

1 **Carbonate System Parameters of an Algal-dominated Reef along West Maui**
2

3 Nancy G. Prouty¹, Kimberly K. Yates², Nathan Smiley², Chris Gallagher³, Olivia Cheriton¹, and Curt
4 D. Storlazzi¹

5 ¹U.S. Geological Survey, Coastal and Marine Geology, Pacific Coastal and Marine Science Center, Santa Cruz, CA 95060

6 ²U.S. Geological Survey, Coastal and Marine Geology, St. Petersburg Coastal and Marine Science Center 600 4th Street
7 South, St. Petersburg, FL 33701

8 ³University of California, Santa Cruz, Santa Cruz, CA 95060

9
10

11 *Correspondence to:* Nancy G. Prouty nprouty@usgs.gov

12 **Abstract**

13 Constraining coral reef metabolism and carbon chemistry dynamics are fundamental for understanding
14 and predicting reef vulnerability to rising coastal CO₂ concentrations and decreasing seawater pH.
15 However, few studies exist along reefs occupying densely inhabited shorelines with known input from
16 land-based sources of pollution. The shallow coral reefs off Kahekili, West Maui, are exposed to
17 nutrient-enriched, low-pH submarine groundwater discharge (SGD) and are particularly vulnerable to
18 the compounding stressors from land-based sources of pollution and lower seawater pH. To constrain
19 the carbonate chemistry system, nutrients and carbonate chemistry were measured along the Kahekili
20 reef flat every 4 h over a 6-d sampling period in March 2016. Abiotic process - primarily SGD fluxes -
21 controlled the carbonate chemistry adjacent to the primary SGD vent site, with nutrient-laden
22 freshwater decreasing pH levels and favoring undersaturated aragonite saturation (Ω_{arag}) conditions. In
23 contrast, diurnal variability in the carbonate chemistry at other sites along the reef flat was driven by
24 reef community metabolism. Superimposed on the diurnal signal was a transition during the second
25 sampling period to a surplus of total alkalinity (TA) and dissolved inorganic carbon (DIC) compared to
26 ocean end-member TA and DIC measurements. A shift from positive net community production and
27 positive net community calcification to negative net community production and negative net
28 community calcification was identified. This transition occurred during a period of increased SGD-
29 driven nutrient loading, lower wave height, and reduced current speeds. This detailed study of carbon
30 chemistry dynamics highlights the need to incorporate local effects of nearshore oceanographic
31 processes into predictions of coral reef vulnerability and resilience.

32

33 **1. Introduction**

34 Coral reefs provide critical shoreline protection and important ecosystem services, such as marine
35 habitat, and support local economies through tourism, fishing, and recreation (Hughes et al., 2003;
36 Ferrario et al., 2014). However, coral reefs are being threatened by global climate change processes,
37 such as increasing temperatures, sea-level rise and ocean acidification (OA, caused by uptake of
38 atmospheric carbon dioxide into the ocean (Orr et al., 2005). These effects are often compounded by
39 local stressors such as over-fishing, sedimentation, land-based sources of pollution and coastal
40 acidification (Knowlton and Jackson, 2008) that can result from freshwater inflow, eutrophication,
41 and/or coastal upwelling. These stressors can lead to a decrease in reef health by removing grazing
42 fish, decreasing calcification rates, and increasing nutrient and contaminant concentrations, thereby
43 shifting the balance between reef accretion and erosion. However, isolating the effects of these
44 stressors is difficult without establishing the biological and physical controls on community

45 calcification and production. This is particularly challenging for coral reefs adjacent to densely
46 inhabited shorelines, where freshwater fluxes can deliver excess nutrients. In turn, this can lead to
47 coastal acidification caused by eutrophication and enhanced respiratory processes that release CO₂
48 and increase coastal water acidity (e.g., Cai et al., 2011; Strong et al., 2014), outbreaks of harmful
49 algal blooms (Anderson et al., 2002), and decreased coral abundance and diversity (Fabricius,
50 2005; Lapointe et al., 2005). In many cases, eutrophication can alter ecosystem function and structure
51 by shifting reefs from coral- to algae-dominated (Howarth et al., 2000; Andrefouet et al., 2002; Hughes
52 et al., 2007). Changes in community structure can have profound impacts on coral reef metabolism and
53 reef carbon chemistry dynamics (e.g. Page et al., 2016), which are ultimately linked to reef health and
54 the ability to predict future responses to rising *p*CO₂ levels (Andersson and Gledhill, 2013).

55 Understanding the local drivers of ecosystem function and reef community metabolism is critical for
56 gauging the susceptibility of the reef ecosystem to future changes in ocean chemistry.

57
58 Numerous efforts have been conducted along west Maui, Hawaii, USA, to characterize and quantify
59 submarine groundwater discharge (SGD) and associated nutrient input (Dailer et al., 2010; Dailer et al.,
60 2012; Glenn et al., 2013; Swarzenski et al., 2013; Swarzenski et al., 2016; Silbiger et al., 2017), which
61 may influence reef metabolism and community composition by changing coastal water quality.
62 Building upon these studies, we present a comprehensive study to characterize the carbonate system
63 parameters from the reefs in this area. The carbonate chemistry system is sensitive to changes in
64 photosynthesis, respiration, calcification, and calcium carbonate (CaCO₃) dissolution, and can be
65 characterized by measuring total alkalinity (TA), dissolved inorganic carbon (DIC), pH, *p*CO₂,
66 nutrients, salinity, and temperature. Analysis of these parameters yields valuable information on ratios
67 of net community calcification and production, and can be used to identify biological and physical
68 drivers of reef health and ecosystem function (Silverman et al., 2007; Shamberger et al., 2011; Lantz et
69 al., 2014; Albright et al., 2015; Muehllehner et al., 2016; DeCarlo et al., 2017; Richardson et al., 2017;
70 Cyronak et al., 2018). This is particularly important given growing concern that coastal and ocean
71 acidification may shift reef ecosystems from calcification to dissolution by the mid to end of the
72 century (Silverman et al., 2009; Andersson and Gledhill, 2013) with an overall reduction in
73 calcification rates and increase in dissolution rates (Shamberger et al., 2011; Shaw et al., 2012;
74 Bernstein et al., 2016) that can contribute to reef collapse (Yates et al., 2017).

75
76 The health of many of Maui's coral reefs has been declining rapidly (Rodgers et al., 2015), with recent
77 coral bleaching events leading to increased coral mortality (Sparks et al., 2016). The decline in coral

78 cover along the shallow coral reef at Kahekili has been observed for decades (Wiltse, 1996; Ross et al.,
79 2012), along with a history of macro-algal blooms (Smith et al., 2005). The shift in benthic cover from
80 abundant corals to turf- or macro-algae (primarily *Ulva fasciata*) and increased rates of coral
81 bioerosion have been linked to input of nutrient-rich water via wastewater injection wells (Dailer et al.,
82 2010; Dailer et al., 2012; Prouty et al. 2017a). Treated wastewater is injected through these wells into
83 groundwater that flows toward the coast where it emerges on the reef through a network of small seeps
84 and vents (Glenn et al., 2013; Swarzenski et al., 2016). Changes in coastal water quality observed off
85 west Maui can impact the balance of production of CaCO_3 skeletons by calcifying algae and animals
86 on the reef, cementation of sand and rubble, and CaCO_3 breakdown and removal that occurs through
87 bioerosion, dissolution, and offshore transport. Here, a high-resolution seawater sampling study was
88 conducted to constrain the carbonate chemistry system and evaluate the biological and physical
89 processes altering reef health along the shallow coral reef at Kahekili in Kaanapali, west Maui, Hawaii,
90 USA (Fig. 1). This study characterizes the diurnal and multi-day variability of coral reef carbonate
91 chemistry along a tropical fringing reef adjacent to a densely inhabited shoreline with known input
92 from land-based sources of pollution, and identifies the controls on carbon metabolism. Ultimately,
93 understanding carbonate system dynamics is essential for managing compounding effects from local
94 stressors.

95

96 **2. Methods**

97 *2.1 Study Site*

98 The benthic habitat along the shallow reef at Kahekili in Kaanapali, West Maui (Fig. 1) consists of
99 aggregate reef, patch reef, pavement, reef rubble and spur and groove (Cochran et al., 2014), with
100 persistent current flow to the south (Storlazzi and Jaffe, 2008). Only 51% of the hardbottom at
101 Kahekili is covered with at least 10% live coral, with the remaining hardbottom consisting of aggregate
102 reef, spur-and-groove, patch reefs, pavement, and reef rubble (Cochran et al., 2014). The shallow fore
103 reef experiences algae blooms in response to inputs of nutrient-rich water via wastewater injection
104 wells (Dailer et al., 2010; Dailer et al., 2012). Groundwater inputs occur from both natural sources
105 (rainfall and natural infiltration) and from artificial recharge (irrigation and anthropogenic wastewater).
106 The inland Wailuku Basalt, consisting of a band of unconsolidated sediment along the coast and a
107 small outcrop of Lahaina Volcanics, dominates the geology of the area surrounding the study site,
108 controlling the flow of groundwater. Mean annual precipitation rates are up to 900 cm yr^{-1}
109 (Giambelluca et al., 2013), with natural recharge the greatest in the interior mountains.

110

111 2.2 *Field Sampling*

112 Two intensive sampling periods were carried out during the 6-d period between 2016-03-16 to 2016-
113 03-24 along the reef flat with live coral cover. Seawater nutrients and carbonate chemistry variables
114 were collected every 4 h during each sampling period from the primary vent site and in adjacent
115 coastal waters along the shallow reef at Kahekili (Fig. 1). The first sampling period was from 15:00 on
116 2016-03-16 to 15:00 on 2016-03-19, and the second sampling period was from 15:00 on 2016-03-21 to
117 11:00 on 2016-03-24 (all reported times in local [HST]). There were five sampling sites: two shallow
118 (<1.5 m) sites (S1 and S2) located approximately 10 m offshore, two deeper (5 m) sites (S3 and S4)
119 located approximately 115 m offshore, and a shallow site located approximately 20 m offshore and
120 within 0.25 m of an active SGD vent (vent site; <1.5 m) (Glenn et al., 2013; Swarzenski et al., 2016).
121 Sampling tubes (ranging from approximately 100 to 200 m in length) were installed at each site by
122 affixing the tube to a concrete block located approximately 20 cm above the seafloor, or by attaching
123 the tubing directly to dead reef structure using zip ties. Tube intakes were fitted with a stainless steel
124 screen cap to prevent uptake of large particulates. The remaining length of each tube was positioned
125 along the seafloor to the adjacent beach by weighting the tube with a 1 m piece of chain, or by weaving
126 the tube through dead reef structure approximately every 20 m. The tube outflow ends were labeled for
127 each sampling site, bundled in a common location, and located above the high water line on the beach
128 for sampling access. A peristaltic pump was used to pump seawater from the seafloor. Sampling tubes
129 were flushed for a minimum of 20 minutes to remove residual seawater before collecting data and
130 water samples. Sampling tubes were inspected upon extraction and no significant algal growth was
131 observed. Temperature, salinity, and dissolved oxygen of water samples were measured using a YSI
132 ProPlus multimeter that was calibrated daily with an accuracy of $\pm 0.2^{\circ}\text{C}$, $\pm 0.1 \text{ psu}$, and $\pm 0.2 \text{ mg L}^{-1}$,
133 respectively. However, due to temperature change during water transit time within the sampling tube,
134 in situ temperatures were also recorded from Solonist CTD Divers installed at the intake of each
135 sampling tube. An upward-looking 2-MHz Nortek Aquadopp acoustic Doppler profiler (ADP) was
136 deployed at the southern deeper site (S4). The ADP sampled waves at 2 Hz for 17 min every hour and
137 currents at 1 Hz every 10 min in 1-m vertical bins from 1 m above the seabed up to the ocean surface.
138

139 2.3 *Seawater Analyses*

140 Samples for dissolved nutrients (NH_4^+ , Si, PO_4^{3-} , and $[\text{NO}_3^- + \text{NO}_2^-]$) were collected in duplicate by
141 filtering water with an in-line 0.45- μm cellulose nitrate filter and 0.20- μm polyethersulfone syringe
142 filter, and were kept frozen until analysis. Nutrients were analyzed at the Woods Hole Oceanographic
143 Institution's nutrient laboratory and University of California at Santa Barbara's Marine Science

144 Institute Analytical Laboratory via flow injection analysis for NH_4^+ , Si, PO_4^{3-} , and $[\text{NO}_3^- + \text{NO}_2^-]$, with
145 precisions of 0.6-3.0%, 0.6-0.8%, 0.9-1.3%, and 0.3%-1.0% relative standard deviations, respectively.
146 Select samples were collected and analyzed for nitrate isotope ($\delta^{15}\text{N}$ and $\delta^{18}\text{O}$) analyses at the
147 University of California at Santa Cruz using the chemical reduction method (McIlvin and Altabet,
148 2005; Ryabenco et al., 2009) and University of California at Davis' Stable Isotope Facilities using the
149 denitrifier method (Sigman et al., 2001). The isotope analysis was conducted using a Thermo Finnigan
150 MAT 252 coupled with a GasBench II interface; isotope values are presented in per mil (‰) with
151 respect to AIR for $\delta^{15}\text{N}$ and VSMOW for $\delta^{18}\text{O}$ with a precision of 0.3-0.4‰ and 0.5-0.6‰ for $\delta^{15}\text{N}$ -
152 nitrate and $\delta^{18}\text{O}$ -nitrate, respectively.

