Point by Point Reviewer Response 1

2

3 **Reviewer 1**

4 General comments:

- 5 What's the paper about: In this ms Swenson et al attempt to estimate C-balance of five
- 6 managed raised bogs in Ireland. The five sites differ in their hydro-physical and ecological
- 7 characteristics, as defined by the National Parks and Wildlife Servies of Ireland.
- 8 The strength of their study is in their attempt to estimate total C-balance of each site
- 9 based on measurements of various aspects of ecosystem carbon balance during the
- 10 same season, including: ecosystem CO2-gas flux, ecosystem CH4-gas flux, aquatic 11 fluxes of dissolved organic and inorganic carbon and CO2 gas efflux from open water
- in drainage ditches. Furthermore, they provide a literature compilation and review of
- 12 13 studies that have measured ecosystem CO2 and methane flux in boreal and temperate,
- managed and intact, peatlands. They use the global synthesis to explore global 14
- 15 patterns between the fluxes and mean annual water table. They discuss their sites in light of the
- global patterns and argue that the most practical advice to policy makers 16
- 17 on C-sequestration potential of restored peatlands should involve insights into the
- impact of water table and vegetation composition on C-fluxes two aspects that are 18
- 19 actually manageable at sites. Some caution should be taken when interpreting their
- 20 annual sums of different component fluxes, as most are modelled based on point
- 21 measurements throughout the year and in some cases models were used to extrapolate
- 22 beyond the data range used to develop the empirical model! Lots of assumptions used
- 23 in some cases.

Response: The authors agree that more cautionary notes should be given to exptratolating 24 beyond data collection periods. For the specific assumptions that have been pointed out in the 25 detailed comments, responses are below. The request for more statistical information on the 26 27 models and the apparent need for a clearer description of the modeling process has been 28 included in the main body of the manuscript as well as in the supplemental section.

29 Manuscript changes: More caution has been given to extrapolating the modelled CH₄ and CO₂ 30 flux data beyond the data collection periods. The request for more statistical information on the

- 31 models and the apparent need for a clearer description of the modeling process has been
- included in the main body of the manuscript as well as in the supplemental sections. 32

33

- Detailed Comments: 1. This is a bit lengthy ms, but given it has a synthesis review, 34
- 35 maybe ok for length. Journal can decide if to have it split into ms a and b or one ms
- when published. ALternatively there may be enough material here to write two separate 36

- more focused ms: one using actual observed data, focusing on observed trends and 37
- one on estimated/modelled trends in light of the global synthesis work. 38
- 39

40 Response: Agreed that the manuscript is too long, and some parts can be shortened, 41 particularly the discussion section on comparisons to literature. It probably works better as one manuscript (if the Editor agrees). 42 43 44 Manuscript changes: As per comments from Reviewer 2, much of the global synthesis discussion has been cut from the text as the Figs. 11 and 12 can speak largely for themselves. 45 Figures 11 and 12 have been moved to the results section. This keeps the discussion section 46 47 more focused and shortens the manuscript as a whole. 48 2. Title may be worth modifying to include "implications for restoration efforts" in it -49 or something along the way. Also use of "restored and cutover" is a bit confusing. It 50 sounds like both sites are undergoing restoration, just for different amounts of time. 51 52 Perhaps reword to be more clear: "raised bogs at different stages of restoration". 53 54 Response: The cutover area is not really undergoing restoration as such. Thus, it doesn't make 55 sense to include "different stages of restoration" in the title. 56 57 Manuscript changes: Title has been changed to: Carbon balance of a restored and cutover 58 raised bog: Implications for restoration and comparison to global trends 59 3. Keywords: may be add DIC, DOC, global synthesis, carbon balance 60 61 Response: Good suggestions. 62 63 64 Manuscript changes: DIC, DOC and carbon balance has been added to the key words. 65 4. Abstract - you mention measuring along 5 different ecotypes, but only two are listed. 66 Describe all 5 then. Also reword to include all 5 ecotype descriptions, avoid use of 67 68 specific category name (ex. Sub-central) and just use general description in Abstract. 69 Don't think that category name adds info for non-Irish readers or those unfamiliar with 70 NPWS classifications. 71 72 Resonse: OK, this comment and comments 6 and 7 suggest that Reviewer 1 is getting confused 73 on the site description. We agree that this needs to be clarified both in the abstract and the main 74 body of the paper. However, the Reviewer is asking to include details of all five the ecotypes in 75 the abstract, but then not to use the names. To fully describe the 5 different ecotypes, without using the names would be far to wordy for an abstract. 76 77 78 Manuscript changes: A much clearer and still concise description of the study site is included in the abstract. Names of specific ecotypes have been removed from the abstract. All of the 79 80 ecotypes have not been described individually, but this general description has been included: "were measured for five distinct ecotypes ranging from those with high quality peat forming 81 82 vegetation down to communities indicative of degraded, drained conditons." Also, a brief but clear description of the site has been added in the abstract. 83 84

2

85 5. line 105: unidentified acronym occurrence? NECB.

87 Response: OK 88 89 Manuscript changes: "net ecosystem carbon balance" (NECB) has been added to define the 90 acronym. 91 92 6. lines 120-125. Objectives state two main research sites: 1960 cutover and 2009 93 cutover, but in Abstract and rest you discuss 5 sampling sites of different "eco-types". 94 95 Response: Yes, the description of sampling locations and study site needs to be clarified. Five 96 ecotypes were located in areas with two different site histories. 97 Manuscript changes: A clearer description of the ecotypes and site history has been included in 98 99 both the abstract and the main body of the text. The wording in the objectives was changed to 100 "for five distinct peatland ecotypes, which are located in two adjacent areas with contrasting site 101 histories." 102 7. lines 142-145: Again there seems to be a mismatch in site description - here you 103 104 say two sites were uncut and three cut, but in objectives on lines 120-122 it seems to 105 suggest both sites were cut, just one left to recover since 1960 and the other site only since 2009. So please clarify your site descriptions. May be clarify that you have two 106 main research sites and 5 sub-sites within them and how they all differ with respect to 107 108 their management history. Also add reference to table 1 early in this paragraph. 109 110 Response: Agreed, this can be clarified as per the above comments. The term recently restored 111 is used in the last paragraph of the Introduction, this might imply that the bog had been harvested (and has now being restored) whereas it just been drained in preparation for being 112 113 cut (but not actually harvested). The site history needs to be clarified earlier on. 114 115 Manuscript changes: See previous comments. 116 117 8. lines 164 - you had trees on your sites? please include % cover in Table one or 118 description. How large are they on average and species type, stem density 119 120 Response: Yes, there were trees on the site as a whole. For example, the weir catchment area 121 contained "lightly forested drains along a bog road (<10%)" Line 276. However, all of the ecotypes were treeless. Line 164 reads "open areas, excluding any large trees". In this case, 122 123 "excluding any large trees" is a qualifier describing the open areas i.e. there were no trees at our 124 monitoring sites. 125 126 Manuscript changes: "excluding any large trees" is changed to "excluding any trees" 127 128 9. Line 167: collars were installed to represent ecolocigal variability - such as what? 129 130 Response: Again, it seems that the site description needs to be clearer in the manuscript. Within

Response: Again, it seems that the site description needs to be clearer in the manuscript. With
 the ecotype definitions, there can be variability for the specific species coverage.

3

133 Manuscript changes: See above changes to line 7. 134 135 10. lines 211: which light levels, not clear? Please list PPDF under which measured. Where measurements corrected for PAR reduction due to chamber transmittance reduction? 136 137 138 Response: The light sensor was located inside of the chamber during measurements, so there 139 was no need to correct for chamber transmittance as the light level was directly measured. 140 141 Manuscript changes: The phrases "generally under full ambient light, 1-2 light other partial 142 shading light levels, and a completely shaded measurement" and "located inside the chamber" have 143 been added to the manuscript. 144 145 11. NEE modelling, section 2.5: modelled NEE to account for diurnal variability - based 146 on what? did you measure diurnal variability in data? Line 243: PPFD used from which chamber? or outside? lines 245 and Table S3: when reporting stats it is insufficient to 147 148 just present R2 values. Show also n-values and estimated coefficients. Also describe how many data points were used to fit the model and how many to test/validate the 149 model fit? Did you do that? 150 151 Response: The gross primary production (that is CO₂ uptake by photosynthesis) is the largest 152 153 component of net ecosystem exchange. In practically every system, the gross primary 154 production is strongly controlled by the light intensity, which obviously has diurnal variations. Thus, the hourly light intensity (measured in the field at the weather station) was input into 155 models of NEE, which results in expected diurnal fluctuations of the modelled results. 156 157 Measurement of light intensity is described in Lines 186-191 of the manuscript. 158 All of the field data was used to calibrate the models. Validation was not done explicitly. 159 160 161 Manuscript changes: Further, statistical information is included in Table S3. Supplemental 162 section S1 has been revised to show a clearer description of the modeling process, including (among other things) a description of the number of data points used to fit the models. 163 164 165 12. Methane modelling: be very cautious in your "modelling" attempts and interpretations - you fit an empirical model to a small subset of observations and then attempt 166 to use that to predict fluxes outside of the data range used to develop your empirical 167 model. I don't think this is statistically sound, although I appreciate your attempt and 168 169 sympathize with instrument malfunction. So highlight this limitation in your text and discussion. Line 265 - "collar average" probably should read "overall average from 170 171 measurements at all collars". 172 173 Response: This is a good point. More cautionary notes should be included in describing the 174 limitations of this data. All of the methane field measurements were used rather than "a small 175 subset." "Collar average" is the correct terms here. 176 Manuscript changes: More cautionary notes have been included in describing this data 177

178 throughout the manuscript.

13. Section 2.7, lines 278: - is that a valid assumption? Response: This is a big assumption, that the aquatic carbon losses were the same for each of the ecotypes, but it is an assumption that we had to make due to resource limitation. (It would be an interesting topic for a future research project.) Many studies that have measured other aspects of the carbon balance have made bigger assumptions about the magnitude of the DOC losses. For example, Wilson et al., 2016b estimate DOC losses from a peatland "based on guidance provided by IPCC [report]" rather than field measurements. In this case, the DOC/DIC flux was at least measured directly on-site. Manuscript changes: None. 14. Lines 307-312: you discuss CO2 evasion from drainage ditches, what about openpond water on your bogs? Any present? what proportion? how much would the open ponds add to CO2 efflux from open water? Response: These are valid questions, but in this case, the only open water areas at the study site were associated with drainage ditches. Manuscript changes: None. 15. Line 315: likely mean "DIC" instead of "DOC"? Response: No, this is correct. Here the DOC flux is calculated differently for the carbon balance of the system, which includes all carbon losses from the catchment area and for the global warming potential, which is the greenhouse gas effect. This is because some of the DOC lost from the system may be stored in longer term sediment and not contribute to the GWP. Manuscript changes: None. 16. Lines 321-322: Sentence makes no sense? what are you saying? "... from the sum of model error and error of input field variables"? Response: This sentence is describing the model statistics. Manuscript changes: This sentence has been re-worded for clarity. Also, partially because of this confusion expressed by the Reviewer here and partially because the modelling of ER was redone as per comments by Reviewer 2, the statistics have been redone using simpler and more straight forward methods. 17. Lines 338: report st.dev on mean annual total from Ballyroan. Response: OK Manuscript changes: These details have been added to the manuscript. 226 227 18. lines 340: 1978-2007 average taken from where? also report stdev on mean 228 annual value. 229 230 Response: OK. 231 232 Manuscript changes: The mean annual temperature is changed to the 30 year average 1981-233 2010 based on Walsh, 2012 as per comments by reviewer 1. Walsh (2012) does not report the 234 stdev so this is not included. 235 19. Figure 4: hard to tell two blue colours apart, likewise for yellow and orange, suggest 236 237 to change. 238 239 240 Response: OK 241 Manuscript changes: The colors have been changed in Figure 4 to improve readability. 242 243 244 20. Figure 4 -7 - either show all modelled and observed fluxes like you do for CH4-245 fluxes in Figure 5a (IWOULD HIGHLY RECOMMEND, OTHERWISE YOU SHOWTOO MUCH MODELLED RESULTS but little observed values used to derive the modelled 246 values!) or as monthly bar plots or cumulative plots like you do for terrestrial CO2-247 248 fluxes in Fig 4. This is also probably where you can reduce your figure numbers. Fig 249 5b probably belongs to Supplement where you describe your model fitting. 250 251 Response: Moving Fig. 5b to the supplemental section is a good suggestion. Otherwise, this 252 comment is a little perplexing: on the one hand, Reviewer 1 mentions reducing the number of figures; on the other hand, Reviewer 1 asks for more figures showing modelled and measured 253 254 results. As the GPP and ER were modelled separately for each of the 29 collars, it would be confusing/misleading to show the entire field dataset and modelled results in a single plot. The 255 modelled and measured data is shown together here for one particular collar as an example. 256 257 For all 29 collars, 77 such plots (3 for each collar) would be needed, which may be excessive 258 even for the supplemental section (although if the Editor thinks this is valuable, these plots can be included). The r^2 values, although not statistically sufficient by themselves, demonstrate the 259 260 modelled data correlation with field data in a much smaller format. 261 262 *"like you do for CH4- fluxes"* Showing all of the modelled and measured CH₄ flux data was

263 possible because the field data from all collars was lumped together before modelling.

264

Hours after 1st Jan. 2016
Figure caption. This figure shows the modelled and measured data for collar EC13 for ER (top), GPP
(middle), and for clarity (because GPP drops to 0 every night with light level), GPP normalized by light
level to show the seasonal fluctuations independent of light level (bottom).

Manuscript changes: Fig 5b has been moved to supplemental section. Otherwise, no changes
 has been made unless the Editor requests plots like the example above to be in the
 supplemental section.

274 21. Section 2.4 name - CO2-gas flux measurement, not GHG.

- 275 Response: Yes, that is better.
- 276

273

- 277 Manuscript changes: The section heading name changed to " CO_2 and C_{H4} gas flux
- 278 measurements"

22. Aquatic carbon losses: Fig 7: how do you know point around 2 mg/L is an outlier for DIC to assume a constant flux throughout the year? Seems too few points to make such assumption. Response: This is a fair point, but it is just an assumption and has a very minor effect on the overall results, as this is the smallest component of the C balance. Based on Dixon's Q test, this point can be excluded as an outlier to 95% confidence. Manuscript changes: None. 23. Fig 8: what's WHB and EHB? Response: These points need to be labeled on Fig.1 Manuscript changes: These points have been labeled on Fig.1 24. Section 3.4: not sufficient to report only p-values for statistical results, report also associated n used, mean and st.dev. Lines 404-406: was spatial variability accounted for in your analysis? Response: OK, on the stats. It is not clear what is meant by spatial variability; this is exactly what is being described here i.e. difference between collars within the same ecotype. Manuscript changes: Additional statistical information added throughout this section, where applicable. It is not always appropriate to include n, mean, and stdev for every statistical analysis. 25. Figure 9a: - units unclear gC-CO2? CO2-equivalent? so Fig a and b are the same, with a in g/m2/yr and b in tones/ha/yr? why include both? Response: The carbon balance and the global warming potential (GWP) as shown in Fig. 9a and 9b, respectively, are fundamentally different quantities with correspondingly different units. Although the change in units may be confusing, the units chosen are standard units for reporting these types of measurements. Manuscript changes: None. 26. line 416: "carbon flux" probably mean "CO2 flux", same comment on lines 424. lines 416-417: unclear - so you looked at environmental controls for each collar separately? why not together per eco-type? Response: The phrase "carbon flux" is not used. The phrase "carbon balance" is the correct wording here and refers to multiple aspects of the carbon balance, including CO2 flux. The data

are presented together by ecotype in Fig. 4, Fig. 6, and Fig. 9. As data (flux & divers) is 326 327 available in detail at each collar, there is no reason not to include these comparisons. 328 329 Manuscript changes: This section has been changed to describe the patterns in collar CO₂ flux 330 instead of patterns in carbon balance data, to reduce confusion. 331 332 27. Section 3.5 - again stats should show n, mean, stdev together with p-value, else 333 meaningless. 334 335 336 Response: This is a good suggestion. 337 338 Manuscript changes: The additional statistical information is included throughout this section. 339 340 28. lines 428-433: don't get this paragraph. 341 342 343 Response: The percent genus cover within the collars is compared to the GWP. C-balance, and 344 CH₄ flux. 345 Manuscript changes: This paragraph is guite short and seems fairly clear. Updated statistical 346 information has been included, which may help. Also, the updated version of Fig. 10, which is 347 348 referenced in the paragraph, may help clarify. 349 350 29. Fig. 10: What if you colour points by ecotype? would be nice to see how they fit on the scatter, if group or not, in plots a and d - units are in gC, so does this C 351 352 include CH4-carbon? Legend says data was averaged over 2 years - why? was there no interannual variability? 353 354 Response: Yes, good idea to colour by ecotype (and would also address comment 26 355 somewhat). Data was averaged over the two years for clarity in the plots because these plots 356 357 are focused on spatial rather than temporal variability; the longest data set available was 358 included. Yes, in the first draft of the manuscript the carbon balance includes all aspects of the 359 carbon balance. However, a and d of this plot have been changed in the revised manuscript to 360 include only CO₂ flux (NEE) only rather than carbon balance. 361 362 Manuscript changes: The collars were coded by ecotype as per the Reviewer's suggestion in 363 this plot. Plots a and d of this figure 10 have been changed in the revised manuscript to include only CO2 flux (NEE) only rather than carbon balance. 364 365 366 30. Discussion: Lines 436-437: well, I would be cautious with such as statement, as nowhere in your paper do you present simultaneous measurements of all components 367 368 of c-balance you meausured. If you do have observation days where you have all of the fluxes measured on the same day - those would be your key days to focus on and 369 370 show when trying to figure-out contribution of each component flux to overall C-flux.

- 371 Such comparison, even if only on few days would be more valuable than that gapfilled
- 372 modelled comparisons to field-based research.

373	
374	Response: This is a fair point with being cautious about this statement, as the word
375	"simultaneously" is a little misleading. This line could be re-stated to be more precise. However,
376	adding in description about specific days where all the fluxes were measured together with all of
377	the other data (flows etc.) would probably not help the structure of the paper (and would make it
378	a lot longer).
379	
380	Manuscript changes: The word "simultaneously" has been removed from this paragraph.
381	Instead, this line has been changed to "concurrently quantified annual fluxes of all major aspects
382	of the C balance"
383	
384	31. lines 449-452: so did Nilsson et al also take a single measurement in a year and
385	assume DIC to be constant? If not, how many they took and how the differences in
386	sampling between their study and yours impacts the results. Think of n-sampled.
387	
388	Response: Agreed that more discussion is needed on the causes of differences between
389	studies although it is unlikely that the differences observed are due primarily to the number of
390	samples.
391	
392	Manuscript changes: Further discussion is included on the differences between these study
393	sites and results. See also to response to comment 32 below.
394	
395	32. Lines 458: lower than Dinsmore and Nilson by how much? make it easy on the
396	reader, so less likely to flip back and forth. show both values or state % difference.
397	Response: Yes, this paragraph is a bit burdensome with a lot of data comparisons. The
308	comparison between studies has been put into tablular format to be assign to read format. Then
399	this paragraph can be focused more on the differences in methods, etc. causing the variation in
400	results (Partially, addressing Comment 31)
400	
402	Manuscript changes: A table of the various components of the carbon balance from these other
403	two studies is included in Section 4.1 (now section 4.2 in the revised manuscript). This
404	naragraph is also substantially shorter than previously
405	
406	33. SECTION 4.2 - I THINK THIS BELONGS TO RESULTS - this section should be
407	split with synthesis plots shown in results and their discussion left in Discussion. ALso
408	how data was collected and filtered should be in methods.
409	
410	Response: That is a good suggestion and agrees with Reviewer 2.
411	
412	Manuscript changes: The figures 11 and 12 have been moved to the results section and
413	relevant pieces have been moved to the methods section or kept in the discussion. On the
414	whole, the discussion section has been shortened and re-written for clarity, as per response to
415	Reviewer 2.
416	
417	34. lines 532: how dry is "too dry"? also Briones et al reference is missing.
418	

Response: The reader can go to the relevant reference if interested in this question: Briones, M. J., McNamara, N. P., Poskitt, J., Crow, S., and Ostle. N. J. Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils. Global Change Biology, doi: 10.1111/gcb.12585, 2014. Manuscript changes: This line has actually been removed from the manuscript. This line was deemed to be an unnecessary tangent. As this is the only line that references Briones et al., 2014, the reference was not included in the reference list. 35. Fig. 11 - add lines to legend Response: OK Manuscript changes: Lines were added to the legend in Fig. 11. 36. lines 568-574 discussion - so how many points were from EC-derived NEE and how many from chamber derived-NEE? how do they fit on your Fig 11/12. Is there a difference between the two? (ex. one method consistently lower, but trends same, or one falls on one end of trend and the other at the other end? Response: The primary difference between the use of these two methods is for the land use type as described in the text. The curious reader can pull out this information in the Supplemental tables, but this plot with numerous symbols already, may become overcrowed with this information. Manuscript changes: None. 37. line 577: "inter" probably should read "winter" Response: Yes. Manuscript changes: "inter" changed to "winter" 38. Fig 12: you specify your data points with numbers 1-5. I assume that relates to your ecotypes - so which is which? add to fig description. Response: Yes, this needs to be added. Manuscript changes: The numbers 1-5 have been specified in the figure caption. 39. Lines 606: "managing water table" - that's repeat of point 1). Response: That is a fair point. Manuscript changes: The words "managing water table" were deleted from line 606.

40. line 608: "... the impact of these things must be considered." which things? and 466 467 their impact on what? 468 469 Response: Yes, this line is "vague" as per Reviewer 2, and can be clarified. 470 Manuscript changes: This line has been changed to "the impact of these actions on C balance, CH₄ 471 472 flux, and GWP must be considered" 473 474 41. Lines 621-624, follow discussion about impact of Sphagnum presence on GWP. 475 So what has the study of Junkurst and Fielder to do with Spagphum-GWP? 476 477 Response: OK, further discussion can be included on the Sphagnum effect on GWP. Junkurst 478 and Fielder is a little off topic here. This reference may be removed. 479 480 Manuscript changes: As per above responses the entire discussion section has been 481 streamlined and clarified. These particular line referring to Junkurst and Fielder have been 482 removed. 483 484 42: Lines 628-635 - unclear what you're trying to say. Are you attempting to say that peatlands lifespan is more than 100 years, so their assessment should be based on 485 longer time scales? So how long? 486 487 488 Response: This sentence needs to be clarified, but is important. Peatland preservation is beneficial (in terms of greenhouse gasses) despite methane emissions because of long term 489 490 sequestration and storage of carbon out balances methane emissions. However, for peatland 491 restoration, the greenhouse gas impact depends on the time scale that restoration works effect 492 the eco-hydrological trajectory. For example, if restoration works only impact the short term (decadal) eco-hydrological trajectory, then methane emissions may be proportionally more 493 494 important to consider for the overall greenhouse gas budget. 495 496 Manuscript changes: These lines have been clarified. 497 498 43. Lines 649: what's Marginal and Facebank ecotype? references? 499 500 Response: Yes, this is unclear. 501 502 Manuscript changes: These lines were ultimately removed from the manuscript along with the undefined and Irish specific terms "facebank" and "marginal". These lines were removed simply 503 to shorten and streamline the discussion section as they were not central to the overall points of 504 505 the discussions section. 506 S1. GPPmax is assumed constant throughout what? which metrics from Wilson et al 507 508 2007 where used? how many data points were used for model development at each point? why biological zero is assumed at 0C? what reference you have for this? Label 509

- 510 your equations consequitively and consistently. SHow your model comparisons, how
- 511 good each fit is. Why model fit to all collars so did you check they all behave the

512 same? where are the results? 513 Response: Section S1 describes the modelling process. The number of questions surrounding 514 this section suggests that this entire section could be clarified. Yes, some assumptions were 515 516 made. However, not too many major assumptions were made because several different empirical models were fit to the field data and then compared. The actual biological zero has a 517 minor impact on the model results. An exponential increase with temperature is quite common 518 519 to be applied in biological systems at the temperature ranges of the Irish climate. Why model fit to all collars - so did you check they all behave the same? Quite the opposite, I did not assume 520 521 that all collars behave the same way because of ecological and hydrological differences 522 between collars. Thus, empirical models were fit to the field CO₂ flux data from each of the 29 collars individually. 523 524 525 Manuscript changes: This section has been re-written and clarified. where are the results? See 526 response to Comment 20. More field data could be included at the Editor's request as described 527 above. 528 529 S2. Equation S10 - which one is that? 530 531 Response: This section has been re-written and clarified as per above comment. 532 533 Manuscript changes: As above. 534 535 S3. Tables S1 and S2 - kind of useless statistically. Please add estimated parameter 536 coefficient's stats - p and t-values, also model stats such as R2, n-observations. 537 538 Response: That is fine. 539 540 Manuscript changes: More statistical information has been included in these tables. 541 542 S3. Table S3: p-values? n? F-stats? data ranges used to fit model? all needed to 543 make sense of reported R2. 544 545 Response: That is a good suggestion. 546 547 Manuscript changes: More statistical information has been included in Table S3. 548 549 S4. methane modelling - what worries me most, you fit an empirical model to limited 550 data range and then use that to extrapolate beyond that data range. Don't think that's good statistical practice. Be cautious of such things. If there's a physiologically based 551 552 model to work with - try that instead. Was effect of Temp similar to that of ER - show? 553 "Temporal variation in fluxes was extrapolated in this model" - what are you trying to 554 say? 555 556 Response: This is a good point that more caution needs to be added around the model results. 557 Though, perhaps the purpose of modelling methane fluxes for this study needs to be clarified a

558 bit more in the paper. The purpose of this model was not to predict the methane flux at a

particular point in time. Rather, the purpose of this model was to estimate annual methane 559 560 fluxes. Essentially the average methane flux at each collar was scaled by a factor to account for 561 the fact that the field data was not collected over the entire year. The model was used to predict 562 that factor. Further, the major hole in this data is that methane measurements were only 563 collected during one of 2 years. This limitation in the data needs to be highlighted more explicitly in the manuscript. The assumption that the methane flux was the same is partially 564 verified by the fact that the model gave very similar results for both years. This is the other 565 566 purpose of this model. 567

⁵⁶⁸ "limited data range" This phrase is used several times by the Reviewer; I am not entirely sure of the meaning. If the Reviewer is referring to a limited data **collection period**, than this is a fair comment. However, if the Reviewer is referring to a limited **data range**, than, it seems that the reviewer is mistaken. The modelled results were not extended beyond the data range.

I am not aware of an appropriate physiologically based model to use in this case because
 methane fluxes from peatlands can be highly variable both within and between sites.

576 "Temporal variation in fluxes was extrapolated in this model" Yes, this needs to be clarified.

578 Manuscript changes: More caution needs to be applied when presenting methane modelling
579 results, particularly for 2016 when no field data was collected. Also, the purpose methane
580 modeling has been clarified in the manuscript.

582 Also was there any model validation done for any of your modelling activities?

584 Response: No, in this case, all of the field data was used in calibrating the models.

586 Manuscript changes: None.

587 588

572

577

581

583

585

589

590 **Reviewer 2**:

591 General Comments:

592 General comments: The manuscript reports the results from a two year study at two 593 peatlands in Ireland: an abandoned (but not rewetted) and a rewetted peatland. In both 594 sites, a full carbon balance (CO2, CH4, DOC and DIC) was measured and calculated. 595 The authors indicate that the abandoned site was a strong annual carbon source and 596 that the rewetted site was a small carbon sink. The authors also compare their results 597 with literature values (a very nice literature review is included in the Supplementary 598 material). The manuscript is well written (although it would benefit from a spell-check 599 and does feel a little long), tightly focused (except Discussion) and the results are clear. 600 However, the Discussion section is disjointed and requires some surgery, and I also 601 have some concerns in regard to the models used but this may just need clarification 602 by the authors rather than any major reconstruction.

603 Response:

The Reviewer comments that the paper is a "little long" and the Discussion section is "disjointed
and requires some surgery." I agree with this comment in general. After a fresh read-through, I
think that the discussion section gets a little off topic from the study results by including lengthy
discussions of data from literature. The comparison to literature data is valuable, including Figures
and 12 and the extensive tables of literature data in the Supplemental Section 3. However, the
discussion text surrounding these figures can be greatly shortened, while the figures would remain

understandable and useful. After some major revisions, the discussion section has been shortened
 from 3013 words to 1975 words in length and we feel that is much clearer and to the point. The

- overall important points of the discussion section have remained largely the same; the text has
- 613 been clarified, shortened, and restructured.

614 Further, the Reviewer comments, "I also have some concerns in regard to the models used but this

may just need clarification by the authors rather than any major reconstruction." The only
 "concern" raised explicitly is the number of fitting parameters (an in comment below on Tables S1

and S2) and for "clarification," the Reviewer requests that the SE of model fitting parameters be

618 included. Additional statistical information on the modelling has been included in the Tables S1 and

619 S2. The Reviewer raises a valid point; the ecosystem respiration model, in particular, arguably had

too many empirical fitting parameters. This model was replaced by a simpler model with fewer

621 fitting parameters, as described in more detail in the response to the comment on Table S1 and S2.

622 Manuscript changes:

623 The discussion section has been shortened and streamlined by cutting out much of the text

describing the comparison to literature. The Figures 11 and 12 has been left in the body of the text,

but moved to the results (as in comment on Section 4.2, below).

626

The model used for ecosystem respiration has been redone using a simpler model, which was takendirectly from Wilson et al., 2016a.

629

630 Specific comments:

L2 "Add C after carbon and use thereafter in abstract" "Add methane before (CH4)" "Not
 necessary to add "losses""

633 Response: These are good suggestions.

634 Manuscript changes: The recommended changes have been made in the manuscript abstract.

635 L4 Harvested suggests a renewable fuel source. Peat removal for fuel is anything

636 but sustainable. Please replace harvesting here (and throughout the manuscript) with

637 either "extraction" or "mining".

