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Reviewer #1: General comments

This is a well-written paper on the combined use of AUV imagery and acoustic surveys
for the assessment of manganese nodules, which shows clear scientific and indus-
trial relevance. However, it shows some similarities to Alevizos et al 2018 (similar
approaches, but different locations). Both the size of the area covered and the number
of images, highlight the use of AUVs and the importance of automated approaches for
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environmental assessment. The authors have made a point of being very transpar-
ent about their approach, and the statistical details provided in the appendices provide
extra confidence in the results presented (more of the statistical explanations of the
results could be moved to the appendix, e.g. assessment of normality in 4.1).

Authors comment:

We welcome all comments of Reviewer #1 and we appreciate the time and effort put to
review this manuscript. Below we present our reply for each of the Reviewer’s points:

We believe that the differences in this paper, compared with the paper from Alevizos
et al, (2018), are not limited only to different locations. Alevizos et al, (2018) applied
three different techniques in order to estimate the distribution of the Mn-nodules inside
their study area. Two of them (Bayesian probability on beam backscatter and ISODATA
classification) classify the bottom in areas with higher and lower number of Mn-nodules
(based on backscatter values), while the third (RandomForests machine learning) pre-
dicts the Mn-nodule abundance in each location based on a number of predictor vari-
ables (MBES data) and training data (optic data). In our study, we focus only on the
Random Forests machine learning prediction performance by applying and tuning the
algorithm. Different predictor variables and in different scales (compared with Alevizos
et al, 2018) were used; by doing so we supported the investigation of the role of predic-
tor variables in different areas. It is worth to mention that in our study the absence of
backscatter information as a predictor variable, showed that topographic factors alone
can achieve relatively accurate predictions. Differently to Alevizos et al., an extensive
statistical analysis (e.g. assessment of normality, spatial clustering) was performed
in order to further investigate the distribution characteristics of the Mn-nodules. This
analysis combined with the correlation analysis between the number of Mn-nodules/m2
and the derivatives highlighted the value of the Random Forests algorithm as a tool for
complex spatial predictions. Furthermore, this study examined the distribution of the
median size and its correlation with the number of Mn-nodules. The idea was to go one
step further than Alevizos et al 2018, by introducing and applying a relatively simple
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operational workflow, highlighting at the same time the advantages and disadvantages
of the existing sampling procedures.

The assessment of normality in 4.1 was moved to Appendix B in order to strengthen
the important results. Finally, the paper by Alevizos et al. was redrawn and will not
be published in the way it has been discussed in Biogeoscience. 4AC Reviewer #1:
Specific comments

(1) There is reference to a particular MBES depth data processing that guarantees
removal of artifacts and improvements of georeferencing, but no reference or descrip-
tions are given. Particularly in deep waters, inaccurate AUV positioning will be an issue,
especially when trying to related photographs to 3m resolution bathymetric grids.

Authors comment:
We added some more explanation in the text.

(2) As mentioned in line 420-425, choice of scale is important in deriving terrain metrics
and a quantitative justification for the choice of chosen scales should be provided.

Authors comment:

Lines 420-423 state that the arbitrary choice of scale limits the value of the terrain
metrics as explanatory variables exactly because of the scale dependency in environ-
mental modelling. Thus using derivatives of different scales (e.g.fine or broad scale
BPI) contributions critically to environmental modelling results. Due to the lack of rele-
vant literature for AUV scale data sets, the Concavity and Terrain Ruggedness indexes
were created with the default scale of SAGA GIS v.6.3.0 (radius of 10 cells as stated in
Table 1). The three different values for the Topographic Position Index were selected
based on the minimum possible correlation among them (surface correlation tool, in
SAGA).

(3) The calibration of the model section is not as clear as it could be. Lines 223-
225 need to clearly state that the default values were used for the assessment of
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training/testing sample size only. Lines 238 says that after training sample size was
determined were mtry and ntree examined, but Line 241 mentions that for each case
of different training sample size, ntree and mtry, the model was run ten times. The
latter sentence should be split to clarify that each training sample size was not also
tested for each different numbers of ntree and mtry. Similarly, Line 243, if | understood
correctly, Appendix A only presents the averages for the 10 training size runs, and not
the ntree and mtry runs. The wording here also needs to be clarified.

Authors comment:

Lines 223-225, 239-240 (in the submitted manuscript) were changed accordingly to
the recommendations, stating clearly that the default RF values (for regression) were
used only during the investigation of the optimum training size. Line 241 (in the sub-
mitted manuscript) was changed, now stating that ten different mtry and ntree values
were applied for ten times each, only in the optimum selected training size. All tables
regarding the statistical characteristics of the performance after 10 runs are presented
in Appendix B.

