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Abstract. In this study, high-resolution bathymetric multibeam and optical image data, both obtained within the Belgian 

manganese (Mn) nodule mining license area by the autonomous underwater vehicle (AUV) Abyss, were combined in order 

to create a predictive Random Forests (RF) machine learning model. AUV bathymetry reveals small-scale terrain variations, 

allowing slope estimations and calculation of bathymetric derivatives such as slope, curvature, and ruggedness. Optical AUV 

imagery provides quantitative information regarding the distribution (number and median size) of Mn-nodules. Within the 15 

area considered in this study, Mn-nodules show a heterogeneous and spatially clustered pattern and their number per square 

meter is negatively correlated with their median size. A prediction of the number of Mn-nodules was achieved by combining 

information derived from the acoustic and optical data using a RF model. This model was tuned by examining the influence 

of the training set size, the number of growing trees (ntree) and the number of predictor variables to be randomly selected at 

each RF node (mtry) on the RF prediction accuracy. The use of larger training data sets with higher ntree and mtry values 20 

increases the accuracy. To estimate the Mn-nodule abundance, these predictions were linked to ground-truth data acquired 

by box coring. Linking optical and hydroacoustic data revealed a non-linear relationship between the Mn-nodule distribution 

and topographic characteristics. This highlights the importance of a detailed terrain reconstruction for a predictive modelling 

of Mn-nodule abundance. In addition, this study underlines the necessity of a sufficient spatial distribution of the optical data 

to provide reliable modelling input for the RF. 25 
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1. Introduction  

High-resolution quantitative predictive mapping of the distribution and abundance of manganese nodules (Mn-nodules) is of 

interest for both the deep-sea mining industry and scientific fields as marine geology, geochemistry, and ecology. The 30 

distribution and abundance of Mn-nodules are affected by several factors such as local bathymetry (Craig 1979; Kodagali, 

1988; Kodagali and Sudhakarand, 1993; Sharma and Kodagali, 1993), sedimentation rate (Glasby, 1976; Frazer and Fisk, 

1981; von Stackelberg and Beiersdorf 1991; Skornyakova and Murdmaa, 1992), availability of nucleus material (Glasby, 

1973), and bottom current strength (Frazer and Fisk, 1981; Skornyakova and Murdmaa, 1992). As a consequence, the 

distribution and abundance of Mn-nodules is heterogeneous (Craig, 1979; Frazer and Fisk, 1981; Kodagali, 1988; Kodagali 35 

and Sudhakar, 1993; Kodagali and Chakraborty, 1999; Kuhn et al., 2011), even on fine scales of 10 to 1,000 m (Peukert et 

al., 2018a; Alevizos et al., 2018). This increases the difficulty for quantitative predictive mapping using remote sensing 

methods. Vast areas of the seafloor can be mapped by ship-mounted, multibeam echo-sounder systems (MBES). State-of-

the-art MBES systems feature a low frequency (12 kHz) and can map ca. 300 km
2
 of seafloor in 4,500 m water depth per 

hour. Hence, low-resolution regional maps can be created at a grid cell size of 50 to 100 m within which the main Mn-nodule 40 

occurrence can become apparent, based on the backscatter intensity (Kuhn et al., 2011; Rühlemann et. al., 2011; Jung et al., 

2001). A general separation in areas of high and low abundance (kg/m²) of Mn-nodules seems possible, especially in flat 

areas where sedimentological changes and physical influences on the footprint size and incidence angle of the transmitted 

acoustic pressure wave can be corrected accurately (De Moustier, 1986; Kodagali and Chakraborty, 1999; Chakraborty and 

Kodagali, 2004; Kuhn et al.al., 2010 and 2011, Rühlemann et al., 2011 and 2013). However, the patchy distribution of Mn-45 

nodules in size and number at meter-scale cannot be resolved with ship-mounted MBES data (Petersen, 2017). For an 

operational resource assessment, a higher resolution of few meters grid cell size is needed to supply accurate depth, slope, 

and Mn-nodule distribution variability (Kuhn et al., 2011). Supplementary to the spatial mapping by acoustic sensors, point-

based measurements from box-corer samples are used as ground-truth data for training and validation of geostatistical 

techniques (e.g. kriging) in order to create quantitative maps of Mn-nodule abundance (Mucha et al., 2013; Rahn, 2017). 50 

However, the generally low number of ground-truth samples during surveys (usually below 10), their limited sampling area 

(typically 0.25 m
2
) and the relatively large distance between them (> 1 nmi) prevent an accurate correlation with the ship-

based MBES data and thus a good prediction of the total Mn-nodules’ mass and distribution in large areas (Petersen, 2017). 

