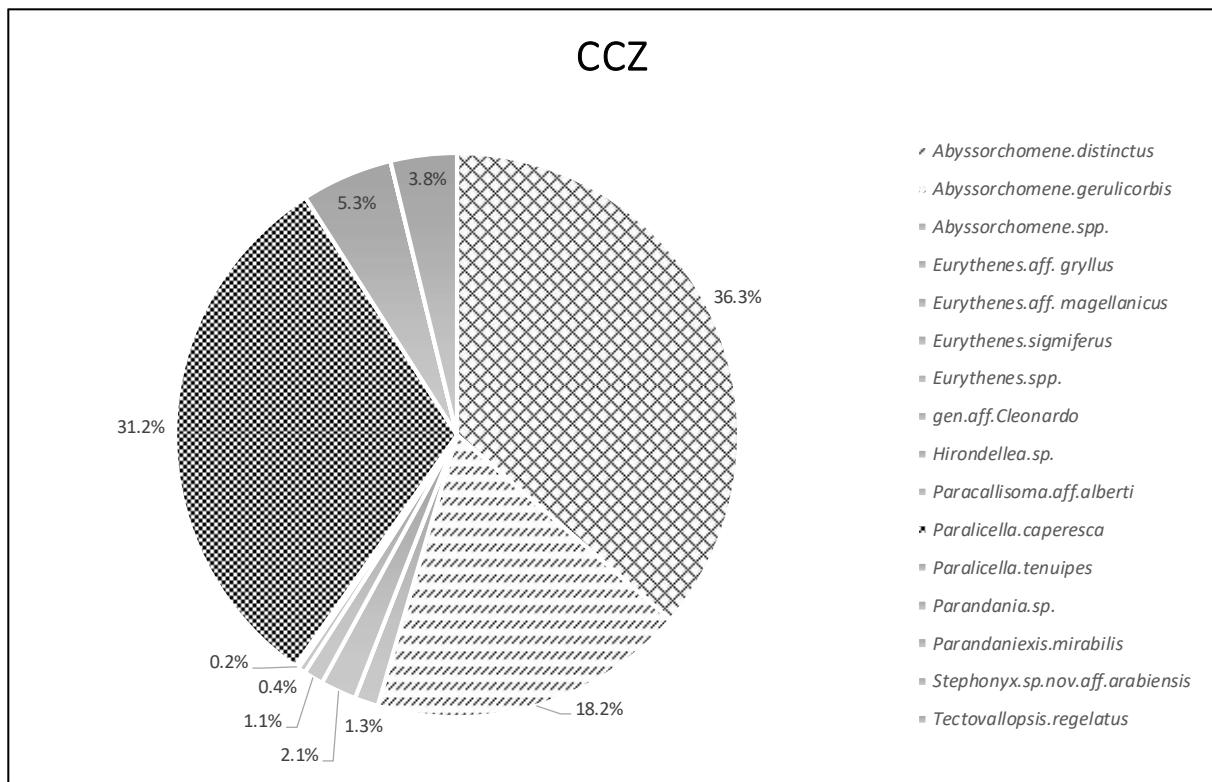
377

378

379

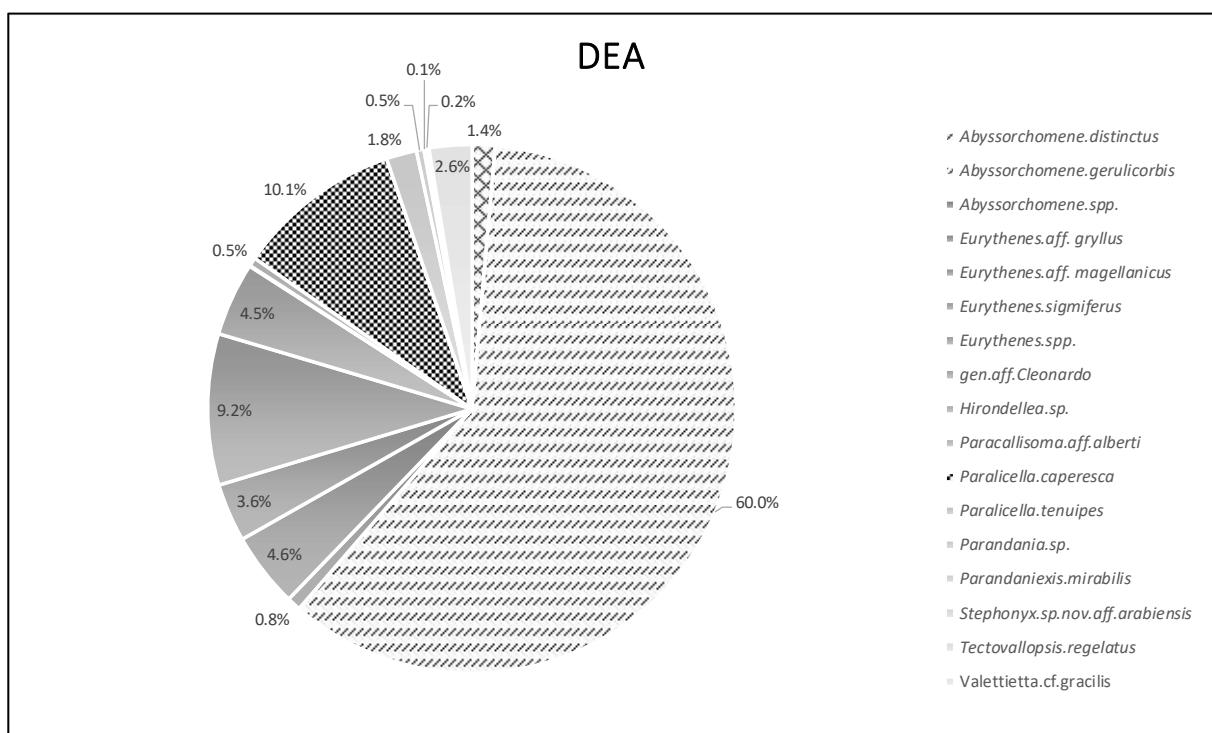
380

381


382

383

384


385

386

387

388

389

390

391

392

393

394 **Figures 5a and b: Relative species abundances in the Clarion-Clipperton fracture Zone**
395 **and the DisCOL Experimental Area.** These abundances represent the greater than 15mm
396 fraction of the scavenging amphipod community only.