153
154 Seawater samples for determining carbonate chemistry variables (pH on the total scale, TA, and DIC)
155 were collected from the 5 sampling sites using a peristaltic pump and pressure filtering seawater
156 through a 0.45-µm filter. Samples for pH (0.007 ± 0.017) were filtered into 30-mL optical glass cells
157 and analyzed within 1 h of collection using spectrophotometric methods (Zhang and Byrne, 1996), an
158 Ocean Optics USB2000 spectrometer, and thymol blue indicator dye. Samples for TA and DIC were
159 filtered into 300-ml borosilicate glass bottles, preserved by adding 100 µL saturated HgCl_2 solution
160 and pressure sealed with ground glass stoppers coated with Apiezon grease. TA samples were analyzed
161 using spectrophotometric methods of Yao and Byrne (1998) with an Ocean Optics USB2000
162 spectrometer and bromocresol purple indicator dye. DIC samples were analyzed using a UIC carbon
163 coulometer model CM5014 and CM5130 acidification module fitted with a sulfide scrubber, and
164 methods of Dickson et al. (2007). In situ temperatures recorded from Solonist CTD Divers were
165 reported and used to temperature-correct pH and perform CO2SYS calculations as described below.
166

167 Certified reference materials (CRM) for TA and DIC analyses were from the Marine Physical
168 Laboratory of Scripps Institution of Oceanography (Dickson et al., 2007). TA and DIC sample
169 accuracy were within 0.56 ± 0.55 and $1.50 \pm 1.17 \text{ } \mu\text{mol kg}^{-1}$ of certified reference material respectively.
170 Precision for TA based on replicate sample analyses was $0.76 \pm 0.83 \text{ } \mu\text{mol kg}^{-1}$. Precision for DIC
171 based on replicate sample analyses was $1.9 \pm 1.5 \text{ } \mu\text{mol kg}^{-1}$. The full seawater CO₂ system was
172 calculated with measured salinity, temperature, nutrients (phosphate and silicate), TA, DIC, and pH
173 data using an Excel Workbook Macro translation of the original CO2SYS program (Pierrot et al.,
174 2006). Given the enriched nutrient setting of the study site, TA values were nutrient corrected in
175 CO2SYS (Dickson, 1981). The aragonite saturation state (Ω_{arag}) and $p\text{CO}_2$ are reported based on DIC-
176 pH pairs, with dissociation constants K_1 and K_2 from Mehrbach et al. (1973) refit by Dickson and

177 Millero (1987) and KSO₄ from Dickson (1990). The TA and DIC values were normalized to salinity
178 (by multiplying by a factor of 35/S, where S is the measured salinity value) to account for variations in
179 TA and DIC along the reef flat driven by evaporation and/or precipitation (Friis et al., 2003) and are
180 reported as *n*TA and *n*DIC as previously established in reef geochemical surveys (e.g., Suzuki and
181 Kawahata, 2003; Yates et al., 2014; Muehllehner et al., 2016) where TA and DIC exhibit non-
182 conservative behavior with respect to salinity. However at the vent site the TA and DIC data was not
183 normalized to salinity given the contribution of TA and DIC from SGD.

184

185 *2.4 Statistical Analysis*

186 Slope of salinity normalized total alkalinity (*n*TA): salinity normalized dissolved inorganic carbon
187 (DIC), net community calcification: net community production ratio (NCC:NCP=2ΔDIC/(ΔTA-1))
188 (Suzuki and Kawahata, 2003), correlation coefficients (r^2), analysis of variance (ANOVA), and
189 standard error of difference (SE_{dif}) were calculated in Excel v. 14.7.6. Histogram plots and cubic
190 spline fits were made in KaleidaGraph 4.1.3.

191

192 **3. Results**

193 *3.1 Submarine Groundwater Endmember*

194 The magnitude of change and absolute values in the carbonate chemistry, nutrients, and salinity were
195 greatest at the primary vent site relative to the four sites along the reef. The salinity ranged from 10.64
196 to 36.72 over the 6-d period (Fig. 2A), with the most dramatic decrease in salinity on 2016-03-22 when
197 salinity decreased from 32.45 to 12.47 within 4 h. The reduction in salinity was sustained over a 32-h
198 period. A rapid change was also observed in the pH, DO, TA, DIC, and nutrient concentrations (Fig.
199 2). For example, nitrate concentrations at the vent site ranged from 0.45 to over 70 $\mu\text{mol L}^{-1}$, with an
200 average nitrate concentration of 117 (SD 0.09) $\mu\text{mol L}^{-1}$ measured directly from the discharging seep
201 water. The Ω_{arag} values decreased to less than 1 and $p\text{CO}_2$ values increased to 2000 μatm when salinity
202 values dropped to less than 15 (Fig. 2D). No diurnal pattern was detected in the seawater carbonate
203 chemistry at this site. Instead, these results are consistent with earlier work documenting lower pH,
204 nutrient enriched freshwater endmember values tightly coupled to SGD (Swarzenski et al., 2012;
205 Glenn et al., 2013;Swarzenski et al., 2016).

206

207 *3.2 Reef Flat*

208 In contrast to the vent site, the overall magnitude of carbonate chemistry variation at the other four
209 sites along the reef flat was less, and the signal was coherent among these sites. This coherency is

210 captured in the pH time series (Fig. 3B), where the pH data from the four sites were significantly
211 ($p<0.05$) positively correlated with each other (with $r \sim 0.5$). The lowest salinity value along the reef
212 flat was 33.51, indicating minimal freshwater influence on reef flat salinity. As a result, the carbonate
213 system parameters measured along the reef were non-linear with respect to salinity (Supplemental Fig.
214 1), instead a diurnal pattern dominated the signal (Fig. 3). Lowest pH values occurred around midnight
215 (23:00); and highest pH values occurred in the afternoon (~14:00-15:00). This diurnal pattern was also
216 apparent in the DIC data, with lowest values in the afternoon and increasing around midnight, with a
217 cubic spline fit (Press et al., 1988) highlighting diurnal cycle from all four sites along the reef flat.
218 Likewise, the diurnal signal was identifiable in the Ω_{arag} and $p\text{CO}_2$ time-series, with Ω_{arag} values
219 increasing and $p\text{CO}_2$ decreasing during the mid-day hours (Fig. 3). The diurnal signal in the $n\text{TA}$ time-
220 series was similar to the signal for $n\text{DIC}$. At the shallow (<5 m) sites, pH and DO covaried ($r^2=0.43$ -
221 0.87; $p<0.001$). The range in pH and Ω_{arag} was largest at the shallow sites; however, the average values
222 were similar along the reef, 3.02 to 3.06 and 8.00 to 8.01, respectively, and were elevated relative to
223 the average values recorded at the vent site, 7.85 (SD 0.17) and 2.28 (SD 0.81) for pH and Ω_{arag} ,
224 respectively (Prouty et al., 2017b). No diurnal pattern was observed for the nutrient data; however,
225 there was an offshore gradient in nutrient concentrations with enriched nutrients at the shallow sites
226 compared to the deeper sites. Nutrient concentrations (Si , PO_4^{3-} , and NO_3^-) from the two shallow sites
227 were statistically greater than the two deeper sites according to pairwise multi-comparison one-way
228 ANOVA with a *post hoc* Tukey HSD ($p>0.05$). For example average nitrate concentrations at the two
229 shallow sites were 0.71 (SD 0.35) and 0.41 (0.18 SD) compared to 0.17 (SD 0.10) and 0.19 (SD 0.11)
230 $\mu\text{mol L}^{-1}$. Deficits and surpluses of $n\text{TA}$ and $n\text{DIC}$, with respect to open ocean conditions, were
231 calculated as $\Delta n\text{TA}$ and $\Delta n\text{DIC}$ using values from Station HOT (Dore et al., 2009), located
232 approximately 250 km offshore as reported from 1988 to 2015
233 (<http://hahana.soest.hawaii.edu/hot/products/products.html>). The $\Delta n\text{TA}$ values ranged from -332 μmol
234 kg^{-1} to 85 $\mu\text{mol kg}^{-1}$ and -171 $\mu\text{mol kg}^{-1}$ to 141 $\mu\text{mol kg}^{-1}$ $\Delta n\text{DIC}$. The standard error of difference
235 (SE_{dif}) was calculated for $\Delta n\text{TA}$ and $\Delta n\text{DIC}$ values to evaluate whether the deficits and surpluses of
236 $n\text{TA}$ and $n\text{DIC}$ were significant. Histogram plots reveal statistical ($p=0.05$; critical t value of 1.68;
237 $\text{df}=37$) deficits and surpluses as well as differences between the first and second half of the sampling
238 period (Fig. 4). Results show a shift from a deficit in $\Delta n\text{TA}$ to a surplus in $\Delta n\text{TA}$ at all stations, as well
239 as a shift from a deficit in $\Delta n\text{DIC}$ to a surplus in $\Delta n\text{DIC}$, suggesting a shift in the second sampling
240 period from CaCO_3 production to CaCO_3 dissolution, and from photosynthesis to respiration. This
241 change was most distinct at the two shallow sites. The $n\text{TA}$ and $n\text{DIC}$ values from the second sampling
242 period were also enriched relative to a range of values reported from nearshore Oahu sites (Drupp et

243 al., 2013) but consistent with coastal sites from Maunalau Bay, Oahu with known inputs of SGD
244 (Nelson et al., 2015; Richardson et al., 2017).

245

246 **4. Discussion**

247 The diurnal pattern observed at the four sampling sites along the reef flat is typical of a reef
248 environment where biotic processes involving coral reef community metabolism (e.g.,
249 respiration/photosynthesis and calcification/dissolution) dominate the carbonate chemistry system
250 (e.g., Smith, 1973). The non-linear relationship between salinity and carbonate chemistry parameters
251 further supports the notion that biotic processes are driving carbonate chemistry variability along the
252 reef flat (Millero et al., 1998; Ianson et al., 2003). The lower amplitude *n*TA diurnal signal supports
253 previous observations that the region was algal-dominated (Smith et al., 2005). In this case, the lower
254 biomass of calcifying organisms leads to conditions that favor respiration-photosynthesis processes
255 relative to calcification-dissolution (Jokiel et al., 2014). Elevated pH values during mid-day, coincident
256 with elevated sea surface temperature (SST) and peak solar irradiance, are consistent with maximum
257 photosynthetic activity. DIC decreased during the day due to photosynthesis, whereas at nighttime, pH
258 decreased and DIC increased in response to respiration (Fig. 3). This pattern is in stark contrast to the
259 primary vent site where no diurnal pattern was observed, and abiotic controls on the carbonate system
260 dynamics explain the strong linear relation to salinity. Variability at the vent site is driven by SGD
261 rates, which are elevated during low tide when hydraulic gradients are the steepest (Dimova et al.,
262 2012; Swarzenski et al., 2016). This spatial pattern is consistent with offshore transects from Maunalua
263 Bay where sites closest to shore incorporated greater contribution of SGD derived TA and DIC than
264 offshore sites (Richardson et al., 2017).