Importantly, the sparse sampling with box corers affects the performance of interpolation and geostatistical techniques, 

which are typically applied during data analysis (Li and Heap, 2011 & 2014; Kuhn et al., 2016). In this article, we address 55 

this challenge by combining high-resolution hydroacoustic and optical data sets acquired with an Autonomous Underwater 

Vehicle (AUV) and connecting those data with a Machine Learning (ML) algorithm (here Random Forests), in order to 

predict the spatial distribution of the number of Mn-nodules per square meter. Unlike geostatistical methods, ML can be used 

to incorporate information from different bathymetric derivative layers and to detect complex relationships among predictor 

variables without making any prior assumptions about the type of their relationship or value distribution (Garzόn et al., 2006; 60 
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Lary et al., 2016). To this direction, first predictions have already been achieved (Knobloch et al. 2017; Vishnu et al., 2017; 

Alevizos et al., 2018). Here, we present a complete data analysis workflow for potential mining operations (Figure 1).  

 
 

Figure 1. Schematic workflow of the data sets used in this study to enable the spatial assessment of Mn-nodules inside the 65 

study area. The medium resolution of AUV MBES (m scale) is referring to the comparison of the optical and physical data 

(cm scale). 

1.1 AUV hydroacoustic mapping  

AUVs have proven their usefulness for multibeam data acquisition in the deep-sea environment (Grasmueck et al., 2006; 

Deschamps et al., 2007; Haase et al., 2009; Wynn et al., 2014; Clague et al., 2014 and 2018; Pierdomenico et al., 2015; 70 

Peukert et al., 2018a). They achieve higher spatial and vertical resolution compared to ship-mounted MBESs. This is due to 

their operation close to the seafloor which results in a smaller footprint at a given beam angle and enables the use of higher 

frequencies (Henthorn et al., 2006; Mayer, 2006; Caress et al., 2008; Paduan et al., 2009). Additionally, AUVs avoid 
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problems like near-surface turbulences, bubbles, ship-noise and strong sound velocity changes (Kleinrock et al., 1992a and 

1992b; Jakobson et al., 2016; Paul et al., 2016). They work independently from the surface vessel and operate at a stable 75 

altitude. AUVs can efficiently conduct a dive pattern of dense survey lines and thus reduce survey effort and costs (Chance 

et al., 2000; Bellingham, 2001; Bingham et al., 2002; Danson, 2003; Roman and Mather, 2010). High-resolution bathymetry 

enables computing bathymetric derivatives like slope and rugosity with a similarly high resolution. These derivatives play an 

important role in predicting Mn-nodules’ distribution and abundance (Craig, 1979; Kodagali, 1988; Skornyakova and 

Murdmaa, 1992; Kodagali and Sudhakar, 1993, Sharma & Kodagali, 1993; Ko et al., 2006).  However, a small number of 80 

recent studies have investigated this role in an AUV scale (Okazaki and Tsune, 2013; Peukert et al., 2018a; Alevizos et al., 

2018). 

1.2 Underwater optical data 

Underwater optical data have generally played an important role in the qualitative analysis of the seafloor features and for 

the specific task of assessing Mn-nodules’ distribution explicitly (Glasby, 1973; Rogers, 1987; Skornyakova and Murdmaa, 85 

1992; Sharma et al., 1993). The development of automated detection algorithms enabled quantitative optical image data 

analysis and subsequent statistical interpretation of Mn-nodule densities. The spatial coverage of optical imaging is much 

higher than for box core sampling. The data resolution remains high enough to reveal the high variance in the spatial 

distribution of nodules at meter scale. Thus optical data can fill the investigation gap between ground-truth sampling and 

hydroacoustic remote sensing (Sharma et al., 2010 and 2013; Schoening et al., 2012a, 2014, 2015, 2016 and 2017a; Kuhn 90 

and Rathke, 2017). Moreover, mosaicking of optical data could reveal mining obstacles such as outcropping basements or 

volcanic pillow lava flows. In addition, seafloor photos are the source for evaluating benthic fauna occurrences and related 

habitats on a wider area (Schoening et al., 2012b; Durden et al., 2016).  

1.3 Box corer sampling 

Box coring is common to obtain physical samples of Mn-nodules and sediments for resource assessments and biological 95 

studies. While optical data reveal only the exposed and semi-buried Mn-nodules, box corers collect the top 30-50 cm of the 

seafloor with minimum disturbance, allowing an accurate measure of the Mn-nodules’ abundance (kg/m
2
). Box coring data 

are used for training and validation in geostatistical methods for quantitative and spatial predictions of Mn-nodules (e.g. 

Mucha et al., 2013; Knobloch et al., 2017). The representativeness of box coring data is disputable as few deployments can 

be made due to time constraints (ca. 4h per core) and as the spatial coverage of one sample is rather low (ca. 0.25 m
2
). 100 
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1.4 Random Forests  

Random Forests (RF) is an ensemble machine learning (ML) method composed of multiple weaker learners, namely 

classification or regression trees (Breiman, 2001a). Within RF an ensemble of distinct tree models is trained using a random 

subsample of the training data for each tree until a maximum tree size is reached. In each tree, each node is split using the 105 

best among a subset of predictors randomly chosen at that node instead of using the best split among all variables (Liaw & 