397

398 **Table 3: Comparison of biodiversity calculated using the Simpson Index (D), for the**
399 **Clarion-Clipperton fracture Zone and DisCOL Experimental Area, and D for each**
400 **station is shown for further comparisons within these areas.**

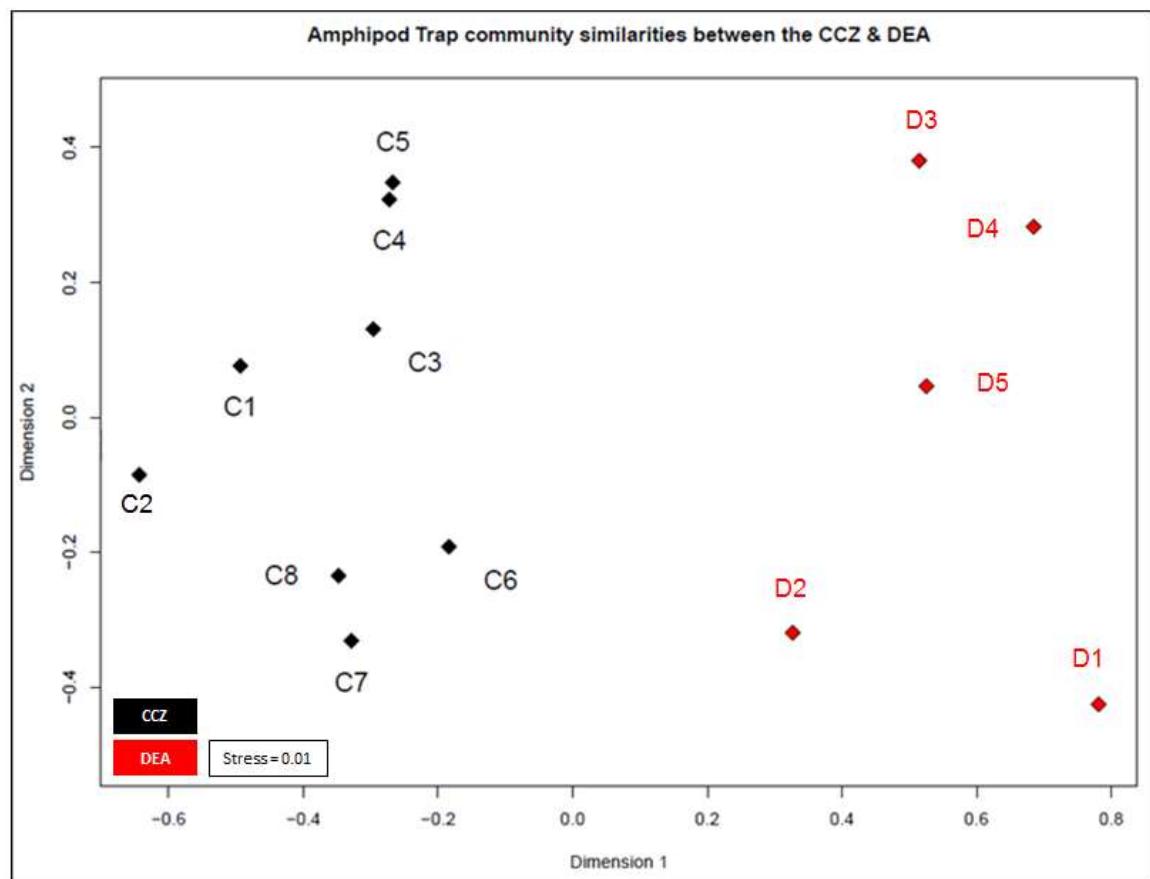
Simpson Index (D) whole Clarion-Clipperton Fracture Zone	0.73
Simpson Index (D) whole DisCOL Experimental Area	0.62
C1 (D)	0.41
C2 (D)	0.68
C3 (D)	0.23
C4 (D)	0.27
C5 (D)	0.38
C6 (D)	0.23
C7 (D)	0.45
C8 (D)	0.44
D1 disturbed (D)	0.36
D2 ref 1 (D)	0.21
D3 ref 2 (D)	0.38
D4 ref 3 (D)	0.44
D5 ref 4 (D)	0.61

401

402

403

404


405

406 **Species composition**

407

408 The NMDS shows that the communities of the two basins are clearly separated (ANOSIM: p
409 = 0.002); Figure 6). The disturbed area in the DEA (D1) is showing a clear difference to the
410 four reference areas (D2 - 5). When the communities between the two basins are compared,
411 D2 appears to be most similar to the CCZ community, and more specifically to C6, C7 and
412 C8. The reliability of the data ranking is supported by a low stress value of 0.01.

413

414
415 **Figure 6 : NMDS plot** showing the beta biodiversity (dis/similarities) for each of the thirteen
416 amphipod trap sampling stations associated with the two basins, Clarion-Clipperton fracture
417 Zone (CCZ) (black) and the DisCOL Experimental Area (DEA) (red). Data are supported by
418 a low stress value of 0.01.

419

420

421 **Discussion**

422

423 ***An unexplored ecosystem***

424 Although the most recent and comprehensive analysis of the Animal diversity of the World's
425 oceans estimates a total of less than a million species over all depths (Appeltans et al. 2012),
426 it is not currently known how many species actually inhabit the deep-sea. Regarding
427 amphipods, only 328 benthic, demersal and benthopelagic species, belonging to 144 genera
428 and 39 families. Over 7000 marine amphipod species have been found below 2000 m. These
429 numbers are reduced to 173 known species, 87 genera and 37 families at depths below 3000
430 m, and 100 known species, 66 genera and 31 families are known to occur below 4000 m
431 (Vader 2005; Brandt et al, 2012).

432

433 ***Lysianassoidea and their biogeography***

434

435 The superfamily Lysianassoidea constitutes an important part of the abyssal amphipod fauna.
436 Also, in our sampling, lysianassoid amphipods were collected in large numbers (99% of the
437 samples taken in both basins). As a superfamily, they comprise 23% of all the species found
438 below 2000 m, 35% of the species found below 3000 m and 31% of the species found below
439 4000 m (Brandt et al. 2012).

440

441 Many species in the Lysianassoidea occur in multiple abyssal basins, and some even have
442 worldwide distributions (Thurston 1990). Despite the Ocean Biogeographic Information
443 System (OBIS) database containing 615,650 records of Amphipoda, many of these are shelf
444 or pelagic species, with very few records from the CCZ and DEA (OBIS, 2017). Here, we
445 provide additional data for the known bathymetric range of the seven amphipods which we
446 have identified to species level (*Abyssorchomene distinctus*, *Abyssorchomene gerulicorbis*,
447 *Eurythenes sigmiferus*, , *Paralicella caperesca*, *Paralicella tenuipes* *Parandaniexis mirabilis*
448 & *Tectovallopsis regelatus*) (Table 2b). In addition, we have found two possibly new species
449 of *Eurythenes*, previously not known from these basins, which we plan to analyse further in
450 the future.

451 While we only sampled *Hirondellea* sp. and *Paralicella tenuipes* in the CCZ, *Eurythenes* aff.
452 *gryllus*, *Eurythenes* aff. *magellanicus*, gen. aff. *Cleonardo*, *Parandania* sp., *Parandaniexis*

453 *mirabilis*, *Stephonyx* sp. nov. aff. *arabiensis*, and *Tectovallopsis regelatus* only in the DEA,
454 we cannot conclude based on the current data only if these species are unique to their
455 respective basins without confirming these distribution patterns with additional sampling
456 campaigns.

457

458 ***Catch Per Unit Effort***

459

460 Despite the sampling campaign in the CCZ being twice as long as the DEA, the number of
461 individuals/species collected does not correlate positively with deployment effort. We assume
462 that this is rather an effect of abiotic and organic factors, such as the productivity-driven
463 gradients in the CCZ, which decrease from East-West and from North-South (Hannides &
464 Smith, 2003). This lack of correlation is supported by our findings for station C2 (with the
465 shortest deployment time), which shows the highest Simpson Index of all thirteen stations (D
466 = 0.67). Further evidence comes from the patterns visualised in Figure 3, which shows a
467 correlation of $R = 0.67$ for Catch Per Unit Effort (CPUE) and deployment times.