265

266 To further understand the temporal variability in carbonate chemistry over the 6-d sampling period
267 along the reef flat, diagrams of *n*TA versus *n*DIC were plotted according to Zeebe and Wolf-Gladrow,
268 (2001), along with vectors indicating theoretical effects of net community production (NCP) and net
269 community calcification (NCC) on seawater chemistry (Kawahata et al., 1997; Suzuki and Kawahata,
270 2003) (Fig 5). As presented here, NCP refers to the balance of photosynthesis and respiration, and
271 NCC refers to the balance between calcification and dissolution (see review by Cyronak et al., 2018).
272 Diagrams of *n*TA-*n*DIC indicate the dominance of photosynthesis (+NCP) and CaCO_3 precipitation
273 (+NCC) during the first sampling period (2016-03-16 to 2016-03-19). The slope values of the *n*DIC-
274 *n*TA plots were used to calculate ratios of NCC:NCP (Table 1) using methods of Suzuki and Kawahata
275 (2003) to estimate the relative contribution of these processes to reef biogeochemistry. In the absence

276 of reliable water mass residence time, ratios were used rather than metabolic rates. The NCC:NCP
277 ratios for the first sampling period ranged from 0.50 to 0.87 indicating a dominance of NCP relative to
278 NCC. Plots of *n*DIC-*n*TA (Fig. 5) indicate that these sites were dominated primary by photosynthesis
279 and calcification during +NCP and +NCC. This pattern was observed at all four sites along the reef
280 flat. The lower NCC:NCP ratios at the shallow sites highlight the greater vulnerability of the shallow
281 sites to dissolution under lower pH conditions relative to the deeper. These results are in agreement
282 with Richardson et al. (2017) that found dissolution at reef sites closet to groundwater vents in
283 Maunalua Bay, Oahu. A shift occurred at all sampling sites after the first sampling period. Elevated
284 *n*DIC and *n*TA values from 2016-03-21 to 2016-03-22 indicate a shift to respiration and dissolution in
285 the *n*TA-*n*DIC diagrams during -NCC and -NCP (Fig. 5). At the shallow sites, S1 and S2 (Fig. 5A and
286 B), the NCC:NCP ratios were 0.56 and 0.39 during the second sampling period (Table 1), respectively,
287 indicating the dominance of NCP relative to NCC. In comparison, at sites S3 and S4 located further
288 offshore, dissolution and respiration contributed nearly equally with NCC:NCP ratios near 1.0 during
289 the second sampling. Given the salinity range along the reef flat (34 to 36), traditional salinity
290 normalization (e.g., Friis et al., 2003) could potentially overestimate the *n*DIC and *n*TA concentrations
291 by ~20 to ~10 $\mu\text{mol kg}^{-1}$ respectively, according to non-zero normalization described in Richardson et
292 al. (2017). However, rather than reflecting an artifact of the salinity normalization, given the non-
293 linear relation of DIC and TA to salinity along the reef flat (Fig. S1), this shift is interpreted as a reef
294 community response. As shown in Figures 4 and 5, this change captures a shift from a reef
295 community dominated by calcification and photosynthesis to one dominated by respiration and
296 dissolution during -NCC and -NCP.

297
298 The shift from photosynthesis (P) to respiration (R) as captured in the Δn DIC histogram plots (Fig. 4),
299 suggests that the coral-algal association consumed more energy than it produced during the second
300 sampling period. As a proxy for autotrophic capacity, the change in P:R ratio may reflect an increase in
301 coral heterotrophic feeding relative to autotrophic feeding (Coles and Jokiel, 1977; Hughes and
302 Grottoli, 2013). Typically, stored lipid reserves in the tissue are utilized when the stable symbiotic
303 environment is disturbed (e.g., Szmant and Gassman, 1990; Ainsworth et al., 2008). Although short-
304 lived, thermally-induced bleaching has been linked to depletion of coral lipid reserves (e.g., Hughes
305 and Grottoli, 2013), excess nutrient loading can also shift the stability of the coral-algae symbiosis,
306 thereby reducing stored tissue reserves (Wooldridge, 2016). According to Glenn et al. (2013), up to 11
307 $\text{m}^3 \text{ d}^{-1}$ of dissolved inorganic nitrogen are discharged onto the West Maui reef as the result of receiving
308 and treating over 15,000 $\text{m}^3 \text{ d}^{-1}$ of sewage. Using a SGD flux rate of 87 cm d^{-1} at the primary seep site

309 (Swarzenski et al., 2016), and SGD nitrate end-member concentration of 117 $\mu\text{mol L}^{-1}$ (Prouty et al.,
310 2017b), the nitrate flux from the primary vent site is 712 mol d^{-1} , clearly demonstrating excess nutrient
311 loading. Elevated SGD end-member nutrient concentrations are consistent with those observed from
312 Black Point, Maunalua Bay where effluent from proximal on-site sewage disposal is linked to excess
313 nitrogen loads (Nelson et al., 2015; Richardson et al., 2017). As described above, an offshore gradient
314 in nutrient concentrations was observed with enriched nutrients at the shallow sites compared to the
315 deeper sites, consistent with a decrease in coral $\delta^{15}\text{N}$ values away from the vent (Prouty et al., 2017a).
316 Coral tissue thickness was also negatively correlated to coral tissue $\delta^{15}\text{N}$ values ($r = -0.66$; $p = 0.08$),
317 with the latter serving as a proxy for nutrient loading in alga samples along the reef flat (Dailer et al.,
318 2010). It is possible that a reduction in coral tissue reflects preferential heterotrophic feeding under
319 high nutrient loading, with nutrient enrichment by sewage effluent increasing primary production and
320 biomass in the water column (e.g., Smith et al., 1981; Pastorok and Bilyard, 1985). While assessing the
321 impacts of nutrient loading on coral physiology may be long term and subtle in some cases, results
322 from our study highlight the potential short-term impacts of nutrification.

323
324 Identifying the exact mechanism(s) responsible for driving this shift is difficult given the complexity of
325 the reef system. Possible explanations include warmer SSTs, suspension of organic matter, as well as
326 secondary effects of nutrification from contaminated SGD (D'Angelo and Wiedenmann, 2014).
327 Given that microbial communities rapidly take up inorganic nutrients (Furnas et al., 2005), there could
328 be increased respiration as a result of increased microbial remineralization of organic matter in the
329 nutrient-loaded environment (Sunda and Cai 2012). In other words, enhanced SGD-driven nutrient
330 fluxes during the second sampling period could have increased microbial growth and remineralization,
331 shifting the reef community metabolism, as captured in a shift in the carbonate chemistry system. In
332 addition to community metabolism, local oceanographic effects such as the wind and wave regime can
333 also drive carbonate chemistry by altering air-sea exchange and water mass residence times. During
334 the first sampling period, the wave height increased from 0.4 m to 1.6 m over the first 2 d and mean
335 current speeds were 1.6 cm s^{-1} (Fig. S2). In comparison, during the second sampling period, wave
336 height declined to less than 0.4 m and mean current speeds were 1.0 cm s^{-1} . Together, the reduced
337 wave height and reduced wind speeds favor slower release of CO_2 generated by calcification and
338 respiration processes from the water column (Massaro et al., 2012), resulting in higher $p\text{CO}_2$ and lower
339 pH.

340
341 Despite being situated in an oligotrophic region with naturally occurring, low nutrient concentrations,

342 anthropogenic nutrient loading to coastal waters via sustained SGD is driving nearshore eutrophication
343 (Dailer et al., 2010; Dailer et al., 2012; Bishop et al., 2015; Amato et al., 2016; Fackrell et al., 2016),
344 with algal $\delta^{15}\text{N}$ signatures at Kahekili Beach Park indicative of wastewater effluent (Dailer et al.,
345 2010; Dailer et al., 2012). In response, there has been a shift in benthic cover from abundant corals to
346 turf- or macro-algae over the last two decades. Areas of discrete coral cover loss up to 100% along the
347 shallow coral reef at Kahekili have been observed for decades (Wiltse, 1996; Ross et al., 2012), with a
348 history of macro-algal blooms (Smith et al., 2005). More recently, Prouty et al. (2017a) found
349 accelerated nutrient driven-bioerosion from coral cores collected along the Kahekili reef flat in
350 response to land-based sources of nutrients. This is consistent with earlier work showing nutrification-
351 mediated increase in plankton loads can trigger increases in filter feeders and bioeroders that endanger
352 reef structure integrity (e.g., Fabricius et al., 2012). Eutrophication from nutrient enriched SGD may
353 contribute to an already compromised carbonate system (i.e., reduced pH and Ω_{arag}) by increasing
354 respiration and remineralization of excess organic matter, and increasing bioerosion. Therefore,
355 secondary effects of nutrient-driven increase in phytoplankton biomass and decomposing organic
356 matter are also important considerations for coral reef management (D'Angelo and Wiedenmann,
357 2014).

358
359 As discussed above, SGD rates are elevated during low tide when the relative pressure head between
360 terrestrial groundwater and the oceanic water column is greatest (Dimova et al., 2012; Swarzenski et
361 al., 2016). Relative SGD is greater in the shallows close to shore where the tidal height is larger
362 relative to the depth of the water column. Higher islands, therefore, have the potential for not only
363 greater orographic rainfall and thus submarine groundwater recharge, but also greater potential
364 pressure head and thus enhanced SGD- driven nutrient fluxes. There is also greater potential for
365 enriched nutrient sources and reduced water quality with fast-growing population and development
366 (Amato et al., 2016; Fackrell et al., 2016). Thus, SGD represents a key vector of nutrient loading in
367 tropical, oligotrophic regions (e.g., Paytan et al., 2006). At the same time, closer to shore, current
368 speeds are generally slower resulting in longer water mass residence times (Storlazzi et al., 2006);
369 longer residence times would also be expected closer to the seabed, compared with upper water
370 column flows (Storlazzi and Jaffe, 2008). Together, these suggest that the resulting exposure (=
371 intensity x residence time) of coral reefs to nutrient-laden, low pH submarine groundwater is greater
372 for coral reefs closer to shore off high islands than along barrier reefs or on atolls. This heightened
373 vulnerability therefore needs to be taken into account when evaluating vulnerability of nearshore
374 fringing reefs to changes in carbonate chemistry system given evidence of nutrient driven-bioerosion

375 from land-based sources of pollution.

376

377 **5. Conclusion**

378 Field based measurements of carbonate chemistry variability were made along a shallow coral reef off
379 Kahekili, west Maui, and captured differences in the relative importance of inorganic and organic
380 carbon production over a 6-d period in March 2016. Submarine groundwater discharge fluxes
381 controlled the carbonate chemistry adjacent to the primary vent site, with nutrient-laden freshwater
382 decreasing the pH levels and favoring undersaturated Ω_{arag} conditions. In contrast, reef community
383 metabolism dominated the carbonate chemistry diurnal signal at sites along the reef flat. Superimposed
384 on the diurnal signal was a transition during the second sampling period, yielding a surplus of $n\text{TA}$ and
385 $n\text{DIC}$ compared to ocean endmember measurements indicating a shift from photosynthesis and
386 calcification during +NCP and + NCC to respiration and carbonate dissolution during -NCC and -
387 NCP. This shift could be interpreted as a direct response to increased nutrient loading, and subsequent
388 enhancement of organic matter remineralization. Predictions of reef response to elevated $p\text{CO}_2$ levels
389 assume reef water tracks open-ocean pH, however local effects are equally important (e.g., Cyronak et
390 al., 2013; 2018), particularly along densely-inhabited shorelines with known input from land-based
391 sources of pollution. Building on previous work documenting the input of nutrient laden, low-pH
392 freshwater to the reefs off Kahekili, results presented here offer a first glimpse into how
393 anthropogenic-driven eutrophication might add an additional stressor to thresholds tipping the balance
394 between net carbonate accretion and net carbonate dissolution, thus altering carbonate system
395 dynamics.