Wiener, 2002). Thus, the process is double-randomized which further reduces the correlation between trees. About two 

thirds of the training data are used to tune the RF while the remaining ‘out-of-bag’ (OOB) samples are used for an internal 

validation. By aggregating the predictions of all trees (majority votes for classification, the average for regression) new 

values can be predicted. This aggregation keeps the bias low while it reduces the variance, resulting in a more powerful and 110 

accurate model. RFs have the ability to estimate the importance of each predictor variable which enables data mining of the 

high-dimensional prediction data. Terrestrial studies use RFs in prospectivity mapping of mineral deposits (Carranza and 

Laborte, 2015a; 2015b; 2016; Rodriguez-Galiano et al., 2014 and 2015). In the marine environment, RFs have been used to 

combine MBES bathymetry, backscatter, their derivatives, sediment sampling, and optical data for various seabed 

classification and regression tasks (e.g. Li et al., 2010; Li et al., 2011a; Che Hasan et al., 2014; Huang et al., 2014). Further 115 

studies showed the robustness of RFs for selected data sets compared to other ML algorithms (Che Hasan et al., 2012; 

Stephens and Diesing, 2014; Diesing and Stephens, 2015; Herkul et al. 2017), as well as to geostatistical and deterministic 

interpolation methods (Li et al., 2010, 2011b and 2011b; Diesing et al., 2014).  

2. Study Area  

The study area lies in the Clarion–Clipperton Zone (CCZ; ca. 4x10
6
 km

2
) in the Eastern Central Pacific Ocean. The CCZ 120 

triggered scientific and industrial interest for several decades due to its high resource potential in Mn-nodules deposits  (Hein 

et al., 2013; Petersen et. al., 2016) with an average nodule abundance of 15 kg/m
2
 (SPC, 2013). At the time of writing, the 

International Seabed Authority (ISA) has granted 17 exploration licences inside the CCZ (Figure 2a). The study area 

described here is part of the Belgian GSR license area (Figure 2b) and will be referred to as Block G77 (Figure 2c). Overall, 

this part of the Belgian license area has high bathymetric range, and complex morphology, due to the presence of submarine 125 

volcanoes, solitary seamounts and seamount chains. Block G77 is characterized by a low bathymetric range (77 m) and 

mostly gentle slopes (95% of the area below 5°). An exception is located in the eastern part, where sub-recent small-scale 

volcanic activity created 15 cone-shaped morphological features of up to 55m height and 150m width that are clustered in an 

area of ca. 700 m x 380 m.  Despite the gentle slopes, bock G77 is characterized by an uneven micro-relief (according to 

Dikau scale (1990)) especially in the western part, where small (2-4 m) depressions coexist next to short (2-4 m) protrusions. 130 

In the central part, a 30 m high elevation acts as a natural barrier between the western part of the study area that features 

more relief and the eastern part that is deeper and has less relief (Figure 2c).  
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Figure 2. a) Areas of Particular Environmental Interest (APEIs), licensed areas (white) and the Belgium / GSR licenses area 

(black) within the CCZ. b) Regional bathymetric map of the study area, created by the EM 122 MBES on R/V SONNE 135 

(cruise SO239). c) Block G77, mapped by AUV Abyss with a Teledyne Reson Seabat 7125 MBES.  

3. Methodology  

3.1 Hydroacoustic Data Acquisition & Post Processing 

The data (Greinert, 2016) were collected in March 2015 during cruise SO239 EcoResponse (Martínez Arbizu & Haeckel, 

2015) with the German Research Vessel Sonne. Ship-based mapping was conducted with a hull-mounted Kongsberg EM 140 

122 MBES (12 kHz, 0.5° along- and 1° across-track beam angle, 432 beams with 120° swath angle). High-resolution MBES 

data were acquired with AUV Abyss (GEOMAR, 2016) inside Block G77 equipped with a Teledyne Reson Seabat 7125 

MBES (200 kHz, 2° along- and 1° across-track beam angle, 256 beams with 130° swath angle). The data (60 km of survey 

lines) were acquired from 50m altitude and with 100% swath overlap resulting in an insonification of 9.5 km
2
. Post-

processing of the AUV data was conducted with the Teledyne PDS2000 software for data conversion of the raw data into 145 

s7k and GSF format. Further multibeam processing (sound velocity calibration, pitch/roll/yaw/latency artifacts correction) 

was performed using the Qimera™ software. The largest uncertainties during AUV operations result from inaccurate 



7 

 

navigation and localization in the deep-sea environment (Paull et al., 2014). AUV Abyss has a combination of five different 

systems for navigation and positioning: Global Positioning System (GPS) when at the sea surface, Doppler Velocity Log 

(DVL) when 100 m or less from the ground, Inertial Navigation System (INS), Long Baseline Acoustic Navigation (LBL) 150 

and dead reckoning (GEOMAR, 2016). Each system has its own limitations that contribute to the total navigation error 

(Sibenac et al., 2004; Chen et al., 2013) that generally results in positioning drifts over time. Consequently, this affects the 

position accuracy of the MBES and photo data. Our AUV MBES data processing and an absolute geo-referencing of the 

resulting AUV-bathymetry grid with the EM122 ship data, supplemented with the use of mbnavadjust in MB-Systems, 