(4) I am not convinced that the approach taken can be used to determine the optimal
training sample size proportion. More data is likely to yield better models, but by de-
creasing number of testing data points, one can also expect MSR to keep decreasing
(as was shown here). A much more interesting question would be how many samples
are needed to obtain accurate predictions.

Authors comment:

Indeed, the less testing data points you have the more likely it is to achieve a lower
error only because your model fits relatively well. In lines 356 — 361, we justify our
choice to use the model with 80% because of the higher number of validation data
compared to the 90% model.

(5) RF models also provide a measure of uncertainty, it would be interesting to provide
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uncertainty maps for the associated predictions and discuss potential spatial trends if
any.

Authors comment:

Indeed, the use of uncertainty prediction maps is a useful tool in spatial predictive map-
ping as they can reveal spatial trends (e.g. areas with higher uncertainty in predicted
value) which might lead to additional sampling in order to advance the model and sup-
port the interpretation. The RF models inside the randomForests R package (Liaw and
Wiener, 2002), can give an accurate prediction of the conditional mean of the response
variable. The uncertainty (conditional quantiles) around this mean can be estimated by
the use of the Quantile Regression Forests (Meinshausen, 2006), as they keep all the
values in each node in each tree (not only the mean value), allowing the construction
of prediction intervals. Quantile Regression Forests (QRF) models can be developed
using the quantregForest R package (Meinshausen, 2012). The used MGET toolbox
(Roberts et al, 2010) includes only the randomForests R package (Liaw and Wiener,
2002) and the party R package (Hothorn et al., 2006; Strobl et al., 2007; Strobl et
al., 2008). MGET was selected as tool to keep the proposed workflow simple and,
in a graphic environment familiar to many geoscientists. Recent comparative studies
showed that the accuracy of the quantregForest R package against standard RF does
not differ considerably, while it increased the computational time (Tung et al, 2014),
without adding any other information regarding the variable importance. The use of
other recently proposed methodologies as the Jackknife method (Wager et al, 2014),
the Monte Carlo approach (Coulston et al, 2016) and U-statistics approach (Mentch
and Hooker, 2016)) are far beyond of the aim and purposes of this paper.

1.Liaw, A. and Wiener, M.: Classification and regression by randomForest. R News,
2/3:18-22, 2002. http://CRAN.R-project.org/doc/Rnews/

2.Breiman, L.: Random forests. Machine Learning, 45, 5-32, 2001.
https://doi.org/10.1023/A:101093340
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3.Meinshausen, N.: 2 Quantile Regression Forests. Journal of Machine Learning Re-
search 7, 983—999, 2006.

4. Hothorn T, Hornik K, Zeileis A.: “Unbiased Recursive Partitioning: A Conditional
Inference Framework.” Journal of Computational and Graphical Statistics, 15(3), 651—
674, 2006. https://doi.org/10.1198/106186006X133933

5.Strobl, C. Boulesteix, A.L., Zeileis, A. and Hothorn, T.: Bias in random forest variable
importance measures: lllustrations, sources, and a solution. BMC Bioinformatics, 8:25,
2007. https://doi.org/10.1186/1471-2105-8-25

6.Strobl, C., Boulesteix, A.L., Kneib, T., Augustin, T. and Zeileis, A.: Condi-
tional variable importance for random forests. BMC Bioinformatics, 9:307, 2008.
https://doi.org/10.1186/1471-2105-9-307

7.Tung N.T., Huang J.Z., Khan I., Li M.J., Williams G.: Extensions to Quantile Re-
gression Forests for Very High-Dimensional Data. In: Tseng V.S., Ho T.B., Zhou
ZH., Chen A.L.P, Kao HY. (eds) Advances in Knowledge Discovery and Data Min-
ing. PAKDD 2014. Lecture Notes in Computer Science, vol 8444. Springer, Cham
https://doi.org/10.1007/978-3-319-06605-9_21

8.Wager, S., Hastie, T., and Efron, B.: Confidence intervals for random forests: the
jackknife and the infinitesimal jackknife. Journal of Machine Learning Research,
15(1):1625-1651, 2014.

9.Coulston, J. W., Blinn, C. E., Thomas, V. A., and Wynne, R. H.: Approximating pre-
diction uncertainty for random forest regression models. Photogrammetric Engineering
& Remote Sensing, 807 82(3):189 — 197, 2016.

10.Mentch, L. and Hooker, G. (2016). Quantifying uncertainty in random forests via

confidence intervals and hypothesis tests. Journal of Machine Learning Research,

17(1):841-881.

(6) Autocorrelation in Mn nodule distribution was discussed, but whether model resid-
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uals showed any spatial autocorrelation was nor assessed, nor were the effects of this
autocorrelation on model assessment discussed.