396

397 **Author contribution**

398 NGP and KKY designed the experiments and NGP, KKY, NS and CG carried them out. NGP and
399 KKY completed the chemical measurements and OC compiled the oceanographic data. NGP prepared
400 the manuscript with contributions from all co-authors.

401

402 The authors declare that they have no conflict of interest.

403

404 **Acknowledgements**

405 This research was carried out as part of the US Geological Survey's Coral Reefs Project in an effort to
406 better understand the effects of geologic and oceanographic processes on coral reef systems in the
407 USA and its trust territories, and was supported by the USGS Coastal and Marine Geology Program.
408 The authors gratefully acknowledge the vital partnership and expert logistics support provided by the
409 State of Hawaii Division of Aquatic Resources. We thank T. DeCarlo (UWA), H. Barkley (NOAA),

410 two anonymous reviewers, and J.P. Gattuso for their valuable reviews, A. Cohen (WHOI) for helpful
411 discussions, and K.R. Pietro and K. Hoering (WHOI), C. Moore (USGS), and G. Paradis (UCSB)
412 analytical assistance, M. Dailer (U. Hawaii) for field assistance. The use of trade names is for
413 descriptive purposes only and does not imply endorsement by the U.S. Government. Additional data to
414 support this project can be found in Prouty et al., (2017b).

415

416 **Figure Captions**

417 **Figure 1.** Location map of the island of Maui, Hawaii, USA, and the study area along west Maui.
418 Bathymetric map (5-m contours) of study area showing seawater sampling locations (blue closed
419 circle) along Kahekili Beach Park, and the primary seep site (blue open circle) superimposed on
420 distribution of percent coral cover versus sand.

421

422 **Figure 2** Results of time-series of seawater chemistry variables over a 6-d period collected from the
423 seep site located on the nearshore reef every 4 h. (A) Salinity, (B) dissolved nutrient (nitrate+nitrite,
424 phosphate, and silicate) concentrations ($\mu\text{mol L}^{-1}$), and nitrate stable nitrogen isotopes ($\delta^{15}\text{N}$ -nitrate;
425 ‰), (C) total alkalinity (TA) and dissolved inorganic carbon (DIC) ($\mu\text{mol kg}^{-1}$), (D) calculated
426 carbonate parameters for aragonite saturation state (Ω_{arag}), and $p\text{CO}_2$ (μatm ; inverted) based on DIC-
427 pH pairwise and measured salinity, temperature, nutrients (phosphate and silicate) data, (E) dissolved
428 oxygen (DO; mg L^{-1}), and (F) temperature corrected pH (total scale). End-of-century projections
429 according to IPCC-AR5 RCP8.5 “business as usual” scenario for pH (reduction by 0.4 units), Ω_{arag}
430 (2.0; blue dashed), and $p\text{CO}_2$ (750 μatm ; red dashed).

431

432 **Figure 3** Carbonate chemistry parameters and sea surface temperature (SST) composite from S1, S2,
433 S3 and S4 along the shallow reef flat of Kahekili, Maui and cubic spline fits highlighting diurnal cycle
434 for the first (2016-03-16 to 2016-03-19; solid line) and second (2016-03-21 to 2016-03-24; dashed
435 line) sampling period for (A) Temperature, (B) pH, (C) $n\text{DIC}$ and (D) $n\text{TA}$ ($\mu\text{mol kg}^{-1}$), (E) Ω_{arag} and
436 (F) $p\text{CO}_2$ (μatm).

437

438 **Figure 4** Histogram $\Delta n\text{TA}$ and $\Delta n\text{DIC}$ capturing deficits and surpluses of $n\text{TA}$ and $n\text{DIC}$ with respect
439 to open ocean conditions. Overall a transition from CaCO_3 production to CaCO_3 dissolution and
440 photosynthesis to respiration occurred between the first (2016-03-16 to 2016-03-19; blue) and second
441 (2016-03-21 to 2016-03-24; red) sampling period for the shallow sampling sites (A)-(B) S1 and (C)-

442 (D) S2, and the two deeper sites (E)-(F) S3, and (G-H) S4. Statistical ($p=0.05$) deficit and surplus
443 values (\pm) for $\Delta n\text{TA}$ and $\Delta n\text{TA}$ shown in parentheses.

444
445 **Figure 5** Seawater carbonate chemistry system along the reef flat off Kahekili as a function of $n\text{DIC}$
446 and $n\text{TA}$ for the shallow sampling sites (A). S1 and (B) S2, and two deeper sites (C) S3, and (D) S4 for
447 the first (blue) and second (red) sampling periods and their respective slopes (solid lines) of $n\text{DIC}$ and
448 $n\text{TA}$ (Table 1) and theoretical slope (dashed lines) given the predicted net effects of photosynthesis,
449 respiration, calcification, and dissolution as shown in (E) and the respective change in net community
450 calcification (NCC) and net community production (NCP). The relative position of the open ocean
451 $n\text{DIC}$ and $n\text{DIC}$ values are reported as 1977 (SD 11) and 2304 (SD 5) $\mu\text{mol kg}^{-1}$ (adapted from Dore et
452 al., 2009).

453

454 **References**

455 Ainsworth, T. D., Hoegh-Guldberg, O., Heron, S. F., Skirving, W. J., and Leggat, W.: Early cellular
456 changes are indicators of pre-bleaching thermal stress in the coral host, *J Exp Mar Biol Ecol*,
457 364, 63-71, 10.1016/j.jembe.2008.06.032, 2008.

458 Albright, R., BenthuySEN, J., Cantin, N., Caldeira, K., and Anthony, K.: Coral reef metabolism and
459 carbon chemistry dynamics of a coral reef flat, *Geophys Res Lett*, 42, 3980-3988,
460 10.1002/2015GL063488, 2015.

461 Amato, D. W., Bishop, J. M., Glenn, C. R., Dulai, H., and Smith, C. M.: Impact of submarine
462 groundwater discharge on marine water quality and reef biota of Maui, *PLoS one*, 11,
463 e0165825, 10.1371/journal.pone.0165825 2016.

464 Anderson, D. M., Glibert, P. M., and Burkholder, J. M.: Harmful algal blooms and eutrophication:
465 nutrient sources, composition and consequences., *Estuaries*, 25, 562-584.,
466 10.1007/BF02804901, 2002.

467 Andersson, A. J., and Gledhill, D.: Ocean acidification and coral reefs: effects on breakdown,
468 dissolution, and net ecosystem calcification, *Annual Review of Marine Science*, 5, 321-348,
469 2013.

470 Andrefouet, S., Mumby, P. J., McField, M., Hu, C., and Muller-Karger, F. E.: Revisiting coral reef
471 connectivity, *Coral Reefs*, 21, 43-48, 10.1007/s00338-001-0199-0, 2002.

472 Bernstein, W. N., Hughen, K. A., Langdon, C., McCorkle, D. C., and Lentz, S. J.: Environmental
473 controls on daytime net community calcification on a Red Sea reef flat, *Coral Reefs*, 35, 697-
474 711, 2016.

475 Bishop, J. M., Glenn, C. R., Amato, D. W., and Dulai, H.: Effect of land use and groundwater flow
476 path on submarine groundwater discharge nutrient flux, *Journal of Hydrology: Regional
477 Studies*, 10.1016/j.ejrh.2015.10.008, 2015.

478 Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter, J. C., Lohrenz, S. E., Chou, W.-C., Zhai, W.,
479 Hollibaugh, J. T., Wang, Y., Zhao, P., Guo, X., Gundersen, K., Dai, M., and Gong, G.-C.:
480 Acidification of subsurface coastal waters enhanced by eutrophication, *Nature Geoscience*, 4,
481 766, 10.1038/ngeo1297, 2011.

482 Cochran, S. A., Gibbs, A. E., and D.J., W.: Benthic habitat map of the U.S. Coral Reef Task Force
483 Watershed Partnership Initiative Kā'anapali priority study area and the State of Hawai'i

484 Kahekili Herbivore Fisheries Management Area, west-central Maui, Hawai'i, p. 42 p., U.S.
485 Geological Survey Open-File Report 2014-1129, 2014.

486 Coles, S. L., and Jokiel, P. L.: Effects of temperature on photosynthesis and respiration in hermatypic
487 corals, *Mar Biol*, 43, 209-216, 10.1007/BF00402313, 1977.

488 Cyronak, T., Santos, I. R., and Eyre, B. D.: Permeable coral reef sediment dissolution driven by
489 elevated pCO₂ and pore water advection, *Geophys Res Lett*, 40, 4876-4881,
490 10.1002/grl.50948, 2013.

491 Cyronak, T., Andersson, A. J., Langdon, C., Albright, R., Bates, N. R., Caldeira, K., Carlton, R.,
492 Corredor, J. E., Dunbar, R. B., Enochs, I., Erez, J., Eyre, B. D., Gattuso, J.-P., Gledhill, D.,
493 Kayanne, H., Kline, D. I., Kowee, D. A., Lantz, C., Lazar, B., Manzello, D., McMahon, A.,
494 Meléndez, M., Page, H. N., Santos, I. R., Schulz, K. G., Shaw, E., Silverman, J., Suzuki, A.,
495 Teneva, L., Watanabe, A., and Yamamoto, S.: Taking the metabolic pulse of the world's coral
496 reefs, *PLOS ONE*, 13, e0190872, 10.1371/journal.pone.0190872, 2018.

497 D'Angelo, C., and Wiedenmann, J.: Impacts of nutrient enrichment on coral reefs: new perspectives
498 and implications for coastal management and reef survival, *Current Opinion in Environmental
499 Sustainability*, 7, 82-93, doi.org/10.1016/j.cosust.2013.11.029, 2014.

500 Dailer, M. L., Knox, R. S., Smith, J. E., Napier, M., and Smith, C. M.: Using δ¹⁵N values in algal
501 tissue to map locations and potential sources of anthropogenic nutrient inputs on the island of
502 Maui, Hawai'i, USA, *Mar Pollut Bull*, 60, 655-671, 10.1016/j.marpolbul.2009.12.021, 2010.

503 Dailer, M. L., Ramey, H. L., Saephan, S., and Smith, C. M.: Algal δ¹⁵N values detect a wastewater
504 effluent plume in nearshore and offshore surface waters and three-dimensionally model the
505 plume across a coral reef on Maui, Hawai'i, USA, *Mar Pollut Bull*, 64, 207-213,
506 10.1016/j.marpolbul.2011.12.004, 2012.

507 DeCarlo, T. M., Cohen, A. L., Wong, G. T. F., Shiah, F. K., Lentz, S. J., Davis, K. A., Shamberger, K.
508 E. F., and Lohmann, P.: Community production modulates coral reef pH and the sensitivity of
509 ecosystem calcification to ocean acidification, *Journal of Geophysical Research: Oceans*, 122,
510 2017.

511 Dickson, A. G.: An exact definition of total alkalinity and a procedure for the estimation of alkalinity
512 and total inorganic carbon from titration data, *Deep-Sea Res*, 28A, 609-623, 1981.

513 Dickson, A. G.: Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to
514 318.15 K, *Deep Sea Research Part A. Oceanographic Research Papers*, 37, 755-766,
515 10.1016/0198-0149(90)90004-F, 1990.