(Caress et al, 2017) resulted in a well calibrated AUV bathymetric dataset. The position of the AUV image data ‘only’ relies 155 

on the above mentioned sensors with a not quantifiable ‘small’ position error. Backscatter data were excluded from the 

modelling procedure due to artifacts and a general poor quality. The output grid cell size for the analyses was set to 3 m x 3 

m. The depth raster was exported as ASCII format for further analysis in SAGA GIS v.6.3.0. SAGA includes numerous tools 

that focus on DEM and Terrain Analysis (Conrad, 2015). Eight bathymetric derivatives were computed (Table 1) with the 

SAGA algorithms (Appendix A).  160 

Table 1. The bathymetric derivatives computed in SAGA GIS and used as predictor variables. 

Derivative Description 

Slope (S) The first derivative of the bathymetry and describes the steepness of a surface. 

Plan Curvature (Pl.C) The second derivative of the bathymetry and perpendicular to the direction of the 

maximum slope (Zevenbergen and Thorne, 1987). 

Profile Curvature (Pr.C) The second derivative of the bathymetry and parallel to the direction of the maximum 

slope (Zevenbergen and Thorne, 1987). 

Topographic Position Index 

(TPI) 
Compares the elevation of a single pixel to the average of multiple cells surrounding it 

in a defined distance (Weiss, 2001). 

Broad-scale (TPI_B) Distance: 150-400 m 

Medium-scale (TPI_M) Distance: 50-150 m 

Fine-scale (TPI_F) Distance: 0-50 m 

Concavity (C) In each cell its value is defined as the percentage of concave downward cells within a 

constant radius (Iwahashi & Pike, 2007). Here, a 10 cell radius was used. 

Terrain Ruggedness Index 

(TRI) 
A quantitative measure of surface heterogeneity and can be explained as the sum 

change in elevation between a central pixel and its neighborhood (Riley et al, 1999). 

Here, a 10 cell radius was used. 

 

 

3.2 Optical Data Acquisition & Post Processing 
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High-resolution optical data (20.2 Megapixels) was acquired by the DeepSurveyCamera system on board AUV Abyss 165 

(Kwasnitschka et al., 2016). During image acquisition the altitude above ground was 5 to 11 m, resulting in an overlap 

between the images of ca. 60% in each direction. In total, 11,276 photos acquired in block G77 (Greinert, 2017) and 

analysed with the automated image analysis algorithm CoMoNoD (Schoening et al., 2017a, 2017b and 2017c). For each 

image this algorithm delineates each individual Mn-nodule and provides quantitative information on each nodule (size in 

cm
2
, alignment of main axis, geographical coordinate of the nodule). This information is further aggregated per image to 170 

provide the average number of Mn-nodules per square meter (Mn-nodules/m
2
), the nodule coverage of the seafloor in 

percent and the nodule size distribution in cm
2
 size quantiles. The algorithm has successfully been applied for quantitative 

assessment and predictive modelling of Mn-nodules (Peukert et al., 2018a, Alevizos et al., 2018). Nevertheless, the derived 

number of Mn-nodules/m
2 
is subject to uncertainties due to the limitations of the CoMoNoD algorithm and the non-constant 

altitude of the AUV, especially in areas with slopes. The CoMoNoD algorithm cannot detect sediment-covered Mn-nodules 175 

due to the low or non-existent contrast. It may count two or more adjacent small Mn-nodules as one big nodule or 

misinterpret benthic fauna or rock fragments with similar visual features as Mn-nodules. The CoMoNoD algorithm fits an 

ellipsoid around each detected Mn-nodule, which limits the first two disadvantages as it splits huge Mn-nodules and 

accounts for potentially buried parts (see discussions in Schoening et al., 2017a).  In general, the first two disadvantages lead 

to underestimations while the third one results in an overestimation of the number of Mn-nodules per m
2
. These limitations 180 

are common and the need for corrections between optical and box-corer data has been acknowledged (Sharma and Kodagali, 

1993; Sharma et al., 2010 and 2013; Tsune and Okazaki, 2014; Kuhn and Rathke, 2017). Recent studies show that the 

difference between image estimates and the abundance in box corer data (due to sediment covered Mn-nodules) can be two 

to four times higher (Kuhn and Rathke, 2017). In this study, none of the box-corers was obtained exactly at a location for 

which optical data exists, thus no direct comparison and verification exist. Taking box corer samples for verification requires 185 

Ultra Short Baseline (USBL) navigation and imaging of the seafloor prior to the physical sampling. The effects of the non-

constant flying altitude on the detection of Mn-nodules per m
2
 are explained in detail below. For each photo location, the 

depth and the bathymetric derivative values were extracted from the hydroacoustic data. As no absolute geo-referencing 

could be performed for the AUV-based photo surveys, drifting sensor data will have an effect on the alignment between 

bathymetric and photo information, which was considered, while interpreting the results.  190 