- 638 Response: OK, yes, this is a good suggestion.
- Manuscript changes: The term "harvested" has been changed to "mined" in the manuscriptwhen in reference to peatlands impacted by peat extraction.
- 641 L5 Please define what you mean by "historically abandoned"
- 642 Response: OK, this is potentially confusing.
- 643 Manuscript changes: "historically" has been changed to "abandoned x years ago"
- 645 L6/7 What do you mean by "high quality"?
- Response: That is a good question; high quality is referring to the site most similar to the ecology and hydrology of undisturbed open raised bog habitat in Ireland.
- 649 Manuscript changes: As per Reviewer 1's comments, the site description has been clarified in the650 abstract.
- 651 L7 Calluna vulgaris

648

- Response: The *Calluna vulgaris* refers to a species of plant. In the manuscript the CallunaCutover refers to specific ecotype.
- Manuscript changes: The named of specific ecotypes have been removed from the abstract toreduce confusion, as per Comment 1 from Reviewer 1.
- 656 L14 Why upper cases for Temperate and Boreal?
- 657 Response: Indeed.
- Manuscript changes: Temperate and boreal has been changed to lower case throughout themanuscript where appropriate.
- 660 L15 ": : : in this study and was: : :"
- 661 Response: Ahh, there is an extra word in this line.
- 662 Manuscript changes: The word "was" has been removed from this line.
- 663 L18 Add C after carbon and use thereafter in the manuscript
- 664 Response: Agreed.
- 665 Manuscript changes: The suggested change has been applied to the manuscript.
- 666 L26 95% is very high 80 to 85% is generally cited
- 667 95% refers to the percent of raised bogs that have been degraded in Ireland rather than the total
- amount of peatlands, this has been clarified in the manuscript.

- 669 L31 Throughout the manuscript, you use intact, natural, near-natural and pristine interchangeably
- 670 please select one and keep to it.
- 671 Response: This is a good suggestion.
- Manuscript changes: The term "intact" has been used in reference to peatlands which have not been
 mined or drained. The term "natural" has been used in reference to those peatlands which are not
- 674 actively being used for agriculture, intensive grazing, mining, forestry, etc.
- 675 L54 Consider Fritz et al. (2011) New Phytologist. 190, 398-408.
- Response: I was not aware of this publication. The findings from this publication are somewhatcontradictory with this line of the introduction.
- 678 Manuscript changes: This line has been changed to include the findings from Fitz et al., 2011.
- 679 L75 Please use primary source as reference; Myhre et al (2013) Climate Change 2013:
- 680 The Physical Science Basis Contribution of Working Group I to the Fifth Assessment
- 681 Report of the Intergovernmental Panel on Climate Change
- 682 Response: Yes, good point.
- 683 Manuscript changes: The suggested primary reference is used
- L77 I would not be inclined to use specific data here; why Helfter et al. and not McVeighet al. for instance?
- Response: Including specific data here is helpful for putting the present work in context. Helftler etal. is used as a source because they include a table of reported literature values.
- Manuscript changes: The use of this source is clarified by adding "literature compilation fromHelftler..."
- 690 L78 The CH4 values derived by Wilson et al (2016) include rewetted sites, so are not
- 691 suitable here, however there are lots of CH4 studies you could cite instead, e.g. Laine
- 692 et al. (2007) Plant and Soil. 299, 181-193; Green and Baird (2017) Mires and Peat.
- 693 **19**, Article 09.
- 694 Reponse: That is a good point.
- 695 Manuscript changes: The value of CH4 emissions for intact peatlands in this line of the
- introduction has been removed based on comments on L77 and L78. Assigning a typical CH4
 flux value may not be helpful in this line of the introduction because of the high variability reported
 in literature.
- 699 L82 Change methane to CH4; L90 Change methane to CH4
- 700 Response: OK

- Manuscript changes: The use of "methane" has been replaced by the chemical symbol throughout
 the manuscript after initially defining it.
- 703 L89 Bain et al (2011) is not in reference list
- 704 Response: OK
- 705 Manuscript changes: This citation has been added to the reference list.
- 706 L101 Consider Barry et al. (2016) Aquatic Sciences. 78, 541-560
- 707 Response: OK
- 708 Maunscript changes: This article has been added as a reference here.
- 709 L109 "recovering" is a new term to me. Do you mean rehabilitated?
- Response: Recovering means bogs which have had no definite action taken to rehabilitate them.
 They have just stopped being mined and left. So, the term "rehabilitated" is not correct.
- 712
 713 Manuscript changes: In this line "abandoned" has been used in place of "recovering". In the
 714 manuscript, this term has now been defined here as the "spontaneous revegetation of mined
- peatlands" (From Poulin et al., 2005), which have had no definite action taken to rehabilitate them.

L129 What do you mean by "natural peatland area"? The site is obviously not natural
 and the surrounding landscape is mainly grassland and some forestry. Delete.

- 718 Response: OK, The site is a natural area with a variety of plant communities some of which is 719 peatland in various degrees of degradation.
- Manuscript changes: The wording has been changed from "natural peatland area" to "peatlandand natural area".
- 722 L130 See earlier comment regarding harvesting.
- 723 Response: As in above comment.
- 724 Manuscript changes: As in above comment.
- 725 L132 Met station location? 1980-2010?
- 726 Response: Ok, this could be clarified.

727 Manuscript changes: The 30 year average (1981-2010) meteorological mean annual rainfall and 728 temp from (Walsh, 2012). Have been used in the site description instead of the shorter period of 729 record from nearby weather stations.

- 730 L134 1980s; L140 1970s and 1960s 731
- 732 Response: OK

722	
734	Manuscript changes: The apostrophe has been removed from all decade numbers.
735	
736	Fig. 1 The quality of Fig. 1 is poor, although this might be due to the pdf. The legend
737	on the elevation map is hard to determine.
738	
739	Response: Noted.
740	
741	Manuscript changes: A higher resolution figure has been used for the final submission.
742	
743	Table 1. Check font sizes and spelling of Sphagnum and Eriophorum
744	
745	Response: OK, good catch.
746	
747	Manuscript changes: These typo mistakes have been corrected.
748	
749	L188 Where was the sensor located?
750	
751	Response: Sensor was located inside of the chamber.
752	
/53	Manuscript changes: This detail is added to the manuscript.
754 755	106 Stainlean staal collers
755	L 196 Stainless steel collars – as written it appears as it you only had one
750	Response: Agreed
758	Response. Agreed.
759	Manuscript changes: "collars" instead of "collar" The word was pluralized
760	
761	1 197 Where was the water trough located?
762	
763	Response: Along the top edge.
764	
765	Manuscript changes: Added "along the top edge" to this sentence
766	
767	L198 What does "constructed in house: : :" mean?
768	
769	Response: This phrase means that the chambers were built by the authors and department
770	technicians.
771	
772	Manuscript changes: The phrase "in house" was changed to "in-house" as it should be.
773	
774	L207 and area, volume of collar/chamber?
775	
776	Response: The dimensions of the chamber are given above in line 198, but the area and
777	volume can be stated more explicitly.
778	··· ··· -··· · · · · · · · ·
779	Manuscript changes: This information has been added to the manuscript.

L208 A constant temperature or a temperature similar to ambient temperature? The former could be 50C for example and fit your criteria but would be meaningless for gas flux calculations and subsequent modelling. Response: Reviewer 2 seems to have mis-understood the meaning of this sentence. The temperature was kept constant over the chamber closure equal to the initial ambient temperature. Manuscript changes: The phrase "over the chamber closure time" was added to the sentence as a clarifier. L213 State flux sign convention used in this study. Response: Yes, that needs to be included. Manuscript changes: The following sentence was added after line 213 "For this study, a positive sign convention is indicates a net loss of carbon from the peatland." L214 describe criteria used for quality checking. Response: This data was quality checked to ensure that the change in CO₂ concentration over the chamber closure was monotonic, and physical parameters such as temperature and PPFD did not change substantially over the closure. Manuscript changes: The following sentence describing guality checkin criteria was added to the manuscript: "...quality checked to ensure that the change in CO₂ concentration over the chamber closure was monotonic and that the PPFD did not change by more than 50 $\mu mol\ m^{-2}\,s^{-1}$ over the chamber closure." L212 How many samples? Response: "...generally under full ambient light, 1-2 light other partial shading light levels, and a completely shaded measurement." Manuscript changes: The sentence in the response was added to the manuscript. L259-260 CH4 fluxes have a strong diurnal variability in some plant types. Response: The data from Pypker et al., 2013 supports the claim of a low diurnal variability in CH₄ flux compared to CO₂ flux for bog species. This line (259-260) was removed because it does not seem necessary here. The point is that CH₄ measurements taken during the daytime only were used to represent the overall CH₄ fluxes. By contrast, the CO₂ flux is strongly controlled by light level and thus had to be modelled on a shorter (hourly) time step because light level is obviously changing throughout the day.

Manuscript changes: The first sentence of section 2.6 (Line 259-260) was removed because it is not really necessary for the method description. L337 Unusual long-term dates; 1980-2010 more usual. Response: This is the data range available at the nearby weather station. Manuscript changes: The data used for annual rainfall comparisons to study period was from the Ballyroan (oatlands) Met Éirrean daily rainfall station with a period of record from 2001 to present. The average annual temperature value was changed in the manuscript to the 1980 to 2010 average temperature based on Walsh (2012). Fig. 2b Degree symbol missing on y axis. Response: Good catch. Manuscript changes: The suggested changes are made to the figure. Fig 5b The use of a 1:1 line would provide better information as to the performance of the model Response: That is a good idea. Manuscript changes: The suggested changes are made to the figure. Figs. 4,6, 9 and 10 Check spelling of plant names. Response: OK Manuscript changes: Plant name spelling mistakes are corrected in the figures. Section 3.4 Only use "significant" when related to statistical comparisons. Response: Yes, that is already the case. Every instance of the word "significant" in the manuscript refers to statistical comparisons. Manuscript changes: None in response to this comment but more statistical information is included in the text in line with Reviewer 1's comments. This makes the use of the term significant is clearer. L407 GWP Response: Yes, Good catch. Manuscript changes: One instance of "GPW" changed to "GWP." L407 tonnes (and thereafter)

Response: Yes, Good catch. Manuscript changes: Two instances of "tons" changed to "tonnes" in the manuscript. Fig. 10 Given that MAWT is used as a predictor variable in the models, these observations are not independent (especially as the collars were lumped together for modelling) and I am far from convinced as to their value in this manuscript. Response: Hourly water table (as opposed to MAWT) data was used as a parameter in modelling NEE, but not CH₄ flux. The NEE was modelled using collar specific empirical models fit to field data, and water table had a minor impact on the overall modelled results. Thus, the changes in hourly water table help explain the variability in NEE but do not strongly control the modelled annual NEE. I argue that these are independent variables and the trends in these plots are useful results for comparing with other studies. Manuscript changes: The plots in figure 10 were changed to include different symbols for the five ecotypes (as per comment by Reviewer 1), which improves the value of this figure in the manuscript. L436 Consider Nugent et al (2018) Global Change Biology, https://doi.org/10.1111/gcb.14449 Response: This study was not published at the time of initial submission, but is very relevant. Manuscript changes: This suggested publication has been included and cited in section 4.1. L477 1960s Response: OK Manuscript changes: "1960's" changes to "1960s" as per previous comment L484/485 join the sentences Response: Yes, this should be one sentence. Manuscript changes: Line 484/485 have been joined as one sentence. L490 five decades Response: OK Manuscript changes: "5 decades" changed to "five decades" Section 4.2 I am not sure of the value of this section. The manuscript is already quite long and this seems superfluous (especially given the extensive data set in the Supplementary). If it really must be kept, then it should be moved to the Results section

and then discussed here. Response: After re-reading the manuscript, I agree that much of this discussion is unnecessary and a little off topic for the main findings of the paper. However, the literature comparisons in fig 11 and 12 are valuable as are the extensive data sets behind them included in the supplementary section. This information puts the study in a broader context. Manuscript changes: Figure 11 and Figure 12 have been moved to the results section, and the discussion in section 4.2 has been substantially shortened. L515 Natural or semi-natural = intact? Response: See response to comment on Line 31, above. Manuscript changes: As per above comment. L539 What does "Restoration of high quality peatland ecology" mean? Response: I can see how this is a bit confusing. Manuscript changes: This "high quality" has been changed to "Sphagnum dominated." Though, much of this section has been re-written. L576 Not so: In Saarnio (2007) Boreal Environment Research. 12, 101-113, 15% of growing season flux is emitted in the non-growing season. This approach was also used by IPCC Wetlands Supplement (2014) Response: That is a good point. Manuscript changes: The results reported in figure 11 and 12 remain the same, but a cautionary note has been included on the comparison between growing season and year round data, including reference to Saarnio (2007). L577 What is "inter flux"? Response: A typo: winter flux Manuscript changes: This has been changed in the manuscript. L608/609 "The impact of these things.." is very vague. Response: Yes, this line is "vague" and can be clarified. Manuscript changes: This line has been changed to "the impact of these actions on C balance, CH₄ flux, and GWP must be considered" L628 and also due the pulse effect. Response: This comment does not seem match the text in this line.

966 Manuscript changes: No changes. 967 968 L630 Why not quote Frolking directly? 969 Response: Yes, that is a good point. I like how it is phrased by Evans et al. 970 971 Manuscript changes: The quote from Evans et al., is left in the text but this line has been 972 shortened to exclude 'to quote from Evans et al. (2016), "as noted by Frolking et al. (2006)," The 973 quotation marks remain to indicate a direct quote and both citations are listed as references. 974 975 Conclusion This reads as a summary not as a conclusion; what does your study mean 976 for land managers, policy makers etc? 977 978 Response: That is good advice. 979 980 Manuscript changes: The conclusion has been re-written to focus less on summary and more 981 on important findings form this work. 982 983 L668 "best models" = the ones you used? 984 Response: Yes. 985 986 Manuscript changes: The wording "best models" has been changed in this line to "the models 987 used." 988 989 990 Supplementary: Check spellings throughout 991 992 Response: OK 993 994 Manuscript changes: Section S1 has been re-worked and edited in response to both Reviewers' 995 comments as there seems to be some confusion from both Reviewers. The supplemental 996 section previously read as a prosaic exposition of the various models tested as part of this work. 997 It has been changed to simply give detailed information on the models used, and other models 998 tested are listed in a table. 999 1000 Tables S1 and S2 Please provide the standard error (SE) associated with each parameter 1001 estimate. Given the large number of parameters in the models, I would suspect 1002 that the SE has been very high and would invalidate your approach. 1003 1004 Response: Including the SE of the model parameters was also suggested by Reviewer 1. That 1005 has been included in these tables. 1006 1007 Yes, there are a large number of fitting parameters. The same GPP and ER models were used 1008 for all 29 collars, but the model fit parameters were determined empirically for each of the collars individually. For the GPP modeling, there was sufficient field data to justify a model with 1009 1010 5 empirical fitting parameters. For the majority of the collars, all of the GPP model fit parameters are significant to 95% confidence. This model was designed in such a way that the effect of 1011

1012 modelled parameters reduces to zero as the explanatory value of the additional variables

1013 decreases such that insignificant model parameters have a minor impact on the modelled

1014 results. For the ER modeling, the sample size is smaller and the point that Reviewer 2 is making 1015 is quite valid. There had been some debate among the authors as to which of two models to use

1015 for ER, so much so, that information was included on both of these models in the supplemental

1017 section in the original manuscript draft. Thus, the simpler ER model (with 3 fitting parameters

1018 compared to 5 fitting parameters) has been used to calculate ER in the updated manuscript.

1019
1020 Manuscript changes: Additional statistical information has been included in the table S1 and S2
1021 of the model fit parameters. The ER has been calculated by a different and simpler model in the
1022 revised manuscript, which had been previously described in the supplemental section but not
1023 used in the manuscript and was taken directly from Wilson et al., 2016. Also, the text of this
1024 supplemental section has been substantially revised to clarify confusion expressed by both
1025 Reviewers.

- 1025 1
- 1027

1028	<u>List o</u>	f Major Changes to Manuscript:
1029	1.	The ER was modelled using a simpler model with fewer fitting parameters based on the
1030		suggestion of Reviewer 2. This resulted in minor changes in the reported NEE. However, the
1031		major conclusions of the paper remained unchanged. All NEE, C balance, and GWP data was
1032		updated based on this different modelling approach.
1033	2.	The process for modelling for NEE and CH4 flux was clarified in the main body of the text
1034		and in Supplemental Section 1, based on the Reviewers comments. Further statistical
1035		information was included in the Supplemental material for the models used.
1036	3.	Cautionary notes were included for CH ₄ data in 2016, which was estimated rather than
1037		measured because of equipment issues, based on suggestions from Reviewer 1.
1038	4.	The site description including site history and ecotype description was clarified in the
1039		manuscript based on comments from both Reviewers.
1040	5.	Although the main points in the discussion section remain largely unchanged, the

1041discussion section was re-written to be much more concise and clear based on comments1042from both Reviewers.

1045 **Revised Manuscript with track changes**

Title Page

Title: Carbon balance of a restored and cutover raised bog: Implications for restoration and

comparisonComparison to global trends

Running Head: C BALANCE Of A RESTORED AND CUTOVER BOG

^{10436.} The abstract and conclusion sections were overhauled based on comments from both1044Reviewers.

Authors: Michael M. Swenson¹; Shane Regan¹; Dirk T. H. Bremmers¹; Jenna Lawless¹; Matthew Saunders²; Laurence W. Gill¹

Institution:

- 1. Department of Civil, Structural, and Environmental Engineering, Trinity College Dublin, College Green, Dublin 2, Ireland
- 2. Department of Botany, Trinity College Dublin, College Green, Dublin 2, Ireland

Corresponding Author: Michael Swenson, Phone: +353 892013544, Email: swensonm@tcd.ie

Key Words: carbon dioxide, peatland restoration, methane, global warming potential, bogs. DIC.

DOC, carbon balance

Paper Type: Primary Research

1046	Abstract
1047	The net ecosystem exchange (NEE) and methane (CH ₄) flux were measured by chamber
1048	measurements for five distinct ecotypes (areas with unique eco-hydrological characteristics) at
1049	Abbeyleix Bog in the Irish midlands over a two year period. The ecotypes ranged from those with
1050	high quality peat forming vegetation to communities indicative of degraded, drained conditions.
1051	Three of these ecotypes were located in an area where peat was extracted by hand and then
1052	abandoned and left to revegetate naturally at least 50 years prior to the start of the study. Two of
1053	the ecotypes were located on an adjacent raised bog, which although never mined for peat, was
1054	impacted by shallow drainage and then restored (by drain blocking) 6 years prior to the start of the
1055	study. Other All major aspects of the carbon (C) balance, including - net ecosystem exchange (NEE),
1056	CH4-flux, losses of dissolved organic carbon (DOC), and open
1057	water CO_2 evasion — were <u>quantified</u> measured for several distinct ecotypes in a <u>catchment area at</u>
1058	the study siterestored unharvested raised bog and an adjacent historically abandoned cutover bog
1059	over the same, two year period. The ecotype average annual ecotype <u>Cearbon</u> balance ranged from
1060	a net <u>C</u> at the Sub-Central ecotype, with eco-hydrological characteristics most similar to a high
1061	quality raised bog, was the largest net carbon sink of -32,58 ±60,65 g C m ⁻² yr ⁻¹ , comparable to
1062	studies of intact peatlands, to $_{a}$ while the Calluna Cutover ecotype, with the characteristics of a
1063	substantial <u>Cwell-drained peatland site was the largest net carbon</u> source of <u>+239-205</u> ±803 g C m ⁻²
1064	yr-1_ with NEE being the most variable component of the C- The annual carbon balance between the
1065	five ecotypes. Ecotype annual CH ₄ flux was ranged from 2.7 ±1.4 g C-CH ₄ m ⁻² yr ⁻¹ to 14.2 ±4.8 g C-CH ₄
1066	$m^{-2}yr^{-1}$. Average annual aquatic C losses were 14.4 g C $m^{-2}yr^{-1}$ with DOC , DIC, and CO $_2$ evasion of
1067	10.4 g C m ⁻² yr ⁻¹ , 1.3 g C m ⁻² yr ⁻¹ , and 2.7 g C m ⁻² yr ⁻¹ , respectively. A statistically significant negative
1068	correlation from all ecotype study locations was found between the to be controlled by mean annual
1	

Formatted: Font color: Green

-	Formatted: style	Add space between paragraphs of the same
λ	Formatted:	Font color: Text 1
	Formatted:	Font color: Text 1
	Formatted:	Font color: Text 1, English (United States)
	Formatted:	Font color: Text 1, English (United States)
	Formatted:	Font color: Text 1
	Formatted:	Font color: Text 1
	Formatted:	Font color: Text 1
	Formatted:	Font color: Text 1, English (United States)
	Formatted:	Font color: Text 1
	Formatted:	Font color: Text 1, English (United States)
//	Formatted:	Font color: Text 1
//	Formatted:	Font color: Text 1, English (United States)
1	Formatted:	Font color: Text 1
Ŋ	Formatted:	Font color: Text 1, English (United States)
1	Formatted:	Font color: Text 1
//	Formatted:	Font color: Text 1, English (United States)
λ	Formatted:	Font color: Text 1
λ	Formatted:	Font color: Text 1
1	Formatted:	Font color: Text 1
λ	Formatted:	Font color: Text 1
Λ	Formatted:	Font: Not Bold, Font color: Text 1
1	Formatted:	Font color: Text 1
1	Formatted:	Font: Not Bold, Font color: Text 1
	Formatted:	Font color: Text 1
	Formatted:	Font: Not Bold, Font color: Text 1
	Formatted:	Font color: Text 1
	Formatted:	Font: Not Bold, Font color: Text I
	Formatted:	Font color: Text 1
$\langle \rangle$	Formatted:	Font: Not Bold, Font color: Text I
	Formatted:	Font Color: Text 1
	Formatted:	Font color: Text 1
	Formatted:	Font: Not Rold Font color: Text 1
1	Formatted:	Font color: Text 1
1	Formatted	Font: Not Bold Font color: Text 1
Y	Formatted:	Font color: Text 1
1	i ormatted:	TOTIL COLOR. TEXT I

1069	water table (MAWT) and the plot scale NEE but not the global warming potential (GWP). However,
1070	a). Also, significant negative correlation was observed between the plot scale global warming
1071	potential and percent Sphagnum moss cover and the GWP, highlighting the importance of
1072	regenerating this keystone genus as a climate change mitigation strategy in peatland restoration.
1073	The data from this study was then compared to the rapidly growing number of peatland \underline{C} carbon
1074	balance studies across $\underline{boreal} \underline{Boreal}$ and $\underline{temperate} \overline{Temperate}$ regions. The trend in NEE and CH ₄
1075	flux with respect to MAWT was compared for the five ecotypes in this study was and literature data
1076	from degraded/restored <u>/recovering</u> peatlands, intact peatlands, and bare peat sites.
1077	1. Introduction
1078	Peatlands are important to the global carbon cycle as they act as significant important stores of
1079	carbon (C) and sources or sinks of carbon dioxide (CO_2) and methane (CH_4) (Gorham 1991). Despite
1080	covering only ${\sim}3\%$ of the earth's terrestrial surface, it is estimated that between 500 and 700
1081	billion tonnes of C are stored as organic soil within the global peatland expanse (Leifeld and
1082	Menichetti, 2018; Paige and Baird, 2016; Yu et al., 2010; Paige and Baird, 2016; Leifeld and
1083	Menichetti. 2018). However, at present, human activity is either draining or mining $\sim 10\%$ of global
1084	peatlands, transforming them from long-term C sinks into sources (Joosten, 2010; Leifeld and
1085	Menichetti $_{a}$ 2018). In Europe, a high percentage (~46%) of the remaining peatlands are degraded
1086	to the point whereby peat is no longer actively being formed (Tanneberger et al. 2017), and in
1087	Ireland whilst \sim 20% of the land area is peatland, over 95% of $\frac{14}{100}$ raised bogs has been degraded
1088	through anthropogenic activities such as drainage for agriculture, forestry and peat extraction
1089	(Connolly and Holden, <u>20092017;</u> Connolly and Holden, <u>20172009</u>).
1090	

1091	The <u>Ccarbon</u> cycle and greenhouse gas (GHG) dynamics of degraded peatlands <u>areis</u> often		
1092	substantially different compared to <u>intactpristine</u> peatlands (<u>Baird et al., 2009;</u> Blodau, 2002 ; Baird		
1093	et al., 2009) making them significant with respect to national and global GHG budgets and emission		
1094	reporting (<u>Billet et al., 2010;</u> Wilson et al., <u>al.,</u> 2013; <u>Billet et al. 2010</u>). Moreover, degraded		
1095	peatlands can continue to emit C for decades to centuries following drainage, and current estimates		
1096	are that degraded peatlands store globally ${\sim}80.8$ Gt soil C and emit ${\sim}1.91$ (0.31–3.38) Gt CO $_2$ -eq.		
1097	yr ⁻¹ (Leifeld and Menichetti-2018). Soil <u>Cearbon</u> sequestration through peatland restoration is		
1098	increasingly recognized as an important strategy to tackle climate change (Dise, 2009; Leifeld and		
1099	Menichetti, 2018), and in recent years there has been a substantial increase in money being		
1100	invested in peatland projects across the world (Anderson et al., 2017). With the increase in global	 Forma	atted: F
1101	active peatland management, there is a need for more studies examining how drainage and		
1102	restoration alters the eco-hydrology of degraded peatlands systems and their <u>C</u> earbon balances		
1103	(Baird et al., 2009; Young et al., 2017).		
1104			
1105	The land atmosphere CO_2 flux, or net ecosystem exchange (NEE) in peatlands is related to water		
1106	table level, as inundation creates anaerobic conditions which suppresses the decomposition of soil		
1107	organic matter (Lain et al., 1996). This-High water table can result in a net CO_2 sink (negative NEE)		
1108	whereas a low water table can result in a net CO_2 source (positive NEE). Thus, water table has been		
1109	correlated to spatial <u>({Strack et al., 2014; J</u> unkurst and Fielder, 2007; Silvola et al., 1996 <u>; Strack et</u>		
1110	al., 2014) and temporal (<u>Helftler et al., 2015; Lund et al., 2012;</u> McVeigh et al., 2014; Peichl et al.,		
1111	2014; Lund et al., 2012; Strachan et al., 2016 ; Helftler et al., 2015) variation in the NEE of both		
1112	intact and degraded peatlands. However, anaerobic conditions due to a high water table can also		
1113	increase the land atmosphere CH $_4$ flux (Frenzel and Karofeld, 2000). Both NEE and CH $_4$ flux are also		
1			

Formatted: Font: Not Italic

1114	affected by plant ecology, as the extent of aerenchymatous vegetation cover such as Eriophorum	
1115	<i>spp.</i> is correlated with increased CH ₄ flux (Cooper et- <u>alal</u> 2014; Frenzel and Karofeld, 2000 , ; Gray	
1116	<u>et al., 2013: McNamera et al., 2008:</u> Waddington and Day, 2007 , McNamera et al. 2008, Gray et al.	
1117	2013), although this effect can possibly be reversed if aerenchymatous vegetation aerates the	
1118	saturated soil (Fritz et al., 2011). Sphagnum spp., however, often exhibit lower CH4 fluxes (Frenzel	
1119	and Rudolph et-al., 1998) due to a symbiotic relationship with methanotrophic bacteria	
1120	(Raghoebarsing et al., 2005). Also, Sphagnum spp. coverage may correspond to an increase in the	
1121	CO ₂ sink function of <u>"</u> natural" sites (Strack et- <u>al.</u> 2016) as much of the peat in northern	
1122	peatlands is derived from this genus (<u>Bacon et al., 2017; </u> Vitt et al., 2000 , Bacon et al., 2017).	
1123	Furthermore, the extent of vegetation cover is an important factor affecting the NEE (Strack et al.,	
1124	2016; Tuitili et al., 1999; Waddington and Day, 2010 ; Tuitili et al., 1999, Strack et al., 2016). This is	
1125	relevant to degraded and restored peatlands because minedharvested peatlands can have large	
1126	areas of bare peat (Wilson et al., 2015).	
1127		
1128	Climatic variables such as the frequency of cloudiness, temperature, and length of growing season	
1129	have also been found to be important controlling factors of NEE (Charman et al., 2013; : Helftler et	
1130	<u>al., 2015: McVeigh et al., 2014:</u> Zhaojun et al., 2011 ; McVeigh et al., 2014; Helftler et al., 2015).	
1131	However, climate variables cannot be controlled at a specific site, and therefore, may not be as	
1132	relevant when considering climate change mitigation actions.	
1133		
1134	Although N_2O emissions can be an important aspect of the GHG emissions from organic soils (Pärn	Formatted: Font: Cambria
1135	et .al., al., 2018), this study focuses only on aspects of the <u>Cearbon</u> balance. In low nutrient, <u>non-</u>	
1136	agricultural,semi-natural sites like in this study, N2O emissions are typically low (Haddaway et al.,	