516 Dickson, A. G., and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of
517 carbonic acid in seawater media, *Deep Sea Research Part A. Oceanographic Research Papers*,
518 34, 1733-1743, 10.1016/0198-0149(87)90021-5, 1987.

519 Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best practices for ocean CO₂
520 measurements, *PICES Special Publication*, 3, 176, 2007.

521 Dimova, N. T., Swarzenski, P. W., Dulaiova, H., and Glenn, C. R.: Utilizing multichannel electrical
522 resistivity methods to examine the dynamics of the fresh water-seawater interface in two
523 Hawaiian groundwater systems, *Journal of Geophysical Research: Oceans*, 117,
524 10.1029/2011jc007509, 2012.

525 Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J., and Karl, D. M.: Physical and biogeochemical
526 modulation of ocean acidification in the central North Pacific, *Proceedings of the National
527 Academy of Sciences*, 106, 12235-12240, 2009.

528 Drupp, P. S., De Carlo, E. H., Mackenzie, F. T., Sabine, C. L., Feely, R. A., and Shamberger, K. E.:
529 Comparison of CO₂ dynamics and air-sea gas exchange in differing tropical reef
530 environments, *Aquat Geochem*, 19, 371-397, 2013.

531 Fabricius, K. E.: Effects of terrestrial runoff on the ecology of corals and coral reefs: review and
532 synthesis, *Mar Poll Bull*, 50, 125-146, 10.1016/j.marpolbul.2004.11.028, 2005.

533 Fabricius, K. E., Cooper, T. F., Humphrey, C., Uthicke, S., De'ath, G., Davidson, J., LeGrand, H.,
534 Thompson, A., and Schaffelke, B.: A bioindicator system for water quality on inshore coral
535 reefs of the Great Barrier Reef, *Mar Pollut Bull*, 65, 320-332,
536 doi.org/10.1016/j.marpolbul.2011.09.004, 2012.

537 Fackrell, J. K., Glenn, C. R., Popp, B. N., Whittier, R. B., and Dulai, H.: Wastewater injection, aquifer
538 biogeochemical reactions, and resultant groundwater N fluxes to coastal waters: Kā'anapali,
539 Maui, Hawai'i, *Mar Pollut Bull*, 110, 281-292, 10.1016/j.marpolbul.2016.06.050, 2016.

540 Ferrario, F., Beck, M. W., Storlazzi, C. D., Micheli, F., Shepard, C. C., and Aioldi, L.: The
541 effectiveness of coral reefs for coastal hazard risk reduction and adaptation, *Nature
542 Communications*, 5, 10.1038/ncomms4794, 2014.

543 Friis, K., Körtzinger, A., and Wallace, D. W. R.: The salinity normalization of marine inorganic carbon
544 chemistry data, *Geophys Res Lett*, 30, 2003.

545 Furnas, M., Mitchell, A., Skuza, M., and Brodie, J.: In the other 90%: phytoplankton responses to
546 enhanced nutrient availability in the Great Barrier Reef Lagoon, *Mar Pollut Bull*, 51, 253-265,
547 10.1016/j.marpolbul.2004.11.010, 2005.

548 Giambelluca, T. W., Chen, Q., Frazier, A. G., Price, J. P., Chen, Y.-L., Chu, P.-S., Eischeid, J. K., and
549 Delparte, D. M.: Online Rainfall Atlas of Hawai'i, *Bull. Amer. Meteor. Soc.*, 94, 313-316,
550 10.1175/BAMS-D-11-00228.1., 2013.

551 Glenn, C. R., Whittier, R. B., Dailer, M. L., Dulaiova, H., El-Kadi, A. I., Fackrell, J., Kelly, J. L.,
552 Waters, C. A., and Sevadjian, L.: Lahaina Groundwater Tracer Study – Lahaina, Maui, Hawaii,
553 Final Report, p. 502 p., State of Hawaii Department of Health, the U.S. Environmental
554 Protection Agency, and the U.S. Army Engineer Research and Development Center, 2013.

555 Howarth, R., Anderson, D., Cloern, J., Elfring, C., Hopkinson, C., Lapointe, B., Malone, T., Marcus,
556 N., McGlathery, K., Sharpley, A., and Walker, D.: Nutrient pollution of coastal rivers, bays,
557 and seas., *Issues Ecol*, 1 – 15, 2000.

558 Hughes, A. D., and Grottoli, A. G.: Heterotrophic compensation: A possible mechanism for resilience
559 of coral reefs to global warming or a sign of prolonged stress?, *PLOS ONE*, 8, e81172,
560 10.1371/journal.pone.0081172, 2013.

561 Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., Grosberg, R.,
562 Hoegh-Guldberg, O., Jackson, J. B. C., Kleypas, J., Lough, J. M., Marshall, P., Nystrom, M.,
563 Palumbi, S. R., Pandolfi, J. M., Rosen, B., and Roughgarden, J.: Climate change, human
564 impacts, and the resilience of coral reefs, *Science*, 301, 929-933, 10.1126/science.1085046,
565 2003.

566 Hughes, T. P., Rodrigues, M. J., Bellwood, D. R., Ceccarelli, D., Hoegh-Guldberg, O., McCook, L.,
567 Moltschanivskyj, N., Pratchett, M. S., Steneck, R. S., and Willis, B.: Phase shifts, serbivory,
568 and the resilience of coral reefs to climate change, *Curr Biol*, 17, 360-365,
569 10.1016/j.cub.2006.12.049, 2007.

570 Ianson, D., Allen, S. E., Harris, S. L., Orians, K. J., Varela, D. E., and Wong, C. S.: The inorganic
571 carbon system in the coastal upwelling region west of Vancouver Island, Canada, *Deep Sea
572 Research Part I: Oceanographic Research Papers*, 50, 1023-1042, 10.1016/S0967-
573 0637(03)00114-6, 2003.

574 Jokiel, P. L., Jury, C. P., and Ku'ulei, S. R.: Coral-algae metabolism and diurnal changes in the CO₂-
575 carbonate system of bulk sea water, *PeerJ*, 2, e378, 2014.

576 Kawahata, H., Suzuki, A., and Goto, K.: Coral reef ecosystems as a source of atmospheric CO₂:
577 evidence from pCO₂ measurements of surface waters, *Coral Reefs*, 16, 261-266,
578 10.1007/s003380050082, 1997.

579 Knowlton, N., and Jackson, J. B. C.: Shifting baselines, local impacts, and global change on coral
580 reefs, *PLoS Biol*, 6, e54, 2008.

581 Lantz, C. A., Atkinson, M. J., Winn, C. W., and Kahng, S. E.: Dissolved inorganic carbon and total
582 alkalinity of a Hawaiian fringing reef: chemical techniques for monitoring the effects of ocean
583 acidification on coral reefs, *Coral Reefs*, 33, 105-115, 2014.

584 Lapointe, B. E., Barile, P. J., Littler, M. M., and Littler, D. S.: Macroalgal blooms on southeast Florida
585 coral reefs. II. Cross-shelf $\delta^{15}\text{N}$ values provide evidence of widespread sewage enrichment.,
586 *Harmful Algae*, 4, 1106-1122., 10.1016/j.hal.2005.06.004, 2005.

587 Massaro, R. F. S., De Carlo, E. H., Drupp, P. S., Mackenzie, F. T., Jones, S. M., Shamberger, K. E.,
588 Sabine, C. L., and Feely, R. A.: Multiple factors driving variability of CO_2 exchange between
589 the ocean and atmosphere in a tropical coral reef environment, *Aquat Geochem*, 18, 357-386,
590 2012.

591 McIlvin, M. R., and Altabet, M. A.: Chemical conversion of nitrate and nitrite to nitrous oxide for
592 nitrogen and oxygen isotopic analysis in freshwater and seawater, *Anal Chem*, 77, 5589-5595,
593 10.1021/ac050528s, 2005.

594 McMahon, A., Santos, I. R., Cyronak, T., and Eyre, B. D.: Hysteresis between coral reef calcification
595 and the seawater aragonite saturation state, *Geophys Res Lett*, 40, 4675-4679,
596 10.1002/grl.50802, 2013.

597 Mehrbach, C., Culberson, C. H., Hawley, J. E., and Pytkowicx, R. M.: Measurement of the apparent
598 dissociation constants of carbonic acid in seawater at atmospheric pressure, *Limnol Oceanogr*,
599 18, 897-907, 10.4319/lo.1973.18.6.0897, 1973.

600 Millero, F. J., Lee, K., and Roche, M.: Distribution of alkalinity in the surface waters of the major
601 oceans, *Mar Chem*, 60, 111-130, 10.1016/S0304-4203(97)00084-4, 1998.

602 Muehllehner, N., Langdon, C., Venti, A., and Kadko, D.: Dynamics of carbonate chemistry,
603 production, and calcification of the Florida Reef Tract (2009–2010): Evidence for seasonal
604 dissolution, *Global Biogeochem Cycles*, 30, 661-688, 10.1002/2015GB005327, 2016.

605 Nelson, C. E., Donahue, M. J., Dulaiova, H., Goldberg, S. J., La Valle, F. F., Lubarsky, K., Miyano, J.,
606 Richardson, C., Silbiger, N. J., and Thomas, F. I. M.: Fluorescent dissolved organic matter as a
607 multivariate biogeochemical tracer of submarine groundwater discharge in coral reef
608 ecosystems, *Mar Chem*, 177, 232-243, doi.org/10.1016/j.marchem.2015.06.026, 2015.

609 Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber,
610 N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P.,
611 Mouchet, A., Najjar, R. G., Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L.,
612 Schlitzer, R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool, A.:
613 Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying
614 organisms, *Nature*, 437, 681-686, 2005.

615 Page, H. N., Courtney, T. A., Collins, A., De Carlo, E. H., and Andersson, A. J.: Net Community
616 Metabolism and Seawater Carbonate Chemistry Scale Non-intuitively with Coral Cover,
617 *Frontiers in Marine Science*, 4, 161, 2017.

618 Pastorok, R. A., and Bilyard, G. R.: Effects of sewage pollution on coral-reef communities, *Mar Ecol
619 Prog Ser*, 175-189, 1985.

620 Paytan, A., Shellenbarger, G. G., Street, J. H., Gonreea, M. E., Davis, K., Young, M. B., and Moore,
621 W. S.: Submarine groundwater discharge: An important source of new inorganic nitrogen to
622 coral reef ecosystems, *Limnol Oceanogr*, 51, 343-348, 10.4319/lo.2006.51.1.0343, 2006.

623 Pierrot, D., Lewis, E., and Wallace, D. W. R.: MS Excel program developed for CO_2 system
624 calculations, 2006.

625 Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: *Numerical Recipes in C*,
626 Cambridge University Press, New York, 1988.

627 Prouty, N. G., Cohen, A., Yates, K. K., Storlazzi, C. D., Swarzenski, P. W., and White, D.:
628 Vulnerability of Coral Reefs to Bioerosion From Land-Based Sources of Pollution, *Journal of
629 Geophysical Research: Oceans*, 122, 9319-9331, 10.1002/2017JC013264, 2017a.

630 Prouty, N.G., Yates, K.K., Smiley, N.A., and Gallagher, C. Coral growth parameters and seawater
631 chemistry, Kahekili, west Maui: U.S. Geological Survey data release, 10.5066/F7X34VPV,
632 2017b.

633 Richardson, C. M., Dulai, H., Popp, B. N., Ruttenberg, K., and Fackrell, J. K.: Submarine groundwater
634 discharge drives biogeochemistry in two Hawaiian reefs, *Limnol Oceanogr*, 62, S348-S363,
635 10.1002/lo.10654, 2017.

636 Rodgers, K. u. S., Jokiel, P. L., Brown, E. K., Hau, S., and Sparks, R.: Over a decade of change in
637 spatial and temporal dynamics of Hawaiian coral reef communities 1, *Pac Sci*, 69, 1-13,
638 10.2984/69.1.1, 2015.