3.3 Data Exploration and Spatial Analysis  

The data exploration, spatial plotting and analysis was performed with ArcMap™ 10.1, PAST v3.19 (Hammer et al., 2001), 

and R (R, 2008). All data were projected as UTM Zone 10N coordinate system (to enable spatial analysis). The existence of 

spatial autocorrelation in the distribution of Mn-nodules/m
2 

was examined by the Global Moran's Index (GMI) and Anselin 

Local Moran's Index (LMI). Both, GMI (Moran, 1948 and 1950) and LMI (Anselin, 1995) are well-established for 195 

examining the overall (global) and local spatial autocorrelation, respectively (e.g. Goodchild, 1986; Fu et al., 2014). GMI 

attains values between -1 and 1 with high positive values indicating strong spatial autocorrelation. High positive LMI index 
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values indicate a local cluster. This cluster could be a group of observations with high-high (H-H) or low-low (L-L) values 

regarding the examined variable. A high negative index value implies local outliers, like high-low (H-L) or low-high (L-H) 

clusters, in which an observation has a higher or lower value in comparison to its adjacent observations. Both Moran’s Index 200 

analyses were performed in ArcMap™ 10.1 (for parameter settings see Appendix A). One decimal was retained in the 

presentation of the results from statistical analysis and RF modelling. 

3.4 Box corer Data 

A total of five box-corers (0.5 m x 0.5 m surface area) were obtained close to the study area (coordinates not given due to 

confidentiality). However, one is located within Block G77 (Figure 3a); this is the result of independent sampling schemes 205 

and purposes during the cruise. Nevertheless, all box core samples (maximum distance <1.5 km), were analyzed and used for 

further analyses. In each box-corer, the number, size, and weight of nodules were measured and the abundance (kg/m
2
) was 

estimated (mean value: 26.5 kg/m²). The total number of Mn-nodules within each box corer was compared with the number 

of Mn-nodules on the surface resulting in an average ratio of 1.32 (Table 2). This means that ≈ 25% of the nodules are not 

seen on the surface but are completely buried within the sediment (down to a depth of about 15 cm).  210 

Table 2. The number of Mn-nodules on the sediment surface, the total number of Mn-nodules per box core, the ratio of those 

two values, and the distance of the box corer deployments from the study area in block G77. 

box corer 

station 
total number 

of Mn-nodules  
number of Mn-

nodules at the surface  
ratio abundance 

(kg/m
2
) 

distance from 

G77 area (km)  
BC20 40 27 1.5 - 0 
BC21 67 58 1.1 27.1 1.4 
BC22 29 21 1.4 27.1 0.6 
BC23 32 20 1.6 25.2 0.1 
BC24 17 16 1.0 - 1 

Average 37 28 1.32 26.5  0.6 

3.5 RF Predictive modelling  

The RF modelling was performed with the Marine Geospatial Ecology Tools (MGET) toolbox in ArcMap™ 10.1. MGET 

(Roberts et al., 2010) uses the randomForests R package for classification and regression (Liaw and Wiener, 2002). Our 215 

target variable (number of Mn-nodules/m²) is continuous, so regression was applied. We followed the three main steps to 

establish a good model by selecting predictor variables, calibration/training of the model and finally validating the model 

results. 
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Selection of Predictor Variables: The depth (D) and its derivatives (Table 1) were used as predictor variables. Although RFs 

can handle a high number of predictor variables with similar information, the exclusion of highly correlated variables can 220 

improve the RF performance and decrease computation time (Che Hasan, 2014; Li et al., 2016). Thus, the correlation 

between derivatives was investigated using the Spearman’s rank correlation coefficient. None of the variable pairs was 

highly perfectly correlated (ρ ≥ 95) and consequently, all of them were used for RF modelling (Appendix A). 

Calibration of the model: During the calibration process, the RF parameters were adjusted as follows. The number of 

predictor variables to be randomly selected at each node (mtry), the minimum size of the terminal nodes (nodesize) and the 225 

number of trees to grow (ntree) were set to the default values, in order to investigate the optimum training size. For 

regression RF the default mtry value is 1/3 of the number of predictor variables (rounded down), nodesize is 5 and ntree is 

500 (Liaw and Wiener, 2002). RF has demonstrated to be robust regarding these parameters and the default values have 

given trustworthy results (e.g. Liaw and Wiener, 2002; Diaz-Uriarte and de Andres, 2006; Cutler et al., 2007, Okun and 

Priisalu, 2007; Li et al., 2016 & 2017). With regards to the subsampling method (replace), the subsampling without 230 

replacement was selected. Although the initial implementations of the RF algorithm use subsampling with replacement 

(Breiman, 2001a), later studies showed that this process might cause biased selection of predictor variables that vary in their 

scale and/or in their number of categories, resulting in a biased variable importance measurement (Strobl et al., 2007, 2009; 

Mitchell, 2011).  Based on recent findings, the raw variable importance was preferred (unscaled) as the final parameter 

(Diaz-Uriarte and de Andres, 2006; Strobl et al., 2008a, 2008b, 2009). Using these settings, the influence of the training 235 

sample size was examined (10 to 90% of the total sample in steps of 10%) and compared based on the Mean of Squared 