1137	2014) but can be higher for deeply drained (Vanselow-Algan et al., 2015) or high nutrient sites
1138	(Danevčič et al., 2010). The radiative impact of different GHGs can be normalized by converting
1139	them into a CO_2 equivalents in terms of the 100-year global warming potential (GWP) in tonnes
1140	CO_2 -eq ha ⁻¹ yr ⁻¹ : over a hundred year horizon, $CO_2 = 1$, $CH_4 = 34$, and $N_2O = 298$. (after Wilson et al.,
1141	2016b from-IPCC 2013 recommendations (Myhre and Shindell, 20132014).
1142	
1143	Intact peatlands are a net CO_2 sink [typical annual average NEE range -31.9 to -66 g C- CO_2 m ⁻² yr ⁻¹ ,
1144	from <u>literature data compiled by</u> Helftler et al., (al. (2015)] and a CH ₄ source <u>.</u> [average of 9.2 g C-CH ₄
1145	m ⁻² yr ⁻¹ , (95% Cl 0.3 to 44.5 g C-CH ₄ m ⁻² yr ⁻¹) for low nutrient temperate peatlands from Wilson et
1146	al., (2016a)]. By contrast, drained peatlands are a CO_2 source [the average annual NEE of +81 to
1147	+151 g C-CO ₂ m ⁻² yr ⁻¹ reported in Renou-Wilson et al., (al. (2018a) is typical] with very low CH_4
1148	emissions (Baird et al., 2009). However, it should be noted that this can be offset by high
1149	$\underline{CH_4}$ methane emissions from active drains of ~60 g CH ₄ m ⁻² yr ⁻¹ (Evans et al., 2016).
1150	Degraded/drained peatlands typically have a larger GWP compared to intactnatural sites or
1151	rewetted sites because a large positive NEE outweighs the reduced CH_4 emissions (RenauRenou-
1152	Wilson et al., 2018a). The NEE and CH_4 fluxes from restored peatlands can be similar to
1153	<u>intactpristine</u> peatlands, but exhibit greater variability (<u>Strack et al., 2016;</u> Wilson et al., 2016a ;
1154	Strack et al., 2016).
1155	
1156	Several studies have suggested the hypothesis that time since restoration is an important factor in
1157	the GWP of peatlands (Augustin & Joosten, 2007; Bain et al., 2011; Waddington and Day 2007). In

particular, the restored sites may go through an initial period of high $\underline{CH_4}$ methane production and

high GWP because restored peatlands are often rapidly colonized by aerenchymatous vegetation,

1158

1159

1160	such as <i>Eriophorum spp.</i> (<u>Cooper et al., 2014;</u> Waddington and Day, 2007 , Cooper et al. 2014). This	
1161	is followed by a period of decreasing GWP as mosses and other peatland species become	
1162	established (Augustin & Joosten, 2007; Bain et al., 2011). To test this hypothesis, more data is	
1163	needed for peatlands "restored more than 10 years previously" (Bacon et al., 2017). Also, it is	
1164	valuable to have studies which directly compare adjacent raised bog and cutover bogsites with	
1165	<u>contrasting different</u> site histories.	
1166		
1167	Aquatic losses of <u>Cearbon</u> include dissolved organic carbon (DOC) and dissolved inorganic carbon	
1168	(DIC) in runoff as well as CO_2 evasion from open water. These have not been measured as	
1169	frequently as NEE and CH $_4$ flux (Dinsmore et al., 2010), but can represent a key component of the	
1170	net ecosystem <u>Ccarbon</u> budget (NECB) (<u>Barry et al., 2016;</u> Kindler et al., 2011 <u>).</u> , Ignoring the	
1171	aquatic <u>C</u> carbon losses would result in an overestimate of the <u>C</u> carbon sink function of peatlands	
1172	(Billet et al., al., 2010). The DOC losses from temperate peatlands range from 5-36 g C m ⁻² yr ⁻¹ and	
1173	are lower for boreal peatlands (Range: 4-13 g C m ⁻² yr ⁻¹) (Evans et al., 2016). Few studies have	
1174	simultaneously concurrently measured a complete NECB for a peatland including the DIC flux	
1175	(Nilsson et <u>alal</u> 2008) and CO ₂ evasion from open water (Dinsmore et <u>alal</u> 2010), even though	
1176	CO_2 evasion has been found to be important to the overall <u>Cearbon</u> balance , with a reported 2-year	
1177	average of 12.8 g C m ⁻² yr ⁻¹ for an intact peatland in Scotland (Dinsmore et al., al., 2010). Further,	
1178	these studies have focused on intact rather than <u>degraded or</u> restored or recovering peatlands.	
1179	Despite the considerable amount of recent scientific work on the greenhouse emissions from	Formatted: Font color: Light Blue
1180	peatlands, few previous studies have quantified the carbon balance of old abandoned cutover	
1181	peatlands (Bacon et al., 2017). Many studies have focused on more recently abandoned/restored	
1182	degraded bogs. This may be because of the recent change in attitudes towards peatland	
1183	conservation and restoration (Holden et al., 2004), which means that many bog restoration projects	
1		

1184	are relatively recent. The focus on the cutover ecotypes investigated in this study is therefore	
1185	valuable because it the potential future climate impact of abandoned cutover bogs under the "do-	
1186	nothing" restoration approach (Holden et al., 2004). This is especially true in Ireland because	
1187	substantial areas of the Irish midland bogs are currently used in industrial peat harvesting, which is	
1188	scheduled to cease in the coming decades (Bord na Móna website).	
1189		
1190		
1191	The growing body of scientific research on the GHG and <u>Cearbon</u> balance of peatlands and the	
1192	importance to global climate change means that it is increasingly important to consider new data in	
1193	the context of global studies . Often, boreal and temperate peatlands have similar conditions:	Formatted: Font color: Red
1194	hydrological (consistently high water table), chemical (high carbon, often acidic peat soils),	
1195	ecological (often ground cover of Sphagnum mosses, with low nutrient sedges and ericaceous	
1196	shrubs). As similar factors (i.e. water table, plant ecology, growing season length, soil temperature,	
1197	etc.) are often cited as controlling factors for greenhouse gas fluxes, it may be possible to identify	
1198	global trends across boreal and temperate peatlands (e.g. Junkurst and Fieldler 2007).	
1199		
1200	The goal of this work is to quantify all of the major aspects of the <u>Cearbon</u> balance (NEE, CH ₄ flux,	
1201	and aquatic losses as DOC, DIC, and CO ₂ evasion <u>) over a two year period for five distinct peatland</u>	
1202	ecotypes, which are located in two adjacent areas with contrasting site histories: a, for a historically	Formatted: Font color: Red
1203	(ca. 1960) abandoned peat extraction <mark>cutover bog</mark>, which was abandoned ca. 1960 compared to and	Formatted: Font color: Red
1204	an ambratraphic an adjacent mare recently rectared (2000) raised bog which was previously	Formatted: Font color: Red
1204	an onior ou opinc _e m aujacent more recently restored (2009) raised bog <u>, which was previously</u>	Formatted: Font color: Red
1205	impacted by drainage but not peat extraction, and then recently restored (in 2009), This study also	Formatted: Font color: Red
		Formatted: Font color: Red
1206	presents the measurements in the context of global studies on boreal and temperate peatlands with	Formatted: Font color: Red

1207	the aim of identifying trends in NEE and CH_4 flux based on land condition (drained, restored,
1208	intactpristine), mean annual water table, and vegetation cover (presence/lack of vegetation).
1209	
1210	2. Materials and Methods
1211	2.1 Site Description
1212	Abbeyleix Bog (N 52.89714, W 7.35022, elevation approx. 90 m) is a natural peatland <u>and natural</u>
1213	area in Co. Laois, Ireland. This site is located in a temperate, oceanic climate with a 30 year (1981–
1214	<u>2010) mean annual rainfall of 844923 mm and a mean annual temperature of 9.95° C (Walsh,</u>
1215	2012). Acidic, low nutrient, histosol, peat soils remain throughout the raised and cutover bog with
1216	5.0-8.5 m depth on the raised bog and 1-3 m depth on the cutover bog.
1217	
1218	Abbeyleix Bog containing contains both areas that were historically mined for peat (referred to here
1219	as cutover bog) as well as <u>un-harvested</u> raised <u>ombrotrophic</u> bog and , which was never mined for
1220	peat historically harvested cutover bog (Fig. 1). This site is located in a temperate, oceanic climate
1221	with a mean annual rainfall of 844 mm and a mean annual temperature of 9.9° C. Acidic, low
1222	nutrient, histosol, peat soils remain throughout the raised and cutover bog with 5.0–8.5 m depth on
1223	the raised bog and 1–3 m depth on the cutover bog. The areas of cutover bog were domestically
1224	mined for peat by hand cutting between the 1870s and 1960s, and then abandoned (i.e. no
1225	restoration or management works have occurred in this area post-extraction) (Ryle, 2013). Peat
1226	extraction never occurred on the remaining areas of raised bog; however, these areas The areas of
1227	raised bog w ere impacted by <u>a</u> surface drainage <u>network installed</u> in the <u>1980s</u> 1980's in
1228	preparation for industrial extraction <u>although the plans for industrial extraction of the peat were</u>
1229	later abandoned due to resistance from the local community. Throughout the raised bog, Ssurface 34

Figure 1. Location of the study site in Ireland; elevation map of Abbeyleix Bog (bottom right) showing the uncut raised bog surrounded by lower cutover bog and the higher esker complex to the east; an aerial photograph of the study site showing the weir catchment area, major drains, and sampling locations. In the aerial photograph the blocked surface drainage network on the raised bog can be seen as a set of horizontal lines and the historic railroad track can be seen as a vertical line through the middle of the photograph. <u>White circles represent the open water CO₂ evasion locations referred to as west high bog (WHB) and east high bog (EHB).</u>

Formatted: Subscript

1238	2.2 Sampling Locations		
1239	Five sampling locations were chosen to quantify GHG emissions, two on the uncut raised bog and		
1240	three on the cutover bog. These locations were chosen to represent 5 ecotypes, where the ecotype		
1241	refers to a distinct set of hydro-physical and ecological conditions. These 5 areas were chosen to		
1242	represent common ecotypes on raised and cutover bogs in Ireland with the help of ecologists from		
1243	the Irish National Parks and Wildlife Service (NPWS).		
1244			
1245	On the raised bog, one study location was chosen in a Sub-Central ecotype, which is defined as		
1246	having a continuous Sphagnum spp. cover and continuously high water table but lacking the micro-		
1247	topography of hummocks and hollows. The Sub-Central ecotype is the highest quality bog		
1248	conditions found at this site. Another study location was chosen in a Sub-Marginal ecotype, which is		
1249	defined as having a discontinuous Sphagnum spp. moss cover and a mixed presence of both		
1250	relatively wet and dry bog vegetation (Table 1). Further description of raised bog ecotypes can be		
1251	found in Schouten et .al. (2 002).		
1252			
1253	On the cutover bog, three sampling locations were chosen based on distinctions in the plant		
1254	ecology. The Sphagnum Cutover ecotype contains a continuous Sphagnum spp. cover (primarily as		
1255	hummocks of Sphagnum capilifolium with some Sphagnum subnitens and Sphagnum magellanicum)	Formatted: Font: Not Italic	
1256	and a mixture of plant species similar to the Sub-Central ecotype. The Calluna Cutover ecotype		
1257	contains a low diversity of plant species characteristic of a well-drained peat soil, dominated by		
1258	heather (Calluna vulgaris), bare peat, and lichens (mostly Cladonia portenosa) similar to a facebank		
1259	ecotype on a raised bog. The Eriophorum Cutover ecotype is dominated by Eriophorum		
1260	angustifolium, and contains a moderate percent (21-54% in this study) cover of Sphagnum spp.		
	26		
1261	(Table 1). All sampling locations were chosen in open areas, excluding any large trees, shrubs or		
------	--		
1262	other vegetation that could not fit under the gas sampling chambers (see Section 2.3). Six collars		
1263	were installed for each ecotype except for the Calluna Cutover ecotype where 5 collars were		
1264	installed. Collar locations were chosen to represent ecological variability within each ecotype. Plant		
1265	ecology was characterized for all collars in June 2016 and again in June 2017 with the help of		
1266	ecologists from the NPWS. The plant ecology was determined in terms of the percent cover of every		
1267	species present, averaged over the two years.		

Table 1. Summary of the plant ecology for each ecotype in this study. Data is reported as the mean (range) of the <u>5 or 6</u> collars within each ecotype.

	Percent	Percent				
	<u>Sphagnum</u> Spa	<u>Eriophorum</u> Eri				
	hgnum spp.	ophorium, spp.	Percent Calluna	Percent Total	-(Formatted: Font: 10 pt
Ecotype	cover	cover	vulgaris cover	Plant Cover	 	Formatted: Font: 10 pt
					Ì	Formatted: Font: 10 pt
Sphagnum Cutover	94 (78 to 100)	8 (3 to 23)	16 (5 to 30)	119 (103 to 134)	 -(Formatted: Font: 10 pt
Calluna Cutover	0	2 (0 to 3)	35 (8 to 50)	51 (18 to 68)	-(Formatted: Font: 10 pt
<u>Eriophorum</u> Eriophori						~
um Cutover	35 (21 to 54)	51 (21 to 80)	6 (2 to 15)	103 (77 to 140)	 -1	Formatted: Font: 10 pt
Sub-Marginal	57 (15 to 89)	13 (4 to 37)	9 (2 to 15)	100 (69 to 114)	_(Formatted: Font: 10 pt
Sub-Central	98 (93 to 100)	8 (1 to 39)	2 (0 to 8)	124 (107 to 151)		Formatted: Font: 10 pt

1269

1270 2.3 Meteorological Field Data

1271 On site, hourly measurements of air temperature and humidity (CS215 probe, Campbell Scientific,

1272 Loughborough, UK), rainfall (ARG100 Tipping Bucket Raingauge, Campbell Scientific), barometric

1273 pressure (PTB110 Barometer, Vaisala, Oyj, Finland), and soil temperature at 5 and 10 cm (PT100

1274 temperature probes, Campbell Scientific) were recorded by a CR1000 Data logger (Campbell

1275 Scientific). Soil temperature was also recorded at ecotypes by two LogBoxAA data loggers (Novus,

1276 Miami, USA). Hourly phreatic water table was recorded in 5 cm diameter stilling wells located at

1277	each of the five ecotypes by an Orphius Mini Level Logger (vented transducer, 0.1% error, OTT			
1278	Hydromet, Kempten, Germany). The ground elevation at the center of each collar was surveyed and			
1279	compared to the stilling well using an RTK GPS with \pm 2mm accuracy (TDL 450L, Trimble,			
1280	Sunnyvale, CA), and the hourly water table at each collar was offset by this difference in elevation.			
1281	All collars were located within 8 m of the ecotype water table logger.			
1282				
1283	The hourly light intensity was measured in the field in units of W/m^2 using an LP02 Pyranometer			
1284	(Hukseflux Thermal Sensors, Delft, Netherlands). This sensor was calibrated to the			
1285	photosynthetically active radiation (PPFD) sensor (TPR-2, PP Systems <u>), which recorded</u> in units of			
1286	(µmol m ⁻² s ⁻¹),) used during the field chamber -measurements <u>, located inside the chamber</u> . ² A linear			
1287	calibration between these two sensors was found for both sunny and overcast days (n=27, r ² =0.82),			
1288	which was used to convert hourly light intensity to hourly PPFD.			
1289				
1290	2.4 <u>CO2 and CH4</u> Greenhouse Gas Flux Measurements			
1291	The closed static chamber method was used to measure $\frac{\text{greenhouse}_{CO_2} \text{ and } CH_t}{CO_2}$ gas fluxes from all	F	Formatted: Subscript	
1292	plots, comparable to methods used in a large number of other studies, particularly on peatlands in	F	Formatted: Subscript	
1293	Ireland (e.g. Wilson et .al., <u>al.,</u> 2016b). <u>Stainless</u>A stainless steel <u>collars were</u>collar was permanently			
1294	installed 20 cm into the ground at least two weeks before the start of sampling. This collar had a			
1295	water trough <u>along the top edge</u> to ensure a suitable seal with the chamber. The chambers <u>were</u>			
1296	constructed in-house of clear polycarbonate for CO_2 measurements and opaque polystone tm for CH_4			
1297	and were equipped with a fan. Chambers were <u>{</u> of size 60 x 60 x 30 cm or 54 l total with a			
1298	measurement area of 0.36 m ² . equipped with a fan) were constructed in house of clear	F	Formatted: Superscript	
1299	polycarbonate for CO ₂ measurements and opaque polystone ^{tm} for CH ₄ - A system of wooden			
I	38			

1300	platforms was constructed 6-7 weeks before the start of sampling so that each collar could be
1301	accessed without putting pressure on the ground surface adjacent to it. Platforms were placed on
1302	piles to the base of the peat in the Sub-Central ecotype to prevent sinking into the bog. For CO_2 flux
1303	measurements, chambers were gently set on the collar and any pressure differential between the
1304	chamber headspace and the ambient atmosphere was vented using a 5 cm^2 hole set in the side of
1305	the chamber. The chamber was then sealed and the CO_2 concentration was recorded in the field
1306	every 15 seconds for a period of 105 seconds using an EGM-4 infra-red gas analyser (PP Systems,
1307	Amesbury, USA). CO_2 flux was calculated from the slope of the linear increase in CO_2 flux
1308	concentration over time. In order to maintain a constant temperature over the chamber closure
1309	time, particularly under high irradiance, a cooling system was installed in the this chamber, which
1310	pumped water from an ice bath through a small radiator located behind the fan to keep the variance
1311	of the chamber temperature to within 1°C during the measurement. The CO_2 flux measurement was
1312	repeated under a range of light levels by artificially shading the chamber, generally under full
1313	ambient light. 1-2 light other partial shading light levels, and a completely shaded measurement.
1314	Ecosystem respiration is assumed to be the CO_2 flux where when the light transmitted into the
1315	chamber was zero. For this study, a positive sign convention is indicates a net loss of C from the
1316	<u>peatland.</u> CO_2 flux measurements were conducted over 63 field days between January 2016 and
1317	August 2017. Over 29 collar locations, aA total of 3358 quality checked chamber measurements for
1318	CO_2 flux were conducted kept for modelling after quality checking to ensure that the change in CO_2
1319	concentration over the chamber closure was monotonic and that the PPFD did not change by more
1320	<u>than 50 µmol m⁻² s⁻¹ over the chamber closure. over 29 collar locations.</u>

1322	For CH_4 flux measurements, gas samples of 20 mL each were extracted from the chamber every 10	
1323	minutes beginning 5 minutes after the chamber had been placed on the collar and sealed. These	
1324	samples were later analyzed in the lab on an Agilent Gas Chromatograph instrument with a flame	
1325	ionization detector and a 30 m long Elite-plot Q GC column. Samples were collected over 17 field	
1326	days between April 2017 and January 2018.	
1327		
1328	Additionally, the soil temperature at 5 and 10 cm depth, water table adjacent to the collar, air	
1329	temperature, and light level inside the chamber (for ${ m CO}_2$ flux measurements) were recorded for	
1330	each chamber closure at the time of sampling.	
1331	2 5 NEE Modelling	
1551	2.5 NLL Modeling	
1332	The NEE was modelled on an hourly basis to account for the expected diurnal variations, which is	
1333	driven by <u>diurnal variations in PPFD and temperature for the daytime uptake and night time</u>	
1334	$\frac{1}{1}$ release, respectively light intensity and soil temperature. Field measurements of CO ₂ flux were used	
1335	to build collar specific empirical models of gross primary production (GPP) and ecosystem	Formatted: Font color: Text 1
1336	respiration (ER). Hourly measurements of field variables were input into these empirical models to	
1337	calculate hourly GPP and ER, which were then summed to calculate NEE.	
1338		
1839	Several different empirical models of GPP and ER were tested tobased on the fit the field data (see	Formatted: Font color: Text 1
		Formatted: Font color: Text 1
1340	Supplemental Section 1 <u>). which). These models were judged based on the sum of the squares of the</u>	Formatted: Font color: Text 1
1341	residuals and r ² values. Models were also checked to ensure that there was no bias or trend in the	
1 3 42	residuals with respect to independent variables. <u>Of the models tested, t</u> The GPP model in Eq. (1)	Formatted: Font color: Text 1
40.00		
1343	and EK model in Eq. [2] [from Wilson et al., 2016b] waswere found to best explain the variance in	Formatted: Font color: Text 1
1344	the field data for all of the 29 collars.	Formatted: Font color: Text 1
	40	Formatted: Font color: Text 1
•	41)	

11 1446 $GPP = -(a + c * sin(([DAY + 215)/365 * 2\pi)) * \frac{PAR}{PAR + h} exp(T_{5cm} * d) * (1 + WT * e)$ (1)Formatted: Font color: Text 11347Image: the set of	1345		
Formatted: Fort color: Text 1 Formatted: Fort: Not Bidd, Fort color: Tex	1846	$GPP = -(a + c * \sin((IDAY + 215)/365 * 2\pi)) * \frac{PAR}{PAR} * exp(T_{r} + d) * (1 + WT * e) $ (1)	Formatted: Font color: Text 1
1347Formatted: Fort color: Text 11348where a, b, c, d , and e are collar specific empirical fitted model parameters and JDAY is the Julian1349day of the year, PPFD is the light level in (µmol m² s²), T _{Scm} is the soil temperature at 5 cm, and WT1350is the water level in cm below ground surface at the collar. The r² yalue of the modelled versus1351measured data using Eq. (1) ranged between 0.77 and 0.94 for each of the 29 collars (Table S3).1352(Table S3):1353For ER, the model in Eq. (2) was found to best explain the variance in the field data for all of the 291355collars. For this ER model, the r² values ranged from 0.74 to 0.94 for each of the collars.1356 $ER = (a + b * WT) * exp \left(c * \left(\frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right)\right) \pm b + WT$ 1359+ exp $\left(c + \left(\frac{1}{(283.15 - 227.13)} - \frac{4}{(TK5cm - 227.13)}\right)\right) \pm b + WT$ 1360where a, b, c_{rf} and e_s are collar specific emperical fitting parameters, and other variables are as1361above. For this ER model, the r² values ranged from 0.63 to 0.92 for each of the 29 collars (Table S3)1362S4). (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model1363S4). (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model	10.10	(a + c - c - c - c - c - c - c - c - c - c	Formatted: Font color: Text 1
where <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , and <i>e</i> are collar specific empirical fitted model parameters and JDAY is the Julian day of the year, PPPD is the light level in (µmol m ² 5 ⁻¹), T _{sen} is the soil temperature at 5 cm, and WT is the water level in cm below ground surface at the collar. The r ² yalue of the modelled versus measured data using Eq. (1) ranged between 0.77 and 0.94 for each of the 29 collars (<u>Table S3</u>), (<u>Table S3</u>).	1847		Formatted: Font color: Text 1
where <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , and <i>e</i> are collar specific empirical fitted model parameters and JDAY is the Julian day of the year, PPFD is the light level in (µmol m ² s ⁻¹), T _{som} is the soil temperature at 5 cm, and WT is the water level in cm below ground surface at the collar. The r ² yalue of the modelled versus measured data using Eq. (1) ranged between 0.77 and 0.94 for each of the 29 collars (Table S3), (Table S3).			Formatted: Font color: Text 1
1449day of the year, PPFD is the light level in (µmol m²s²1), T _{scm} is the soil temperature at 5 cm, and WTFormatted: Font color: Text 11350is the water level in cm below ground surface at the collar. The r² yalue of the modelled versusFormatted: Font color: Text 11351measured data using Eq. (1) ranged between 0.77 and 0.94 for each of the 29 collars (Table S3).Formatted: Font color: Text 11352(Table S3).1353For ER, the model in Eq. (2) was found to best explain the variance in the field data for all of the 29Formatted: Font color: Text 11355collars. For this ER model, the r² values ranged from 0.74 to 0.94 for each of the collars.Formatted: Font color: Text 11356 $ER = (a + b * WT) * \exp\left(c * \left(\frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right)\right) ERFormatted: Font color: Text 11359* exp \left(c * \left(\frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right)\right) + b * WT(2)1359* exp \left(c * \left(\frac{1}{(283.15 - 227.13)} - \frac{4}{(TK5cm - 227.13)}\right)\right) + b * WT(2)1359* exp \left(c * \left(\frac{1}{(283.15 - 227.13)} - \frac{4}{(TK5cm - 227.13)}\right)\right) + b * WT(2)1360where a, b, Frif- and ec are collar specific emperical fitting parameters, and other variables are asabove. For this ER model, the r² values ranged from 0.63 to 0.92 for each of the 29 collars (TableS4). (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model1361S4). (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model1362S4). (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model$	1348	where <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , and <i>e</i> are collar specific empirical fitted model parameters and JDAY is the Julian	Formatted: Font color: Text 1
Introady of die year, FTP is die igne teel in (phot in 3-), Fights due son temperature at 5-th, and it is1850is the water level in cm below ground surface at the collar. The r ² yalue of the modelled versus1851measured data using Eq. (1) ranged between 0.77 and 0.94 for each of the 29 collars (Table S3),1852(Table S3).1853(Table S3).1854For ER, the model in Eq. (2) was found to best explain the variance in the field data for all of the 291855collars. For this ER model, the r ² values ranged from 0.74 to 0.94 for each of the collars.1856 $ER = (a + b * WT) * \exp\left(c * \left(\frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right)\right) & ER$ 1857 $= \left(a + d + \sin\left(\frac{PAV + 245}{182.5} + 2\pi\right) + c + WT\right)$ 1858 $* \exp\left(c + \left(\frac{4}{(283.15 - 227.13)} - \frac{4}{(TK5cm - 227.13)}\right)\right) + b + WT$ 1859(2)1860where $a, b, \frac{erf}{erf}$ and ec are collar specific emperical fitting parameters, and other variables are as1861above. For this ER model, the r ² values ranged from 0.63 to 0.92 for each of the 29 collars (Table1862S4). (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model1863S4). (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model	1849	day of the year PPFD is the light level in (upol $m^2 c^{-1}$) T _c is the soil temperature at 5 cm and WT	Formatted: Font color: Text 1
1350is the water level in cm below ground surface at the collar. The r² yalue of the modelled versusFormatted: Font color: Text 11351measured data using Eq. (1) ranged between 0.77 and 0.94 for each of the 29 collars (Table S3).Formatted: Font color: Text 11352(Table S3).1353(Table S3).1354For ER, the model in Eq. (2) was found to best explain the variance in the field data for all of the 291355collars. For this ER model, the r² values ranged from 0.74 to 0.94 for each of the collars.1356 $ER = (a + b * WT) * \exp\left(c * \left(\frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right)\right) ER1357= \left(a + d + \sin\left(\frac{fbAV + 215}{182.5} + 2n\right) + e + WT\right)1358+ \exp\left(e * \left(\frac{4}{(283.15 - 227.13)} - \frac{4}{(TK5cm - 227.13)}\right)\right) + b + WT1359(2)1360where a, b, f_{T}f_{T} and eg are collar specific emperical fitting parameters, and other variables are as1361above. For this ER model, the r² values ranged from 0.63 to 0.92 for each of the 29 collars (Table1362S4). (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model$	1547	day of the year, 111 b is the right rever in (pintor in 3), 15m is the soft temperature at 5 cm, and wi	Formatted: Font color: Text 1
Formatted: Font color: Text 11351measured data using Eq. (1) ranged between 0.77 and 0.94 for each of the 29 collars (Table S3).1352(Table S3).1353(Table S3).1354For ER, the model in Eq. (2) was found to best explain the variance in the field data for all of the 291355collars. For this ER model, the r² values ranged from 0.74 to 0.94 for each of the collars.1356 $ER = (a + b * WT) * \exp\left(c * \left(\frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right)\right) ER1357= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} * 2\pi\right) + c * WT\right)1358* \exp\left(c + \left(\frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right)\right) + b * WT1359(2)1360where a, b, \frac{c_Td^2}{and} eg are collar specific emperical fitting parameters, and other variables are as1361above. For this ER model, the r² values ranged from 0.63 to 0.92 for each of the 29 collars (Table1362S4). (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model$	1350	is the water level in cm below ground surface at the collar. The r ² value of the modelled versus	Formatted: Font color: Text 1
Instance of the 29 collars (Table S3).Formatted: Font color: Text 1Formatted: Font: Not Bold, Font color: Text 1Formatted: Font color: Text 1Formatted: Font: Not Bold, Font col			Formatted: Font color: Text 1
$ \begin{array}{c} 1852 (\text{Table S3}). \\ 1853 \\ 1854 For ER, the model in Eq. (2) was found to best explain the variance in the field data for all of the 29 \\ 1855 collars. For this ER model, the r2 values ranged from 0.74 to 0.94 for each of the collars. \\ 1856 ER = (a + b * WT) * \exp\left(c * \left(\frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right)\right) \pounds R \\ 1857 = \left(a + d * \sin\left(\frac{IDAY + 215}{182.5} + 2\pi\right) + e * WT\right) \\ * \exp\left(c * \left(\frac{4}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right)\right) + b * WT \\ 1858 & * \exp\left(c * \left(\frac{4}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right)\right) + b * WT \\ 1859 \\ 1860 \text{where } a, b, \frac{c_{r}}{c_{r}} + \text{and } e_{c} are collar specific emperical fitting parameters, and other variables are as a labove. For this ER model, the r2 values ranged from 0.63 to 0.92 for each of the 29 collars (Table S4). (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model Font color: Text 1 Formatted: Font color: Tex$	1851	measured data using Eq. (1) ranged between 0.77 and 0.94 for each of the 29 collars (Table S3).	Formatted: Font color: Text 1
1354For ER, the model in Eq. (2) was found to best explain the variance in the field data for all of the 29Formatted: Font color: Text 11355collars. For this ER model, the r² values ranged from 0.74 to 0.94 for each of the collars.Formatted: Font color: Text 11356 $ER = (a + b * WT) * \exp\left(c * \left(\frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right)\right) ERFormatted: Font color: Text 11357= \left(a + d * \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + c * WT\right)Formatted: Font color: Text 11358+ \exp\left(c * \left(\frac{4}{(283.15 - 227.13)} - \frac{4}{(TK5cm - 227.13)}\right)\right) + b * WT(2)13591360where a, b, \frac{c}{eft} and ec are collar specific emperical fitting parameters, and other variables are asabove. For this ER model, the r² values ranged from 0.63 to 0.92 for each of the 29 collars (Table1362Formatted: Font color: Text 11362S4). (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the modelFormatted: Font color: Text 1$	1352 1353	(Table S3).	
$1355 \text{collars. For this ER model, the r2 values ranged from 0.74 to 0.94 for each of the collars.}$ $1356 ER = (a + b * WT) * \exp\left(c * \left(\frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right)\right) ER$ $1357 = \left(a + d * \sin\left(\frac{JDAY + 215}{182.5} + 2\pi\right) + e * WT\right)$ $1358 * \exp\left(c * \left(\frac{4}{(283.15 - 227.13)} - \frac{4}{(TK5cm - 227.13)}\right)\right) + b * WT$ (2) 1359 $1360 \text{where } a, b, \frac{c_{r}d_{r}}{and} e_{c} \text{ are collar specific emperical fitting parameters, and other variables are as}$ $1361 \text{above. For this ER model, the r2 values ranged from 0.63 to 0.92 for each of the 29 collars (Table 16 formatted: Font color: Text 1 1362 \text{S4}. (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model 1362 \text{S4}. (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model 1362 \text{S4}. (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model 1363 \text{S4}. (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model }$	1354	For ER, the model in Eq. (2) was found to best explain the variance in the field data for all of the 29	Formatted: Font color: Text 1
$1356 ER = (a + b * WT) * \exp\left(c * \left(\frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right)\right) ER$ $1357 = \left(a + d * \sin\left(\frac{JDAY + 215}{182.5} * 2\pi\right) + e * WT\right)$ $1358 exp\left(c * \left(\frac{4}{(283.15 - 227.13)} - \frac{4}{(TK5cm - 227.13)}\right)\right) + b * WT$ (2) 1359 $1360 \text{where } a, b, exp\left(a + \frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right) + b * WT$ (2) 1359 $1360 \text{where } a, b, exp\left(a + \frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right) + b * WT$ (2) 1359 $1360 \text{where } a, b, exp\left(a + \frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right) + b * WT$ (2) 1359 $1360 \text{where } a, b, exp\left(a + \frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right) + b * WT$ (2) 1359 $1360 \text{where } a, b, exp\left(a + \frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right) + b * WT$ (2) 1359 $1360 \text{where } a, b, exp\left(a + \frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right) + b * WT$ (2) 1359 $1360 \text{where } a, b, exp\left(a + \frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right) + b * WT$ (2) 1359 $1360 \text{where } a, b, exp\left(a + \frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right) + b * WT$ (2) 1359 $1360 \text{where } a, b, exp\left(a + \frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right) + b * WT$ (2) 1359 $1360 \text{where } a, b, exp\left(a + \frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right) + b * WT$ (2) $1360 \text{where } a, b, exp\left(a + \frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right) + b * WT$ (2) $1360 \text{where } a, b, exp\left(a + \frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right) + b * WT$ (3) $1360 \text{where } a, b, exp\left(a + \frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right) + b * WT$ (3) $1360 \text{where } a, b, exp\left(a + \frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right) + b * WT$ (3) $1360 \text{where } a, b, exp\left(a + \frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right) + b * WT$ (3) $1360 \text{where } a, b, exp\left(a + \frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right) + b * WT$ (4) $1361 \text{where } a, b, exp\left(a + \frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right) + b * WT$ (4) $1362 \text{S41}, (0 + 1) + (0 +$	1355	collars. For this ER model, the r ² values ranged from 0.74 to 0.94 for each of the collars.	
$= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}{182.5} + 2\pi\right) + e + WT\right)$ $= \left(a + d + \sin\left(\frac{fDAY + 215}$	1356	$ER = (a + b * WT) * \exp\left(c * \left(\frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right)\right) ER$	
$\frac{1}{1358} \qquad \frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}) + b + WT \qquad (2)$ Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font: No	l 1357	$= \left(a + d * \sin\left(\frac{JDAY + 215}{182.5} * 2\pi\right) + c * WT \right)$	
1359 1360 where <i>a</i> , <i>b</i> , <i>c_r, d_r</i> and <i>ec</i> are collar specific emperical fitting parameters, and other variables are as 1361 above. For this ER model, the r ² values ranged from 0.63 to 0.92 for each of the 29 collars (Table 1362 S4). (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model	1358	$* \exp\left(c * \left(\frac{1}{(283.15 - 227.13)} - \frac{1}{(TK5cm - 227.13)}\right)\right) + b * WT $ (2)	Formatted: Font color: Text 1
 where <i>a</i>, <i>b</i>, <i>c₁, d₁</i> and <i>ec</i> are collar specific emperical fitting parameters, and other variables are as above. For this ER model, the r² values ranged from 0.63 to 0.92 for each of the 29 collars (Table S4). (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model 	1359		
1361 above. For this ER model, the r ² values ranged from 0.63 to 0.92 for each of the 29 collars (Table Formatted: Font color: Text 1 1362 S4). (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model Formatted: Font color: Text 1 1362 S4). (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model Formatted: Font color: Text 1	1360	where a , b , c , d , and e are <u>collar specific emperical</u> fitting parameters, and other variables are as	Formatted: Font: Not Bold, Font color: Text 1
IB01 above. For this ER model, the r ² values ranged from 0.63 to 0.92 for each of the 29 collars [Table Formatted: Font: Not Bold, Font color: Text 1 1862 S4). (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Text 1	10.1		Formatted: Font color: Text 1
1362 <u>S4). (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model</u> Formatted: Font color: Text 1 Formatted: Font color: Text 1	1301	above. For this EK model, the r ² values ranged from 0.63 to 0.92 for each of the 29 collars [Table	Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font color: Text 1	1862	S4). (Other metrics on model fitting for Eq. (1) and Eq. (2) including the standard error of the model	Formatted: Font color: Text 1
			Formatted: Font color: Text 1
1363 fitting parameters and n values are shown in Table S3 and Table S4). FFitting parameters and more Formatted: Font: Not Bold, Font color: Text 1	1363	fitting parameters and n values are shown in Table S3 and Table S4). FFitting parameters and more	Formatted: Font: Not Bold, Font color: Text 1
Image: Information on the GPP and ER models tested can be found in Supplemental Section 1.	 1364	information on the GPP and ER models tested can be found in Supplemental Section 1.	Formatted: Font color: Text 1
1365	1365		