639 Ross, M., White, D., Aiwohi, M., Walton, M., Sudek, M., Lager, D., and Jokiel, P.: Characterization of
640 “dead zones” and population demography of *Porites compressa* along a gradient of
641 anthropogenic nutrient input at Kahekili Beach Park, Maui, State of Hawaii, Department of
642 Land and Natural Resources, Division of Aquatic Resources, Honolulu, Hawaii 96813, 2012.

643 Ryabenko, E., Altabet, M. A., and Wallace, D. W. R.: Effect of chloride on the chemical conversion of
644 nitrate to nitrous oxide for $\delta^{15}\text{N}$ analysis, *Limnol Oceanogr Methods* 7, 545-552,
645 10.4319/lom.2009.7.545, 2009.

646 Shamberger, K. E. F., Feely, R. A., Sabine, C. L., Atkinson, M. J., DeCarlo, E. H., Mackenzie, F. T.,
647 Drupp, P. S., and Butterfield, D. A.: Calcification and organic production on a Hawaiian coral
648 reef, *Mar Chem*, 127, 64-75, 2011.

649 Shaw, E. C., McNeil, B. I., and Tilbrook, B.: Impacts of ocean acidification in naturally variable coral
650 reef flat ecosystems, *Journal of Geophysical Research: Oceans*, 117, 2012.

651 Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., and Bohlke, J. K.: A
652 bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater, *Anal Chem*, 73, 4415-4415, 10.1021/ac010088e, 2001.

653 Silbiger, N. J., Donahue, M. J., and Brainard, R. E.: Environmental drivers of coral reef carbonate
654 production and bioerosion: a multi-scale analysis, *Ecology*, 98, 2547-2560, 10.1002/ecy.1946,
655 2017.

656 Silverman, J., Lazar, B., and Erez, J.: Community metabolism of a coral reef exposed to naturally
657 varying dissolved inorganic nutrient loads, *Biogeochemistry*, 84, 67-82, 2007.

658 Silverman, J., Lazar, B., Cao, L., Caldeira, K., and Erez, J.: Coral reefs may start dissolving when
659 atmospheric CO₂ doubles, *Geophys Res Lett*, 36, 2009.

660 Smith, J. E., Runcie, J. W., and Smith, C. M.: Characterization of a large-scale ephemeral bloom of the
661 green alga *Cladophora sericea* on the coral reefs of West Maui, Hawaii, *Mar Ecol Prog Ser*,
662 302, 77-91, 2005.

663 Smith, S. V.: Carbon dioxide dynamics: a record of organic carbon production, respiration, and
664 calcification in the Enewetak reef flat community, *Limnol. Oceanogr*, 18, 106-120, 1973.

665 Smith, S. V., Kimmerer, W. J., Laws, E. A., Brock, R. E., and Walsh, T. W.: Kaneohe Bay sewage
666 diversion experiment: perspectives on ecosystem responses to nutritional perturbation, *Pac Sci*, 35, 279-395, 1981.

667 Sparks, R. T., Stone, K., White, D. J., Ross, M., and Williams, I. D.: Maui and Lanai Monitoring
668 Report, Hawaii Department of Land and Natural Resources, Division of Aquatic Resources,
669 Maui, 130 Mahalani Street, Wailuku HI. 96790, 2016.

670 Storlazzi, C. D., McManus, M. A., Logan, J. B., and McLaughlin, B. E.: Cross-shore velocity shear,
671 eddies and heterogeneity in water column properties over fringing coral reefs: West Maui,
672 Hawaii, *Cont Shelf Res*, 26, 401-421, 2006.

673 Storlazzi, C. D., and Jaffe, B. E.: The relative contribution of processes driving variability in flow,
674 shear, and turbidity over a fringing coral reef: West Maui, Hawaii, *Estuarine, Coastal and
675 Shelf Science*, 77, 549-564, 10.1016/j.ecss.2007.10.012, 2008.

676

677

678 Strong, A. L., Kroeker, K. J., Teneva, L. T., Mease, L. A., and Kelly, R. P.: Ocean Acidification 2.0:
679 Managing our Changing Coastal Ocean Chemistry, *Bioscience*, 64, 581-592,
680 10.1093/biosci/biu072, 2014.

681 Sunda, W. G., and Cai, W.-J.: Eutrophication Induced CO₂-Acidification of Subsurface Coastal
682 Waters: Interactive Effects of Temperature, Salinity, and Atmospheric PCO₂, *Environ Sci
683 Technol*, 46, 10651-10659, 10.1021/es300626f, 2012.

684 Suzuki, A., and Kawahata, H.: Carbon budget of coral reef systems: an overview of observations in
685 fringing reefs, barrier reefs and atolls in the Indo-Pacific regions, *Tellus B*, 55, 428-444,
686 10.1034/j.1600-0889.2003.01442.x, 2003.

687 Swarzenski, P., Dulai, H., Kroeger, K., Smith, C., Dimova, N., Storlazzi, C., Prouty, N., Gingerich, S.,
688 and Glenn, C.: Observations of nearshore groundwater discharge: Kahekili Beach Park
689 submarine springs, Maui, Hawaii, *Journal of Hydrology: Regional Studies*,
690 10.1016/j.ejrh.2015.12.056, 2016.

691 Swarzenski, P. W., Storlazzi, C. D., Presto, M. K., Gibbs, A. E., Smith, C. G., Dimova, N. T., Dailer,
692 M. L., and Logan, J. B.: Nearshore morphology, benthic structure, hydrodynamics, and coastal
693 groundwater discharge near Kahekili Beach Park, Maui, Hawaii; p. 34 p., U.S. Geological
694 Survey Open-File Report 2012-1166. 2012.

695 Swarzenski, P. W., Dulaiova, H., Dailer, M. L., Glenn, C. R., Smith, C. G., and Storlazzi, C. D.: A
696 geochemical and geophysical assessment of coastal groundwater discharge at select sites in
697 Maui and O'ahu, Hawai'i, in: *Groundwater in the Coastal Zones of Asia-Pacific*, edited by:
698 Wetzelhuetter, C., Coastal Research Library, Springer Netherlands, 27-46, 2013.

699 Szmant, A., and Gassman, N. J.: The effects of prolonged "bleaching" on the tissue biomass and
700 reproduction of the reef coral *Montastrea annularis*, *Coral Reefs*, 8, 217-224, 1990.

701 Wiltse, W.: Algal Blooms: Progress Report on Scientific Research. West Maui Watershed
702 Management Project, 1996.

703 Wooldridge, S. A.: Excess seawater nutrients, enlarged algal symbiont densities and bleaching
704 sensitive reef locations: 1. Identifying thresholds of concern for the Great Barrier Reef,
705 Australia, *Mar Pollut Bull*, 10.1016/j.marpolbul.2016.04.054, 2016.

706 Yao, W., and Byrne, R. H.: Simplified seawater alkalinity analysis: use of linear array spectrometers,
707 *Deep Sea Research Part I: Oceanographic Research Papers*, 45, 1383-1392, 1998.

708 Yates, K. K., Zawada, D. G., Smiley, N. A., and Tiling-Range, G.: Divergence of seafloor elevation
709 and sea level rise in coral reef ecosystems, *Biogeosciences*, 14, 1739-1772, 10.5194/bg-14-
710 1739-2017, 2017.

711 Zeebe, R. E., and Wolf-Gladrow, D. A.: CO₂ in seawater: equilibrium, kinetics, isotopes, Gulf
712 Professional Publishing, 2001.

713 Zhang, H., and Byrne, R. H.: Spectrophotometric pH measurements of surface seawater at in-situ
714 conditions: absorbance and protonation behavior of thymol blue, *Mar Chem*, 52, 17-25,
715 10.1016/0304-4203(95)00076-3, 1996.

716

717

Site	<i>n</i> TA- <i>n</i> DIC Slope	NCC:NCP	<i>r</i> ²
2016-03-16 to 2016-03-19			
S1	0.88	0.78	0.94
S2	0.67	0.50	0.75
S3	0.93	0.88	0.89
S4	0.93	0.87	0.92
2016-03-21 to 2016-03-24			
S1	0.72	0.56	0.78
S2	0.56	0.39	0.77
S3	0.99	0.98	0.95
S4	1.04	1.08	0.94

720 **Table 1**

721 Slope of salinity normalized total alkalinity (*n*TA): salinity normalized dissolved inorganic carbon
 722 (DIC), net community calcification: net community production ratio (NCC:NCP=2ΔDIC/(ΔTA-1))
 723 (Suzuki and Kawahata, 2003) and correlation coefficients (*r*²).
 724