Residuals (MSR) using the respective equation provided in the randomForests R package (Liaw and Wiener, 2002). The 

different training groups need to be considered as representative of the total sample, in order to capture the heterogeneity of 

the Mn-nodules’ spatial distribution. The spatially random selection of subsamples by MGET ensured similar statistical 

characteristics in each group (Appendix A). For each case of different training sample size, the model was run ten times and 240 

the results are presented as the average value of these ten runs (Appendix B).  Since the optimal training sample size was 

defined, the influence of the number of growing trees (ntree) and the influence of the number of predictor variables to be 

randomly selected at each node (mtry) was examined.  Only for the already defined optimum training size ten different ntree 

values (100 to 1000 in steps of 100) and seven different mtry values (1 to 7 in steps of 1) were tested and compared based on 

the MSR values. In each case of different ntree and mtry parameter, the model was run ten times and the results are 245 

presented as the average value of these ten runs (Appendix B). Selection and external validation of the optimal model: Based 

on the above-mentioned results and considering the sampling and computational cost, the optimal model was selected, run 

for 30 iterations and applied to the entire study area. Its predicted values were validated with the observed values from the 

remaining dataset that was not used. Several validation measures were used including the Mean Absolute Error (MAE), the 

Mean Squared Error (MSE) and the Root Mean Squared Error (RMSE). The combined use of MAE and RMSE is a well-250 

established procedure as the MAE can evaluate better the overall performance of a model (all individual differences have 

equal weight), while the RMSE gives disproportionate weight to large errors showing an increased sensitivity to the presence 
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of outliers. Due to this characteristic RMSE is suitable for outlier detection analysis but should not be used solely as an index 

for the model performance (Willmott & Matsuura, 2005). Both, MEA and RMSE are measured in the same unit as the data. 

In addition, the R², Pearson (r) and Spearman’s rank correlation coefficients were used to identify the correlation between 255 

predicted and initial values. Finally, the descriptive statistics of predicted and initial values were compare and a residual 

analysis was performed.  

 

3.6 Resource Assessment 

As the optimal RF model was applied to the entire Block G77, an estimate of the abundance (kg/m
2
) was computed, based on 260 

the analogy between the corresponding abundance measured from the average number of Mn-nodules in the box corer data 

and the number of Mn-nodules/m
2
 in each cell of the final result of the RF model. Considering that the collector can recover 

buried Mn-nodules from a maximum depth of 10-15 cm (Sharma, 1993 and 2010), the ratio of 1.32 was applied to account 

for Mn-nodules not detected in the images, and areas with a slope of  >3° were excluded, assuming that a potential mining 

vehicle is limited to less steep slopes (UNOET, 1987). 265 

4. Results 

4.1 Data Exploration  

The analysis of AUV photos with the CoMoNoD algorithm (Schoening et al., 2017a) revealed a rather heterogeneous pattern 

of Mn-nodules/m
2
 in the study area, showing adjacent areas with high and low Mn-nodules number (Figure 3a). The number 

of Mn-nodules/m
2
 changes within less than 100m in the overall study area and in the two main sub-areas b and c (Figures 3a-270 

c). This heterogeneity causes the large range of Mn-nodules/m
2
 (Figure 3a). In half of the photos (48%), the number of Mn-

nodules/m
2
 varies from 30 – 43 with the mean value being 36.6 Mn-nodules/m

2
.  The very small alternation change of 5% 

trimmed mean value indicates the absence of extreme outliers, which is confirmed by box-plot analysis (Appendix B). 

Further analysis of their descriptive and distribution characteristics was performed in order to assess the presence of 

normality in the data, resulting that the number of Mn-nodules/m
2 

is approximately normal distributed. Although the 275 

presence of normality in data is not a prerequisite assumption in order to perform the RF (Breiman, 2001a); as it is with 

geostatistical interpolation techniques like kriging (e.g. Kuhn et al., 2016), this examination can give us a better 

understanding of the Mn-nodules’ distribution inside the study area, and it is an important step in order  to examine potential  

extreme observations which may be derived from wrong measurements and could artificially change the training range 

during RF predictive modelling. Moreover, absence of linear correlation was observed between Mn-nodules/m
2
 and the 280 

produced bathymetric derivatives, indicating the complexity of the phenomenon (Appendix B). 
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 285 

Figure 3. a) The spatial distribution of Mn-nodules/m
2
 inside block G77 and the box corer position. b) The spatial 

distribution of Mn-nodules/m
2
 inside the sub-area b. c) The spatial distribution of Mn-nodules/m

2
 inside the sub-area c.  