1366 1867	Hourly water level, T _{5cm} , PAR, and Julian day data were input into Eq. (1) and Eq. (2) (with the collar specific fitting parameters) to calculate hourly CPP and EP at each collar over a two year period.	
1368	specific fitting parameters) to calculate nourly of F and EK at each conar <u>over a two year period</u> .	
1369	2.6 <u>CH₄Methane</u> Modelling	
1370	The annual In contrast to CO ₂ flux, CH ₄ fluxes for 2017 were are expected to be much more constant	
1371	throughout the day (Pypker et al. 2013) with apparently random variation. Therefore, CH_4 fluxes	
1372	from each collar could be calculated from the average measured flux at each collar over a given time	
1373	period (as in Strack et al., al., 2014) over the year.). However, in this case, the data collection was	
1374	bias toward the warmer part of the year, with no methane flux measurements collected during	
1375	January–Marchwere not conducted over the entire 2 year time period because of equipment issues	Formatted: Font color: Auto
1376	To account for this bias in sampling period, the collar average CH4 flux was scaled by a factor of	
1377	0.80. This factor was in turn derived from an empirical Thus, a model fit to was constructed for the	
1378	purpose of extrapolating t he field data <u>, which modelled the</u> -to the entire study period. The field	
1379	data of CH_4 -flux from all collars were normalized by the collar average CH_4 -flux and lumped	
1380	together to model the average temporal variation in CH_4 flux as a function. The variations in CH_4	
1381	flux was modelled according to the Julian day of year and soil temperature and day of the year (Eq.	Formatted: Font color: Auto
1382	S3). The modelling process is described more fully in the Section S1. Throughout all of 2016.	Formatted: Font color: Auto
1383	equipment issues prevented the collection of CH4 flux measurements. S11), Due to this limited data	Formatted: Font color: Auto
1384	limitation, the GWP and C balance for 2016 was calculated using the 2017 values of CH ₄ flux. $_5$	Formatted: Font color: Auto
1385	methane flux variations were assumed to follow the same temporal trend across all ecotypes. The	Formatted: Font color: Auto
1386	reported GWP and to a lesser extent C balance for 2016 should thus be interpreted with some	
1387	caution.overall average temporal variation was then multiplied by the average measured methane	
1388	flux at a given collar, The assumption model gave little difference between 2016 and 2017, and as	Formatted: Font color: Auto
I	42	

1389	field data was only collected in 2017, it was assumed that CH₄ fluxes were similar in 2016 and 2017	
1390	is partially justified by the methane flux from both years was the same for the fact that the	
1391	empirical model of CH ₄ flux gave very similar results for 2016 and 2017 (<3% difference). purposes	
1392	of calculating annual carbon balance and GWP.	
1393	2.7 Aquatic <u>CCarbon</u> Losses	
1394	A thin plate V-notch weir was installed to measure hourly discharge from a 249,000 m ² catchment	
1395	area on_site (as shown in Fig. 1). The weir catchment area was delineated in ARC-GIS using a digital	
1396	terrain map based on LiDAR survey data from 2013. The majority of this catchment area was	
1397	composed of marginal and sub-marginal uncut raised bog (>90%) as well as lightly forested drains	
1398	along a bog road (<10%). Aquatic <u>Cearbon</u> losses as DOC and DIC were quantified at this location	
1399	only, and assumed to be the same for all ecotypes (even those adjacent to but outside of this	
1400	catchment area), given <u>due to</u> the difficulty in resolving the relative contributions of each ecotype to	
1401	the total DOC flux. The DOC concentration was measured weekly in 2016 and every 12 hours (with	
1402	a few gaps) from January through November 2017. DOC samples were filtered in the field using a	
1403	$0.45\ \mu\text{m}$ cellulose syringe filter after rinsing the syringe and filter with 20 mL of sample. Samples	
1404	were then acidified to pH 2 using 10% HCl to preserve them and stored under refrigeration at 4° C $$	
1405	and analysed within two months. The DOC concentration was measured by UV absorbance as in	
1406	other studies (e.g. Jager et .al., 2008), Koehler et al., 2009) at wavelength 254 nm. A site specific	
1407	calibration curve was determined between 254 nm UV absorbance and DOC concentration	
1408	measured using a Vario Total Organic Carbon (TOC) Select Analyzer (Elementar, Langenselbold,	
1409	Germany). This was undertaken on samples collected from January 2016 to April 2016, July 2016,	
1410	and July 2017 (r ² =0.997, n=76). The error of this method was ± 1.1 mg C/L $_{k}^{\pm 1}$ based on the standard	
1411	deviation of the residuals. The hourly discharge at the weir was multiplied by the most recent DOC	

Formatted: Superscript

1412	concentration measurement to calculate a <u>Cearbon</u> flux as DOC from the catchment. This value was
1413	then divided by the catchment area to calculate the aquatic \underline{Carbon} loss as DOC per m ² .
1414	
1415	The DIC concentration at the weir was calculated from the aqueous partial pressure of CO_2 as well
1416	as the pH and temperature using equations from Gelbrecht et .alal. (1998) as in Nillson et .alal.
1417	(2008) where dissolved CO $_2$ was included as part of DIC. Partial pressure of CO $_2$, was measured on_
1418	site in triplicate by filling, then sealing a 250 mL bottle with 200 mL of water sample. Circulated air
1419	was bubbled through the sample and the change in ${\rm CO}_2$ concentration in the headspace was
1420	measured over time using an EGM-4 infra-red gas analyser (PP Systems, Amesbury, USA) until the
1421	concentration was constant (10-12 minutes). The initial partial pressure of dissolved CO_2 in the
1422	sample was then back calculated from the total change in $\ensuremath{\text{CO}_2}$ concentration in the headspace. A
1423	total of 7 DIC measurements were taken at the weir between November 2016 and October 2017.
1424	The average DIC concentration was multiplied by the hourly discharge and divided by the
1425	catchment area to calculate the aquatic $\underline{Ccarbon}$ loss as DIC per m ² .
1426	
1427	$\ensuremath{\text{CO}_2}$ evasion occurred from the open water areas of blocked drains on the raised bog and from the
1428	functioning drain network upstream of the weir. $\ensuremath{\text{CO}_2}$ evasion was measured in triplicate with a
1429	CPY-4 (PP systems, Amesbury, USA) chamber fitted to a small floating raft and EGM-4 gas analyser.
1430	A total of 15 measurements of $\ensuremath{\text{CO}}_2$ evasion were conducted between two locations of blocked
1431	drains on the raised bog (Fig. 1), and 8 measurements were conducted just upstream of the weir
1432	from November 2016 to July 2017.

1434	For the calculation of the global warming potential, 90% of the DOC loss is assumed to be converted
1435	to CO_2 and 10% to longer term storage (after Evans et <u>al.</u> 2016), while 100% of the DOC flux is
1436	included in the calculation of the <u>Cearbon</u> balance for the system. All of the DIC loss is assumed to
1437	be converted to atmospheric CO_2 as DIC is almost entirely composed of dissolved supersaturated
1438	CO ₂ .

- 1439
- 1440 2.8 Statistical Analysis
- 1441 The standard error and statistical significance of model fit parameters in Table S5 and Table S6 was
- 1442 <u>determined using Minitab© 2018 Statistical Software with the non-linear regression function. The</u>
- 1443 <u>differences between ecotypes for C balance, CH_e flux, and GWP was determined using 1-way anova</u>
- 1444 with the annual results from the 29 collars grouped by ecotype, which was coupled with Bonferroni
- 1445 <u>honestly significant difference for multiple pair-wise comparisons. The statistical significance of</u>
- 1446 ecotype annual C sinks/sources was determined using a student's t-test of the five or six collars in
- 1447 the ecotype. The significance of linear trends was determined using Microsoft Excell© data analysis
- 1448 package. The ecotype variance in the NEE can be calculated as the sum of the within collar variance
- 1449 and the between collar variance. The within collar variance was calculated from the sum of model
- 1450 error and the error of input field variables. The annual model error was calculated from the
- 1451 standard deviation of the residuals for GPP and ER models for each collar on an hourly time step
- 1452 and propagated for the entire year. Similarly, the field inputs into the NEE models were assumed to
- 1453 have a hourly random variation of ± 1°C, ±1 cm WT, and ± 5% PAR. The effect of which on the NEE,
- 1454 was calculated from sensitivity analysis, which was run for all models and propagated for the entire
- 1455 year. The variance in the ecotype CH₄ flux was also calculated from the sum of the within collar
- 1456 variance and the between collar variance. The annual within collar standard deviation of CH4 flux

Formatted: Subscript

1457	was assumed to be \pm 30% of the collar average annual CH ₄ flux, or 2.8 g C-CH ₄ m ⁻² yr ⁻¹ , which was	
1458	applied to all collars. For the carbon balance and GWP, the variance in NEE and CH_4 flux was	
1459	summed with the variance due to measurement error in the DOC flux, DIC flux, and CO2 evasion.	
1460	Significant differences between ecotype annual carbon balance, and GWP was determined using 1-	
1461	way ANOVA and Bonferroni confidence intervals. The significance of the linear regressions was	
1462	determined with Minitab 18 Statistical Software.	Commented [M1]: This section has changed substantially from the first draft. This is partially because of confusion
1463		expressed by one of the reviewers at the wording and partially because much of the statistical analysis was redone in a simpler and more straightforward way with the change in model results.
1464	4.2 Comparisons with Global Studies of Boreal and Temperate Peatlands	
1465	The annual NEE, CH_4 flux, and water table data from the ecotypes in this study were compared to	
1466	global studies of boreal and temperate peatlands. The data from global studies was divided into	
1467	three generic categories as follows: Intact peatlands - those peatlands that have not been mined.	
1468	undergone intensive agriculture or forestry, and are not heavily impacted by drainage or other	
1469	disturbance: Bare peat sites - previous peat extraction sites where there is an absence of vegetation	
1470	cover; Degraded/Restored/Recovering peatlands: - peatlands that have (at some point in time) been	
1471	substantially altered by previous/current land use, drainage, or peat extraction, where recovering	Formatted: Font color: Red
1472	is defined here as the "spontaneous revegetation of mined peatlands" (Poulin et al., 2005), which	
1473	have had no definite action taken to rehabilitate them. This compilation of data focuses on low	
1474	nutrient (if specified, pH<6) semi-natural sites, i.e. excludes sites that are actively used for intensive	
1475	agriculture, forestry, or other uses.	

1477 **3. Results**

- 1478 _3.1 Environmental Monitoring
- 1479 The annual rainfall <u>measured</u> at Abbeyleix Bog was 746 mm in 2016 and 840 mm in 2017,
- 1480 compared to the 2001- $\frac{20162017}{20162017}$ (the period of record) annual average of $\frac{838}{862 \pm 134}$ mm at
- 1481 the Ballyroan (Oatlands) daily rainfall station, located approximately 5 km NE of the site. The mean
- 1482 annual temperature at Abbeyleix bog was 9.6° C and 9.7° C in 2016 and 2017, similar to the (1978-
- 1483 2007)30 year average (1981-2010) average of 9.59° C based on a gridded interpolation of Irish
- 1484 <u>climate (Walsh, 2012)</u>. Mean daily PPFD, air temperature, and monthly rainfall are shown in Figure
- 1485 2 over the study period. The mean annual water table (MAWT) was within 2 cm at all ecotypes
- 1486 between the two years <u>for all ecotypes</u>. The winter (Oct-Mar) water table was higher than summer
- 1487 (Apr-Sep) water table, as expected (Fig. 3). The average soil pore water pH was 4.7 (range: 4.4-5.1)
- 1488 for all ecotypes.

1489 **3.2 CO₂ and CH₄ Gas Fluxes**

1490 The modeled annual GPP, ER, and NEE for each collar is shown in (Table <u>S5S8</u>). The ecotype CO₂

1491 fluxes were calculated as the average of all collars in each ecotype. The seasonal trend in modeled

1492 monthly GPP and ER were similar among all ecotypes increasing in <u>magnitude during</u> the summer

Formatted: Font: Bold

1493	and decreasing <u>during</u> in the winter (Fig. 4a & 4b). The Sphagnum Cutover ecotype had the largest		
1494	monthly GPP from January to June both years. The monthly ER was highest at the Calluna Cutover		
1495	ecotype, especially during the summer months. The ecotypes show different seasonal trends in		
1496	cumulative NEE (Fig. 4c). The Sphagnum Cutover and the Sub-Central ecotypes were net CO_2 sinks		
1497	(negative slope) from March (March 27 for Sub-central and March 4 for Sphagnum Cutover) to		
1498	October 24, 2016 and April 24 to October 7, 2017 and CO_2 sources the rest of the year, showing an		
1499	overall similar pattern to other studies of intact peatlands (e.g. Gažovič et .al., al., 2013). By contrast,		
1500	the Calluna Cutover ecotype was the strongest CO ₂ source during the summer months. The Sub-		
1501	Marginal ecotype is an overall moderate CO_2 source both years with a minor net CO_2 uptake		
1502	occurring during summer of 2017. The Eriophorum Cutover ecotypes is approximately CO_2 neutral		
1503	for much of the year with short periods of CO_2 uptake during the summer months. <u>Some caution</u>	Formatted: Font color: Text 1	
1504	should be applied to interpreting the 2017 NEE data because the field measurements of NEE were		
1505	conducted for 8 months of 2017 (Jan-Aug), although the field measurements in 2017 did		
1506	encompass the warmest months of the year when the largest variation in NEE occured.		
1507			
1508	The temporal variation in measured CH_4 methane flux followed a seasonal trend becoming larger		
1509	and more variable during the summer months, which was captured reasonably well $(r^2 = 0.61)$ by		
1510	the model (Fig. 5, Fig. S2). The methane data was extrapolated to an annual period using this model.		
1511	Annual <u>CH4</u> methane fluxes by ecotype are shown in Figure 6 <u>, and annual methane emissions and</u>		
1512	for each collar are shown in Table S <u>85</u> . The <u>annual CH₄methane</u> emissions are highest for the		
1513	Eriophorum Cutover (14.2 ±4.8 g C-CH ₄ m ⁻² yr ⁻¹) and Sub-Central ecotypes (12.6 ±7.9 g C-CH ₄ m ⁻² yr ⁻¹)		
1514	¹), which have the highest mean annual water table <u>(MAWT)</u> . The annual CH ₄ flux at the Sub-Central		

- $1515 \qquad \text{ecotype is highly variable with a range of } 1.2 \text{ to } 19.3 \text{ g C-CH}_4 \text{ m}^{-2} \text{ yr}^{-1} \text{ between collars. The annual}$
- $1516 \qquad \underline{CH_4} \text{methane} \text{ flux is lowest for the Calluna Cutover ecotype (2.7 \pm 1.4 g C-CH_4 m^{-2} yr^{-1}).}$

Figure 4. Monthly (a) GPP and (b) ER, and (c) cumulative NEE for each ecotype for 2016 and 2017, where the ecotype values are the average of all collars in the ecotype.

Figure 5. (a) The average daily \underline{CH}_4 methane flux measured in the field compared to the modelled temporal fluctuations in \underline{CH}_4 methane flux for 2017, and (b) the modelled vs. measured methane flux when the temporal variation in multiplied by the collar average flux.

letters represent no statistically significant difference between ecotypes based on one-way ANOVA with Bonforroni honestly significant difference for pairwise comparisons.

Formatted: Indent: Left: 0.25", Suppress line numbers

3.3 Aquatic <u>C</u>Carbon Losses

The DOC concentrations showed a seasonal trend for both years - higher between approx. June and November (46.0 \pm 3.0 mg L⁻¹) and lower between December and May (34.5 \pm 2.3 mg L⁻¹) (Fig. 7).

	Figure 7. Measured DOC and DIC concentrations (mg L^{-1}) over a two year period (2016 and 2017) at the weir.
1519	

Formatted: Indent: Left: 0"

- 1520 No trend <u>in DOC concentration</u> was observed with respect to discharge. The discharge at the weir
- is site was much higher in the winter months, with a resulting higher total DOC flux over those
- months. Annual losses of DOC were 8.0 ± 1.6 and 12.8 ± 2.5 g C $m^{-2} yr^{-1}$ for 2016 and 2017,
- 1523 respectively. Seven DIC measurements were conducted at the weir site between November 2016
- 1524 and October 2017. The average DIC concentration at the weir was 4.6 \pm 1.1 mg L⁻¹, excluding 1 low
- 1525 outlier (2.2 mg L⁻¹) on June 2, 2017 (Fig. 7). Based on this limited amount of data there is no
- 1526 significant trend in DIC concentration with respect to season, temperature, or discharge, so it was
- 1527 assumed constant throughout the 2 year study period. Annual <u>Cearbon</u> losses as DIC were 1.1 ±0.2
- 1528 and 1.5 ±0.3 g C m⁻²yr⁻¹. These values of annual aquatic <u>Cearbon</u> loss for DOC and DIC were applied
- 1529 to each of the ecotypes equally when calculating the <u>Cearbon</u> balance and GWP. Open water CO_2
- 1530 evasion was measured for two blocked drains on the raised bog and just upstream of the weir. The
- average CO₂ evasion rate from the two blocked drains<u>on the western and eastern portion of the</u>
- 1532 raised bog (WHB and EHB, respectively) (n=15) was 5.1 x 10⁻³ ±2.9 x 10⁻³ mg C-CO₂ m⁻² s⁻¹ and was
- 1533 somewhat higher at the weir (n=8) as $9.2 \times 10^{-3} \pm 3.2 \times 10^{-3} \text{ mg C-CO}_2 \text{ m}^{-2} \text{ s}^{-1}$ (Fig. 8).

Figure 8. CO_2 evasion rate measured at two blocked drains on the high bog (WHB and EHB) and just upstream of the weir. Locations of WHB and EHB are shown as white dots in Fig 1 as is the Weir location. Data was collected between March and July 2017 at the WHB location (n=7), November 2016 and July 2017 at the EHB location (n=8), and December 2016 and July 2017 at the weir location (n=8).

- 1534 Based on this limited data set, there was no significant trend in evasion rate with respect to season,
- 1535 temperature, or (at the weir site) discharge. CO₂ evasion rate was thus assumed constant and
- 1536 extrapolated to give an annual <u>Cearbon</u> loss as CO₂ evasion of 162 ±91 g C-CO₂ m⁻² yr⁻¹ and 290 ±100
- 1537 g C-CO₂ m⁻² yr⁻¹ for open water blocked ditches and active drain network of the weir, respectively.
- 1538 The open water areas in the drain network contributing to the weir were \sim 0.9% of the total
- 1539 catchment area to give a <u>Ccarbon</u> loss of 2.7 ±0.9 g C-CO₂ m⁻²yr⁻¹ for the weir catchment area as a
- 1540 whole. As above, this was applied equally all ecotypes. Open water areas of blocked drains only
- 1541 occurred near one of the ecotypes (Sub-Marginal), where they were estimated to be 2.8% of the
- 1542 total surface area. This gives an additional <u>Cearbon</u> loss in the Sub-Marginal ecotype of 4.5 ±2.6 g C-
- $1543 \quad CO_2 \, m^{-2} \, yr^{-1}.$

- 1544 3.4 Carbon Balance and GWP by Ecotype
- 1545 The NEE, CH4 fluxes, and the aquatic losses of <u>Cearbon</u> were compiled to calculate the <u>Cearbon</u>
- 1546 balance and GWP and GWP for each ecotype (Fig. 9)-, with collar specific data shown in Table

1547	S8. Two of the ecotypes were on average C sinks both years: the Sphagnum Cutover (-29.8 ± 42 g-C					
1548	m^{-2} yr ⁻¹ for 2016 and -30.0 ± 40 g-C m ⁻² yr ⁻¹ for 2017) and the Sub-Central ecotypes (-53.0 ± 37 g-C					
1549	m ⁻² yr ⁻¹ for 2016 and -62.4 ± 46 g-C m ⁻² yr ⁻¹ for 2017), but only the Sub-Central ecotype was a					
1550	statistically significant carbon sink based on a student's t-test (p= 0.018 in 2016 and p=0.021 in					
1551	2017, n=6). The Calluna Cutover ecotype was a substantial <u>Cearbon</u> source of <mark>260-234 ± 5270</mark> g C-					
1552	CO ₂ m ⁻² yr ⁻¹ and 175218 ± 6178 g C-CO ₂ m ⁻² yr ⁻¹ for 2016 and 2017, respectively. This ecotype was					
1553	significantly higher than all the other ecotypes in 2016 (p < 0.001) and 2017 (p= 0.011017) (Fig.					
1554	9a), The Sub-Marginal, Eriophorum Cutover, and Sphagnum Cutover ecotypes showed no					
1555	statistically significant different from C neutral both years. However, the Sub-Marginal ecotype had					
1556	one collar, which was a low outlier (Table S8); this collar is much more similar ecologically and					
1557	hydrologically to the Sub-Central ecotype (Table S7). If this low outlier is removed, then the Sub-					
1558	Marginal ecotype is a significant C source both years (p=0.003 for 2016 and p=0.003 for 2017, n=5),					
1559	based on a student's t-test. Removing this outlier, the Sub-Marginal ecotype is a significantly higher					
1560	<u>C source than the Sub-Central (p= 0.007) and Sphagnum Cutover (p=0.046) ecotype in 2016, and</u>					
1561	higher than the Sphagnum Cutover ecotype to marginal significance (p=0.057) in 2017, The , annual					
1562	carbon balance for the other ecotypes was not significantly different from carbon neutral. However,					
1563	four of the six collars at the Sub-Central ecotype were significant carbon sinks both of the years					
1564	(range -25 to -97 g C-CO 2 m⁻²yr⁻¹), One collar in the Sub-Central ecotype was found to be a					
1565	significant carbon source both of the measured years (51 and 62 g C-C0 2 m-2 yr-1). There is					
1566	substantial variation between collars within each ecotype for NEE and CH_4 flux, which is the largest					
1567	source of error in ecotype <u>Cearbon</u> balance and GWP.					
1568						

Formatted: Font color: Text 1

Commented [M2]: These and other values in this see have been changed from the first draft because a difference was used to calculate ER.					
Ϊ	Formatted: Font: Not Bold, Font color: Text 1				
	Formatted: Font color: Text 1				
J	Formatted: Font: Not Bold, Font color: Text 1				
()	Formatted: Font color: Text 1				
()	Formatted: Font color: Text 1				
()	Formatted: Font color: Text 1				
V	Formatted: Font: Not Bold, Font color: Text 1				
	Formatted: Font color: Text 1				
V	Formatted: Font: Not Bold, Font color: Text 1				
()	Formatted: Font color: Text 1				
	Commented [M3]: To methods section.				
	Formatted: Font: Not Bold, Font color: Text 1				
	Formatted: Font color: Text 1				
	Formatted: Font: Bold, Font color: Red				
	Formatted: Font: Not Bold, Font color: Text 1				
	Formatted: Font: Not Bold, Font color: Text 1				
I	Formatted: Font: Not Bold, Font color: Text 1				
J	Formatted: Font: Not Bold, Font color: Text 1				
()	Formatted: Font: Not Bold, Font color: Text 1				
	Formatted: Font: Not Bold, Font color: Text 1				
()	Formatted: Font color: Text 1				
()	Formatted: Font: Bold, Font color: Green				
	Formatted: Font color: Green				
	Formatted: Font: Bold, Font color: Green				
	Formatted: Font color: Green				
1	Formatted: Font: Bold, Font color: Green				

1569	All ecotypes had an average positive <u>GWPGPW</u> both years, with the lowest average GWP of <u>2.11.2</u> ±
1570	2.4 <u>2.6 tonnestons</u> CO ₂ -eq m ⁻² yr ⁻¹ at the Sphagnum Cutover ecotype and the highest average GWP
1571	occurring at the Calluna Cutover ecotype of 9.88.6 ± 3,35 tonnestons CO ₂ -eq m ⁻² yr ⁻¹ (Fig. 9b), The
1572	Sphagnum dominated ecotypes, Sphagnum Cutover and Sub-Central, were on average the lowest
1573	GWP sources, with the Sphagnum Cutover ecotype lower than the Calluna Cutover ecotype to a high
1574	degree of significance (p<0.001) and significantly lower (p= 0.001 for 2016 and p=0.010 for 2017)
1575	than the Eriophorum Cutover ecotype both years. The Sub-Central ecotype significantly lower
1576	(p<0.001 for 2016 and p=0.020 for 2017) than the Calluna Cutover ecotype. GWP at the Calluna
1577	Cutover ecotype was significantly higher than the Sphagnum Cutover (p = 0.002) and Sub-Central
1578	ecotype (p = 0.028) in 2016 and only the Sphagnum Cutover ecotype in 2017 (p = 0.018) (Fig. 9b).
1579	CH_4 Methane emissions account for $\frac{1213}{3}$ % and $\frac{1416}{5}$ % of the GWP at the Calluna Cutover ecotype
1580	in 2016 and 2017, respectively. $\underline{CH_4}$ Methane emissions account for the majority of the total GWP in
1581	all other ecotypes (6572-146210%). Thus, the differences between ecotype GWP should be

1582 interpreted with some caution for 2016_{\star} with CH₄ flux assumed to be the same as 2017_{\star}

Formatted: Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: Italic
Formatted: Font color: Text 1

Formatted: Font: Not Bold, Font color: Text 1					
Formatted: Font color: Text 1					
Formatted: Font: Not Bold, Font color: Text 1					
Formatted: Font color: Text 1					
Formatted: Font: Not Bold, Font color: Text 1					
Formatted: Font: Not Bold, Font color: Text 1					
Formatted: Font: Not Bold, Font color: Text 1, Subscript					
Formatted: Font: Not Bold, Font color: Text 1					
Formatted: Font: Bold, Font color: Green					

Cutover Cutover Cutover Figure 9. (a) <u>Annual CCarbon</u> balance for each ecotype including NEE, CH4 flux, aquatic losses as DOC and DIC, and open water CO₂ evasion<u>averaged over all collars in each ecotype</u> (b) <u>GAnnual global warming</u> potential for each ecotype. <u>Shared letters represent no statistically significant difference between</u> ecotypes based on one-way ANOVA with Bonforroni honestly significant difference for pairwise comparisons. Letters apply for each year separately.

Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font color: Text 1

1583 3.5 Drivers of NEE and GWP

1584	Environmental drivers of the annual $\underline{NEE}_{carbon \ balance}$, CH_4 flux, and GWP were analyzed by
1585	comparing the data from each of the 29 collars. There is a significant (<u>slope = -5.8 \pm 2.6, p=0.015,</u>
1586	<u>n=29</u>) but weak ($r^2 = 0.2016$) negative linear correlation between the two year average annual
1587	NEEcarbon balance and the average MAWT (Fig. 10a). This particular data set is skewed by the
1588	Sphagnum Cutover ecotype, where there is a relatively low water table and a moderate CO2 sinks
1589	overall neutral carbon balance due to the presence of Sphagnum spp. hummocks. If the Sphagnum
1590	Cutover ecotype is excluded, the linear regression between average annual NEE carbon balance and
1591	MAWT is <u>more highly significant (slope = -9.2 ± 2.8, p = < 0.003, n=294) with a stronger correlation</u>
1592	($r^2 = 0, 44,35$). The annual CH ₄ flux has a significant (<u>slope = 0.57 ± 0.11</u> , p < 0.001, <u>n=29</u>) positive
1593	linear correlation (r ² =0.51) with the average MAWT (Fig. 10b). The trends in CH_4 flux and
1594	<u>NEE carbon balance</u> with respect to MAWT offset each other such that there is no trend (<u>slope =</u>
1595	0.04 ± 0.09 , p = 0.91 , 61 , n= 29, r ² < 0.01) in GWP with respect to mean annual water table (Fig. 10c).
1596	
1597	The collar annual average GWP has a highly significant (<u>slope = -0.067 ± 0.010, p < 0.001, n=1</u>)
1598	negative linear correlation ($r^2 = 0.5863$) with the percent <i>Sphagnum spp.</i> cover in the collar (Fig.
1599	10f). The percentage Sphagnum spp. cover and Eriophorum spp. cover in the collar seem to be
1600	correlated in a non-linear fashion with the average annual $\underline{\text{NEE}}_{earbon balance}$ and the annual CH_4
1601	flux, respectively (Fig. 10 d,e). In particular, the annual CH $_4$ flux is greater than \sim 9 g C-CH $_4$ m- 2 yr- 1
1602	for all collars where the percentage <i>Eriophorum spp.</i> cover is higher than 10%.

Formatted: Font color: Text 1

Formatted: Font color: Text 1, Subscript Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font color: Text 1
(
Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font: Color: Text 1 Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font: Color: Text 1 Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1
Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font: Not Bold, Font color: Text 1 Formatted: Font color: Text 1

	Figure 10. Trends in collar annual <u>Cearbon</u> balance, CH ₄ flux, and GWP plotted against mean annual water table (MAWT) (a-c) and percent genus cover (d-f). <u>Data is displayed by ecotype with abbreviations in legend as in Fig 2.</u> Data is averaged over the two year period.			
1603	3.6 Comparison with Global Studies	I	Formatted: Don't add space between paragraphs of the ame style. Line spacing: Double	
1604	The annual NEE and CH_{de} flux from this study were compared to a compilation of literature data		Formatted: Subscript	=
1605	from global studies of boreal and temperate peatlands. This comparison is shown graphically in Fig.			
1606	11 and Fig. 12 and in tabular form in Table S9.			
1607				
1608	For both vegetated and bare peat sites, there is a negative correlation between MAWT and NEE			
1609	(Fig. 11). Both intact peatlands and variously degraded/recovering peatlands fall on the same trend			
1610	line, agreeing with Wilson et al. (2016a). Annual NEE for vegetated sites followed a linear trend			
1611	with respect to MAWT with slope of -4.5 g C-CO $_2m^{-2}yr^{-1}$ per cm rise in MAWT and an intercept of -			
1612	92 g C-CO ₂ m ⁻¹ yr ⁻¹ .			
1613				
1614	The <u>Sphagnum dominated ecotypes in this study (Sphagnum Cutover and Sub-Central) were just</u>		formatted: Font: Italic	_
1615	below the overall trend line for vegetated sites in Fig. 11. The Sub-Central ecotype in this study has		Formatted: Font color: Text 1	
1616	continuous Sphagnum spp. lawns similar to an intact peatland. This ecotype has a mean annual NEE			
1617	<u>of -85 ± 67</u> 57 g C-CO ₂ m ⁻² yr ⁻¹ and a mean annual water table of -8.2 cm. This is close to the overall			
1618	average NEE (-60 g C-CO ₂ m ⁻² yr ⁻¹) and mean annual water table (-9 cm) for intact peatlands shown			
1619	in this figure. The other ecotypes in this study were higher than the overall trend line for vegetated			
1620	sites in Fig. 11. This comparison is valuable for validating the data for the other ecotypes because			
1621	the C balance of intact bogs is comparatively better characterized than degraded systems and the			
1622	potential for systematic bias in chamber measurements. The Calluna Cutover ecotype from this			

Δ

-20

Δ

Δ

10

-5

Bare Peat Sites

-50

Ecotypes in this study, 2016

Ecotypes in this study, 2017 - · - Linear (Bare Peat Sites)

Linear (all vegetated sites)

-35

Ж

-200

-300 -65

1623 study had an exceptionally high NEE (188 ± 79 g C-CO₂ m⁻² yr⁻¹) for the given MAWT (-18.6 cm)

Formatted: Font: Not Bold, Font color: Text 1

Formatted: Line spacing: single, Suppress line numbers Formatted: Font color: Light Green

Formatted: Font color: Light Green

MAWT (cm) The slope is similar to that reported from a review of studies of peatlands with MAWT higher than -30 cm (Wilson et al. 2016a) of -2.0 ±1.0 and -5.0 ±2.0 g C CO2 m⁻² yr ⁺ per cm rise in MAWT for boreal and temperate peatlands, respectively. However, the trend in NEE with respect to MAWT should be interpreted with some caution because of the difficulty of generalizing across sites based on simple water table proxies (Wilson et al. 2016a). For example, there was a "highly peatland-specific dependency (i.e., with different offsets and slopes) of the CO₂ response to water table depth" for grassland peatlands in Germany (Tiemeyer et al. 2017), although, that study looked at grasslands, which may have much more variability in soil type, land management, nutrient status, etc. than the natural and semi-natural low nutrient sites shown in Figure 11. This trend may also break down as MAWT becomes too low (e.g. Tiemeyer et al. 2017) because soil respiration can be limited if the soil is too-dry (Briones et al., 2014). Thus, climate patterns could be an important factor in CO2-response to water table (Tiemeyer et al., 2017).

Based on the data collected in Figure 11, intact peatlands occur at a narrower range of mean annual water table and NEE. This is expected because degraded peatlands can have a wider range of site histories and eco-hydrological conditions (Wilson et al. 2016a). This agrees with Strack et al. (2016) who reported greater variation in CO₂ and CH₄ fluxes at restored plots when compared to either unrestored or intact plots. As with data from this study, this may suggest that restoration of *Sphagnum* dominated peatland ecology has an additional NEE benefit beyond raising the water table.

The Sub-Central ecotype in this study has continuous *Sphagnum spp.* lawns similar to an intact peatland. This ecotype has a mean annual NEE of -57 g C-CO₂ m⁻² yr⁻¹ and a mean annual water table of -8.2 cm. This is close to the overall average NEE (-60 g C-CO₂ m⁻² yr⁻¹) and mean annual water table (-9 cm) for intact peatlands in this figure. This comparison is valuable for validating the data for the other ecotypes because the C balance of intact bogs is comparatively better characterized than degraded systems and the potential for systematic bias in chamber measurements. The Calluna Cutover ecotype from this study has an **exceptionally high NEE (222 g C-CO₂ m⁻² yr⁻¹) for the mean annual water table (-18.6 cm) compared to the NEE (-5 g C-CO₂ m⁻² yr⁻¹) predicted from the best fit trend line of vegetated sites.**

Also, as shown in Figure 11, bare peat sites have a higher NEE than vegetated sites at a given MAWT, and these trend lines diverge at higher MAWT. As it can take decades for vegetation to be established in industrially mined peatlands (Wilson et al., 2015), this data would suggest that restoration to encourage plant colonization could reduce the short term CO₂ emissions even if no other restoration works are undertaken. This data set could be used to predict the CO₂ reduction from raising the water table as well as establishing vegetation on bare peat sites. Further, peatlands may be large C sinks in the years immediately post restoration as vegetation recovers due to the rapid, subsequent increase in vegetation biomass. For example, an annual NEE of 473 g C CO₂-m⁻² yr⁻¹-was reported by Waddington et al. (2010) one year post restoration for sites where herbaceous vegetation increased dramatically. This may explain some of the low-outliers in Figure 11 for restored/recovering sites. Three of the low outliers in Figure 11 are from Strack et al. (2014), which is 4 years post restoration with a growing season NEE of 162, 121 and 126 g C CO₂-m⁻² for mean seasonal water tables of 21.2, 24.9 and 28.2 cm, respectively. Formatted: Font color: Light Green

Formatted: Font color: Light Green

Figure 11. Mean annual water table vs. the annual NEE for the 5 ecotypes in this study (error bars are standard deviation) compared to global studies from boreal and temperate peatlands. The solid line shows the best fit linear trend line from all vegetated sites and the dashed line shows the best fit trend line for bare peat sites.- (Data from: Wilson et al., 2015; Wilson et al., 2016; Vanslow-Algan et al., 2015; Tuittili et al., 1999; Waddington et al., 2010; Strack et al., 2014; Nilsson et al., 2008; Dinsmore et al., 2010; Koehler et al., 2011; Chimner et al., 2017; Gazovic et al., 2013; Lund et al., 2012; Levy and Grey et al., 2015; McVeigh et al., 2014; Helftler et al., 2015; Piechl et al., 2014; Stranchen et al., 2016; Roulet et al., 2007; Waddington and Roulet, 2000; for more details and additional studies see Supplemental Table S6-S9 in Supplemental Section 3). Also, shown to the right of the figure is the mean and 95% CI NEE from nutrient poor, wet (MAWT >-30 cm) boreal (B) and temperate (T) peatlands (from the review paper, Wilson et -al., 2016a). Numbers indicate the ecotype with Sphagnum Cutover = 1. Calluna Cutover = 2. Eriophorum Cutover = 3. Sub-Marginal = 4. and Sub-Central = 5.

1625 There are a few cautionary notes that should accompany this plot. First, some of this data was

1626 collected using the closed chamber method and some collected using eddy covariance methods.

1627	Although both methods measure the same metric (NEE), closed chamber methods are inherently
1628	micro-scale while eddy-covariance methods are inherently landscape scale, as are the water table
1629	measurements accompanying them. Eddy-covariance measurements spatially integrate the micro-
1630	variations within the landscape compared to closed chamber measurements, and much of the NEE
1631	data reported in Figure 11 for intact peatlands is from eddy-covariance flux towers while there are
1632	very few studies that have used this technique on degraded or recovering peatlands. This may
1633	cause apparently higher variation in NEE for restored/recovering peatlands. Second, many of the
1634	studies on boreal peatlands report only growing season NEE and water table because of frozen
1635	winter conditions. Seasonal values from these studies are assumed to approximately represent
1636	annual values because winter fluxes at boreal sites are probably of minor importance to the annual
1637	fluxes. Third, this figure contains data points from different locations as well as the same location
1638	over multiple years where data is available.
1639	
1640	Similarly, annual/seasonal CH $_4$ emissions are plotted against MAWT (Fig. 12). Reported CH $_4$
1641	emissions from drained peatlands are quite low and typically do not exceed 0.6 g C-CH $_4$ m ⁻² yr ⁻¹
1642	
	when the mean annual water table is below -30 cm. There is a high degree of variability in CH_4
1643	when the mean annual water table is below -30 cm. There is a high degree of variability in CH_4 emissions in sites where the MAWT is higher than -20 cm. This figure excludes infilled ditches.
1643 1644	when the mean annual water table is below -30 cm. There is a high degree of variability in CH ₄ emissions in sites where the MAWT is higher than -20 cm. This figure excludes infilled ditches, which can be hotspots for CH ₄ emissions (Waddington and Day, 2000). For example, Cooper et al.
1643 1644 1645	when the mean annual water table is below -30 cm. There is a high degree of variability in CH ₄ emissions in sites where the MAWT is higher than -20 cm. This figure excludes infilled ditches, which can be hotspots for CH ₄ emissions (Waddington and Day, 2000). For example, Cooper et al. (2014) reports 53.9 g C-CH ₄ m ⁻² yr ⁻¹ for infilled ditches (Cooper et al., 2014). There are few studies
1643 1644 1645 1646	when the mean annual water table is below -30 cm. There is a high degree of variability in CH ₄ emissions in sites where the MAWT is higher than -20 cm. This figure excludes infilled ditches, which can be hotspots for CH ₄ emissions (Waddington and Day, 2000). For example, Cooper et al. (2014) reports 53.9 g C-CH ₄ m ⁻² yr ⁻¹ for infilled ditches (Cooper et al., 2014). There are few studies that have reported CH ₄ emissions from bare peat sites, and the results are generally low (mean of -
1643 1644 1645 1646 1647	when the mean annual water table is below -30 cm. There is a high degree of variability in CH ₄ emissions in sites where the MAWT is higher than -20 cm. This figure excludes infilled ditches, which can be hotspots for CH ₄ emissions (Waddington and Day, 2000). For example, Cooper et al. (2014) reports 53.9 g C-CH ₄ m ⁻² yr ⁻¹ for infilled ditches (Cooper et al., 2014). There are few studies that have reported CH ₄ emissions from bare peat sites, and the results are generally low (mean of - 0.03 g C-CH ₄ m ⁻² yr ⁻¹) even at high water table. The data from the ecotypes in this study fall well

1649	Reported CH_4 emissions from drained peatlands are quite low and typically do not exceed 0.6 g C-	
1650	CH_4 m ⁻² yr ⁻¹ when the mean annual water table is below -30 cm.	
1651		
1652	There is a high degree of variability in CH4 emissions in sites where the MAWT is higher than -20	
1653	cm. Thus, a high MAWT seems to be a prerequisite for high CH₄ emissions but does not necessarily	Formatted: Font color: Light Green
1654	result in a high CH ₂ emissions, which agrees with Tiemeyer et al. (2017)_As in Wilson et al. (2016a),	
1655	there does not seem to be a difference between restored and intact peatlands for the CH_4 flux data	
1656	presented in Figure 12, excluding infilled ditches, which can be hotspots for CH4 emissions	
1657	(Waddington and Day, 2000). For example, Cooper et al., (2014) reports 53.9 g C-CH₄m²yr¹ for	
1658	infilled ditches (Cooper et al. 2014). There are few studies that have reported CH_{4} emissions from	
1659	bare peat sites, and the results are generally low (mean of -0.03 g C-CH ₄ m ⁻² yr ⁻¹) even at high water	
1660	$\underline{table.}$ The low CH4 emissions from rewetted bare peat soils suggests that the methanogenesis is	Formatted: Font color: Light Green
1661	l imited by substrate availability in cutover peatlands (Tuittila et al. 2000; Tuittila et al. 1999).	

Fig. 12. This figure shows the mean annual water table plotted against the measured <u>2017</u> annual CH₄ emissions for each ecotype for each ecotype in this study (error bars are standard deviations) and from global studies of temperate and boreal peatlands (Sources: Flessa et al., <u>al.</u>, 1998, Fieldler et al., <u>al.</u>, <u>1998</u>, Wilson et al., <u>al.</u>, 2016; Tuitili et al., <u>1999</u>; Wilson et al., <u>2018</u>; Danevic et al., <u>2010</u>; Von Arnold et al., <u>2005</u>; Laine et al., <u>1996</u>; Yamulki et al., 2012; Nykanen et al., <u>1998</u>; Fieldler et al., <u>2007</u>; Cooper et al., <u>2014</u>; Waddington and Day, 2007; Chimner et al., <u>2017</u>; Waddington and Roulet 2000; for more details see Table <u>S6-S9</u> in Supplemental Section 3. Also, shown to the right of the figure is the mean and 95% CI of CH₄ emissions from nutrient poor, wet (MAWT >-30 cm) boreal (B) and temperate (T) peatlands (from the review paper, Wilson et al., <u>al.</u>, <u>2016a</u>). <u>Numbering of ecotypes is the same as in Fig. <u>11</u>.</u>

1663 As with the NEE data in Figure 11, this figure contains both annual and seasonal fluxes, where

1664 seasonal fluxes are more often reported for boreal sites. This figure excludes CH₄ emissions from

1665 infilled ditches. There are few studies that have reported CH₄-emissions from bare peat sites, and

1666	the results are generally low (mean of -0.03 g C-CH₄ m⁻²yr⁻¹) even at high water table. <u>There are a</u>
1667	few cautionary notes that should accompany these plots. First, some of this data was collected using
1668	the closed chamber method and some collected using eddy covariance methods. Although both
1669	methods measure the same metric (NEE), closed chamber methods are inherently micro-scale
1670	while eddy-covariance methods are inherently landscape scale, as are the water table
1671	measurements accompanying them. Eddy-covariance measurements spatially integrate the micro-
1672	variations within the landscape compared to closed chamber measurements. Much of the NEE data
1673	reported in Figure 11 for intact peatlands are from eddy-covariance flux towers while there are
1674	very few studies that have used this technique on degraded/restored/recovering peatlands. This
1675	may cause apparently higher variation in NEE for degraded/restored/recovering peatlands.
1676	Second, many of the studies on boreal peatlands report only growing season NEE and water table
1677	because of frozen winter conditions. Data collected from literature included in Fig 11 and Fig 12 are
1678	reported as is without attempting to account for the differences in growing season vs. annual
1679	values. Though, non-growing season gas fluxes can account for $\sim 15\%$ of annual fluxes for boreal
1680	peatlands (Saarnio et al., 2007). Third, this figure contains data points from different locations as
1681	well as the same location over multiple years where data is available. The data used to compile Figs.
1682	11 and 12 and additional studies can be found in Supplemental Section 3, Table \$6<u>\$9</u> .

4. Discussion

1684 4.1 Comparison between ecotype NEE and CH₄ flux

1685	1. <u>Ecotype differences and ecotype trends</u>	~	Formatted: Font: Cambria, Font color: Text 1
1606	2. How are these sectimes different and why		Formatted: Line spacing: Double
1000	a now are these ecotypes uncrent and why.		

1687 b. Age since restoration. Ecological trajectory. Actually a divergent trend possible.
1p88 Thus, the importance of restoration early.
1689 i. It is interesting the differences between ecotypes in both GWP,C-balance,
1690 and CH4 with the same site history. i.e. the compatisions of Sub-Cent and
1691 Sub-Marginal and cutover ecotypes.
1692
1693
1694 c. How are these ecotypes different and why. Brief.
1695 d. Aquatic losses [can be] proportionally more important for degraded peatlands.
1696 e. Age since restoration. Ecological trajectory
1007 Miss Diseas from thesis
1097 Misc Pieces from thesis:
1698 • This is in agreement with others studies, which have found that even relatively high quality
1699 <i>restored bogs tend have positive overall GWP (Renou-Wilson et al., 2018).</i>
1700 • The Sphagnum spp. dominated ecotypes (Sphagnum Cutover and Sub-Central) were the
1701 lowest GWP sources. Additionally, <i>Sphagnum spp.</i> cover was negatively correlated to the
1702 GWP at the collar scale. In terms of restoration, this suggests that there is GHG benefit for
1703 both raising the water table as well as establishing high quality bog vegetation such as
1704 Sphagnum spp.
1705 • This may be related to the postharvest time; it has been observed that CO ₂ flux in harvested
1706 peatlands can increase with postharvest time (Waddington et al., 2002). The cutover areas
1707 at Abbeyleix Bog have a longer postharvest (> 5 decades) time than many previous studies
1708 on cutover postlands

1709	• The Calluna Cutover ecotype was not only a larger CO ₂ -source than the other ecotypes in	Formatted: Normal, No bullets or numbering
1710	this study, but also much higher than values reported in the literature for degraded bogs at a	
1711	comparable MAWT (as in Fig. 11). This may be due to the longer time post-abandonment because	
1712	the CO ₂ -emissions can possibly increase with postharvest time (Waddington et al., 2002),	Formatted: Font: Not Italic, Font color: Text 1
1713	All of the ecotypes in this study were on average GWP sources both years, which was statistically	Formatted: Font color: Text 1
1714	significant for all but the Sphagnum Cutover ecotype both years. This is in agreement with others	Formatted: Add space between paragraphs of the same style
4 7 4 7		Formatted: Font: Not Italic, Font color: Text 1
1/15	studies, which have found that even relatively high quality restored bogs tend to have positive	Formatted: Font: Not Italic
1716	overall GWP (Renou-Wilson et al., 2018b), The <i>Sphagnum spp</i> . dominated ecotypes (Sphagnum	Formatted: Font: Not Italic
		Formatted: Font: Not Italic, Font color: Text 1
1717	Cutover and Sub-Central) were on average the lowest GWP sources, and plot scale Sphagnum spp.	Formatted: Font color: Text 1
1710	and a statistically similer and a static same lating to the CMTD by terms of a standard big	Formatted: Font: Not Italic, Font color: Text 1
1/18	cover had a statistically significant negative correlation to the GWP. In terms of restoration, this	Formatted: Font color: Text 1
1719	suggests that there is a direct GHG benefit for establishing high quality bog vegetation such as	
1720	<u>Sphagnum spp.</u>	Formatted: Font: Not Italic, Font color: Text 1
1720	<u>Sphagnum spp.</u>	Formatted: Font: Not Italic, Font color: Text 1
1720 1721	Sphagnum spp.	Formatted: Font: Not Italic, Font color: Text 1 Formatted: Add space between paragraphs of the same style. Line spacing: Multiple 1.08 li
1720 1721 1722	<u>Sphagnum spp.</u> <u>There is some debate about the use of GWP as a metric for peatlands because this metric focuses on</u>	Formatted: Font: Not Italic, Font color: Text 1 Formatted: Add space between paragraphs of the same style, Line spacing: Multiple 1.08 li Formatted: Font color: Text 1
1720 1721 1722 1723	Sphagnum spp. There is some debate about the use of GWP as a metric for peatlands because this metric focuses on a 100-year time window, which may not be appropriate. For example, "the long-term sequestration	Formatted: Font: Not Italic, Font color: Text 1 Formatted: Add space between paragraphs of the same style, Line spacing: Multiple 1.08 li Formatted: Font color: Text 1
1720 1721 1722 1723 1724	Sphagnum spp. There is some debate about the use of GWP as a metric for peatlands because this metric focuses on a 100-year time window, which may not be appropriate. For example, "the long-term sequestration of CO ₂ into stable organic matter gradually outweighs the warming effect of CH ₄ , due to the shorter	Formatted: Font: Not Italic, Font color: Text 1 Formatted: Add space between paragraphs of the same style, Line spacing: Multiple 1.08 li Formatted: Font color: Text 1
1720 1721 1722 1723 1724 1725	Sphagnum spp. There is some debate about the use of GWP as a metric for peatlands because this metric focuses on a 100-year time window, which may not be appropriate. For example, "the long-term sequestration of CO ₂ into stable organic matter gradually outweighs the warming effect of CH ₄ , due to the shorter atmospheric lifetime of the latter, so that natural peatlands exert a net cooling impact on the	Formatted: Font: Not Italic, Font color: Text 1 Formatted: Add space between paragraphs of the same style, Line spacing: Multiple 1.08 li Formatted: Font color: Text 1
1720 1721 1722 1723 1724 1725 1726	Sphagnum spp. There is some debate about the use of GWP as a metric for peatlands because this metric focuses on a 100-year time window, which may not be appropriate. For example, "the long-term sequestration of CO ₂ into stable organic matter gradually outweighs the warming effect of CH ₄ , due to the shorter atmospheric lifetime of the latter, so that natural peatlands exert a net cooling impact on the atmosphere over longer periods" i.e. the Holocene (Evans et al., 2016; Frolking et al., 2006), This	Formatted: Font: Not Italic, Font color: Text 1 Formatted: Add space between paragraphs of the same style, Line spacing: Multiple 1.08 li Formatted: Font color: Text 1 Formatted: Font color: Text 1
1720 1721 1722 1723 1724 1725 1726	Sphagnum spp. There is some debate about the use of GWP as a metric for peatlands because this metric focuses on a 100-year time window, which may not be appropriate. For example, "the long-term sequestration of CO ₂ into stable organic matter gradually outweighs the warming effect of CH ₄ , due to the shorter atmospheric lifetime of the latter, so that natural peatlands exert a net cooling impact on the atmosphere over longer periods" i.e. the Holocene (Evans et al. 2016; Frolking et al. 2006), This	Formatted: Font: Not Italic, Font color: Text 1 Formatted: Add space between paragraphs of the same style, Line spacing: Multiple 1.08 li Formatted: Font color: Text 1 Formatted: Font color: Text 1 Formatted: Font color: Text 1
1720 1721 1722 1723 1724 1725 1726 1727	Sphagnum spp. There is some debate about the use of GWP as a metric for peatlands because this metric focuses on a 100-year time window, which may not be appropriate. For example, "the long-term sequestration of CO ₂ into stable organic matter gradually outweighs the warming effect of CH ₄ , due to the shorter atmospheric lifetime of the latter, so that natural peatlands exert a net cooling impact on the atmosphere over longer periods" i.e. the Holocene (Evans et al., 2016; Frolking et al., 2006), This means that peatland <i>preservation</i> is beneficial (in terms of warming impact) despite CH ₄ , emissions.	Formatted: Font: Not Italic, Font color: Text 1 Formatted: Add space between paragraphs of the same style, Line spacing: Multiple 1.08 li Formatted: Font color: Text 1
1720 1721 1722 1723 1724 1725 1726 1727 1728	Sphagnum spp. There is some debate about the use of GWP as a metric for peatlands because this metric focuses on a 100-year time window, which may not be appropriate. For example, "the long-term sequestration of CO ₂ into stable organic matter gradually outweighs the warming effect of CH ₄ , due to the shorter atmospheric lifetime of the latter, so that natural peatlands exert a net cooling impact on the atmosphere over longer periods" i.e. the Holocene (Evans et al. 2016; Frolking et al. 2006), This means that peatland <i>preservation</i> is beneficial (in terms of warming impact) despite CH ₄ emissions. However, peatland <i>restoration</i> may impact the eco-hydrological trajectory on a shorter time scale	Formatted: Font: Not Italic, Font color: Text 1 Formatted: Add space between paragraphs of the same style, Line spacing: Multiple 1.08 li Formatted: Font color: Text 1
1720 1721 1722 1723 1724 1725 1726 1727 1728	Sphagnum spp. There is some debate about the use of GWP as a metric for peatlands because this metric focuses on a 100-year time window, which may not be appropriate. For example, "the long-term sequestration of CO ₂ into stable organic matter gradually outweighs the warming effect of CH ₄ , due to the shorter atmospheric lifetime of the latter, so that natural peatlands exert a net cooling impact on the atmosphere over longer periods" i.e. the Holocene (Evans et al. 2016; Frolking et al. 2006), This means that peatland <i>preservation</i> is beneficial (in terms of warming impact) despite CH ₄ , emissions. However, peatland <i>restoration</i> may impact the eco-hydrological trajectory on a shorter time scale	Formatted: Font: Not Italic, Font color: Text 1 Formatted: Add space between paragraphs of the same style, Line spacing: Multiple 1.08 li Formatted: Font color: Text 1
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729	Sphagnum spp, There is some debate about the use of GWP as a metric for peatlands because this metric focuses on a 100-year time window, which may not be appropriate. For example, "the long-term sequestration of CO ₂ into stable organic matter gradually outweighs the warming effect of CH ₄ , due to the shorter atmospheric lifetime of the latter, so that natural peatlands exert a net cooling impact on the atmosphere over longer periods" i.e. the Holocene (Evans et al., 2016; Frolking et al., 2006), This means that peatland <i>preservation</i> is beneficial (in terms of warming impact) despite CH ₄ , emissions. However, peatland <i>restoration</i> may impact the eco-hydrological trajectory on a shorter time scale (i.e. decadal as opposed to millennial) in which case, the increased CH ₄ , emissions resulting from	Formatted: Font: Not Italic, Font color: Text 1 Formatted: Add space between paragraphs of the same style, Line spacing: Multiple 1.08 li Formatted: Font color: Text 1
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729	Sphagnum spp, There is some debate about the use of GWP as a metric for peatlands because this metric focuses on a 100-year time window, which may not be appropriate. For example, "the long-term sequestration of CO ₂ into stable organic matter gradually outweighs the warming effect of CH ₄ , due to the shorter atmospheric lifetime of the latter, so that natural peatlands exert a net cooling impact on the atmosphere over longer periods" i.e. the Holocene (Evans et al., 2016; Frolking et al., 2006), This means that peatland <i>preservation</i> is beneficial (in terms of warming impact) despite CH ₄ , emissions. However, peatland <i>restoration</i> may impact the eco-hydrological trajectory on a shorter time scale (i.e. decadal as opposed to millennial) in which case, the increased CH ₄ , emissions resulting from restoration works (such as raising the water table) may be preparticedly more impacted to	Formatted: Font: Not Italic, Font color: Text 1 Formatted: Add space between paragraphs of the same style, Line spacing: Multiple 1.08 li Formatted: Font color: Text 1
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730	Sphagnum spp, There is some debate about the use of GWP as a metric for peatlands because this metric focuses on a 100-year time window, which may not be appropriate. For example, "the long-term sequestration of CO ₂ into stable organic matter gradually outweighs the warming effect of CH ₄ , due to the shorter atmospheric lifetime of the latter, so that natural peatlands exert a net cooling impact on the atmosphere over longer periods" i.e. the Holocene (Evans et al, 2016; Frolking et al, 2006), This means that peatland <i>preservation</i> is beneficial (in terms of warming impact) despite CH ₄ , emissions. However, peatland <i>restoration</i> may impact the eco-hydrological trajectory on a shorter time scale (i.e. decadal as opposed to millennial) in which case, the increased CH ₄ , emissions resulting from restoration works (such as raising the water table) may be proportionally more important to	Formatted: Font: Not Italic, Font color: Text 1 Formatted: Add space between paragraphs of the same style, Line spacing: Multiple 1.08 li Formatted: Font color: Text 1