468

469 ***Biodiversity within basins***

470

471 Figures 5a & b show clearly that the DEA scavenging community has reduced abundances of
472 all species including *A. distinctus* (1%) and *P. caperesca* (7%), and is now dominated by a
473 single species, *A. gerulicorbis*, accounting for 60% of the DEA community. This indicates an
474 interesting resilience and flexibility in the latter species. Similar patterns have been observed
475 in Potter Cove (Seefeldt et al. 2017), where following glacial retreat, a change in
476 sedimentation rates led to the dominance of a single amphipod scavenging species,
477 *Cheirimedon femoratus*.

478

479 Although the assemblage of the two basins has some overlap in its amphipod diversity (as is
480 exemplified by the eight shared morphotypes), the sampling stations (and the two basins) are
481 heterogeneous concerning species compositions of the subdominant and rarer species

482

483 Thus, we can observe some negative influence (possibly attributed to the disturbance in the
484 DEA) on the scavenging amphipod community. This reduced biodiversity is reflected in the
485 higher Simpson Index (D) for the CCZ (0.73) as compared to the DEA ($D = 0.62$; Table 3).

486

487 To explore whether this reduced diversity in the DEA was truly a result of the simulated
488 disturbance, D was also calculated for each sampling station within each basin (Table 3).
489 In the CCZ, the APEI (C8) shows a moderate level of biodiversity ($D = 0.44$), indicating that
490 it is not optimally-placed for representing the biodiversity of the scavenging amphipod
491 community of the CCZ. Additionally, this pre-existing lower biodiversity (in comparison to
492 the contractor claim areas), indicates that the APEI may not serve well as a refugium for
493 amphipods post-disturbance. However, due to the fact that only one of the eight APEIs have
494 been investigated thus far, this APEI along with the remaining eight APEIs would need to be
495 (re-) sampled.

496

497 Within the DEA, the lowest diversities are observed at the site of the disturbance (D1) and
498 south of it (D2; Table 3), indicating that the reduced biodiversity in the DEA could indeed be
499 caused by the simulated disturbance in 1989 (Thiel, 1992).

500

501 The highest abundances in the DEA were collected from station D5 ($n = 717$); this station
502 also has the highest Simpson Index within the DEA ($D = 0.61$) (Table 3). Side-scan sonar
503 imaging shows a seamount range to the North West (NW) of the disturbed area (D1)
504 (Appendix 3). Although the relief change is only 150m, the range extends laterally for several
505 kilometres (SO242-1 Cruise report, 2016) hampering dispersal across barriers such as sills,
506 canyons and ridges (Smith, et al. 2006; Blankenship et al. 2006; Etter et al. 2011). However,
507 recent studies have shown that due to their mobile nature, geographic isolation alone would
508 not pose a true barrier to benthopelagic amphipod species (Havermans, 2016; Ritchie et al.
509 2017), and thus, cannot explain why such a high number of large scavenging individuals was
510 collected at station D5.

511

512 ***Community similarities***

513

514 Scavenging amphipods are resilient and dispersive, but most importantly, they are highly
515 mobile (Ingram and Hessler 1983; Lörz et al. 2018). Often driven by their search for erratic
516 deposited feeding opportunities (Smith et al. 1989), they are probably less constrained by
517 local environmental abiotic conditions and seafloor topography.

518

519 Beta diversity can be regarded as the dissimilarities in species composition between spatially
520 different communities. As an indication for beta biodiversity, the NMDS (Figure 6) shows a

521 significant separation in the similarity index between the two basins (ANOSIM $p = 0.002$).
522 However, despite the dispersive and resilient nature of scavenging amphipods, their
523 biodiversity appears to have been affected by the disturbance experiment as evidenced by the
524 NMDS (Figure 6), where the disturbed area (D1) and the area closest to it (D2) are separated
525 from the remaining three reference sites (D3, D4 and D5).

526

527 In the CCZ, stations C1, C2, C3, C4 and C5 form one cluster in the NMDS (Figure 6), and
528 stations C6, C7 and C8 a second cluster. The CCZ is a geomorphologically very
529 heterogeneous region, with seamounts of 200 m altitude running from north-south. A barrier
530 of this height would be expected to affect sedimentation rates, nodule presence and currents.
531 Furthermore, the difference in depth from the eastern edge (3950m) and the western edge
532 (5150 m) is more than 1200 m. These combined factors very likely give rise to different
533 trends in species composition (Glover, et al. 2015). However, since it has been established
534 that benthopelagic amphipods are less sensitive to such barriers (Havermans, 2016), at this
535 stage, other biotic (e.g. the productivity gradient) and abiotic factors causing this separation
536 cannot be excluded as alternative explanations.

537

538 ***Dispersal and connectivity***

539

540 Whilst the NMDS (Figure 6) illustrates a visual separation of the two basins, there is also
541 some similarity in the amphipod fauna between the two areas, (as is obvious by the eight
542 shared species), indicating that the dispersal extent for these eight species might range up to
543 at least 3000 km. However, this hypothesis will need to be confirmed with subsequent
544 molecular analyses.

545

546

547 Abyssal amphipods have been shown to be able to travel actively at speeds of almost 4
548 cm/sec (Laver, 1985), even at temperatures as low as 3°C (Kankaanpää et al. 1995). It is
549 obvious that they are sufficiently strong to swim up weak currents since they can be found
550 several hundred meters above the seafloor searching pelagically for mates (e.g. *Eurythenes*
551 *gryllus* occurring up to 1800 m above the seafloor) (Thurston 1990; Havermans et al. 2013)
552 or following food-falls (Baldwin and Smith 1987).

553

554 However, it is apparent that the dispersal of abyssal amphipods is not always contingent on
555 current direction, but also on passive dispersal. Amphipods can also be carried passively over
556 long distances by stronger currents e.g. (the circumpolar current of the Southern Ocean)
557 (Laver et al. 1985), but even weaker deep-sea currents have been suggested as a mechanism
558 for deep-sea dispersal of amphipods (e.g. *Eurythenes gryllus* (Schüller and Ebbe 2007)). This
559 coupled with their ability to follow odour-plumes (Ide et al. 2006; Premke, 2003),
560 significantly increases the probability and extent of their dispersal (Conlan 1991; Highsmith,
561 1985). Specialist feeding adaptations for several species in our assemblages have been
562 reported in Havermans & Smetacek, 2018). For example, the semi-tubular flap-like molars of
563 the genera *Hirondellea* and *Eurythenes*, and the distendable foregut (*Abyssorchromene*) and
564 midgut (*Paralicella*). It is not clear from our study in the absence of POC data for the areas of
565 the trap deployments whether the biogeography of these specialised feeders is linked to the
566 productivity gradients in these two basins.

567

568 The lack of a clear dispersal pattern is obvious from Figure 6, where station D2 is the station
569 clustering closest with the CCZ basin in terms of species composition despite the fact that
570 station D5 is geographically the shortest distance away from the CCZ.