4.2 Spatial Analyses 

Spatial analyses revealed the presence of a spatial autocorrelation in the distribution of Mn-nodules/m
2
. The GMI, with 

I=0.6989, p<0.01 and Z-score>2.58 indicates a positive spatial autocorrelation. According to the incremental analysis, the 290 

index takes its highest value in the first 50 m with a gradual decrease, approaching 0 values after a distance of 400 m (Figure 

5a). Similarly, the results from the LMI show that the main size of the spatial clusters does not exceed 400m in either 

direction (Figure 6a). The main types of these clusters are H-H and L-L groups (Table 4 & Figure 6a). A distinct 

‘buffer/transitional zone’ with Mn-nodules was found between these two clusters, which does not show a significant 

autocorrelation (Figure 6b & 6c). Approximately one-third of the data does not have a significant clustering (NS). In the sub-295 

area c, in the outer parts of these zones without significant spatial clustering, the few local H-L and L-H groups are located. 
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Both H-L and L-H (from the entire study area) only account for 2.1% of the data (Table 4). The comparison of the number of 

Mn-nodules/m
2 

between the groups shows a clear discrimination between H-H and L-L clusters (Figure 5b). The H-H 

clusters are in areas with 37.9-78.2 Mn-nodules/m
2 

whilst the L-L clusters are in areas with 6.8-35.2 Mn-nodules/m
2
.
 
  

 300 

Figure 5. a) The GMI decrement due to increasing distance, after the first 50m. b) The range of Mn-nodules/m
2
 in each 

clustered group. 

Table 4. Number and % percentage of samples in each type of spatial clustering. 

Cluster Type H-H H-L L-H L-L NS 

Counts (n) 3472 121 113 3523 4047 

Counts (%) 30.8 1.1 1.0 31.2 35.9 
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 305 

Figure 6. a) The spatial distribution of the significant cluster types inside the block G77. b) The spatial clusters inside the 

sub-area b. c) The spatial clusters inside the sub-area c 

The application of the LMI reveals a bias that exists in the data due to the sampling procedure, especially in the sub-area b 

(Figure 6b). Here, the presence of the slope around 2.8° forced the AUV to vary its altitude between the ascending and 

descending phase (Figure 7b). This variation seems to affect the image quality resulting in counting fewer nodules for higher 310 

altitudes of the AUV (Figure 8 & 9). This is also confirmed by the distribution map of the Mn-nodules/m
2
 (Figure 3b). It is 

important to emphasize that this difference clearly shows up in the LMI results (Figure 6b) and not in the distribution map 

(Figure 3b); here the arbitrary choice of color scale can hide this bias during plotting. The comparison of the detected Mn-

nodules/m
2
 in these adjacent lines, inside the small sub-area b, gives a ratio ≈1.4 between photos that have been acquired in 

7-9 m altitude and those in 9-11 m altitude. The ratio is higher (≈1.8) between photos from 5-7 m and 9-11 m altitude. In 315 

contrast, the ratio between photos from 5-7 m altitude and those in 7-9 m altitude is ≈1.25 indicating that the problem mainly 

exists in upper and lower flying altitudes. Despite their different ratio, none of these groups contain extreme high or low 
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values of Mn-nodules/m². Moreover, in several parts of the block, the photos from higher altitude are the only source of 

information without the ability for further comparison and consequently, they cannot be excluded from the modelling 

procedure. 320 

 

Figure 7. a) The altitude of AUV Abyss inside block G77. b)  The altitude inside the small sub-area b, where the presence of 

the slope forces the AUV to modify its altitude, flying closer to the seafloor in the ascending phase (blue lines) and farther 

from the seafloor in the descending phase (red lines).  c) In the big sub-area c, the AUV flying altitude is mainly constant 

between 7-9 m for the entire part. 325 
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Figure 8.  Scatterplot of the AUV altitude (m) and the estimated number of Mn-nodules/m² inside sub-area b. The colours 

correspond to the colour scale in figure 7.  

 330 

 

Figure 9. Adjacent AUV photos from consecutive dive tracks that have been obtained inside sub-area b, from: a) lower (5-7 

m) and b) higher (9-11 m) altitude. Notice the decrement in the image brightness.  (The area of the photos represent the 

central part of the photo, ca.1/4 of the original photo size). 
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Spatial distribution of median size: Plotting of the median size in cm
2
 (Figure 10) showed that the number of Mn-nodules/m

2
 335 

is anti-correlated to the median Mn-nodule size.
 
The Spearman’s rank correlation coefficient and R

2
 between these two 

variables are -0.50 and 0.25 respectively, supporting this observation (Figure 11a); other studies found similar results 

(Okazaki and Tsune, 2013; Kuhn and Rathke, 2017; Peukert et al., 2018a). The box plot analysis of the median size values 

between the H-H and L-L clustered groups showed that although the L-L group contains the entire range of median size 

values (2.8 to 15.9 cm
2
), the H-H group does not contain values above 10 cm

2 
(2.7-10 cm

2
). This means in consequence that 340 

in areas with significant clustering of higher numbers of Mn-nodules/m
2 
the size of Mn-nodules tends to be smaller (Figure 

11b).  