1731	consider for the overall greenhouse gas effect. This would mean that 100-year GWP may be a more	
1732	appropriate metric for restored peatlands than intact peatlands.	
1733		
1734	It is interesting to observe that ecotypes with identical site history, close physical proximity, similar \leftarrow	Formatted: Line spacing: Double
1735	soils, and only subtle differences in hydrology can have substantial differences in the NEE, CH4 flux,	
1736	and resulting GWP. In the cutover areas of Abbeyleix Bog, a mosaic of ecotypes has naturally	
1737	developed in the time since abandonment. The resulting carbon balance C cycling is highly spatially	
1738	variable throughout the cutover bog: the Calluna Cutover ecotype is a considerable carbon source:	
1739	the Eriophorum Cutover ecotype is approximately carbon neutral; and the Sphagnum Cutover	
1740	ecotype is on average a moderate carbon sink. Also, the Eriophorum Cutover ecotype was found to	
1741	produce much higher CH _A emissions than the other two cutover ecotypes. The Sphagnum Cutover	Formatted: Subscript
1742	ecotype in this study was a statistically significant lower GWP source than the other ecotypes on the	Formatted: Font color: Text 1
1743	cutover bog and a substantially lower CO ₂ source than the Calluna Cutover Ecotype, on average a	Formatted: Font color: Text 1, Subscript
1744	lower CO ₂ source and GWP source than the other ecotypes on the cutover bog although the	Formatted: Font color: Text 1
1745	Sphagnum Cutover ecotype was located within 30 m of the Calluna Cutover ecotype.	
1746		Formatted: Font: Font color: Text 1, English (United States)
1747	The Calluna Cutover ecotype was not only a larger CO_2 source than the other ecotypes in this study.	Formatted: Font color: Text 1
1748	but also much higher than values reported in the literature for degraded/restored/recovering bogs	
1749	at a comparable MAWT (as in Fig. 11). This may be due to the longer time post-abandonment than	
1750	many other studies because the CO ₂ emissions from peat soils can possibly increase with	
1751	postharvest time (Rankin et al., 2018: Waddington et al., 2002). If this is true, differences in eco-	Formatted: Font color: Text 1
1752	hydrological trajectory (e.g. between the Sphagnum Cutover and Calluna Cutover ecotypes) may	Formatted: Font color: Text 1
	81	

1753	even result in a divergent trend in the global warming impact over time, which would underscore	
1754	the important of restoration as soon as possible postharvest.	
1755		
1756	Similarly, the two ecotypes on the restored raised bog share a similar site history, i.e. both were	Formatted: Font color: Text 1
1757	restored by drain blocking 6 years prior to the start of the study. The Sub-Central ecotype was on	
1750		
1/58	average a U sink while the lower quality Sub-Marginal area was on average a moderate carbon	
1759	source in 2016 and 2017 despite only minor differences in hydrology (Fig. 3). This is an example	Formatted: Font color: Text 1
		Formatted: Font color: Text 1
1760	where the successful restoration of a continuous <u>Sphagnum moss layer has resulted in an improved</u>	Formatted: Font: Italic, Font color: Text 1
1761	C sink. The Sub-Central ecotype had an average annual NFF that was similar to other studies on	Formatted: Font color: Text 1
1/01		Formatted: Font color: Text 1
1762	intact bog locations (as in Fig. 11, & Helftler et al., 2015; McVeigh et al., 2014; Nugent et al., 2018,	Formatted: Font color: Text 1
1763	etc.). This demonstrates that restored bogs can be returned to a similar CO ₂ sink as intact bogs	Formatted: Font color: Text 1
1764	agreeing with Nugent et al. (2018), depending on the initial level of disturbance (Renou-Wilson et	Formatted: Font color: Text 1
1765	<u>al., 2018a).</u>	
1766		Formatted: Font color: Text 1
1700	A	
1767	The eco-hydrological conditions seem to be what determines GHG emissions, rather than time since	
1760		
1/68	restoration/abandonment.	Formatted: Font: Not Italic, Font color: Text 1
1769	The Calluna Cutover ecotype was found to be a substantial carbon source and this is likely due to a	Formatted: Font color: Text 1
1770	lower water table and a plant ecology reflective of a degraded peatland. The Calluna Cutover	Formatted: Don't add space between paragraphs of the same style
1771	ecotype was not only a larger CO ₂ -source than the other ecotypes in this study, but also much higher	
1772	than values reported in the literature for degraded bogs at a comparable MAWT (as in Fig. 11). This	
1773	may be due to an increase in CO ₂ emissions with postharvest as hypothesized by Waddington et al.	
1774	(2002) because the time since abandonment of cutover areas of Abbeyleix Bog is relatively long (>	Formatted: Font color: Text 1
1	82	

1775	5 decades). This may even result in a divergent trend in the global warming impact over time,		
1776	which would underscore the important of restoration as soon as possible postharvest.		
1777	The Eriophorum Cutover ecotype has the highest mean annual water table and the highest		
1778	Eriophorum spp. cover; both of which are related to an increase in the observed methane flux. Even		
1779	with the increased methane flux at the Eriophorum Cutover ecotype, the GWP at this ecotype was		
1780	not higher than the Calluna Cutover ecotype. This agrees with Wilson et al. (2016b), where a		
1781	rewetted bog in Ireland was found to have a lower GWP than a well-drained site even where		
1782	Eriophorum angustifolium developed. The Sphagnum spp. dominated ecotypes (Sphagnum Cutover		
1783	and Sub-Central) were on average the lowest GWP sources, and plot scale Sphagnum spp. cover was		
1784	negatively correlated to the GWP. In terms of restoration, this suggests that there is GHG benefit		
1785	establishing high quality bog vegetation such as Sphagnum spp.		
1786			
	cimilar coile		Formatted: Don't add space between paragraphs of the
1787	Similar Sons,		SALLE SIVE THE SHALLET TALLE
1787 1788	Simul Sons,	L	
1787 1788 1789	Simul Sons,	l	same style, Line spacing. Double
1787 1788 1789 1790	The eco-hydrological conditions seem to be what determines GHG emissions, rather than time since		same style, Line spacing. Double
1787 1788 1789 1790 1791	The eco-hydrological conditions seem to be what determines GHG emissions, rather than time since restoration. The data here do not support the hypothesis that time since		same style, Line spacing. Double
1787 1788 1789 1790 1791 1792	The eco-hydrological conditions seem to be what determines GHG emissions, rather than time since restoration. The data here do not support the hypothesis that time since restoration/abandonmentabondonment per se is an important factor in the GHG emissions (once	l	same style, Line spacing. Double
1787 1788 1789 1790 1791 1792 1793	The eco-hydrological conditions seem to be what determines GHG emissions, rather than time since restoration. The data here do not support the hypothesis that time since restoration/abandonmentabondonment per se is an important factor in the GHG emissions (once vegetation is established as discussed below). This is evidenced by the fact that ecotypes with the		Formatted: Font color: Text 1
1787 1788 1789 1790 1791 1792 1793 1794	The eco-hydrological conditions seem to be what determines GHG emissions, rather than time since restoration. The data here do not support the hypothesis that time since restoration/abandonmentabondonment per se is an important factor in the GHG emissions (once vegetation is established as discussed below). This is evidenced by the fact that ecotypes with the same site history (e.g. the cutover ecotypes or the raised bog ecotypes) can have very different C		Formatted: Font color: Text 1 Formatted: Font color: Text 1
1787 1788 1789 1790 1791 1792 1793 1794 1795	The eco-hydrological conditions seem to be what determines GHG emissions, rather than time since restoration. The data here do not support the hypothesis that time since restoration/abandonmentabondonment per se is an important factor in the GHG emissions (once vegetation is established as discussed below). This is evidenced by the fact that ecotypes with the same site history (e.g. the cutover ecotypes or the raised bog ecotypes) can have very different C cycling. Also, locations with very different site history (e.g. the Sphagnum Cutover and Sub-Central		Formatted: Font color: Text 1
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796	The eco-hydrological conditions seem to be what determines GHG emissions, rather than time since restoration. The data here do not support the hypothesis that time since restoration/abandonmentabondonment per se is an important factor in the GHG emissions (once vegetation is established as discussed below). This is evidenced by the fact that ecotypes with the same site history (e.g. the cutover ecotypes or the raised bog ecotypes) can have very different C cycling. Also, locations with very different site history (e.g. the Sphagnum Cutover and Sub-Central ecotypes) can have similarities in plant ecology, C balance, and GWP. For example, all three of the		Formatted: Font color: Text 1
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797	The eco-hydrological conditions seem to be what determines GHG emissions, rather than time since restoration. The data here do not support the hypothesis that time since restoration/abandonmentabondonment per se is an important factor in the GHG emissions (once vegetation is established as discussed below). This is evidenced by the fact that ecotypes with the same site history (e.g. the cutover ecotypes or the raised bog ecotypes) can have very different C cycling. Also, locations with very different site history (e.g. the Sphagnum Cutover and Sub-Central ecotypes) can have similarities in plant ecology, C balance, and GWP. For example, all three of the cutover sites were presumably abandoned at the same time (circa 1960's). However, these three		Formatted: Font color: Text 1

1798	sites have very different CO_2 and CH_4 emissions despite their close physical proximity (within 200	
1799	m), similarities in soil, and a shared site history. Similarly, the raised bog ecotypes (Sub-Central and	
1800	Sub-marginal) were restored more recently by drain blocking in 2009. The average carbon balance	
1801	and GWP of the Sub-Marginal ecotype falls within the range of the much older cutover ecotypes,	
1802	and the Sub-Central ecotype has a similar average GWP to the Sphagnum Cutover ecotype. This	
1803	hypothesis would only be true if is there is an eco-hydrological trajectory in the years post	
1804	restoration/abandonment where <i>Eriophorum spp.</i> cover decreases or <i>Sphagnum spp.</i> cover	
1805	increases, for example. Further, although the Calluna Cutover location is much higher carbon	
1806	source than the Sub-Marginal or Sub-Central locations. This area is similar ecologically (and	
1807	presumably in terms of hydrologic conditions) to the large areas of the uncut raised bog, which are	
1808	heavily degraded. This type of habitat seems to be the most common habitat in the cutover areas in	
1809	Abbeyleix bog, and is probably similar to much of the degraded bog areas in Ireland. In the absence	
1810	of restoration works, this ecotype remains a large carbon source more than 5 decades after	
1811	abandonment.	
1812	A	Formatted: Font color: Red
1813	There is a need for simple methodologies to predict greenhouse emissions from peatlands for	
1814	policy and management, particularly from data that are available at the regional or national scale.	
1815	Water table, vegetation cover, and soil temperature have been previously suggested as potential	
1816	predictive metrics of GHG fluxes from peatlands (Strack et al. 2016). Hence, a simple linear	Formatted: Font color: Red
1817	regression based on MAWT (in cm below ground level) and percent genus cover was fit to the data	
1818	from the 29 collars in this study to predict the annual carbon bala nce (Eq. (3), r² = 0.71) and CH 4	Formatted: Font: Bold, Font color: Red
1819	$flux (Eq. (4), r^2 = 0.56).$	Formatted: Font: Bold, Font color: Accent 6
1820	Annual carbon, balance = 117.9 - 6.23*(MAWT) - 2.1*(Percent Sphagnum spp.) (3)	Formatted: Font: Bold, Font color: Accent 6

1821	Annual CH4 Flux = 12.23 + 0.440*(MAWT) + 0.0754*(Percent Eriophorum spp.)	
1822	In the cutover areas of Abbeyleix Bog, a mosaic of ecotypes have naturally developed in the time	Formatted: Font color: Light Blue
1823	since abandonment. The resulting carbon balance is highly spatially variable throughout the	
1824	cutover bog: the Calluna Cutover ecotype a considerable carbon source; the Eriophorum Cutover	
1825	ecotype approximately carbon neutral; and the Sphagnum Cutover ecotype on average a moderate	
1826	carbon sink. Also, the Eriophorum Cutover ecotype was found to produce much higher methane	
1827	emissions than the other two cutover ecotypes.	
1828	The Sphagnum Cutover ecotype in this study was on average a lower CO_2 -source and GWP source	
1829	than the other ecotypes on the cutover bog although the location of this ecotype was within 30 m of	
1830	the Calluna Cutover ecotype. The Calluna Cutover ecotype was not only a larger CO_2 source than the	
1831	other ecotypes in this study, but also much higher than values reported in the literature for	
1832	degraded bogs at a comparable MAWT (as in Fig. 11.4). This may be due to the longer time post-	
1833	$\frac{1}{2}$ abandonment because the CO ₂ emissions can possibly increase with postharvest time (Waddington	
1834	<u>et al., 2002). For these two ecotypes, this may even result in a divergent trend in the global</u>	
1835	warming impact over time, which would underscore the important of restoration as soon as	
1836	possible postharvest. All of the ecotypes on the cutover bog have similar soils, site history, climate,	
1837	etc. which means that subtle difference in the micro-scale hydrology has resulted in very different	
1838	eco-hydrological trajectories and global warming impact.	Formatted: Font color: Light Blue
1839	On the restored raised bog, the Sub-Central ecotype was on average a carbon sink while the lower	
1840	<u>quality Sub-Marginal area was on average a moderate carbon source over 2016 and 2017 despite</u>	
1841	similarities in hydrology (e.g. Fig. 7.2). This shows an example where areas with a successful	
1842	restoration of bog habitat result in an improved global warming impact. The Sub-Central ecotype	
1843	had an average annual NEE that was similar other studies on high quality bog locations. This	Formatted: Font color: Red
1844	demonstrates that restored bogs can be returned to a similar CO ₂ sink as pristine raised bogs, at	Formatted: Font color: Light Blue
1845	least when the initial disturbance is minimal.	
1846		
1847	4.2. Aquatic carbon losses	
1848	1. Comparison to other studies in <i>other</i> aspects of the C balance	Formatted: Font: Cambria
1849 1850	 a. le format. Even though other aspects of the carbon balance are Aquatic losses [can be] proportionally more important for degraded peatlands. 	

18	51			
18	52	Only a handful of previous studies have concurrently quantified annual fluxes of all major aspects of		Formatted: Font color: Text 1
10			\frown	Formatted: Font: Cambria, Font color: Text 1
18	53	the C balance for a peatiand site (Table 2). Of these, only one study, to the authors' knowledge.		Formatted: Font color: Text 1
18	54	(Nugent et al., 2018) has concurrently measured annual NEE, CH4 flux, and DOC flux for a restored	\mathbb{N}	Formatted: Font: Cambria, Not Italic, Font co
10			()/	Formatted: Font: Cambria, Font color: Text 1
18	55	peatland site.	$\mathbb{N} \setminus \mathbb{N}$	Formatted: Font: Cambria, Not Italic, Font co
			/// '	Formatted: Font: Cambria, Font color: Text 1
		Table 2. This table shows the average annual C balance from various studies which have measured multiple	- 17 /	Formattade Forte Combuie Fort colors Toot 1

aspects of the C balance. All units are in g-C m⁻¹ yr⁻¹, with a negative sign convention indicating C uptake to the bog. Where two or three years of data were available the range is given (min to max), where more years of data were available ±SD is included.

Formatted: Font color: Text 1
Formatted: Font: Cambria, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: Cambria, Not Italic, Font color: Text 1
Formatted: Font: Cambria, Font color: Text 1
Formatted: Font: Cambria, Not Italic, Font color: Text 1
Formatted: Font: Cambria, Font color: Text 1
Formatted: Font: Cambria, Font color: Text 1, Subscript
Formatted: Font: Cambria, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Suppress line numbers

-		Restored 14 years previously	Intact peatlands		l
Reference	This study	Nugent et al., 2018	Nillson et al., 2008	Dinsmore et al., 2010	Nugent et al., 2018
Location	Abbeyleix Bog, Ireland	Bois-des-Bel peatland in Quebec, Canada	Degerö Stormyr, Northern Sweden	Auchencorth Moss, Scotland	Mer Bleue peatland Ontario Canada
Study Period	2016-2017	2014-2016	2004-2005	2007-2008	1998-2014
NEE	(-92 to +219)†	-90 (-105 to -70)	-50 (-55 to -44)	-115 (-136 to -93.5)	-73 ± 40
CH₄ flux	(2.7 to 14.2)†	4.4 (4.2 to 4.5)	11.5 (9 to 14)	0.32 (0.29 to 0.35)	6.0 ± 4.0
DOC	10.4 (8.0 to 12.8)	6.9 (4.8 to 9.2)	13.0 (11.9 to 14.0)	25.4 (18.6 to 32.2)	17 ± 3.0
DICŧ	1.3 (1.1 to 1.5)		4.6 (3.1 to 6.0)	2.0 (2.0 to 2.1)	
CO_2 evasion	2.7§			12.7 (11.5 to 13.9)	
Other C losses/ gains			-1.1 (-1.3 to -0.8)	2.3 (0.51 to 4.03)	
Carbon Balance		-78 (-94 to -61)	-23.5 (-27 to -20)	-70 (-101 to -38.2)	-50 ± 40

<u>†Range for various ecotypes</u>

<u>*Including super saturated CO₂ as DIC*</u>

<u>§In the vicinity of the Sub-Marginal ecotype, this value was found to be 7.2 g-C-CO₂ m⁻¹ yr⁻¹ because of more</u> open water surface area from blocked ditches.

1856

1857 The annual C export as DOC measured in this study was lower than the value reported in Dinsmore

1858 et al. (2010) from Auchencorth Moss, Scotland, which is similarly located in a temperate oceanic

1859 climate. The annual DOC export measured at Abbeyleix Bog was also on the lower end of the range

1860 [5-36 g C m⁻² yr⁻¹] reported for temperate peatlands in the review by Evans et al. (2016). The total Formatted: Add space between paragraphs of the same style, Line spacing: Multiple 1.08 li

1861	NECB was also measured for a Boreal oligotrophic mire in northern Sweden (Nilsson et al. 2008)	
1862	and Auchencorth Moss, a lowland bog in Scotland (Dinsmore et al. 2010). The average annual DOC	
1863	losses found in this study (10.4 g C m 2 yr 1) are comparable to the average annual losses reported in	
1864	Nillson et al. (2008) of 13.0 g C m ⁻² yr ⁻¹ and lower than those reported Dinsmore et al. (2010) of 25.4	
1865	g C m⁻² yr⁻¹. The DIC losses in this study (1.3 g C m ⁻² yr ⁻¹ , including super-saturated CO ₂ as DIC) are	
1866	lower than the values reported in Nilsson et al. <u>(</u>al. (2008) and Dinsmore et al. <u>(</u>al. (2010) of 2.0	
1867	and 4.6 g C m ⁻² yr ⁻¹ , respectively. This is partially because the average DIC concentration measured	
1868	in this study (4.6 ±1.1 mg C_ <u>+L+1</u>) is somewhat lower than that reported in Nillson et al. [al. [2008]	Formatted:
1869	of 9.6 mg C/LI+1 and at Auchencorth Moss (Dinsmore et al., 2013) of 8.65 mg C/LI+1. The annual	Formatted:
1870	open water CO_2 evasion found in this study (2.7 or 7.2 g C m ⁻² yr ⁻¹) is lower than what was reported	Formatted:
1871	in Dinsmore et -al. (2010) (12.7 g C m⁻² yr⁻¹) , but this is dependent on the geometry of the	
1872	system as water surface area is a factor in the calculation. Also, the floating chamber method used	
1873	in this study may <u>have</u> underestimate <u>d</u> total CO ₂ evasion (Dinsmore et <u>al. al.</u> 2010).	
1874		
1875	The overall two year average aquatic carbon loss found in this study (14.4 g C m ⁻² yr ⁻¹) is	
1876	comparable to Nilsson et al. (2008) (17.8 g C m ⁻² yr ⁻¹) and lower than Dinsmore et al. (2010) (43.8 g	
1877	C m⁻²yr⁻¹).	
1878	4-	Formatted:
1879		same style, i
1880	For the first time, all of the major aspects of the carbon balance were measured simultaneously in a	
1881	recovering peatland. Also, the carbon balance of ecotypes with different degradation histories was	
1882	compared for a naturally recovering old cutover bog and a restored unharvested raised bog.	
1883	Although the NEE is the most variable component of the <u>Cearbon</u> balance and <u>and often</u> drives the	

Superscript

Superscript Superscript

Don't add space between paragraphs of the Line spacing: Double

1884	trends in the overall Ccarbon balance, it is not necessarily the largest component of the Ccarbon	Formatted: Font color: Text 1
1885	balance. Other aspects of the <u>C</u> carbon balance become proportionally more important when the	
1886	NEE is near neutralneutral. For example, the NEE at the Eriophorum Cutover ecotype in 2016 was	Formatted: Font color: Text 1
1887	+ $\frac{2}{2}$ ± <u>6153</u> g C-CO ₂ m ⁻² yr ⁻¹ . The magnitude of the aquatic <u>Carbon</u> loss in 2016 (11.8 ± 1.8 g C m ⁻²	Formatted: Font: Not Bold, Font color: Text 1
		Formatted: Font color: Text 1
1888	yr ⁻¹) was actually larger than the <u>average NEE $\frac{1}{4t-for}$ this ecotype.</u>	Formatted: Font: Not Bold, Font color: Text 1
1889		Formatted: Font color: Text 1
1890 1891	4.24.3 Implications for Peatland Management and Restoration	Formatted: Font color: Text 1
1892	2. Implications for management:	Formatted: Line spacing: Double
1893	a. Management can impact hydrology and ecology. Figs can be used to compare the	
1894	impact of vegetation of bare peatlands and raising water levels.	
1895	b. GWp as a peatland metric, time scale and restoration	
1896	There is some debate about the use of GWP as a metric for natural peatlands because this metric	
1897	focuses on a 100-year time window, which may not be appropriate. For example, "the long-term	
1898	sequestration of CO ₂ into stable organic matter gradually outweighs the warming effect of CH ₄ , due	
1899	to the shorter atmospheric lifetime of the latter, so that natural peatlands exert a net cooling impact	Formatted: Font color: Light Blue
1900	on the atmosphere over longer periods" (Evans et AL., 2016; Frolking et al., 2006) i.e. the Holocene.	
1901	This means that peatland <i>preservation</i> is beneficial (in terms of greenhouse gasses) despite CH ₄	
1902	emissions. However, peatland restoration works may impact the eco-hydrological trajectory on a	
1903	shorter time scale (i.e. decadal as opposed to millennial) in which case, the methane emissions may	
1904	be proportionally more important to consider for the overall greenhouse gas budget for restoration	
1905	works.	
1004	c CWP response with respect to MAWT	Exemption Line specing: Double
1900	e dwr response with respect to with the	Formatteu: Line spacing: Double

1907	i.—Generally, other studies show an improvement, but is highly variable	
1908	because of variable methane emissions.	
1909	ii. Variable based on data in fig 11 and 12	
1910	iii. Sphagnum has GWp benefit from this study	
1911	d. Vegetation:	
1912	i. Bare peat	
1913	ii. Value of encouraging Sphagnum (not isolated from hydrology)	
1914		
1915		
1916		
1917		
1040		
1918		
1919	Peatland management and restoration is primarily able to alter 1) the hydrology, typically	
1920	managing the water table through drainage or drain blocking and 2) the plant ecology, through	
1921	revegetation efforts and controlling invasive species (Andersen et al., 2017). If peatland	
1922	management is used as a climate change mitigation tool [as suggested in Birkin et al. (2011); Wilson	
1923	et al. (2013): Leifeld and Menichetti (2018)], then, the impact of these actions on C balance, CH_4	
1924	flux, and GWP must be considered. The trends in Fig. 11 could be used to predict the NEE impact of	
1925	rewetting and/or revegetating a peatland. However, the trend in NEE with respect to MAWT in Fig.	Formatted: Font color: Text 1
1926	11 should be interpreted with some caution because of the difficulty of generalizing across sites	Formatted: Font color: Text 1
1927	based on simple water table proxies (Wilson et al., 2016a). For example, there was a "highly	Formatted: Font color: Text 1

1928	peatland-specific dependency (i.e., with different offsets and slopes) of the CO ₂ response to water	
1929	table depth" for grassland peatlands in Germany (Tiemeyer et al., 2017). The reader is directed	Formatted: Font color: Text 1
1930	toward various formal literature reviews, which have considered the impact of re-wetting or water	
1931	table on peatland CO ₂₂ and CH ₄₂ emissions (Haddaway et al., 2014; Junkurst and Fielder, 2007;	Formatted: Font color: Text 1, Subscript
		Formatted: Font color: Text 1
1932	Saarnio, et al., 2007; <u>Turetsky et al., 2014</u> ; Junkurst and Fielder 2007, hadaway, 2014? <u>Wilson et al.</u>	Formatted: Font color: Text 1, Subscript
1933	2016a)	Formatted: Font color: Text 1
1,555	20104.	Formatted: Font color: Text 1
1004		Formatted: Font color: Text 1
1934		Formatted: Font color: Text 1
1935	Higher water table generally corresponds to increased CH _{&} emissions and reduced CO ₂ emissions	Formatted: Subscript
		Formatted: Subscript
1936	(Wilson et al., 2016a), which was found in this study as well. For sites with a higher water table, the	Formatted: Font color: Text 1
1937	<u>CO₂ uptake tends to outweigh the higher CH_e emissions (Junkurst and Fielder, 2007) such that</u>	Formatted: Subscript
1938	rewetting of a drained peatland has often been observed to result in an overall reduction in GWP	Formatted: Subscript
1939	<u>(Renou-Wilson et al., 2018b; Wilson et al., 2016a; Wilson et al., 2016b). However, this is not</u>	
1940	necessarily the case because of the high degree of variability for reported methane emissions. For	
1941	example, in this study, the Eriophorum Cutover ecotype (with the highest MAWT) was found to	
1942	have a higher GWP than the Sphagnum Cutover ecotype (with a much lower MAWT) both years.	
1943	Also, this study found that the plot scale GWP showed no trend with respect to MAWT.	
1944		
1945	a.	Formatted: Font color: Text 1
1946	b. MAWT <u>Thus, a high MAWT seems to be a prerequisite for high CH₄ emissions but does not</u>	Formatted: Normal, Line spacing: Double, No bullets or numbering
1947	necessarily result in a high CH4 emissions, which agrees with Tiemeyer et al. (2017).	Formatted: Font color: Text 1
1948	c. Vegetation	

1949	Establishing moss dominated vegetation important. Do you have support for this other than your	- (Formatted: Line spacing: Double	
1950	study? Raising the water table of a degraded bog does not necessarily result in the development of			
1951	high quality bog vegetation. Do you have support for this other than your study? For a successful			
1952	ecological restoration, the complex eco-hydrological function of raised bogs has to be replicated.			
1953	The low CH4 emissions from rewetted bare peat soils suggests that the methanogenesis is limited			
1954	<u>by substrate availability in cutover peatlands (Tuittila et al. 2000; Tuittila et al. 1999).Also, Aas</u>			
1955	shown in Figure 11, bare peat sites have a higher NEE than vegetated sites at a given MAWT, and			
1956	these trend lines diverge at higher MAWT. As it can take decades for vegetation to be established in			
1957	industrially mined peatlands (Wilson et al., 2015), th is ese data would suggest that restoration to		Formatted: Font color: Text 1	
1958	encourage plant colonization could reduce the short term CO_2 emissions even if no other			
1959	restoration works are undertaken. This data set could be used to predict the CO2-reduction from			
1960	raising the water table as well as establishing vegetation on bare peat sites. Further, peatlands may			
1961	be large C sinks in the years immediately post restoration as vegetation recovers due to the rapid,			
1962	subsequent increase in vegetation biomass. For example, an annual NEE of -473 g C-CO ₂ m ⁻² yr ⁻¹ was			
1963	reported by Waddington et-al. fal. (2010) one year post restoration for sites where herbaceous		Formatted: Font color: Text 1	
1964	vegetation increased dramatically. This may explain some of the low outliers in Figure 11 for		Formatted: Font color: Text 1	
1965	degraded/restored/recovering restored/recovering sites. Three of the low outliers in Figure 11 are		Formatted: Font color: Text 1	
1966	from Strack et .al. (2014) , which is 4 years post restoration with a growing season NEE of -162,	<	Formatted: Font color: Text 1	
1967	<u>121- and -126 g C-CO₂ m⁻² for plots with mean seasonal water tables of -21.3, -24.9 and -28.2 cm.</u>		Formatted: Font color: Text 1	
1968	respectively. On the other hand, the low CH4 emissions from rewetted bare peat soils suggests that			
1969	the methanogenesis is limited by substrate availability in cutover peatlands (Tuittila et al,2000;		Formatted: Font color: Text 1	
1070	Twittile at al. 1000) Thus establishing regetation on a subgroup postland could in success with suc-		The second fraction in the second	
19/0	Tuittila et al., 1999, Thus, establishing vegetation on a cutover peatiand could increase methane		Formatted: Font color: Text 1	

1971	emissions compared to bare peat, even so restored peatlands often have lower CH4 flux than intact	
1972	reference sites (e.g. Nugent et al., 2018).	
1973	The results from this study demonstrate the importance of establishing a <u>Sphagnum</u> moss for C sink	
1974	and GWP. This is somewhat contradictory to Wilson et al. (2016b), who found that locations in a	
1975	restored Irish peatland with only <i>Eriophorum angustifolium</i> had a stronger CO ₂ sink and lower GWP	
1976	than locations with <i>Eriophorum</i> and <i>Sphagnum</i> together. Still, the successful restoration of	
1977	Sphagnum on a mined peatland has been found to result in a stable and strong C sink and a low CH	
1978	emissions (e.g. Nugent et al., 2018). Also, Strack et al. (2016) found that variation in CO ₂ and CH ₄	
1979	flux was lower for natural sites, with a high percent moss cover, than restored sites with a lower	
1980	percent moss cover. Thus, the re-establishment of <u>Sphagnum</u> moss seems to be tied to a consistent	
1981	C sink function.	
1982		
1983		
1984 1985	From Thesis Conclusion chapter may be useful. Despite the considerable amount of recent scientific work on the greenhouse emissions from	
1986	peatlands, few previous studies have quantified the carbon balance of old abandoned cutover	
1987	peatlands (Bacon et al., 2017). Many studies have focused on more recently abandoned/restored	
1988	degraded bogs. This may be because of the recent change in attitudes towards peatland	
1989	conservation and restoration (Holden et al., 2004), which means that many bog restoration projects	
1990	are relatively recent. The focus on the cutover ecotypes investigated in this study is therefore	
1991	valuable because it the potential future climate impact of abandoned cutover bogs under the "do-	
1992	nothing" restoration approach (Holden et al., 2004). This is especially true in Ireland because	
1993	substantial areas of the Irish midland bogs are currently used in industrial peat harvesting, which is	
1994	scheduled to cease in the coming decades (Bord na Móna website).	