571

572 Recent research on *Eurythenes gryllus* has demonstrated that it thrives in every ocean with a
573 wide (pelagic – hadal) depth range. However, assumptions that individual morphotypes of
574 this species belong to the same genetic lineage have been challenged (Havermans et al. 2013
575 & Havermans, 2016). Ritchie et al. (2016) demonstrated with microsatellite markers
576 heterozygote deficiency in *Paralicella tenuipes*, which they attributed to cryptic diversity. It
577 is likely that the connectivity of the eight species we observed as being shared between the
578 CCZ and DEA (based on traditional morphological methods), can be explained by the
579 presence of one or more cryptic amphipod species, which are being tested in our future
580 molecular research.

581

582 Unfortunately, in the absence of data on deep-sea currents in the study area, especially
583 between the CCZ and DEA, it is not yet possible to fully explain the drivers and mechanisms
584 of amphipod dispersal between these particular basins.

585

586

587

588 ***The DisCOL Experimental Area as a proxy***

589

590 Higher abundances of scavenging amphipods were collected from the CCZ (3932
591 individuals) as opposed to the DEA (2984 individuals). Yet, we have identified more
592 morphotypes in the DEA (18) than in the CCZ (10), indicating that the DEA is more
593 speciose, and thus, more biodiverse.

594

595 Although the DEA is more speciose, many of its morphotypes were collected in low
596 abundances, with several of these being singletons or doubletons (collected from one or two
597 sampling stations only). This is reflected in the rarefaction curves (Figure 4), which indicate
598 thorough sampling in the CCZ with all but station C7 reaching asymptotes. In contrast, four
599 stations in the DEA (D1, D2, D4 and D5) are unsaturated. This pattern suggests firstly that
600 the less abundant species which are present at fewer stations only may not necessarily be rare
601 species and secondly, that there could be as yet undetected biodiversity in the DEA.
602 Therefore, the effects of mining impact could be even more pronounced than we observed in
603 this study. However, as the seafloor environment is subject to seasonal fluctuations (Billett et
604 al. 1983), it is hard to predict exactly what the effects will be at this stage.

605

606 Our preliminary (basin-scale) comparison of the scavenging communities of the two study
607 areas shows that even if the DEA is a small-scale disturbance experiment, it is a very diverse
608 area. Thus, the DEA is a well-chosen site for monitoring the impacts of disturbance and
609 instrumental in its role as a proxy to assess impending mining activities in the CCZ.

610

611 ***Future research***

612

613 At several stations in both basins, we collected amphipods in very high abundances (C1, C8,
614 D3 & D5) (Table 2b). Since biotic production is contingent on the sinking flux of particles
615 from the euphotic zone (Sweetman, 2017), the biodiversity differences at each of the thirteen
616 stations could be driven by Particulate Organic Carbon (POC) or erratic whale-falls (Smith et
617 al. 1989). However, not all feeding behaviour of scavenging amphipods is based on
618 opportunistic or erratic availability of nutrients (Havermans & Smetacek, 2018). During
619 future sampling campaigns, the POC of these areas should be monitored, along with
620 experiments on different types of food-fall in addition to obtaining side-scan sonar and

621 abiotic data. This will provide a more comprehensive view of the food types required for
622 these species to thrive in the deep sea.

623
624 It is not clear from our results whether substrate type (i.e. nodule/non-nodule) has any effect
625 on the amphipod communities (Smith and Demopoulos, 2003) since this kind of data is only
626 available for stations D3 and D4. To answer this question, resampling of the study areas in
627 combination with an Ocean Floor Observation System (OFOBS) (video/camera) is required.

628
629 Although our study only addresses the scavenging amphipod species longer than 15 mm, we
630 already find indications for a disturbance effect in the DEA. It is obvious that scavenging
631 amphipods are only one of several benthic-pelagic indicator groups. Other truly benthic
632 groups such as sponges or less dispersive amphipods (e.g. collected by epibenthic sledge
633 (EBS)) may demonstrate an even more pronounced impact of mining activities and should be
634 investigated in future studies.

635
636 With the application of molecular techniques to identify cryptic species (Delić et al, 2017),
637 more realistic estimates of biodiversity can be obtained (Schön et al. 2012), improving our
638 current knowledge of the biodiversity of this area. If these improved estimates of biodiversity
639 also include cryptic species, it is possible that the biological impact of manganese nodule
640 mining on amphipod and other deep-sea faunal communities may turn out to be even higher.

641 **Conclusions**

642 In summary, this study on the scavenging amphipod community of two abyssal oceanic
643 basins has demonstrated that amphipods are present in high abundances across the CCZ and
644 DEA, with eight shared species and some species possibly being unique to their respective
645 basin.

646 Our results have indicated that the simulated mining experiment probably had an impact on
647 the biodiversity of these scavenging amphipods, as demonstrated by the low D of the DEA
648 overall, at the disturbance site itself (D1), and the 60% dominance of *A. gerulicorbis* in this
649 region.

650 Given the scarcity of sampling and industry experience of marine habitats at these depths, the
651 formulation of effective regulations is challenging (International Seabed Authority, 2017).

652 Nonetheless, our study provides the first results on possible effects of disturbance activities
653 on the abyssal amphipod biodiversity of deep-sea basins.

654 **Sample and data availability**

655 Biological samples pertaining to this manuscript are stored at the Royal Belgian Institute of Natural
656 Sciences, and the data discussed in the manuscript are submitted to PANGEA.

657 **Acknowledgements**

658

659 The authors would like to acknowledge the Belgian Science and Policy Office (BELSPO) and the
660 German Federal Ministry of Research and Education for funding. We would also like to thank the
661 crew of the Research Vessel “Sonne”, the University of Ghent (Ghent, Belgium) and Zohra
662 Elouaazizi (Brussels, Belgium) for help in the lab. This study would not have been possible without
663 their support.

664

665

666

667

668

669

670

671

672

673

674

675 **References**

676

677 Appeltans, W., Boxshall, G., Bouchet, P., Vanhoorneb., Decock, W., Warren, A., Collinsa.,
678 Kroh A., Schmidt-Rhaesa, A., Berta, A., Barber, A., Todaro, A., Gittenberger, A.,
679 Hoeksema, B., Swalla, B., Neuhaus, B., Hayward, B., Self-Sullivan, C., Fransen, C.,
680 Messing, C., Erséus, C., Emig, C., Boyko, C., Mah, C., Millsc., Nielsen, C., Jaume,
681 D., Fautin, D., Domning, D. P., Gibson, D., Lazarus, D., Gordon, D., Opresko, D.,
682 Schwabe, E., Mac-Pherson E., Thuesen, E., Dahdouh-Guebas, F., Anderson, G.,
683 Poore, G., Williams, G., Walker-Smith, G., Read, G., Lambert, G., Paulay, G.,
684 Segers, H., Furuya, H., Bartsch, I., Van Der Land, J., Reimer, J. D., Vanaverbeke, J.,
685 Saiz-aiz, Saito, J., Sair, J. D., Pilger, J., Norenburg, J., Kolb, J., Schnabel, K. E.,
686 Meland, K., Fauchald, K., Cheng, L., Van Ofwe-Gen L., Błażewicz-Paszkowycz,
687 M., Rius, M., Curini-Galletti, M., Schotte, M., Tasker, M. L., Angel, M. V., Osawa,
688 M., Longshaw M., Guiry, M., Bailly, N., De Voogd, N., Bruce N., Shenkar, N.,
689 Garcia-Alvarez, O., McLaughlin, P., Kirk, P., Davie, P., Ng, P. K. L., Schuchert P.,
690 Uetz P., Bock P., Pugh P., Lemaitre, Kristensen R., Van Soest, Bray, R., Bamber,
691 R. N., Da Rocha, R. M., Hopcroft R., Stöhr, S., De Grave, S., Gerken, S., Gofas, S.,
692 Tyler, S., Ahyong, S., Wilson, S., Brando S. N., Koenemann, S., Feist, S., Cairns, S.,
693 Timm, T., Cribb, T., Molodtsova, T., Chan, T.-Y., Iseto, T., Artois, T., Scarabino, V.,
694 Siegel, V., Eschmeyer, W., Hummon, W., Perrin W., Sterrer, W., Hernandez, F.,
695 Mees J., Costello, M. J.: The Magnitude of Global Marine Biodiversity, *Curr. Biol.*,
696 22, 2189–2202, 2012.