Figure 1

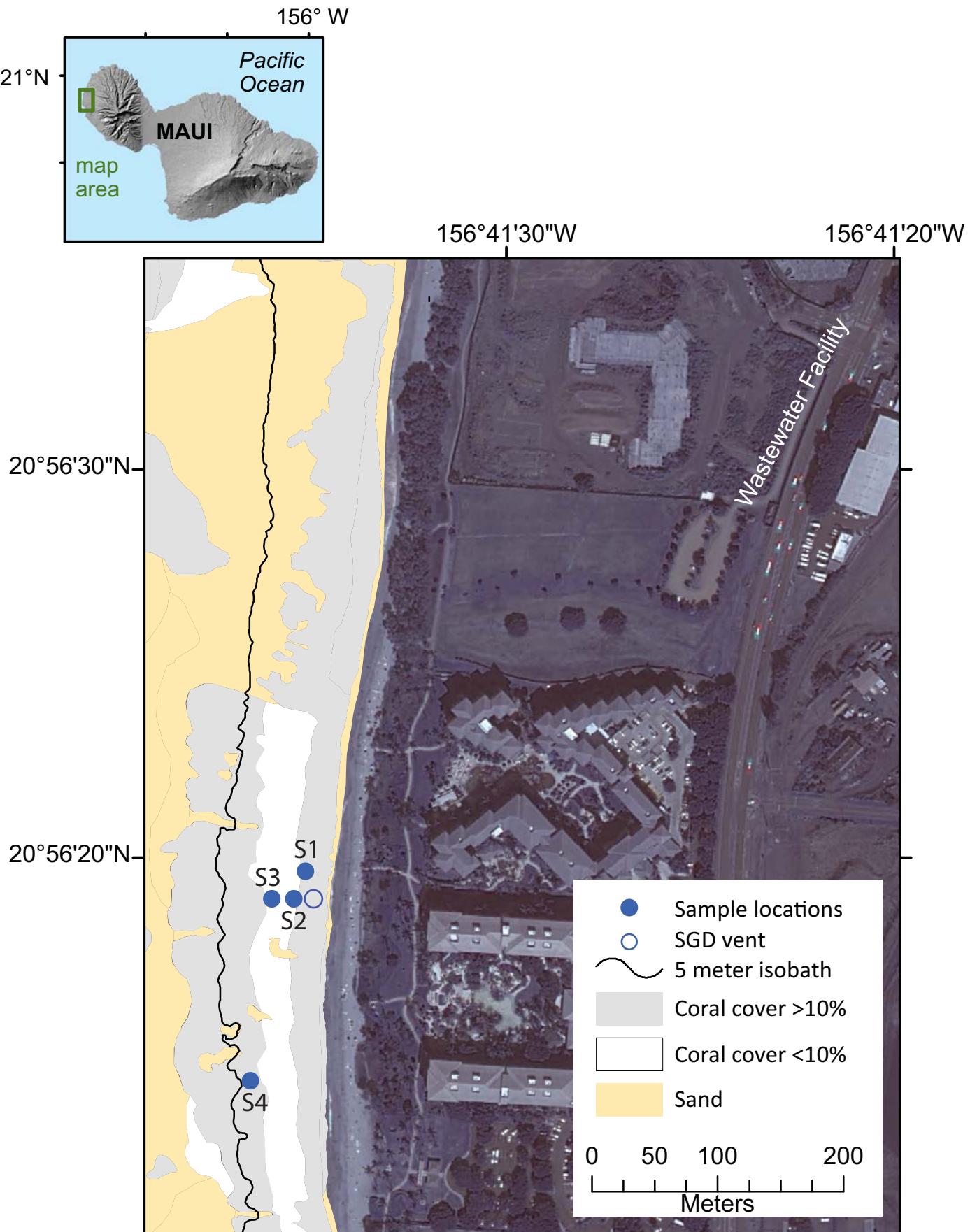


Figure 2

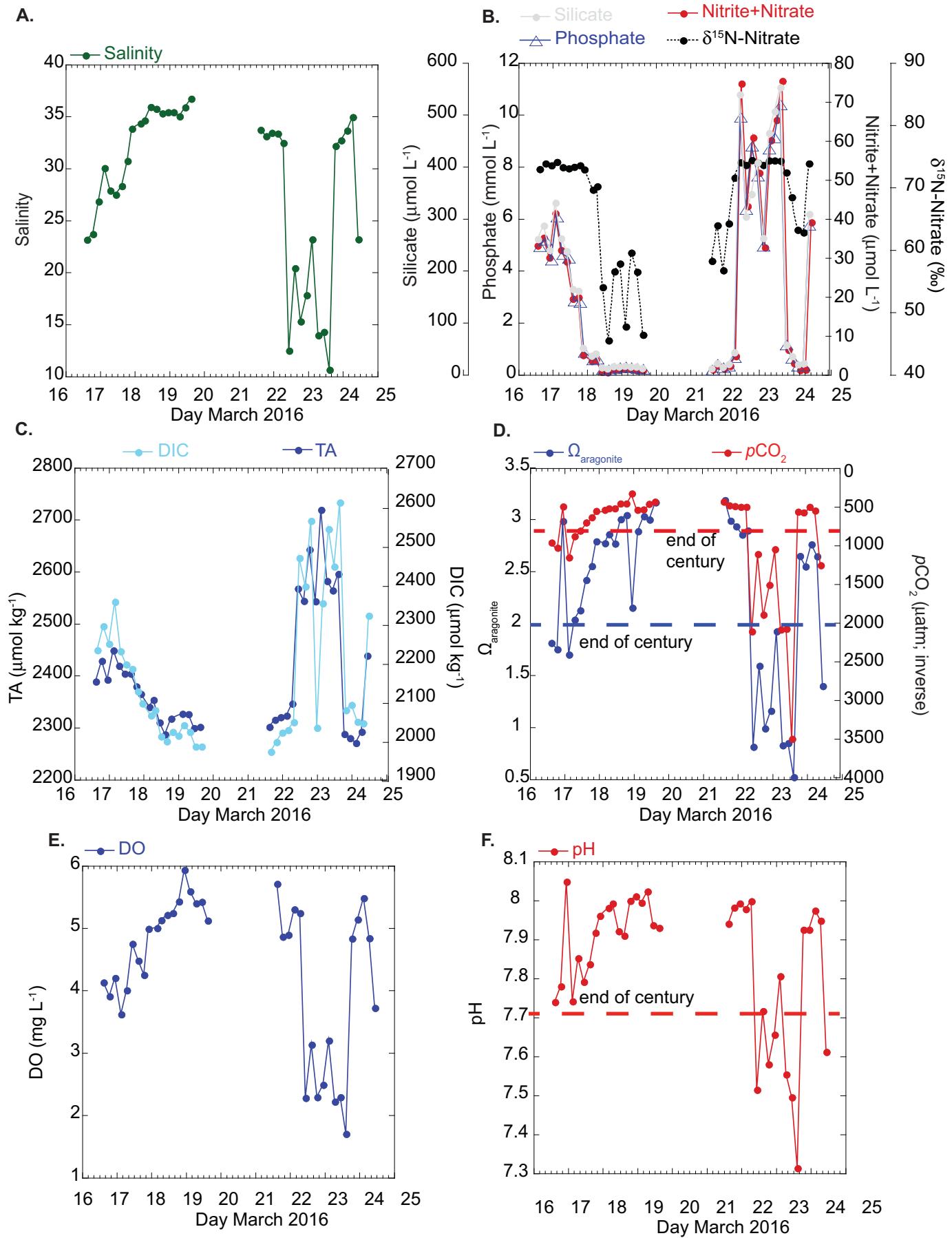


Figure 3

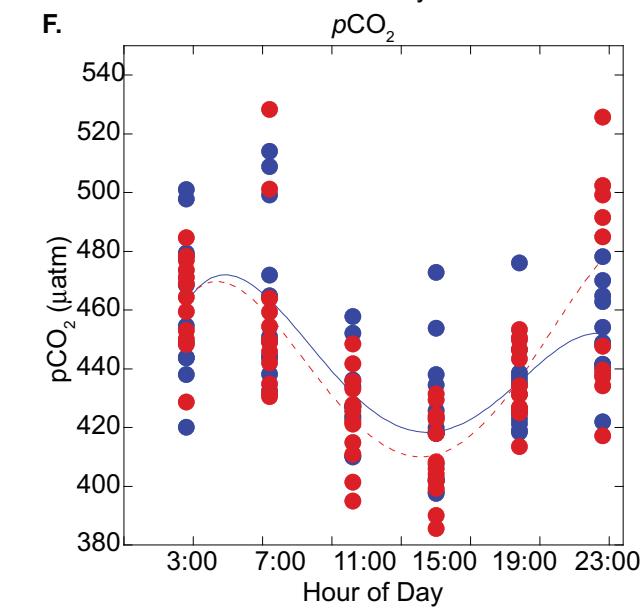
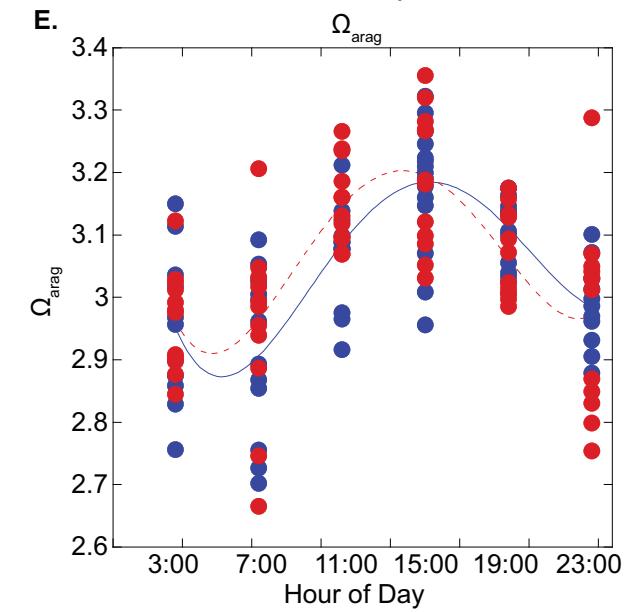
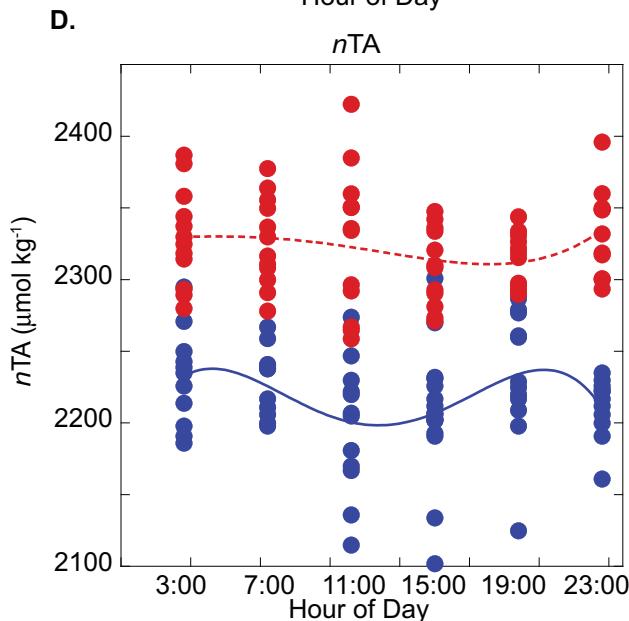
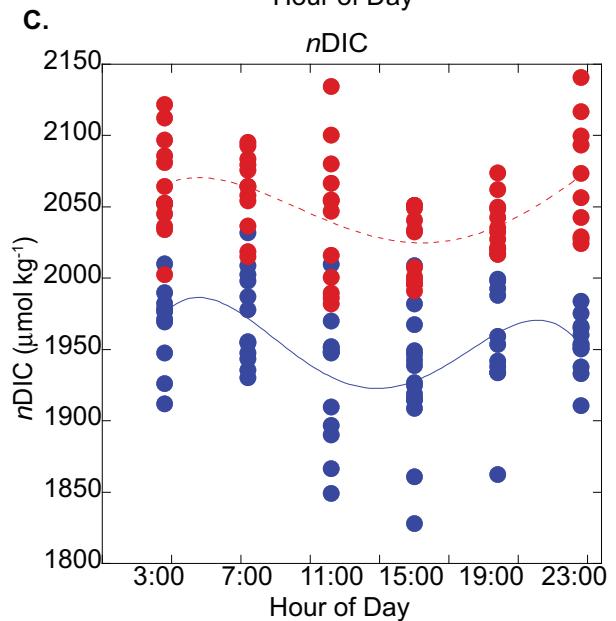
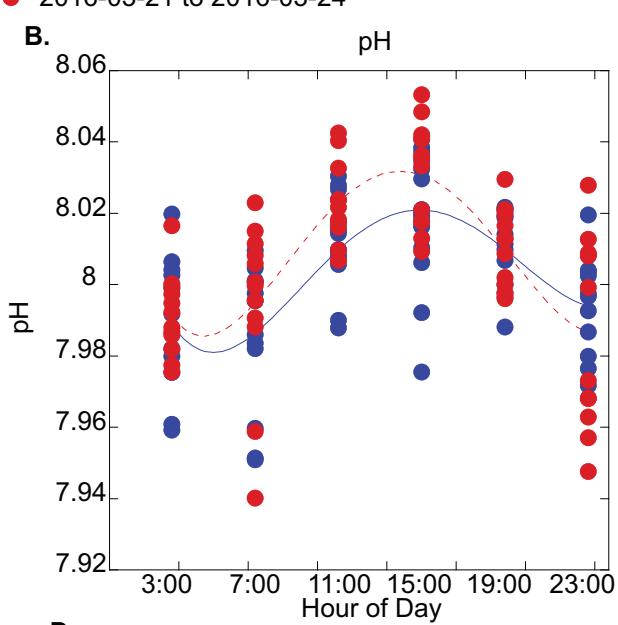