Formatted: Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font color: Text 1, Subscript
Formatted: Font color: Text 1
Formatted: Font: Italic, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: Italic, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font color: Text 1, Subscript
Formatted: Font color: Text 1
Formatted: Font: Italic, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: Italic, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: Italic, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font color: Text 1, Subscript
Formatted: Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font color: Text 1, Subscript
Formatted: Font color: Text 1
Formatted: Font color: Text 1, Subscript
Formatted: Font color: Text 1
Formatted: Font: Italic, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font color: Light Green
Formatted: Normal, No bullets or numbering

1995	In the cutover areas of Abbeyleix Bog, a mosaic of ecotypes have naturally developed in the time
1996	since abandonment. The resulting carbon balance is highly spatially variable throughout the
1997	cutover bog: the Calluna Cutover ecotype a considerable carbon source; the Eriophorum Cutover
1998	ecotype approximately carbon neutral; and the Sphagnum Cutover ecotype on average a moderate
1999	carbon sink. Also, the Eriophorum Cutover ecotype was found to produce much higher methane
2000	emissions than the other two cutover ecotypes.
2001	The Sphagnum Cutover ecotype in this study was on average a lower CO ₂ source and GWP source
2002	than the other ecotypes on the cutover bog although the location of this ecotype was within 30 m of
2003	the Calluna Cutover ecotype. The Calluna Cutover ecotype was not only a larger CO ₂ source than the
2004	other ecotypes in this study, but also much higher than values reported in the literature for
2005	degraded bogs at a comparable MAWT (as in Fig. 11.4). This may be due to the longer time post-
2006	abandonment because the CO2-emissions can possibly increase with postharvest time (Waddington
2007	et al., 2002). For these two ecotypes, this may even result in a divergent trend in the global
2008	warming impact over time, which would underscore the important of restoration as soon as
2009	possible postharvest. All of the ecotypes on the cutover bog have similar soils, site history, climate,
2010	etc. which means that subtle difference in the micro-scale hydrology has resulted in very different
2011	eco-hydrological trajectories and global warming impact.
2012	On the restored raised bog, the Sub-Central ecotype was on average a carbon sink while the lower
2013	quality Sub-Marginal area was on average a moderate carbon source over 2016 and 2017 despite
2014	similarities in hydrology (e.g. Fig. 7.2). This shows an example where areas with a successful
2015	restoration of bog habitat result in an improved global warming impact. The Sub-Central ecotype
2016	had an average annual NEE that was similar other studies on high quality bog locations. This
2017	demonstrates that restored bogs can be returned to a similar CO ₂ -sink as pristine raised bogs, at
2018	least when the initial disturbance is minimal.
2019	
2020	Previous 4.1

2022	
2023	likely due to a lower water table and a plant ecology reflective of a degraded peatland.
2024	The Eriophorum Cutover ecotype has the highest mean annual water table and the
2025	highest Eriophorum spp. cover; both of which are related to an increase in the observed
2026	methane flux. Even with the increased methane flux at the Eriophorum Cutover ecotype,
2027	the GWP at this ecotype was not higher than the Calluna Cutover ecotype. This agrees
2028	with Wilson et al. (2016b), where a rewetted bog in Ireland was found to have a lower
2029	GWP than a well-drained site even where Eriophorum angustifolium developed. The
2030	Sphagnum spp. dominated ecotypes (Sphagnum Cutover and Sub-Central) were the
2031	lowest average GWP sources, and Sphagnum spp. cover was negatively correlated to the
2032	GWP at the collar scale. In terms of restoration, this suggests that there is GHG benefit for
2033	both raising the water table as well as establishing high quality bog vegetation such as
2034	Sphagnum spp.
2035	

Formatted: Heading 2, Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 4 + Alignment: Left + Aligned at: 0" + Indent at: 0.25"

2036	
2037	time since restoration. The data here do not support the hypothesis that time since
2038	restoration/abondonment <i>per se</i> is an important factor in the GHG emissions (once
2039	vegetation is established as discussed below). For example, all three of the cutover sites
2040	were presumably abandoned at the same time (circa 1960's). However, these three sites
2041	have very different CO2 and CH4 emissions despite their close physical proximity (within
2042	200 m), similarities in soil, and a shared site history. Similarly, the raised bog ecotypes
2043	(Sub-Central and Sub-marginal) were restored more recently by drain blocking in 2009.
2044	The average carbon balance and GWP of the Sub-Marginal ecotype falls within the range
2045	of the much older cutover ecotypes, and the Sub-Central ecotype has a similar average
2046	GWP to the Sphagnum Cutover ecotype. This hypothesis would only be true if is there is
2047	an eco-hydrological trajectory in the years post restoration/abandonment where
2048	Eriophorum spp. cover decreases or Sphagnum spp. cover increases, for example.
2049	Further, although the Calluna Cutover location is much higher carbon source than the
2050	Sub-Marginal or Sub-Central locations. This area is similar ecologically (and presumably
2051	in terms of hydrologic conditions) to the large areas of the uncut raised bog, which are
2052	heavily degraded. This type of habitat seems to be the most common habitat in the
2053	cutover areas in Abbeyleix bog, and is probably similar to much of the degraded bog
2054	areas in Ireland. In the absence of restoration works, this ecotype remains a large carbon
2055	source more than 5 decades after abandonment.
2056	

2057		
2058	peatlands for policy and management, particularly from data that are available at the	
2059	regional or national scale. Water table, vegetation cover, and soil temperature have been	
2060	previously suggested as potential predictive metrics of GHG fluxes from peatlands	
2061	(Strack et al. 2016). Hence, a simple linear regression based on MAWT (in cm below	
2062	ground level) and percent genus cover was fit to the data from the 29 collars in this study	
2063	to predict the annual carbon balance (Eq. (3), r² = 0.71) and CH₄ flux (Eq. (4), r² = 0.56).	Formatted: Font color: Accent 6
2064	Annual carbon_balance = 117.9 - 6.23*(MAWT) - 2.1*(Percent Sphagnum spp.) (3)	Formatted: Font color: Accent 6
2065		
2066	— where annual carbon balance and annual CH₄ flux are in units of g C m⁻²yr⁻¹. While these	
2067	coefficients are site specific, these metrics may be useful for comparison to future	
2068	studies.	
2069		
2070		
2071		
2072	compared to global studies of boreal and temperate peatlands. The data from global	
2073	studies was divided into three generic categories as follows:	
2074	 Pristine/Intact peatlands; - those peatlands that have not been harvested, undergone 	
2075	intensive agriculture or forestry, and are not heavily impacted by drainage or other	
2076	disturbance;	
2077	 Bare peat sites; - previous peat extraction sites where there is an absence of vegetation 	
2078	cover;	

2079	 Restored/Degraded/Recovering peatlands; - all other peatlands are grouped into this 	
2080	category for this comparison.	
2081		
2082	natural sites and excludes sites that are actively used for intensive agriculture or	
2083	forestry.	
2084	—	

2085	For both vegetated and bare peat sites, there is a negative correlation between MAWT
2086	and NEE (Fig. 11). Both intact peatlands and variously degraded/recovering peatlands
2087	fall on the same trend line, agreeing with Wilson et al. (2016a). Annual NEE for vegetated
2088	sites followed a linear trend with respect to MAWT with slope of -4.5 g C-CO ₂ m ⁻² yr ⁻¹ -per
2089	cm rise in MAWT and an intercept of -92 g C-CO₂m⁻¹yr⁻¹. The slope is similar to that
2090	reported from a review of studies of peatlands with MAWT higher than -30 cm (Wilson et
2091	al. 2016a) of -2.0 \pm 1.0 and -5.0 \pm 2.0 g C-CO ₂ m ⁻² yr ⁻¹ per cm rise in MAWT for boreal and
2092	temperate peatlands, respectively. However, the trend in NEE with respect to MAWT
2093	should be interpreted with some caution because of the difficulty of generalizing across
2094	sites based on simple water table proxies (Wilson et al. 2016a). For example, there was a
2095	"highly peatland-specific dependency (i.e., with different offsets and slopes) of the $ m CO_2$
2096	response to water table depth" for grassland peatlands in Germany (Tiemeyer et al.
2097	2017), although, that study looked at grasslands, which may have much more variability
2098	in soil type, land management, nutrient status, etc. than the natural and semi-natural low
2099	nutrient sites shown in Figure 11. This trend may also break down as MAWT becomes
2100	too low (e.g. Tiemeyer et al. 2017) because soil respiration can be limited if the soil is too
2101	dry (Briones et al., 2014). Thus, climate patterns could be an important factor in CO2
2102	response to water table (Tiemeyer et al. 2017).
2103	—

2104	Based on the data collected in Figure 11, intact peatlands occur at a narrower range of	
2105	mean annual water table and NEE. This is expected because degraded peatlands can have	
2106	a wider range of site histories and eco-hydrological conditions (Wilson et al. 2016a). This	
2107	agrees with Strack et al. (2016) who reported greater variation in CO ₂ and CH ₄ fluxes at	
2108	restored plots when compared to either unrestored or natural plots. As with data from	
2109	this study, this may suggest that restoration of high quality peatland ecology has an	
2110	additional NEE benefit beyond raising the water table.	
2111	—	
2112	— The Sub-Central ecotype in this study has continuous Sphagnum spp. lawns similar to an	
2113	intact peatland. This ecotype has a mean annual NEE of -57 g C-CO ₂ m ⁻² yr ⁻¹ and a mean	Formatted: Font color: Accent 6
2114	annual water table of -8.2 cm. This is close to the overall average NEE (-60 g C-CO ₂ m ⁻² yr	
2115	1) and mean annual water table (-9 cm) for intact/pristine peatlands in this figure. This	
2116	comparison is valuable for validating the data for the other ecotypes because the carbon	
2117	balance of natural bogs is comparatively better characterized than degraded systems	
2118	and the potential for systematic bias in chamber measurements. The Calluna Cutover	
2119	ecotype from this study has an exceptionally high NEE (222 g C-CO ₂ m ⁻² yr ⁻¹) for the mean	Formatted: Font color: Accent 6
2120	annual water table (-18.6 cm) compared to the NEE (-5 g C-CO ₂ m ⁻² yr ⁻¹) predicted from	
2121	the best fit trend line of vegetated sites.	
2122	—	

2123	Also, as shown in Figure 11, bare peat sites have a higher NEE than vegetated sites at a
2124	given MAWT, and these trend lines diverge at higher MAWT. As it can take decades for
2125	vegetation to be established in industrially harvested peatlands (Wilson et al., 2015), this
2126	data would suggest that restoration to encourage plant colonization could reduce the
2127	short term CO2 emissions even if no other restoration works are undertaken. This data
2128	set could be used to predict the CO2 reduction from raising the water table as well as
2129	establishing vegetation on bare peat sites. Further, peatlands may be large carbon sinks
2130	in the years immediately post restoration as vegetation recovers due to the rapid,
2131	subsequent increase in vegetation biomass. For example, an annual NEE of -473 g C-CO ₂
2132	m ⁻² yr ⁺ -was reported by Waddington et al. (2010) one year post restoration for sites
2133	where herbaceous vegetation increased dramatically. This may explain some of the low
2134	outliers in Figure 11 for restored/recovering sites. Three of the low outliers in Figure 11
2135	are from Strack et al. (2014), which is 4 years post restoration with a growing season NEE
2136	of -162, -121- and -126 g C-CO₂ m⁻² for mean seasonal water tables of -21.3, -24.9 and -
2137	28.2 cm, respectively.
2138	

Formatted: Heading 2, Line spacing: Double, Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 4 + Alignment: Left + Aligned at: 0" + Indent at: 0.25", Don't suppress line numbers

2	L40 —	Figure 11. Mean annual water table vs. the annual NEE for the 5 ecotypes in this study (error bars
2	141	are standard deviation) compared to global studies from boreal and temperate peatlands. The
2	142	solid line shows the best fit linear trend line from all vegetated sites and the dashed line shows
2	143	the best fit trend line for bare peat sites. (Data from: Wilson et al., 2015; Wilson et al., 2016;
2	144	Vanslow-Algan et al., 2015; Tuittili et al., 1999; Waddington et al., 2010; Strack et al., 2014;
2	145	Nilsson et al., 2008; Dinsmore et al., 2010; Koehler et al., 2011; Chimner et al., 2017; Gazovic et al.,
2	146	2013; Lund et al., 2012; Levy and Grey et al., 2015; McVeigh et al., 2014; Helftler et al., 2015; Piechl
2	147	et al., 2014; Stranchen et al., 2016; Roulet et al., 2007; Waddington and Roulet, 2000; for more
2	148	details and additional studies see Supplemental Table S6 in Supplemental Section 3). Also, shown
2	149	to the right of the figure is the mean and 95% CI NEE from nutrient poor, wet (MAWT >-30 cm)
2	150	boreal (B) and temperate (T) peatlands (from the review paper, Wilson et al. 2016a).

Formatted: Heading 2, Don't add space between paragraphs of the same style, Line spacing: Double, Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 4 + Alignment: Left + Aligned at: 0" + Indent at: 0.25", Don't suppress line numbers

2151	There are a few cautionary notes that should accompany this plot. First, some of this data
2152	was collected using the closed chamber method and some collected using eddy
2153	covariance methods. Although both methods measure the same metric (NEE), closed
2154	chamber methods are inherently micro-scale while eddy-covariance methods are
2155	inherently landscape scale, as are the water table measurements accompanying them.
2156	Eddy-covariance measurements spatially integrate the micro-variations within the
2157	landscape compared to closed chamber measurements, and much of the NEE data
2158	reported in Figure 11 for intact peatlands is from eddy-covariance flux towers while
2159	there are very few studies that have used this technique on degraded or recovering
2160	peatlands. This may cause apparently higher variation in NEE for restored/recovering
2161	peatlands. Second, many of the studies on boreal peatlands report only growing season
2162	NEE and water table because of frozen winter conditions. Seasonal values from these
2163	studies are assumed to approximately represent annual values because inter fluxes at
2164	boreal sites are probably of minor importance to the annual fluxes. Third, this figure
2165	contains data points from different locations as well as the same location over multiple
2166	years where data is available.
2167	—
2168	— Similarly, annual/seasonal methane emissions are plotted against MAWT (Fig. 12). The
2169	data from the ecotypes in this study fall well within the range of the CH_4 flux values in
2170	this compilation of data. Reported methane emissions from drained peatlands are quite
2171	low and typically do not exceed 0.6 g C-CH $_4$ m 2 yr 4 when the mean annual water table is
2172	below -30 cm.
2173	—
1	

Formatted: Heading 2, Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 4 + Alignment: Left + Aligned at: 0" + Indent at: 0.25"

2174	
2175	higher than -20 cm. Thus, a high MAWT seems to be a prerequisite for high methane
2176	emissions but does not necessarily result in a high methane emissions, which agrees with
2177	Tiemeyer et al. (2017). As in Wilson et al. (2016a), there does not seem to be a difference
2178	between restored and intact peatlands for the CH4 flux data presented in Figure 12,
2179	excluding infilled ditches, which can be hotspots for methane emissions (Waddington
2180	and Day, 2000). For example, Cooper et al., (2014) reports 53.9 g C-CH₄m²yr¹ for infilled
2181	ditches (Cooper et al. 2014). The low methane emissions from rewetted bare peat soils
2182	suggests that the methanogenesis is limited by substrate availability in cutover
2183	peatlands (Tuittila et al. 2000; Tuittila et al. 1999).
2184	
I	

2186	Fig. 12. This figure shows the mean annual water table plotted against the measured annual	
2187	methane emissions for each ecotype for each ecotype in this study (error bars are standard	
2188	deviations) and from global studies of temperate and boreal peatlands (Sources: Flessa et al.	
2189	1998, Fieldler et al. 1998, Wilson et al. 2016; Tuitili et al., 1999; Wilson et al., 2018; Danevic et al.,	
2190	2010; Von Arnold et al., 2005; Laine et al., 1996; Yamulki et al., 2012; Nykanen et al., 1998;	
2191	Fieldler et al., 2007; Cooper et al., 2014; Waddington and Day, 2007; Chimner et al., 2017;	
2192	Waddington and Roulet 2000; for more details see Table S6 in Supplemental Section 3. Also,	
2193	shown to the right of the figure is the mean and 95% CI of methane emissions from nutrient poor,	
2194	wet (MAWT >-30 cm) boreal (B) and temperate (T) peatlands (from the review paper, Wilson et	
2195	al. 2016a).	
2196	+-	(
2196 2197	—— As with the NEE data in Figure 11, this figure contains both annual and seasonal fluxes,	
2196 2197 2198	 As with the NEE data in Figure 11, this figure contains both annual and seasonal fluxes, where seasonal fluxes are more often reported for boreal sites. This figure excludes 	
2196 2197 2198 2199	 As with the NEE data in Figure 11, this figure contains both annual and seasonal fluxes, where seasonal fluxes are more often reported for boreal sites. This figure excludes methane emissions from infilled ditches. There are few studies that have reported 	
2196 2197 2198 2199 2200	 As with the NEE data in Figure 11, this figure contains both annual and seasonal fluxes, where seasonal fluxes are more often reported for boreal sites. This figure excludes methane emissions from infilled ditches. There are few studies that have reported methane emissions from bare peat sites, and the results are generally low (mean of -0.03) 	
2196 2197 2198 2199 2200 2201	 As with the NEE data in Figure 11, this figure contains both annual and seasonal fluxes, where seasonal fluxes are more often reported for boreal sites. This figure excludes methane emissions from infilled ditches. There are few studies that have reported methane emissions from bare peat sites, and the results are generally low (mean of -0.03 gC-CH₄m²yr⁴) even at high water table. The data used to compile Figs. 11 and 12 and 	
2 196 2 197 2 198 2 199 2 200 2 201 2 202	 As with the NEE data in Figure 11, this figure contains both annual and seasonal fluxes, where seasonal fluxes are more often reported for boreal sites. This figure excludes methane emissions from infilled ditches. There are few studies that have reported methane emissions from bare peat sites, and the results are generally low (mean of -0.03 gC-CH4,m⁻²yr⁻¹) even at high water table. The data used to compile Figs. 11 and 12 and additional studies can be found in Supplemental Section 3, Table S6. 	
2196 2197 2198 2199 2200 2201 2202 2202	 As with the NEE data in Figure 11, this figure contains both annual and seasonal fluxes, where seasonal fluxes are more often reported for boreal sites. This figure excludes methane emissions from infilled ditches. There are few studies that have reported methane emissions from bare peat sites, and the results are generally low (mean of -0.03 gC-CH₄m⁻²yr⁻¹) even at high water table. The data used to compile Figs. 11 and 12 and additional studies can be found in Supplemental Section 3, Table S6. 	

Formatted: Heading 2, Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 4 + Alignment: Left + Aligned at: 0" + Indent at: 0.25", Don't suppress line numbers

Formatted: Heading 2, Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 4 + Alignment: Left + Aligned at: 0" + Indent at: 0.25"

2205 —	Peatland management and restoration is primarily able to alter 1) the hydrology,
2206	typically managing the water table through drainage or drain blocking and 2) the plant
2207	ecology, through revegetation efforts, managing water table, and controlling invasive
2208	species (Andersen et al. 2017). If peatland management is used as a climate change
2209	mitigation tool [as suggested in Birkin et al. (2011); Wilson et al. (2013); Leifeld and
2210	Menichetti, (2018)], the impact of these things must be considered. The wide range of
2211	methane emissions reported in the literature at high water tables means that
2212	generalizations cannot be made about GWP for restored vs. pristine peatlands or GWP as
2213	a function of water table. For example, reported values of annual CH_4 fluxes in Fig. 12
2214	from sites with a MAWT above -10 cm range from 0.3 (Nykanen et al., 1995) to 38.3 g C-
2215	$CH_{4}m^{-2}yr^{-1}$ (calculated from Junkurst and Fieldler, 2007) for intact peatlands and 0.4
2216	(Strack et al. 2014) to 20.6 g C-CH 4m ⁻² yr ⁻¹ (Renou-Wilson et al. 2018a) for restored
2217	peatlands. This corresponds to a 100-year GWP of 0.1 to 17.3 and 0.2 to 9.3 tonnes CO_{2} -
2218	eq ha ⁺ yr ⁻¹ , respectively. This range is larger than the largest reported CO_2 sink for intact
2219	peatlands of -6.9 tonnes CO₂-eq ha⁺yr⁺ (calculated from Levy and Grey 2015) and far
2220	larger than the average CO ₂ sink for intact peatlands of -2.2 tonnes CO ₂ -eq ha ⁻¹ yr ⁻¹
2221	reported in Figure 11. Still, a GWP decrease is often observed following rewetting
2222	(Wilson et al. 2016a, Wilson et al. 2016b, Renou-Wilson et al. 2018b). Additionally, the
2223	data from this study would suggest that the presence of Sphagnum spp. corresponds to a
2224	decreased GWP.
I	

2225	—Junkurst and Fielder (2007) conducted a review of CO ₂ and CH ₄ flux for boreal and	
2226	temperate peatlands. They state that the methane fluxes in temperate peatlands are	
2227	"usually found to be three orders of magnitude lower than simultaneously measured $ m CO_2$	
2228	emissions." Thus, they conclude that the suppressed CO ₂ -emission from higher water	
2229	table would outweigh the GWP effect of increased methane emissions. This conclusion	
2230	seems unlikely to be generally true based on the data shown Figure 11 and 12.	
2231		
2232		
2233	metric focuses on a 100-year time window, which may not be appropriate. For example,	
2234	to quote from Evans et al. (2016), "as noted by Frolking et al. (2006), the long-term	
2235	sequestration of CO ₂ -into stable organic matter gradually outweighs the warming effect	
2236	of CH4, due to the shorter atmospheric lifetime of the latter, so that natural peatlands	Formatted: Font color: Red
2237	exert a net cooling impact on the atmosphere over longer periods." This means that the	
2238	long term climate benefit of peatlands is primarily controlled by NEE. However, this logic	
2239	would only apply to restoration works if these impact the eco-hydrological conditions on	
2240	time scales >> 100 years.	
2241	—	
2241		
2242		
------	--	--
2243	just after restoration works blocking surface drains and again in 2014. During this time	
2244	the extent of Sub-Central area increased by approx. 2.1 ha largely at the loss of the Sub-	
2245	Marginal ecotype. Assuming the values found in this study are representative of all years,	
2246	the restoration works resulted in a reduction of 7.0 <u>± 7.7 tonnes yr 4-CO2 although a</u>	Formatted: Font: Cambria
2247	smaller reduction (3.3 ± 7.6 tonnes yr-1) of CO2-equivalents. Additionally, there is a	Formatted: Font: Cambria
2248	potential reduction in CO2 emissions due to raising the water table throughout the entire	
2249	108 ha of raised bog area. The change in water table from these restoration works was	
2250	not directly measured, but based on the typical depths of water in the blocked drains,	
2251	there was an estimated 10–40 cm rise in water table. For the 108 ha of raised bog area,	
2252	this could result in an additional reduction of 166–664 tonnes yr-1 of CO ₂ based on the	
2253	trends in Fig. 11. The impact of increased methane emissions in this case is probably	
2254	minimal because the majority (67%) of the raised bog area, although with a higher water	
2255	table than previously, remains as deeply drained ecotypes (Marginal or Facebank).	
2256	5.5 Conclusions	
2257	1. Opposite trends in NEE and CH4 with MAWT so no trend in GWP with MAWT. But a sig	
2258	decrease in GWP with percent S cover.	
2259	In general, this study found large differences in carbon balance and GWP emissions of	Formatted: Font:
2260	various ecotypes in a recovering cutover bog despite of the close physical proximity (within 200 m).	Formatted: Normal, Don't add space between paragraphs of the same style, Line spacing: Double, No bullets or numbering
2261	similarities in soil, and a shared site history. This highlights the importance of microscale	Formatted: Font: Font color: Text 1
2262	hydrological variations on the eco-hydrological trajectory and need for more research on the eco-	Formatted: Font: Not Bold, Font color: Text 1
2202		
2263	hydrology of degraded bogs as well as the requirements for successful restoration. On both a	Formatted: Font: Font color: Text 1

2264	recovering cutover bog and a drain blocked raised bog, lower GWP was observed where there had	Formatted: Font: Font color: Text 1
2265	been recovery of high quality peatland vegetation such as <i>Sphagnum spp</i> .	Formatted: Font color: Text 1
		Formatted: Font:
2266	Α	Formatted: Font:
2267	<u>At the plot scale, t</u> The trends in CH ₄ flux and <u>carbon-C</u> balance with respect to MAWT offset each	Formatted: Line spacing: Double
2268	other such that there is no trend in GWP with respect to mean annual water table <u>MAWT</u> . The collar	
2269	annual average GWP <u>showed</u> has a highly significant negative linear correlation with the plot scale	
2270	percent Sphagnum spp. cover. Altogether, \pm this demonstrates the greenhouse gas benefit of	
2271	restoring degraded bogs back to active, <i>Sphagnum</i> dominated systems	Formatted: Font color: Light Blue
2272	A	Formatted: Font color: Light Blue
2273		
2274	In general, this study found large differences in carbon balance and GWP emissions of various	
2275	ecotypes in a recovering cutover bog despite of the close physical proximity (within 200 m),	
2276	similarities in soil, and a shared site history. Both a recovering cutover bog and a drain blocked	
2277	raised bog can have low GWP if there is recovery of high quality peatland vegetation such as	
2278	Sphagnum spp.	
2279		
2280	As degraded peatlands are major aspects of the European landscape and given their importance to	
2281	global greenhouse gas emissions, it is valuable to continue building a database of greenhouse gas	
2282	emissions from peatlands and the effects of peatland management and restoration. This requires	
2283	three aspects of future research: 1. More field data is valuable-needed to thoroughly characterize	
2284	the wide range of <u>peatlands and</u> drivers <u>of</u> peatland greenhouse gas emissions; 2. The types of	
2285	data collected, methods used, and ways-format of reporting this data need to be streamlined across	
2286	the scientific community; 3. The data from the growing number of studies focused on peatland	

2287	greenhouse gas emissions needs to be compiled in accessible ways to both the scientific community	
2288	and policy managers.	
2289		
2290		 Formatted: Normal, Don't add space between paragraphs of the same style
2291	2. Sites with similar site histories have very different NEE and CH4 despite sublte differences	 Formatted: Normal, Don't add space between paragraphs of the same style, No bullets or numbering
2292	in hydrology. Difficult to generalize carbon cycling based on generic landuse.	
2293	3. Need for more streamlined collection of data and organizied data based because of rapidly	
2294	growing number of studies on peatland carbon cycling and the importance of peatlands for global	
2295	atmospheric carbon.	
2296	4. Raising water table is a necessary component of improving the ecological trajectory,	 Formatted: Normal, Space After: 0 pt, Don't add space
2297	but does not necessarily result in S cover. Therefore, more science is needed on how to	No bullets or numbering
2298	restore S and the subtle differences in ecohydrology.	
2299	5.	 Formatted: Normal, Don't add space between paragraphs of the same style, No bullets or numbering
2300	All the major components of the carbon balance were measured at several different ecotypes, on	
2301	restored and cutover raised bog with different land use and degradation histories. Trends in annual	
2302	NEE and CH_4 fluxes were observed with respect to both ecological and hydrological conditions. In	
2303	particular, higher water level and intact Sphagnum vegetation seem to be related to higher carbon	
2304	sink and lower GWP. The data from ecotypes in this study were compared to a large number of	
2305	studies on boreal and temperate peatlands with respect to MAWT. In this broader comparison,	
2306	negative trends were observed in NEE with respect to MAWT for both vegetated and bare peat	
2307	sites, while CH_4 fluxes were more variable at high MAWT.	
2308		

2309	Data availability
2310	Much of the data on the various aspects of the annual <u>Carbon</u> balance including all the data behind
2311	Fig. 6, Fig. 9, Fig. 10, Fig. 11, and Fig. 12 can be found in the supplemental material. All other data
2312	used in this study are archived by the authors and are available on request (swensonm@tcd.ie).
2313	
2314	Supplemental Information
2315	Section S1. A description of the NEE and CH_4 flux models tested and the thought behind these
2316	models. Also, for each of the 29 collars in this study, the empirical fitting parameters, and statistical
2317	information for the the r ² , and the standard deviation of the residuals is shown for the best GPP and
2318	ER models <u>used</u> .
2319	Section S2. Eco-hydrological conditions and Cearbon balance terms for all collars, and both years of
2320	this study.
2321	Section S3. Data collected from literature on peatland C balance and other site information. +
2322	measurements aspects of peatland greenhouse gas balance. This section includes the data behind
2323	Fig. 11 and Fig. 12 as well as other studies.
2324	
2325 2326	Author contribution Michael Swenson collected and analyzed the majority of the field data and prepared the manuscript
2327	with contributions from other co-authors. Shane Regan attained the grant award, determined the
2328	field site location, and contributed to setting up the field equipment and measuring infrastructure.
2829	Dirk Bremmers collected $\underline{CH_4}$ methane flux data in the field and analyzed gas samples in the lab.
1 2330	Jenna Lawless collected field measurements of DIC and CO2 evasion. Shane Regan, Matt Saunders

2331	and Laurence Gill contributed technical advice and guidance throughout the project
2332	implementation and manuscript writing stages.
2333 2334	Competing interests The authors declare that they have no conflict of interest.
2335	Acknowledgements
2336	Environmental Protection Agency (Ireland) for funding the project (project ref: 2014-NC-MS-2);
2337	Fernando Fernandez and Jim Ryan (National Parks and Wildlife Service, Ireland); Dr. Maria Strack
2338	for providing the collar specific data of NEE, and $ ext{CH}_4$ flux which are presented but not explicitly
2339	reported in Strack et al., (al. (2014) and were included in Fig. 11 and Fig. 12; Abbeyleix Bog Project,
2340	LTD for endless encouragement and help; Trinity College lab technicians and support.
2341	References
2342	Andersen, R., Farrell، C., Graf، M., Muller، F., Calvar، E., Frankard، P., Caporn, S., and Anderson, P.: An
2343	overview of the progress and challenges of peatland restoration in Western Europe,
2344	Restoration Ecology, 25(2), 271–282, doi: 10.1111/rec.12415, 2017 .
2345	Augustin, J. and Joosten, H.: Peatland rewetting and the greenhouse effect, IIMCG Newsletter,
2346	3(2007), 12–14, 2007 .
2347	Bacon, K. L., Baird, A. J., and Blundell, A. et al.: Questioning ten common assumptions about
2348	peatlands, Mires and Peat, 19(12), 1–23, doi: 10.19189/MaP.2016.OMB.253, 2017 .
2349	Bain, C. G., Bonn, A., Stoneman, R., Chapman, S., Coupar, A., Evans, M., Gearey, B. et al., IUCN UK
2350	Commission of Inquiry on Peatlands. Project Report. IUCN UK Peatland Programme.
2351	Edinburgh, 2011.
2352	Baird, A., Holden, J., and Chapman, P.: A Literature Review of Evidence on Emissions of Methane in
2353	Peatlands, Defra Project SP0574, 44(0), 1–54, 2009 .