697

698 Baldwin, R. J. & Smith, K. L. Jr.: Temporal variation in the catch rate, length, color, and sex
699 of the necrophagous amphipod, *Eurythenes gryllus*, from the central and eastern North
700 Pacific, *Deep Sea Res. (part 1 Oceanogr. Res. Pap.)*, 34, 425–439, 1987.

701

702 Barnard, J. L.: Gammaridean Amphipoda from depth of 400 to 6000 m, *Galathea. Rep.*, 5,
703 23–128, 1961.

704

705 Barnard, J. L. & Karaman, G.: The Families and Genera of Marine Gammaridean Amphipoda
706 (Except Marine Gammaroids), *Rec. Aust. Mus. Suppl.* 13., 1–866, 1991.

707

708 Belyaev, G. M.: Deep-Sea Ocean Trenches and Their Fauna. Nauka Publishing House,
709 Moscow, 385 pp, 1989.

710

711 Billett, D. S. M., Lampitt, R. S., Rice, A. L. & Mantoura, R. F. C.: Seasonal sedimentation of
712 phytoplankton to the deep-sea benthos, *Nature*, 302, 520–522. 1983.

713 Blankenship, L. E. & Levin, L. A.: Extreme food webs: Foraging strategies and diets of
714 scavenging amphipods from the ocean's deepest 5 kilometers, *Limnol. Oceanogr.*, 52,
715 1685–1697, 2007.

716

717 Blankenship, L. E., Yayanos, A. A., Cadien, D. B., and Levin, L. A.: Vertical zonation
718 patterns of scavenging amphipods from the Hadal zone of the Tonga and Kermadec
719 Trenches, *Deep-Sea Res. Pt. I*, 53, 48–61, doi:10.1016/j.dsr.2005.09.006, 2006.

720

721 Brandt, A., Gooday A. J., Brix S. B., Brökeland, W., Cedhagen, T., Choudhury, M.,
722 Cornelius, N., Danis, B., De Mesel, I., Diaz R. J., Gillan D. C., Ebbe B., Howe J.,
723 Janussen, D., Kaiser, S., Linse, K., Malyutina, M., Brando, S., Pawlowski, J. &
724 Raupach, M.: The So Deep Sea: First Insights Into Biodiversity And Biogeography.
725 *Nature*, 447, 307–311, 2007.

726

727 Bray, J. R. & J. T. Curtis.: An ordination of upland forest communities of southern
728 Wisconsin, *Ecol. Mono.*, 27, 325–349, 1957.

729

730 Brenke, N.: An epibenthic sledge for operations on marine soft bottom and bedrock, *Mar.*
731 *Technol. Soc. J.*, 39, 10–21, 2005. hdl.handle.net/10.4031/002533205787444015.

732

733 Carmona, L., Malaquias, M. A. E., Gosliner, T. M., Pola, M. & Cervera, J. L. Amphi-Atlantic
734 distributions and cryptic species in Sacoglossan sea slugs, *J. Molluscan Stud.*, 77,
735 401–412, 2011.

736

737 Conlan K. E.: Precopulatory mating behavior and sexual dimorphism in the amphipod
738 *Crustacea*, *Hydrobiologia*, 223, 255–282, 1991.

739

740 Delić, T., Trontelj, P., Rendoš, M. & Fišer., C.: The importance of naming cryptic species
741 and the conservation of endemic subterranean amphipods. *Sci. Rep.*, 7, 3391, 2017.
742 <https://doi.org/10.1038/s41598-017-02938-z>

743

744

745 Etter, R. J., Boyle, E. E., Glazier, A., Jennings, R. M., Dutra, E. & Chase. M. R.
746 “Phylogeography of a Pan-Atlantic Abyssal Protobranch Bivalve: Implications for
747 Evolution in the Deep Atlantic.” *Molecular Ecology* 20 (4): 829–843, 2011.
748 doi:<http://dx.doi.org/10.1111/j.365-294X.2010.04978.x>.

749

750 France, D. & Kocher, T.: Geographic and bathymetric patterns of mitochondrial 16S rRNA
751 sequence divergence among deep-sea amphipods, *Eurythenes gryllus*. *Mar. Biol.*, 126,
752 633–643, 1996.

753

754 Futuyma, D. J.: *Evolutionary Biology*, ed. 3. Sinauer Associates, Sunderland MA, 751 pp.,
755 1998.

756

757 Gage, J. D. & Tyler, P. A.: *Deep-Sea Biology: a natural history of organisms at the deep-sea*
758 floor, Vol. Cambridge University press, Cambridge, 1991.

759

760 German C. R., Ramirez-Llodra, E., Baker, M. C., Tyler, P. A., and the Chess Scientific
761 Steering Committee.: Deep-Water Chemosynthetic Ecosystem Research during the
762 Census of Marine Life Decade and Beyond: A Proposed Deep Ocean Road Map,
763 *PLoS ONE*, 6, 2011. doi:10.1371/journal.pone.0023259.

764

765 Glover, A., Paterson, G., Bett, B., Gage, J., Sibuet, M., Shearer, M., Hawkins, L.: Patterns in
766 polychaete abundance and diversity from the Madeira Abyssal Plain, northeast
767 Atlantic. *Deep Sea Res. (part 1 Oceanogr. Res. Pap.)*, 48, 217–236, 2001.

768

769 Glover, A., Smith, C. R., Paterson, G. J. L., Wilson, G. D. F., Hawkins, L. & Shearer, M.:
770 Polychaete species diversity in the central Pacific abyss: local and regional patterns,
771 and relationships with productivity, *Mar. Ecol. Prog. Ser.*, 240, 157–170, 2002.

772

773 Gotelli, N. J. & Colwell, R., K.: Quantifying Biodiversity: Procedures and Pitfalls in the
774 Measurement and Comparison of Species Richness.", Ecol. Lett., 4, 379–91, 2001.
775 doi:10.1046/j.1461-0248.2001.00230.

776

777 Hannides, A., Smith, C. R.: The northeast abyssal Pacific plain. In: Biogeochemistry of
778 Marine Systems, K. B. Black and G. B Shimmield, eds., CRC Press, Boca Raton,
779 Florida, 208-237, 2003.