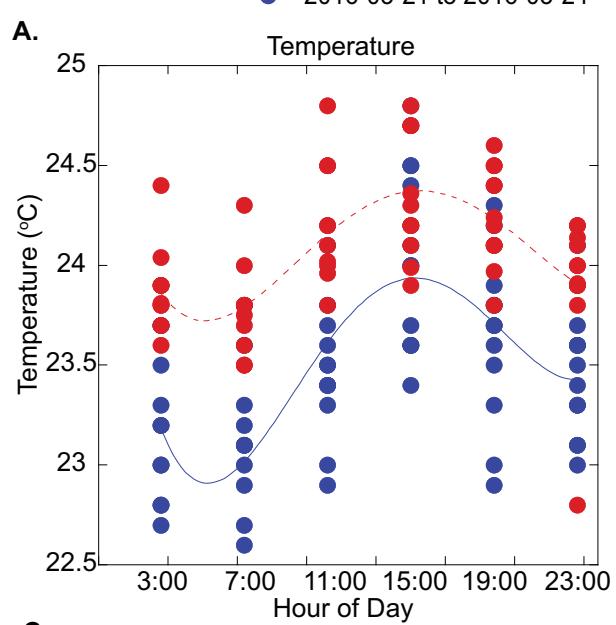
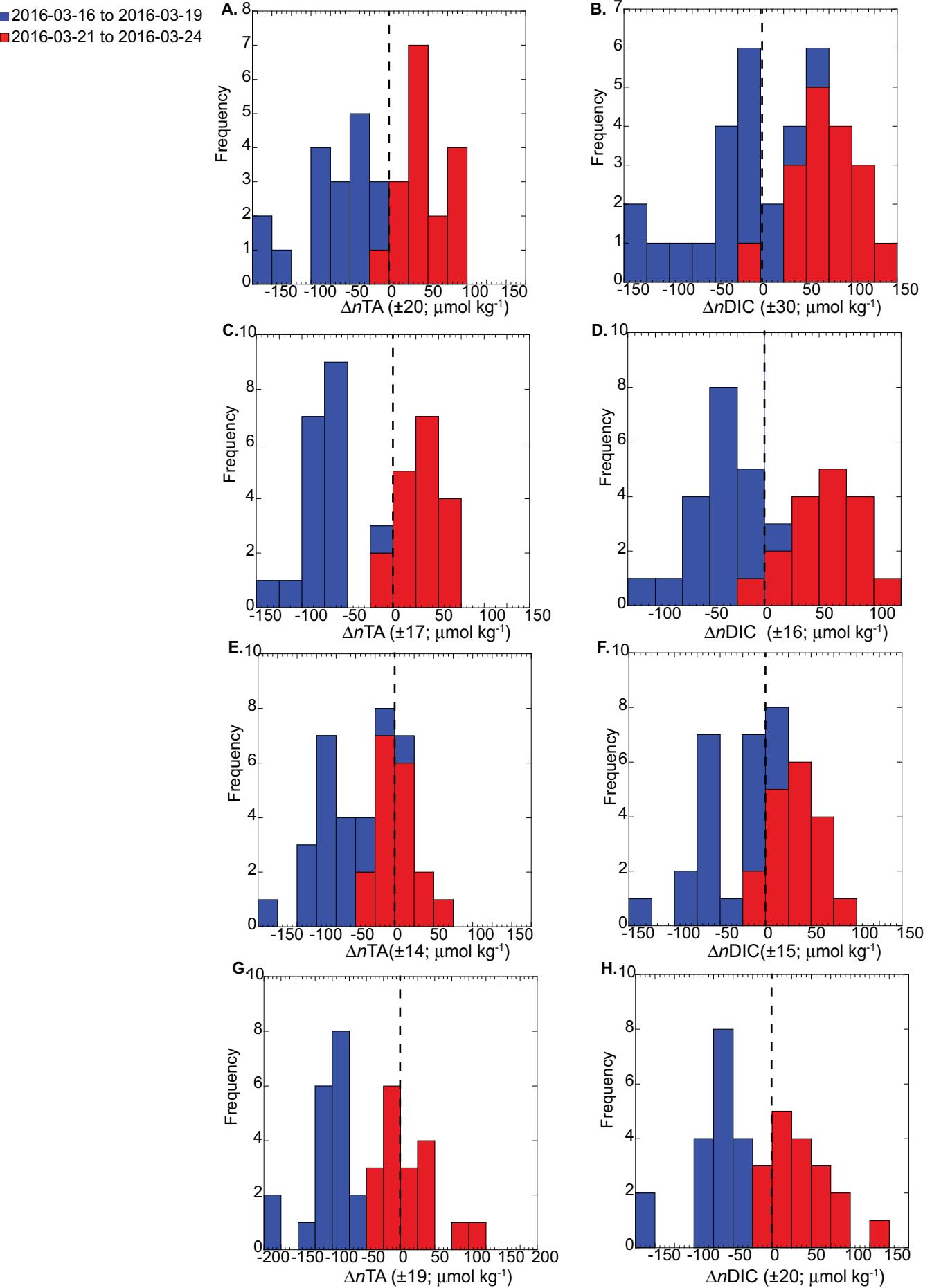
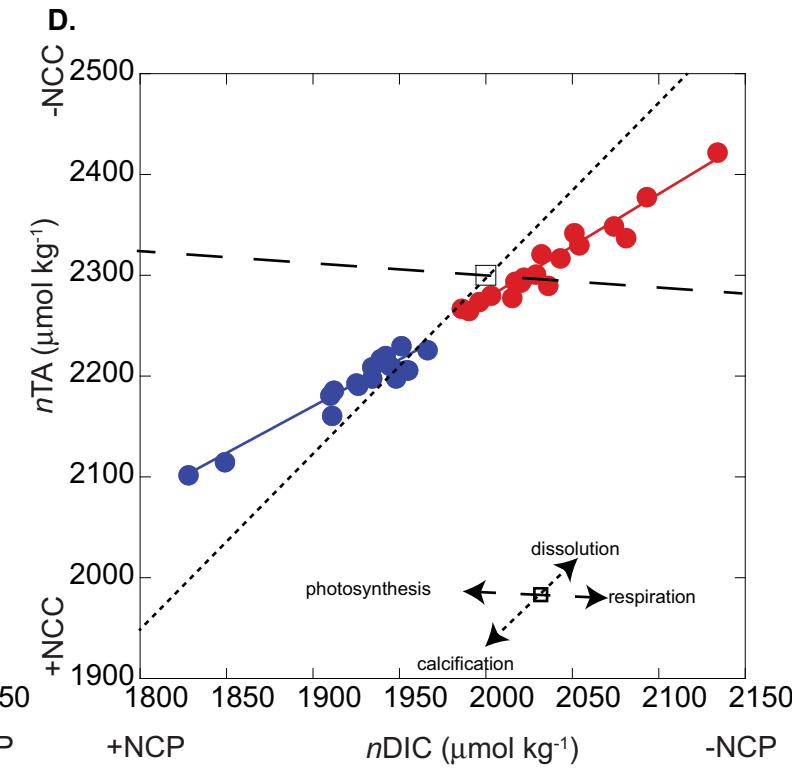
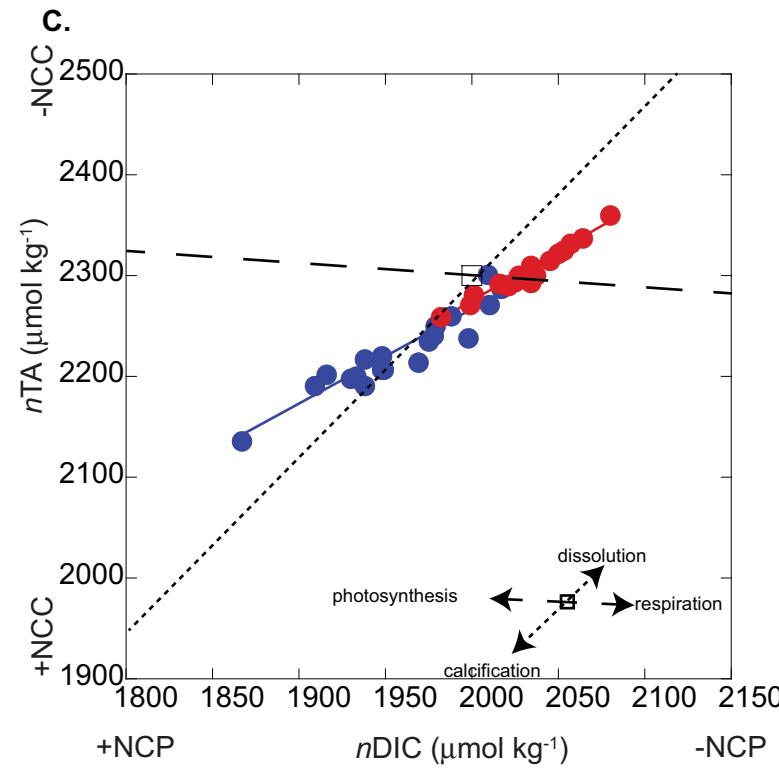
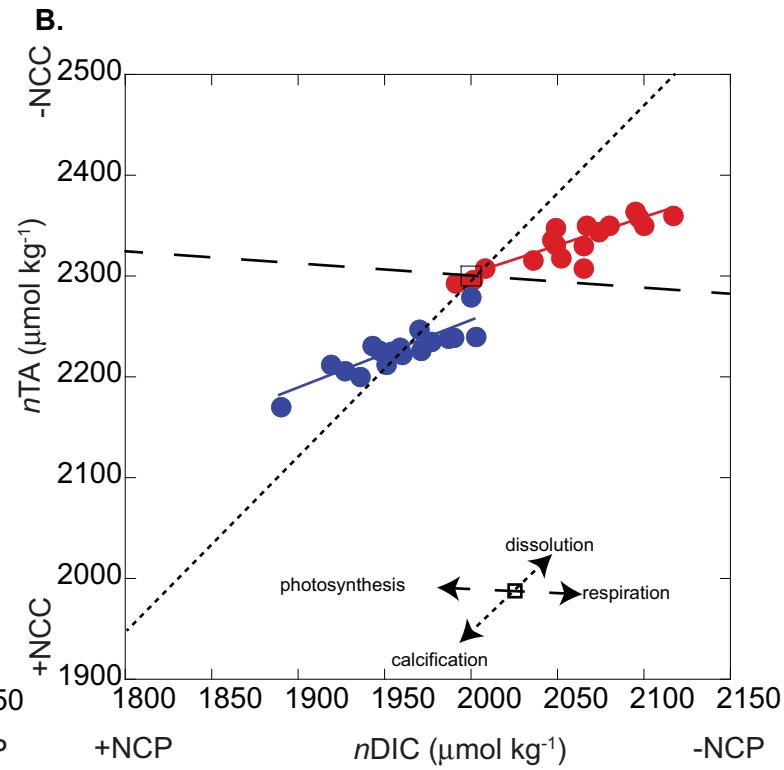
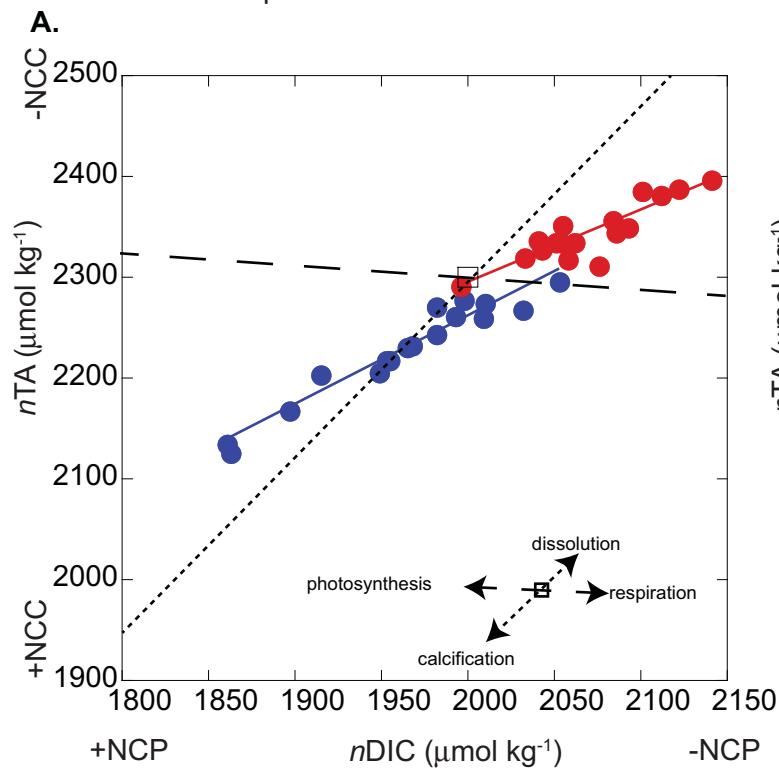












Figure 4

- 2016-03-16 to 2016-03-19
- 2016-03-21 to 2016-03-24
- open ocean

Figure 5