2354	<u>Barry, C. D., Renou-Wilson, F., Wilson, D., Müller, C., and Foy, R. H., Magnitude, form and</u>
2355	bioavailability of fluvial carbon exports from Irish organic soils under pasture. Aquatic
2356	<u>Sciences. 78, 541-560, 2016.</u>
2357	Ballantyne, D. M., Hribljan, J. A., Pypker, T. G., and Chimner, R. A.: Long-term water table
2358	manipulations alter peatland gaseous carbon fluxes in Northern Michigan, Wetlands
2359	Ecology and Management, 22(1), 35–47, doi: 10.1007/s11273-013-9320-8, 2014 .
2360	Billett, M. F., Charman, D. J., Clark, J. M., et al.: Carbon balance of UK peatlands: Current state of
2361	knowledge and future research challenges, Climate Research, 45(1), 13–29, doi:
2362	10.3354/cr00903, 2010 .
2363	Birkin, L. J., Bailey, S., Brewis, F. E., and Way, L.: The requirement for improving greenhouse gases
2364	flux estimates for peatlands in the UK, Joint Nature Conservation Committee, JNCC report
2365	No: 457, ISSN 0963 8901, 2011 .
2866	Blodau, C Carbon cycling in peatlands — A review of processes and controls, Environmental
2367	Reviews, 10(2), 111–134, doi: 10.1139/a02-004, 2002 .
2368	Chimner, R., A., Pypker, T. G., Hribljan, J. A., Moore, P. A., and Waddington, J. M.: Multi-decadal
2369	Changes in Water Table Levels Alter Peatland Carbon Cycling, Ecosystems, 20(5), 1042–
2370	1057, doi: 10.1007/s10021-016-0092-x, 2017 .
2371	Connolly, J. and Holden, N.: Detecting peatland drains with Object based Image Analysis and
2372	Geoeye-1 imagery, Carbon balance and management 12(1): 7, 2017 .
2373	Connolly, J. and Holden, N.: Mapping peat soils in Ireland: updating the derived Irish peat map. Irish
2374	Geography 42(3): 343-352, 2009 .
2375	Cooper, M. D., Evans, C. D., Zielinski, P. et al.: Infilled Ditches are Hotspots of Landscape Methane
2376	Flux Following Peatland Re-wetting. Ecosystems, doi: 10.1007/s10021-014-9791-3, 2014.

2377	Danevčič, T., Mandic-Mulec, I., Stres, B., Stopar, D., and Hacin, J.: Emissions of CO_2 , CH_4 and N_2O
2378	from Southern European peatlands, Soil Biology and Biochemistry, 42(9), 1437–1446.
2379	doi: 10.1016/j.soilbio.2010.05.004, 2010 .
2380	Dise, N. B.: Peatland response to global change, Science 326(5954): 810-811, 2009 .
2381	Dinsmore, K. J., Billett, M. F., and Dyson, K. E.: Temperature and precipitation drive temporal
2382	variability in aquatic carbon and GHG concentrations and fluxes in a peatland catchment,
2383	Global Change Biology, 19(7), 2133–2148, doi: 10.1111/gcb.12209, 2013 .
2384	Dinsmore, K. J., Billett, M. F., Skiba, U. M., Rees, R.M., Drewer, J., and Helfter, C.: Role of the aquatic
2385	pathway in the carbon and greenhouse gas budgets of a peatland catchment, Global Change
2386	Biology, 16(10), 2750–2762, doi: 10.1111/j.1365-2486.2009.02119.x, 2010 .
2387	Duffy, P., Hanley, E., Hyde, B., O'Brien, P., Ponzi, J., Cotter, E., and Black, K.: National Inventory Report
2388	2014, Greenhouse Gas Emissions 1990-2012 Reported to the United Nations Framework
2389	Convention on Climate Change, Environmental Protection Agency Ireland, An
2390	Ghníomhaireacht Um Chaomhnú Comhshaoil, 2014 .
2391	Evans, C. D., Renou-Wilson, F., and Strack, M.: The role of waterborne carbon in the greenhouse
2392	gas balance of drained and re-wetted peatlands. Aquatic Sciences, 78(3), 573–590.
2393	doi: 10.1007/s00027-015-0447-y, 2016 .
2394	Frenzel, P., and Karofeld, E.: CH_4 emission from a hollow-ridge complex in a raised bog : The role of
2395	CH ₄ production and oxidation, Biogeochemistry 51: 91–112, 2000 .
2396	<u>Fritz, C., Pancotto, V. A., Elzenga, J. T., Visser, E. J., Grootjans, A. P., Pol, A., Iturranspe, R., Roelofs. J. G.,</u>
2397	and Smolders, A. J. Zero methane emission bogs: extreme rhizosphere oxygenation by
2200	cuchion plants in Patagonia New Pathologist New Phytologist 100: 308-409 2011

Formatted: Font: Cambria, Not Bold, Font color: Auto Formatted: Font: Cambria, Font color: Auto

2399	Frolking, S., Roulet, N., and Fuglestvedt, J.: How northern peatlands influence the Earth's
2400	radiative budget: Sustained methane emission versus sustained carbon sequestration,
2401	Journal of Geophysical Research: Biogeosciences, 111(1), 1–10, doi: 0.1029/2005JG000091,
2402	2006.
2403	Gažovič, M., Forbrich, I., Jager, D. F., Kutzbach, L., Wille, C., and Wilmking, M.: Hydrology-driven
2404	ecosystem respiration determines the carbon balance of a boreal peatland, Science of the
2405	Total Environment, 463–464, 675–682, doi: 10.1016/j.scitotenv.2013.06.077, 2013 .
2406	Gelbrecht, J., Fait, M., Dittrich, M.: Use of GC and equilibrium calculations of CO_2 saturation index to
2407	indicate whether freshwater bodies in north-eastern Germany are net sources or sinks for
2408	atmospheric CO ₂ , Biogeochemistry 51: 91–112, 1998 .
2409	Gorham, E.: Northern Peatlands : Role in the Carbon Cycle and Probable Responses to
2410	Climatic Warming. Ecological Applications, 1(2) 182–195, 1991 .
2411	Gray, A., Levy, P. E., Cooper, M. D. et al.: 2013). Methane indicator values for peatlands: a comparison
2412	of species and functional groups, Global Change Biology, 19(4), 1141–1150, doi:
2413	10.1111/gcb.12120, 2013 .
2414	Haddaway, N. R., Burden, A., Evans, C. D., Healey, J. R., Jones, D. L., Dalrymple, S. E., and Pullin, A. S.:
2415	Evaluating effects of land management on greenhouse gas fluxes and carbon balances in
2416	boreo-temperate lowland peatland systems, Environmental Evidence, 3(1), 5,
2417	doi: 10.1186/2047-2382-3-5, 2014 .
2418	Helfter, C., Campbell, C., Dinsmore, K. J. <i>et al.</i> : Drivers of long-term variability in CO_2 net
2419	ecosystem exchange in a temperate peatland, Biogeosciences, 12(6), 1799–1811,
2420	doi: 10.5194/bg-12-1799-2015, 2015 .

2421	Jager, D. F., Wilmking, M., Kukkonen, J. V. K.: The influence of summer seasonal extremes on
2422	dissolved organic carbon export from a boreal peatland catchment: evidence from one
2423	dry and one wet growing season, The Science of the Total Environment, 407(4), 1373–82,
2424	doi: 10.1016/j.scitotenv.2008.10.005, 2009 .
2425	Jungkunst, H. F., and Fiedler, S.: Latitudinal differentiated water table control of carbon
2426	dioxide, methane and nitrous oxide fluxes from hydromorphic soils: Feedbacks to climate
2427	change, Global Change Biology, 13(12), 2668–2683, doi: 10.1111/j.1365-
2428	2486.2007.01459.x , 2007 .
2429	Koehler, A. K., Sottocornola, M., and Kiely, G.: How strong is the current carbon sequestration
2430	of an Atlantic blanket bog?, Global Change Biology, 17(1), 309–319, doi: 10.1111/j.1365-
2431	2486.2010.02180.x, 2011 .
2432	Koehler, A. K., Murphy, K., Kiely, G., and Sottocornola, M.: Seasonal variation of DOC concentration
2433	and annual loss of DOC from an Atlantic blanket bog in South Western Ireland,
2434	Biogeochemistry, 95(2–3), 231–242, doi: 10.1007/s10533-009-9333-9, 2009 .
2435	Laine, J., Silvola, J., Tolonen, K. et al.: Effect of water-level drawdown on global climatic
2436	warming: Northern peatlands, Ambio, 25(3), 179–184, doi: 10.2307/4314450, 1996 .
2437	Leifeld, J. and Menichetti, L.: The underappreciated potential of peatlands in global climate change
2438	mitigation strategies, Nature Communications 9(1): 1071, 2018 .

- 2439 Levy, P. E., and Gray, A.:2015). Greenhouse gas balance of a pristine peat bog in northern Scotland,
- 2440 Environmental Research Letters, 10(March), 1–17, doi: 10.1088/1748-
- 2441 9326/10/9/094019, **2015**.

2442	Lund, M., Christensen, T. R., Lindroth, A., and Schubert, P.: Effects of drought conditions on the	
2443	carbon dioxide dynamics in a temperate peatland, Environmental Research Letters, 7(4),	
2444	doi: 10.1088/1748-9326/7/4/045704, 2012 .	
2445	McNamara, N. P., Plant, T., Oakley, S., Ward, S., Wood, C., and Ostle, N.: Gully hotspot contribution to	
2446	landscape methane (CH ₄) and carbon dioxide (CO ₂) fluxes in a northern peatland, <i>Science</i>	Formatted: Font: Italic
2447	of the Total Environment, 404, doi: 10.1016/j.scitotenv.2008.03.015, 2008 .	
2448	Myhre, G., Shindell, D., Chapter 8, Anthropogenic and Natural Radiative Forcing, in Climate Change	
2449	2013: The Physical Science Basis. IPCC Working Group I, Contribution to AR5, 2013.	
2450	McVeigh, P., Sottocornola, M., Foley, N., Leahy, P., and Kiely, G.: Meteorological and functional	
2451	response partitioning to explain interannual variability of CO_2 exchange at an Irish Atlantic	
2452	blanket bog, Agricultural and Forest Meteorology, 194, 8–19.	
2453	doi: 10.1016/j.agrformet.2014.01.017, 2014 .	
2454	Nilsson, M., Sagerfors, J., Buffam, I., et al.: Contemporary carbon accumulation in a boreal	
2455	oligotrophic minerogenic mire - A significant sink after accounting for all C-fluxes, Global	
2456	Change Biology 14(10) 2317–2332, doi: 10.1111/j.1365-2486.2008.01654.x, 2008 .	
2457	Nugent, K. A., Strachan, I. B., Strack, M., Roulet, N. T., Rochefort, L. Multi-year net ecosystem carbon	
2458	balance of a restored peatland reveals a return to carbon sink. <i>Glob Change Biol.</i>	Formatted: Font: Cambria, 11 pt
2459	<u>2018:24:5751–5768, DOI: 10.1111/gcb.14449.</u> 2018.	Formatted: Font: Cambria, 11 pt
2460	Nykänen, H., Alm, J., Silvola, J., Tolonen, K., and Martikainen, P. J.: Methane fluxes on boreal	Formatted: Font: Cambria, 11 pt, Bold
2461	peatlands of different fertility and the effect of long-term experimental lowering of the	
2462	water table on flux rates, Global Biogeochemical Cycles, 12(1), 53–69, 1998 .	

2464 Environment and Resources 41: 35-57, **2016**.

Page, S. and Baird, A.: Peatlands and global change: response and resilience, Annual Review of

2463

2465	Peichl, M., Öquist, M., Löfvenius, M. O., Ilstedt, U., Sagerfors, J., Grelle, A., Lindroth, A.,	
2466	and Nilsson, M. B.: A 12-year record reveals pre-growing season temperature and water	
2467	table level threshold effects on the net carbon dioxide exchange in a boreal fen,	
2468	Environmental Research Letters, 9(5), 055006, doi: 10.1088/1748-9326/9/5/055006,	
2469	2014.	
2470	Pypker, T. G., Moore, P. A., Waddington, J. M., Hribljan, J. A., and Chimner, R. C.: Shifting	
2471	environmental controls on CH_4 fluxes in a sub-boreal peatland, Biogeosciences, 10(12),	
2472	7971–7981, doi: 10.5194/bg-10-7971-2013, 2013 .	
2473	Pärn, J., Verhoeven, J. T. A., Butterbach-Bahl, K., Dise, N. B., Ullah, S., Aasa, A., Egorov, S., and	Formatted: Font: Cambria
2474	Espenberg, M., et al.: Nitrogen-rich organic soils under warm well-drained conditions are	
2475	global nitrous oxide emissions hotspots. Nature Communications, 9:1135, doi:	
2476	10.1038/s41467-018- 03540-1.5194/bg-10-7971-2013, 2018 .	
2477	Poulin, M., Rochefort, L., Quinty, F., & Lavoie, C. Spontaneous revegetation of mined peatlands in	
2478	eastern Canada. Canadian Journal of Botany, 83(5), 539–557. http://doi.org/10.1139/b05-	
2479	025. 2005 .	Formatted: Font: Bold
2480	Rankin, T., Strachan, I. B., & Strack, M. Carbon dioxide and methane exchange at a post-extraction.	
2481	unrestored peatland. Ecological Engineering, 122, 241–251.	
2482	https://doi.org/10.1016/i.ecoleng.2018.06.021, 2018.	Formatted: Font: Bold
2483	Raghoebarsing, A., Smolders, A. J. P., Schmid, M. C. <i>et al</i> .: Methanotrophic symbionts provide carbon	
2484	for photosynthesis in peat bogs, Nature, 436(7054), 1153–1156,	
2485	doi: 10.1038/nature03802, 2005 .	

2486	Renou-Wilson, F., Moser, G., Fallon, D., Farrell, C. A,. Müller, C., Wilson, D.: Rewetting degraded		
2487	peatlands for climate and biodiversity benefits: Results from two raised bogs, Ecological		
2488	Engineering, (August 2017), 0–1, doi: 10.1016/j.ecoleng.2018.02.014, 2018 .		
2489	Renou-wilson, F., Wilson, D., Rigney, C., Byrne, K., Farrell, C., and Müller, C.: Network Monitoring		
2490	Rewetted and Restored Peatlands / Organic Soils for Climate and Biodiversity Benefits		
2491	(NEROS), EPA Research Ireland, Report No. 236, 2018 <u>b</u> .		
2492	Saarnio, S., Morero, M., Shurpali, N. J., Tuittila, ES., Mäkila, M., Alm, J. Annual CO ₂ , and CH _{&} fluxes of		Formatted: Subscript
2493	pristine boreal mires as a background for the lifecycle analysis of peat energy. Boreal	1	Formatted: Subscript
2494	Environmental Research 12: 101-113. 2007.	(Formatted: Font: Bold
2495	Schooten, M. G. C. (editor): Conservation and Restoration of Raised Bogs: Geological, Hydrological		
2496	and Ecological Studies. Duchas - The Heratige Service of the Department of the		
2497	Environment and Local Government, Ireland, ISBN 0-7557-1559-4, 2002 .		
2498	Silvola, J., Alm, J., Ahlholm, U., Nykanen, H., and Martikainen, P. J.: CO2 Fluxes from Peat in Boreal		
2499	Mires under Varying Temperature and Moisture Conditions, Journal of Ecology, 84(2), 219-		
2500	228, 1996 .		
2501	Strachan, I. B., Pelletier, L., and Bonneville, M-C.: Inter-annual variability in water table depth		
2502	controls net ecosystem carbon dioxide exchange in a boreal bog, Biogeochemistry, 127(1),		
2503	99–111, doi: 10.1007/s10533-015-0170-8, 2016 .		
2504	Strack, M., Cagampan, J., Hassanpour, F. G., and Keith, A. M., Nugent, K., Rankin, T., Robinson, C.,		
2505	Strachan, I. B., Waddington, J. M, and Xu, B.: Controls on plot-scale growing season CO_2 and		
2506	CH_4 fluxes in restored peatlands: Do they differ from unrestored and natural sites?, Mires		
2507	and Peat, 17, 1–18, doi: 10.5194/bg-14-257-2017, 2016 .		

2508	Strack, M., Keith, A. M., and Xu. B.: Growing season carbon dioxide and methane exchange at a	
2509	restored peatland on the Western Boreal Plain, Ecological Engineering, 64, 231–239.	
2510	doi: 10.1016/j.ecoleng.2013.12.013, 2014 .	
2511	Tanneberger, F., Tegetmeyer, C., and Busse, S. et al.: The peatland map of Europe, Mires and Peat,	
2512	19(2015), 1–17, doi: 10.19189/MaP.2016.OMB.264, 2017 .	
2513	Tiemeyer, B., Borraz, E. A., Augustin, J. et al.: High emissions of greenhouse gases from	
2514	grasslands on peat and other organic soils, Global Change Biology, 22(12), 4134–4149.	
2515	doi: 10.1111/gcb.13303, 2016 .	
2516	Tuittila, E. S., Komulainen, V. M., Vasander, H., Nykanen, H., Martikainen, P. J., and Laine, J.:	
2517	Methane dynamics of a restored cut-away peatland, Global Change Biology, 6(5), 569–581.	
2518	doi: 10.1046/j.1365-2486.2000.00341.x, 2000 .	
2519	Tuittila, E. S., Komulainen, V. M., Vasander, H., and Laine, J.: Restored cut-away peatland as a sink for	
2520	atmospheric CO ₂ , Oecologia, 120(4), 563–574, doi: 10.1007/s004420050891, 1999 .	
2521	<u>Turetsky, M. R., Kotowska, A., Bubier, J., Dise, N. B., Crill, P., Hornibrook, E. R. C., Wilmking, M.</u>	
2522	A synthesis of methane emissions from 71 northern, temperate, and subtropical	
2523	wetlands. Global Change Biology. 20(7), 2183–2197. <u>http://doi.org/10.1111/gcb.12580.</u>	Field Code Changed
2524	2014,	Formatted: Font: Bold
 2525	Vanselow-Algan, M., Schmidt, S. R., Greven, M., Fiencke, C., Kutzbach, L., and Pfeiffer, E-M.: High	
2526	methane emissions dominate annual greenhouse gas balances 30 years after bog	
2527	rewetting, Biogeosciences Discussions, 12(3), 2809–2842, doi: 10.5194/bgd-12-2809-2015,	
2528	2015.	

2529	Von Arnold, K., Nilsson, M., Hånell, B., Weslien, P., and Klemedtsson, L.: Fluxes of CO ₂ , CH ₄ and
2530	N_2O from drained organic soils in deciduous forests, Soil Biology and Biochemistry 37(6),
2531	1059–1071, doi: 10.1016/j.soilbio.2004.11.004, 2005 .
2532	Waddington, J. M., Strack, M., and Greenwood, M. J.: Toward restoring the net carbon sink
2533	function of degraded peatlands: Short-term response in ${ m CO}_2$ exchange to ecosystem-scale
2534	restoration, Journal of Geophysical Research-Biogeosciences, 115, G01008.
2535	doi: 10.1029/2009JG001090, 2010.
2536	Waddington, J. M., and Day, S. M.: Methane emissions from a peatland following restoration,
2537	112(August) 1–11, doi: 10.1029/2007JG000400, 2007 .
2538	Waddington, J. M. and Roulet, N. T.: Carbon balance of a Boreal patterned peatland, Global Change
2539	Biology, 6(1), 87–97, doi: 10.1046/j.1365-2486.2000.00283.x, 2000 .
2540	Walsh, S. A summary of Climate Averages, 1981-2010 for Ireland, Climatological Note No. 14. Met
2541	Éirean, Dublin, 2012 .
2542	Wilson D. Distr. D. Comments and Energy C. D. et al. Consultance and emission forthere
	Wilson, D., Blain, D., Couwenberg, J., and Evans, C. D. et al.: Greenhouse gas emission factors
2543	associated with rewetting of organic soils, Mires and Peat, 17, 04,
2543 2544	doi: 10.19189/MaP.2016.0MB.222, 2016a .
2543 2544 2545	 Wilson, D., Blain, D., Couwenberg, J., and Evans, C. D. <i>et al.</i>: Greenhouse gas emission factors associated with rewetting of organic soils, Mires and Peat, 17, 04, doi: 10.19189/MaP.2016.0MB.222, 2016a. Wilson, D., Farrell, C. A., Fallon, D., Moser, G., Müller, C., and Renou-Wilson, F.: Multi-year
2543 2544 2545 2546	 Wilson, D., Blain, D., Couwenberg, J., and Evans, C. D. <i>et al.</i>: Greenhouse gas emission factors associated with rewetting of organic soils, Mires and Peat, 17, 04, doi: 10.19189/MaP.2016.OMB.222, 2016a. Wilson, D., Farrell, C. A., Fallon, D., Moser, G., Müller, C., and Renou-Wilson, F.: Multi-year greenhouse gas balances at a rewetted temperate peatland, Global Change Biology, 1–16,
2543 2544 2545 2546 2547	 Wilson, D., Blain, D., Couwenberg, J., and Evans, C. D. <i>et al.</i>: Greenhouse gas emission factors associated with rewetting of organic soils, Mires and Peat, 17, 04, doi: 10.19189/MaP.2016.0MB.222, 2016a. Wilson, D., Farrell, C. A., Fallon, D., Moser, G., Müller, C., and Renou-Wilson, F.: Multi-year greenhouse gas balances at a rewetted temperate peatland, Global Change Biology, 1–16, doi: 10.1111/gcb.13325, 2016b.
2543 2544 2545 2546 2547 2548	 Wilson, D., Blain, D., Couwenberg, J., and Evans, C. D. <i>et al.</i>: Greenhouse gas emission factors associated with rewetting of organic soils, Mires and Peat, 17, 04, doi: 10.19189/MaP.2016.OMB.222, 2016a. Wilson, D., Farrell, C. A., Fallon, D., Moser, G., Müller, C., and Renou-Wilson, F.: Multi-year greenhouse gas balances at a rewetted temperate peatland, Global Change Biology, 1–16, doi: 10.1111/gcb.13325, 2016b. Wilson, D., Dixon, S. D., Artz, R. R. E., Smith, T. E. L., Evans, C. D., Owen, H. J. F., Archer, E., and
2543 2544 2545 2546 2547 2548 2549	 Wilson, D., Blain, D., Couwenberg, J., and Evans, C. D. <i>et al.</i>: Greenhouse gas emission factors associated with rewetting of organic soils, Mires and Peat, 17, 04, doi: 10.19189/MaP.2016.OMB.222, 2016a. Wilson, D., Farrell, C. A., Fallon, D., Moser, G., Müller, C., and Renou-Wilson, F.: Multi-year greenhouse gas balances at a rewetted temperate peatland, Global Change Biology, 1–16, doi: 10.1111/gcb.13325, 2016b. Wilson, D., Dixon, S. D., Artz, R. R. E., Smith, T. E. L., Evans, C. D., Owen, H. J. F., Archer, E., and Renou-Wilson, F.: Derivation of greenhouse gas emission factors for peatlands managed for
2543 2544 2545 2546 2547 2548 2549 2550	 Wilson, D., Blain, D., Couwenberg, J., and Evans, C. D. <i>et al.</i>: Greenhouse gas emission factors associated with rewetting of organic soils, Mires and Peat, 17, 04, doi: 10.19189/MaP.2016.OMB.222, 2016a. Wilson, D., Farrell, C. A., Fallon, D., Moser, G., Müller, C., and Renou-Wilson, F.: Multi-year greenhouse gas balances at a rewetted temperate peatland, Global Change Biology, 1–16, doi: 10.1111/gcb.13325, 2016b. Wilson, D., Dixon, S. D., Artz, R. R. E., Smith, T. E. L., Evans, C. D., Owen, H. J. F., Archer, E., and Renou-Wilson, F.: Derivation of greenhouse gas emission factors for peatlands managed for extraction in the Republic of Ireland and the United Kingdom, Biogeosciences, 12(18),

- Wilson, D., Müller, C., and Renou-Wilson, F.: Carbon emissions and removals from Irish
 peatlands: present trends and future mitigation measures, Irish Geography, 1–23.
- 2554 doi: 10.1080/00750778.2013.848542, **2013**.
- Wilson, D., Alm, J., Riutta, T., Laine, J., Byrne, K. A., Farrell, E. P., and Tuittila, E. S.: A high resolution
 green area index for modelling the seasonal dynamics of CO₂ exchange in peatland vascular
- 2557 plant communities. Plant Ecology, 190(1), 37–51, doi: 10.1007/s11258-006 -1891, 2007.
- 2558 Yamulki, S., Anderson, R., Peace, A., and Morison, J. I. L.: Soil CO₂, CH₄, and N₂O fluxes from an
- afforested lowland raised peatbog in Scotland: implications for drainage and restoration,
- 2560 Biogeosciences Discussions, 9(6), 7313–7351, doi: 10.5194/bgd-9-7313-2012, **2012**.
- 2561 Young, D. M., Baird, A. J., Morris, P. J., and Holden, J.: Simulating the long-term impacts of drainage
- and restoration on the ecohydrology of peatlands, Water Resources Research 53(8): 65106522, 2017.
- 2564 Zhaojun, B., Joosten, H., Hongkai, L., Gaolin, Z., Xingxing, Z., Jinze, M., and Jing, Z.: The response of
- 2565 peatlands to climate warming: A review, Acta Ecologica Sinica, 31(3), 157–162,
- doi: 10.1016/j.chnaes.2011.03.006, **2011**.