780

781 Havermans, C.: Have we so far only seen the tip of the iceberg? Exploring species diversity
782 and distribution of the giant amphipod *Eurythenes*, Biodiversity, 2016.
783 DOI: 10.1080/14888386.2016.1172257

784

785 Havermans, C & Smetacek, V. Bottom-up and top-down triggers of diversification: A new
786 look at the evolutionary ecology of scavenging amphipods in the deep sea. Progress in
787 Oceanogprahy, 164, 37-51, 2018.

788

789 Havermans, C., Sonet, G., d'Udekem d'Acoz, C., Nagy, Z. T., Martin, P., Brix, S., Riehl, T.,
790 Agrawal, S. & Held, C.: Genetic and morphological divergences in the cosmopolitan
791 deep-sea amphipod *Eurythenes gryllus* reveal a diverse abyss and a bipolar species.
792 PLoS ONE, 8, e74218, 2013.

793

794 Held, C. & Wägele, J. W.: Cryptic speciation in the giant Antarctic isopod *Glyptonotus*
795 *antarcticus* (Isopoda: Valvirfera: Chaetiliidae), Sci. Mar. 69 (Suppl. 2), 175–181,
796 2005.

797

798 Highsmith, R.: Floating and algal rafting as potential dispersal mechanisms in brooding
799 invertebrates, Mar. Ecol. Prog. Ser., 25, 169–179, 1985.

800

801 Hilário, A., Metaxas, A., Gaudron, S. M. ,Howell, K. L., Mercier, A., Mestre, N. C., Ross, R.
802 E. ,Thurnherr, A. M. & Young, C.: Estimating dispersal distance in the deep
803 sea:challenges and applications to marine reserves, Front. Mar. Sci., 2, 2015.
804 doi:10.3389/ fmars.2015.00006.

805 Ide, K., Takahashi, K., Nakano, T., & Minoru, S. & Omori, M. Chemoreceptive foraging in a
806 shallow-water scavenging lysianassid amphipod: Role of amino acids in the location
807 of carrion in *Scopelochirus onagawae*. *Marine Ecology-progress Series*, 2006.
808 MAR ECOL-PROGR SER. 317. 193-202. 10.3354/meps317193.

809

810 International Seabed Authority. A Discussion Paper on Developing a Regulatory Framework
811 for Mineral Exploitation in the Area (Env. Matt.), 1–102, 2017.

812

813 Kankaanpää, H., Laurén, M., Mattson, M. & Lindström, M.: Effects of bleached kraft mill
814 effluents on the swimming activity of *Monoporeia affinis* (Crustacea, Pmphiopoda)
815 lindström, *Chemosphere*, 31, 4455–4473, 1995.

816

817 Laver, M. B., Olsson, M. S., Edelman, J. L. & Smith K. L. Jr.: Swimming rates of scavenging
818 deep-sea amphipods recorded with a free-vehicle video camera. *Deep-Sea Res. II*,
819 32, 1135–1142, 1985.

820

821 Lester, S. E., Ruttenberg, B. I., Gaines, S. D. & Kinlan B. P.: The relationship between
822 dispersal ability and geographic range size. *Ecol. Lett.*, 10, 745–758, 2007.

823

824 Levin, L. A., Etter, R.J., Rex, M. A., Gooday, A. J., Smith, C. R., Pineda, J., Stuart, C. T.,
825 Hessler, R. R. & Pawson, D.: Environmental influences on regional deep-sea species
826 diversity, *Annu. Rev. Ecol. Evol. Syst.*, 32, 51–93, 2001.

827

828 Liow, L. H.: Does versatility as measured by geographic range, bathymetric range and
829 morphological variability contribute to taxon longevity?, *Glob. Ecol. Bio.*, 16, 117–
830 128, 2007.

831

832 Lodge, M., Johnson, D., Le Gurun, G., Wengler, M., Weaver, P. & Gunn, V.: Seabed mining:
833 International Seabed Authority environmental management plan for the Clarion–
834 Clipperton Zone. *A partnership approach*, Mar. Pol., 49, 66–72, 2014.

835

836 Lonsdale, P.: Clustering of suspension-feeding macrobenthos near abyssal hydrothermal
837 vents at oceanic spreading centers, *Deep-Sea Res.*, 24, 857–863, 1977.

838 Lörz A-N, Jaźdżewska AM, Brandt A. A new predator connecting the abyssal with the hadal
839 in the Kuril-Kamchatka Trench, NW Pacific. Costello M, ed. PeerJ. 2018;6:e4887.
840 doi:10.7717/peerj.4887.

841

842

843 Managing Impacts of Deep Sea Resource Exploitation (MIDAS) Summary Report:
844 Biodiversity in the Clarion-Clipperton Zone, 1–2, 2016.

845

846 McClain, C. R. & Hardy, S. M.: The dynamics of biogeographic ranges in the deep sea, Proc.
847 Roy. Soc. B: Bio. Sci., 277, 3533–3546, 2010.

848

849 Narahara-Nakano, Y., Nakano, T. & Tomikawa, K. Deep-sea amphipod genus *Eurythenes*
850 from Japan, with a description of a new *Eurythenes* species from off Hokkaido
851 (Crustacea: Amphipoda: Lysianassoidea), Marine Biodiversity, 1867-1616, 2017. Mar
852 Biodiv DOI 10.1007/s12526-017-0758-4

853

854 Paull, C. K., Hecker, B., Commeau, R., Freeman-Lynde, R. P., Neumann, C., Corso, W. P.,
855 Golubic, S., Hook, J. E., Sikes, E. & Curran, J.: Biological communities at the Florida
856 escarpment resemble hydrothermal vent taxa, Science, 226, 965–967, 1984.

857 Premke K, Muyakshin S, Klages M & Wegner J. Evidence for long-range chemoreceptive
858 tracking of food odour in deep-sea scavengers by scanning sonar data. J Exp Mar Biol
859 Ecol, 285:283–294, 2003.

860

861 R Core Team. R: A language and environment for statistical computing. R Foundation for
862 Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, 2013.
863 URL <http://www.R-project.org/>.

864

865 Ramirez-Llodra, E., Brandt, A., Danovaro, R., De Mol, B., Escobar, E., German, C. R.,
866 Levin, L. A., Martinez Arbizu, P., Menot, L., Buhl-Mortensen, P., Narayanaswamy,
867 B. E., Smith, C. R., Tittensor, D. P., Tyler, P. A., Vanreusel, A. & Vecchione, M.:
868 Deep, diverse and definitely different: unique attributes of the world's largest
869 ecosystem, Biogeosciences, 7, 2851–2899, 2010.

870

871 Ramirez-Llodra, E., Tyler, P. A., Baker, M. C., Bergstad, O. A., Clark, M. R. & Escobar, E.:
872 Man and the last great wilderness: human impact on the Deep Sea, PLoS ONE, 6,
873 2011. doi:10.1371/journal.pone.0022588.

874

875 Rex, M. A., Stuart, C. T., Hessler, R., R., Allen, J. A., Sanders, H. L. & Wilson, G. D. F.:
876 Global-scale latitudinal patterns of species diversity in the deep-sea benthos, Nature,
877 365, 636–639, 1993.