Authors comment:

The spatial autocorrelation analysis of the residuals using the Global Moran’s Index
(same settings as Appendix A), showed low, but significant spatial autocorrelation
(1=0.112112 p<0.01 and Z-score>2.58). The index number of the residuals is rela-
tively low compared with the high initial values of the original data (I=0.69890 and
1=0.697747 for the entire dataset and the 80% training dataset, respectively). The 5%
trimmed residuals (see Appendix B-Table B8) showed that their spatial autocorrelation
is only 0.093832. According to similar studies (i.e. regression RF), the presence of
spatial autocorrelation in the residuals of the model can result in underestimation of
the true prediction error (RuB und Kruse, 2010). The presence of low spatial auto-
correlation values in the residuals of regression RF has been reported also by other
authors (e.g. Mascaro et al, 2014; Xu et al, 2016); it is a common problem in all the
well-established machine learning methods (e.g. RandomForests, Neural Network,
Gradient Boosting Machine, and Support Vector Machines) when dealing with regres-
sion predictions of spatial variables (Gilardi and Bengio, 2009; Ruf3 und Kruse, 2010;
Santibanez et al, 2015 a,b). The spatial plotting and visual examination of the residuals
(Figure 1) showed that this spatial clustering exists mainly in the small sub-area b, and
especially in the areas which are associated with an increased slope (>3°), where the
AUV is forced to vary its altitude between the ascending and descending phase (Figure
7b) and consequently affects the image quality and the later modelling results.

1.RuB3, G., and Kruse, R.: Regression Models for Spatial Data: An Example from Pre-
cision Agriculture. CDM 2010. Lecture Notes in Computer Science, vol 6171. Springer,
Berlin, Heidelberg, 2010. https://doi.org/10.1007/978-3-642-14400-4_35

2.Mascaro, J., Asner, GP., Knapp, DE., Kennedy-Bowdoin, T., Martin, RE., Ander-
son, C., Higgins, M., and Chadwick, D.: A Tale of Two “Forests”: Random Forest Ma-
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chine Learning Aids Tropical Forest Carbon Mapping. PLoS ONE 9(1): €85993, 2014.
https://doi.org/10.1371/journal.pone.0085993

3.Xu, L., Saatchi, SS., Yang, Y., Yu, Y., and White, L.: Performance of nonéASparamet-
ric algorithms for spatial mapping of tropical forest structure. Carbon Balance Manage,
11:18, 2016. https://doi.org/10.1186/s13021-016-0062-9

4.Gilardi, N., and Bengio, S.: Comparison of four machine learning algorithms for spa-
tial data analysis. Conf. Signals Syst. Comput., 17, 160-167, 2009.

5.Santibanez, S., Lakes, T., and Kloft, M.,: Performance Analysis of Some Machine
Learning Algorithms for Regression Under Varying Spatial Autocorrelation. The 18th
AGILE International Conference on Geographic Information Science, Lisboa (Portu-
gal), 9-12 June, 2015a.

6.Santibanez, Sebastian F., Marius Kloft and Tobia Lakes. “Performance Analysis of
Machine Learning Algorithms for Regression of Spatial Variables. A Case Study in the
Real Estate Industry.” the 13th International Conference of GeoComputation, Dallas
(USA), May 20 — 23, 2015b.

(7) The discussion is very much focused on the model and although the exploratory
nature of machine learning algorithm is mentioned, a little more discussion of the cau-
sation mechanisms (or potential hypothesis) would be valuable.

Authors comment:

Classic studies have shown that the bathymetry and the variation of the topographic
characteristics of the seafloor affects the sediment deposition environment, bottom
currents and thus also geochemical processes in the sediment. All these factors de-
termine Mn-nodule growth and thus affect the distribution of Mn-nodules on regional
scales (e.g. Craig, 1979; Sharma and Kodagali, 1993; ). It is unknown how these prop-
erties influence the Mn-nodule distribution on meter to tens of meters scales as seen
in our AUV data. The non-linear relationship between Mn-nodules and bathymetry on
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such high-resolution scales only started very recently (Peukert et al, 2018 and also
th withdrawn submission by Alevizos et al). To elaborate more on the hydrodynamic
and geochemical reasons behind the observed distribution pattern, we would need
more investigations at and in the sediment on the same scale. Without such data,
any elaboration on the reasons for the distribution would be purely speculative, with-
out additional ‘ideas’ than the known and published influencing parameters. 1.Craig,
J. D.: The relationship between bathymetry and ferromanganese deposits in the north
equatorial Pacific, Marine Geology, 29, 165—-186, 1979. https://doi.org/10.1016/0025-
3227(79)90107-5