878 Ritchie, H., Jamieson, A. J. & Piertney, S. B. Isolation and Characterization of Microsatellite
879 DNA Markers in the Deep-Sea Amphipod *Paralicella tenuipes* by Illumina MiSeq
880 Sequencing, Journal of Heredity, 367 – 371, 2016.

881

882 Sanders H. L.: Marine benthic diversity: a comparative study, Am. Nat., 102, 243–282, 1968.

883

884 Schön I, Pinto R. L., Halse, S., Smith, A. J. & Martens, K.: Cryptic Species in Putative
885 Ancient Asexual Darwinulids (Crustacea, Ostracoda), PLoS ONE, 7, e39844.
886 doi:10.1371/journal.pone.0039844. 2012.

887

888 Schulenberger, E. & Barnard, J. L.: Clarification of the Abyssal Amphipod, *Paralicella*
889 *tenuipes* Chevreux, Crustaceana, 31, 267–274, 1976.

890

891 Schüller, M. & Ebbe, B.: Global distributional patterns of selected deep-sea Polychaeta
892 (Annelida) from the Southern Ocean, Deep-Sea Res. II, 54, 1737–1751, 2007.

893

894 Simpson, E. H.: Measurement of diversity, Nature, 163, 688, 1949.

895

896 Smith, C. R., Kukert, H., Wheatcroft, R. A., Jumars, P. A. & Deming, J. W.: Vent fauna on
897 whale remains, Nature, 341, 27–28, 1989.

898

899 Smith, C. R. & A.W. J. Demopoulos.: Ecology of the deep Pacific Ocean floor. In:
900 Ecosystems of the World Volume 28: Ecosystems of the Deep Ocean, P. A. Tyler,
901 ed., Elsevier, Amsterdam, pp. 179–218, 2003.

902

903 Smith, C. R., Drazen J. & Mincks, S. L.: Deep-sea Biodiversity and Biogeography:
904 Perspectives from the Abyss. International Seabed Authority Seamount Biodiversity
905 Symposium, 1–13, 2006.

906

907 Somero, G. N.: Adaptations to high hydrostatic pressure, Ann. rev. physiol., 54, 57–577.
908 1992.

909

910 Stuart, C., Rex, M. & Etter, R.: Large scale spatial and temporal patterns of deep-sea
911 biodiversity. Ecosystems of the World Volume 28: Ecosys. Deep Oc., P. A. Tyler, ed.,
912 Elsevier, Amsterdam, 295–311, 2003.

913

914 Taguchi Y. H. & Oono, Y.: Relational patterns of gene expression via non-metric
915 multidimensional scaling analysis, Bioinformatics, 21, 730–740, 2005.

916

917 Thiel, H.: Deep-sea Environmental Disturbance and Recovery Potential, Int. Revue ges.
918 Hydrobiol. Hydrogr., 77, 331–339, 1992. doi:10.1002/iroh.19920770213.

919

920 Thurston, M. H.: Abyssal necrophagous amphipods (Crustacea: Amphipoda) in the northeast
921 and tropical Atlantic Ocean, Prog. Oceanogr., 24, 257–274, 1990. doi:10.1016/0079-
922 6611(90)90036-2.

923

924 Vader, W.: How many amphipods species? 6th International Crustacean Congress, Glasgow,
925 Scotland, 18–22 July 2005, 143, 2005.

926

927 Wilson, G. D. F., Hessler R.: Speciation in the deep sea, Ann. Rev. Ecol. Syst., 18, 185–207,
928 1987.

929

930 Zardus, J. D., Etter, R. J., Chase, M. R., Rex, M. A. & Boyle, E. E. Bathymetric and
931 geographic population structure in the pan-Atlantic deep-sea bivalve *Deminucula*
932 *atacellana* (Schenck, 1939), Mol. Ecol., 15, 639–651, 2006.

933

934

935 **Figure captions**

936

937 **Figure 1: Geographic locations of the two study areas, the Clarion-Clipperton**
938 **fracture Zone (CCZ) (Northeast Pacific) and the DISturbance and re-COLonisation**
939 **(DisCOL) Experimental Area (DEA) (Peru Basin, Southeast Pacific).** There are nine
940 Areas of Particular Ecological Interest (APEIs) in the CCZ region, which are illustrated
941 by 400 x 400 km² white boxes. Grey boxes indicate the various contractor claim areas in
942 the CCZ. We deployed eight amphipod traps across the CCZ, which is 16,000 km² and
943 7000 km wide, and five in the DEA, which encompasses 11 km² with a width of 4 km.

944

945 **Figure 2: Histogram showing the species assemblage for the scavenging community**
946 **in the Clarion-Clipperton fracture Zone (CCZ) (black) and the DisCOL**
947 **Experimental Area (DEA) (grey).** The abundances of 19 morphotypes are shown.

948

949 **Figure 3: Catch Per Unit Effort (CPUE) illustrating the correlation between**
950 **sampling time and number of individuals collected.** Only the > 15 mm fraction was
951 included here to estimate number of collected individuals.

952

953 **Figure 4: Species rarefaction curves for each of the 13 trap stations across both**
954 **areas, the Clarion-Clipperton fracture Zone and the DisCOL Experimental Area.**
955 Only individuals longer than 15 mm were considered here.

956

957 **Figures 5a and b: Relative species abundances in the Clarion-Clipperton fracture**
958 **Zone and the DisCOL Experimental Area.** These abundances represent the greater than
959 15mm fraction of the scavenging amphipod community only.

960

961 **Figure 6: NMDS plot** showing the beta biodiversity (dis/similarities) for each of the
962 thirteen amphipod trap sampling stations associated with the two basins, Clarion-
963 Clipperton fracture Zone (CCZ) (black) and the DisCOL Experimental Area (DEA) (red).
964 Data are supported by a low stress value of 0.01.

965

966

967 **Table captions**

968

969 **Table 1: Station overview.** Codes refer to the codes used in this paper in figures 1, 3, 4, 6
970 and Table 3. The original station code represents the cruise codes from (SO239 and SO232-
971 1). Depth refers to water depth (m) on deployment. Nodule presence/absence information is
972 known only for stations D3 and D4.

973 **Table 2a:** Overview of morphotypes across the Clarion-Clipperton fracture Zone (CCZ) and
974 DisCOL Experimental Area (DEA).

975 **Table 2b:** Overview of morphotypes across the Clarion-Clipperton fracture Zone (CCZ) and
976 DisCOL Experimental Area (DEA).

977 **Table 3:** Comparison of biodiversity calculated using the Simpson Index (D), for the
978 Clarion-Clipperton fracture Zone and DisCOL Experimental Area, and D for each station is
979 shown for further comparisons within these areas.

980

981

982

983

984

985

986

987

988

989

990 **Appendix/Electronic Supplementary Information (ESM) captions**

991

992 **Appendix 1: Multibeam scan** - Showing the location of the 78 track marks created by the
993 plough harrow in the DisCOL Experimental Area to simulate manganese nodule extraction
994 activity (D1)

995 **Appendix 2** – Photograph showing the baited free-fall lander trap designed and deployed by
996 RBINS.