2.Sharma, R. and Kodagali, V.: Influence of seabed topography on the distribu-
tion of manganese nodules and associated features in the Central Indian Basin: A
study based on photographic observations, Marine Geology, 110, 153—-162, 1993.
https://doi.org/10.1016/0025-3227(93)90111-8 3.Peukert, A., Schoening, T., Alevizos,
E., Kdser, K., Kwasnitschka, T., and Greinert, J.: Understanding Mn-nodule distribu-
tion and evaluation of related deep-sea mining impacts using AUV-based hydroacoustic
and optical data. Biogeosciences, 15, 2525-2549, 2018. https://doi.org/10.1007/978-
3-319-57852-1_24

4.Alevizos et al, Schoening T., Koeser K., Snellen M. and Greinert J.: Quantifica-
tion of the fine-scale distribution 1 of Mn-nodules: insights from AUV multi-beam
and optical imagery data fusion. Biogeosciences Discussions. pp. 1-29, 2018.
https://doi.org/10.5194/bg-2018-60

Reviewer #1: Technical corrections - Authors comments:
Line 38 I would suggest changing sea bottom for seafloor - Done

Lines 39-45 | would suggest specifically introducing the term backscatter, as | believe
that to be one of the main data product used for to show Mn trends in regional surveys
- Done
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Line 61 Reference style - Done

Lines 81-83 Awkward, please rephrase - Done
Line114 In the marine environment, - Done
Line 131 remove scale) -Done

Line 133 is deeper and has less relief - Done
Line 189, while - Done

Line 222 a threshold of 0.95 for correlation of variable seems very high — Done (we
changed the term highly with perfectly correlated. In similar studies even higher thresh-
olds have been used during the selection of predictor variables (Che Hasan et al, 2014;
Li et al, 2016; Li et al, 2017)).

1.Che Hasan, R., lerodiaconou, D., Laurenson, L., Schimel, A.: Integrating Multibeam
Backscatter Angular Response, Mosaic and Bathymetry Data for Benthic Habitat Map-
ping. PLoS ONE 9 (5), €97339, 2014. https://doi.org/10.1371/journal.pone.0097339

2.Li J, Tran, M, Siwabessy, J: Selecting Optimal Random Forest Predictive Models: A
Case Study on Predicting the Spatial Distribution of Seabed Hardness. PLoS ONE 11
(2): 0149089, 2016. https://doi.org/10.1371/journal.pone.0149089

3.Li, J., Alvarez, B., Siwabessy, J., Tran, M., Huang, Z., Przeslawski, L., Radke, L.,
Howard, F. and Nichol, S.: Application of random forest, generalised linear model
and their hybrid methods with geostatistical techniques to count data: Predicting
sponge species richness. Environmental Modelling & Software, 97, 112-129, 2017.
https://doi.org/10.1016/j.envsoft.2017.07.016

Line 256 in the study area, - Done

Line 259 First sentence seems repetitive - Done

Line 260 | do not think that the word ‘alternation’ here is the right one — Done (now:
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change)

Line 263 to 0.18% - Done

Line 265 Awkward, please rephrase - Done

Line 266 change approved by to supported - Done

Line 270 measurements - Done

Line 274 like Kriging - Done

Line 275 area, and it is an important step - Done

Line 276 and the produced bathymetric derivatives - Done
Line 290 after a distance of 400m - Done

Line 345 | would suggest to avoid finishing a sentence with too - Done
Line 356 For our data, - Done

Figure 12 b) for which mtry and c) for which ntree? - Done

Line 385 Table 5 MAE, MSE and RMSE were not introduced previously, only MSR was
mentioned in to method section - Done

Line 413 The analysis of RF variable importance - Done
Line 414 specific depth ranges - Done

Line 415-417 | would suggest removing this sentence as it is not necessary - Done
(removed from here and added to the discussion part as we consider that is important
to refer that other authors have found such relationships in the marine and terrestrial
environment).

Line 418 All of them also contribute in a nonlinear way - Done
Line 444 the study area, equal to - Done
C11

Lines 458-459 Awkward, please rephrase - Done

Lines 468-471 Awkward, please rephrase - Done

Line 471 Conversely, - Done

Line 475 clues as to why - Done

Line 491 Along these lines, several authors have included - Done
Line 513 ‘a priori’- Done

Line 516 as well as their size - Done

Line 518 interest). Finally, - Done

Line 561 the remaining derivatives - Done

Lines 565-566 training and testing records - Done

Line 570 Should be 4.1 - Done Throughout, ground truth vs ground-truth, hydro-
acoustic vs hydroacoustic, circa vs ca., space vs no-space between value and unit:
- Done (ground-truth, hydroacoustic, ca. and space between value and unit, were
selected)

Please also note the supplement to this comment:
https://www.biogeosciences-discuss.net/bg-2018-353/bg-2018-353-AC1-
supplement.pdf

Interactive comment on Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-353, 2018.
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Figure 1. Spatial plotting of the RF residuals (absolute values). The intervals
of their range are in accordance with the Table B9 (Appendix B) in the
submitted manuscript.

Fig. 1.

C13