997 **Appendix 3** - Side-scan sonar image of site D5 showing possible seamount barriers. View
998 from NW (top) to SE (bottom). Contours are every 25 m. (Source: GEOMAR, 2015).

999 **Appendix 4** – Calculation of alpha biodiversity used in this manuscript.

1000

1001

1002

1003

1004

1005

1006

1007

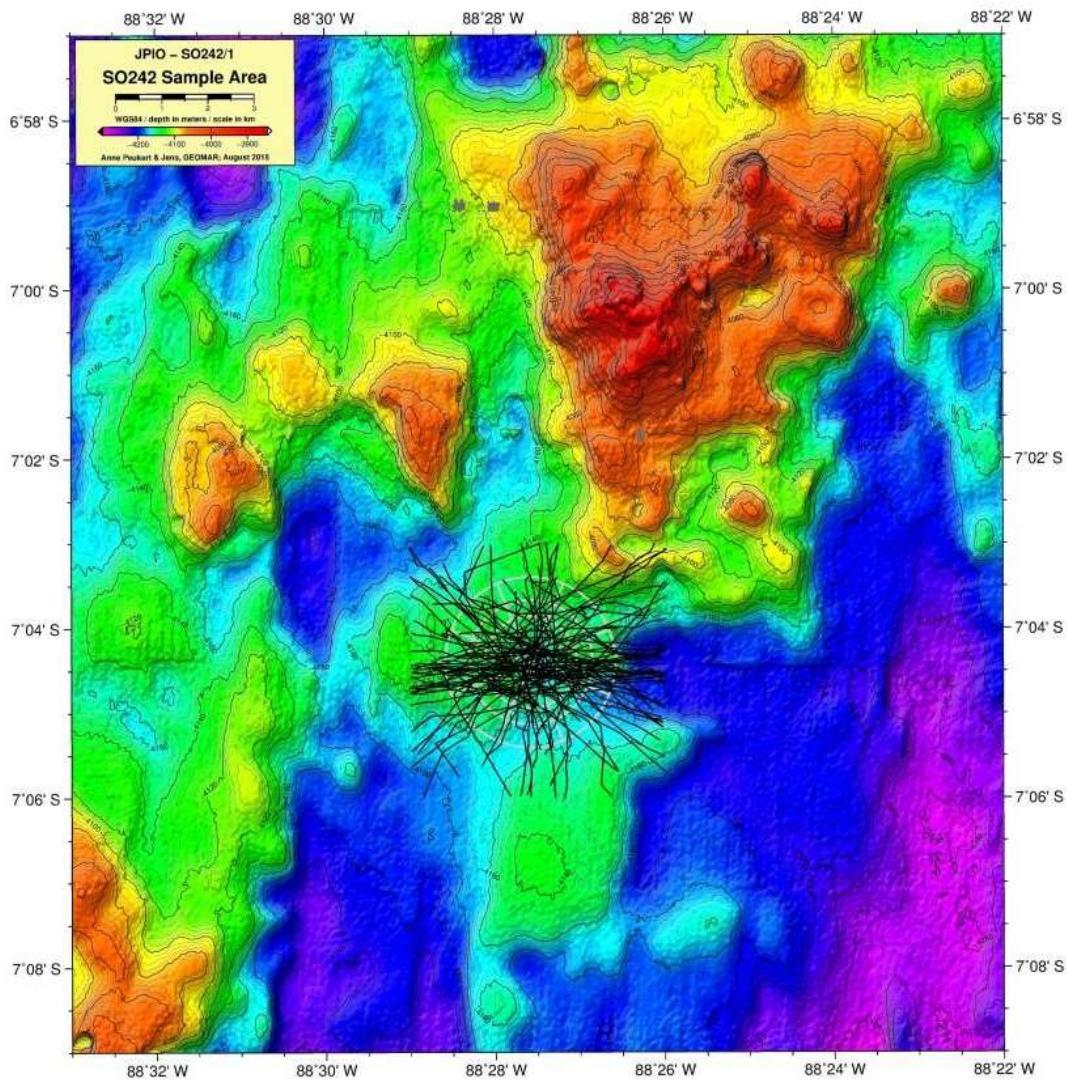
1008

1009

1010

1011

1012


1013

1014

1015

1016 **Appendix 1: Multibeam scan** - Showing the location of the 78 track marks created by the
1017 plough harrow in the DisCOL Experimental Area to simulate manganese nodule extraction
1018 activity.

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028 **Appendix 2** – Photograph showing the baited free-fall lander trap designed and deployed by
1029 RBINS.

1030

1031

1032

1033

1034

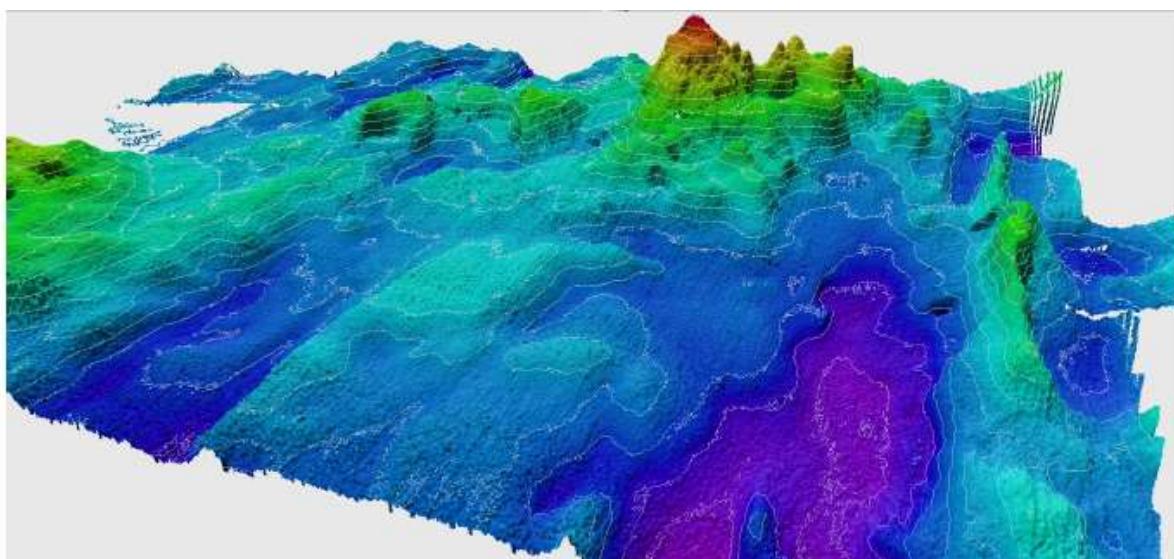
1035

1036

1037

1038

1039


1040

1041

1042

1043 **Appendix 3** - Side-scan sonar image of site D5 showing possible seamount barriers. View
1044 from NW (top) to SE (bottom). Contours are every 25 m. (Source: GEOMAR, 2015).

1045

1057 **Appendix 4** - Calculation of alpha biodiversity used in this manuscript.

1058 Simpson Index

$$\text{Simpson Diversity Index (D)} = 1 - \frac{\sum n(n-1)}{N(N-1)}$$

1059

1060 D = Diversity Index

1061 n = number of individuals in each particular species

1062 N = Total number in community

1063 A high value of D indicates a high species diversity.

1064