 

Figure 10. a) The spatial distribution of median Mn-nodule size (in cm
2
).  b) The estimation of median Mn-nodule size in 

sub-area b and mainly in its southern part has been probably affected by the non-constant altitude of the AUV. c) The 345 

distribution of the median size inside sub-area c shows also a clumped pattern, too. 
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Figure 11. a) The plot of median size (cm
2
) and number of Mn-nodules/m

2
. e) The range of median size (cm

2
) in type of 

cluster. Notice the distinct difference in the range between the H-H and L-L cluster type. 350 

4.3 RF Predictive modelling 

4.3.1 Effect of training sample size, ntree and mtry parameter   

The results of the modelling procedure demonstrate that the RF algorithm is influenced by the size of the training sample 

(Figure 12a).  This finding is in accordance with other studies, in which larger training samples tended to increase the 

performance of RF (Li et al., 2010 and 2011b; Millard and Richardson, 2015). The inclusion of a more representative range 355 

of the observed values and consequently larger spectrum of the causal underlying relationships, assist the RF to build a better 

model for the prediction of the value distribution inside the study area. For our data, the decrement becomes smaller when 

the size of the training sample increases further; it reaches a minimum value of 0.2 between 80% and 90%, showing that 

these additional 10% do not notably benefit the RF model. However, the absence of stabilization of the error to a minimum 

value indicates that more optical data are needed from this block. The small decrement in error between 80% and 90% was 360 

the decisive factor to select 80% of the data as training samples (also considering the larger number of remaining validation 

data and the reduced computational effort). Based on this dataset, the examination of different numbers of trees showed that 

the RF error remains constant after 600 trees (Figure 12b). Less trees result in a larger error; this particularly becomes 

evident with less than 300 trees. With more than 300 trees the range of the error is reduced (Appendix B). A higher number 

of trees enables higher mtry values as there are more opportunities for each variable to occur in several trees (Strobl et al., 365 

2009). Similarly to the ntree parameter, a larger number of mtry values results in a reduced error (Figure 12c). The error 

reaches a minimum and cannot be reduced further for mtry = 6; with values below 3 the error increases significantly. The 

different numbers of ntree reduced the error by only 0.6 in the MSR (from 18.8 to 18.2), in contrast different mtry values 

reduced the error by 5.8 in the MSR (23.4 to 17.6), highlighting its importance for the prediction accuracy. In general a 
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higher number of mtry values is suggested for RF studies with correlated variables to result in a less biased result regarding 370 

the importance of each variable; this is because the higher number increases the competition between highly correlated 

variables, giving more chances for different selections (Strobl et al., 2008a). The finally selected mtry value of 6 coincides 

with the recommended approach for mtry (default, half of the default, and twice the default) suggested by Breiman (2001a). 

Albeit the importance of this analysis, within the model with 80% of the data as training sample, the decrease in error by the 

use of RF tuned values instead of RF default values was only 0.7 in the MSR values, whilst the greatest reduction in error 375 

(16.5 in the MSR values) came from the increase in training data set size. This highlights the increased sensitivity of the 

method with respect to training data and that the recommended settings in the R randomforest package (Lia and Wiener, 

2002) give trustworthy results, increasing its simplicity and operational character. 

 

Figure 12. a) The effect of training sample size in RF error (in MSR). b) The effect of ntree parameter in RF error (in MSR) 380 

for the 80% training size. c) The effect of mtry parameter in RF error (in MSR) for the 80% training size. 

4.3.2 Selection, application and external validation of the optimal model 

Based on the above-mentioned findings, the optimal RF regression model which uses 80% of training data, 600 trees and 6 

predictor variables to be randomly selected at each node, was selected and applied to the entire block G77. The comparison 

of the predicted values with the observed values from the remaining 20% (2,255 observations) of validation data showed a 385 

good predictive performance (Table 5). Analytically, MAE and RMSE have very low values, R² has a high value and both 

Pearson’s and Spearman’s correlation coefficients show a strong positive correlation between the predicted and observed 

values. The small deviation between MAE and RMSE and the same good correlation of the Pearson and Spearman factor 

point towards the absence of extremely high or low predicted values (outliers). Moreover, the performance is rather stable 

among all the iterations (Appendix B).  390 

Table 5: The values of validation measures between predicted and observed data.  

  



20 

 

MAE MSE RMSE R² Pearson Spearman 

3.1 19.0 4.4 0.8 0.9 0.9 

The scatterplot and box plot (Figure 13a and 13b) illustrate this good match between predicted and observed values, as 

confirmed also by the descriptive statistics, which have almost equal mean, median, skewness and kurtosis values (Table 6). 

The residual analysis confirmed further the robustness of the model (Appendix B). 395 

 

Figure 13. Comparison between observed and predicted values: scatterplot (left) and box-plots (right)  

Table 6. Descriptive statistics of observed and predicted values 

  Mean Std. Error 5% Trim. Mean Median Mode SD Min. Max. C.L (95%) 
Observed 36.5 0.2 36.3 36.3 40.8 9.4 12.8 78.2 0.4 
Predicted 36.7 0.2 36.5 36.2 33.9 7.8 16.2 60.2 0.3 

The statistical analysis also reveals the limitations of the RF model which cannot predict beyond the range of training values. 

It underestimates the maximum predicted values and overestimates the minimum values (Figure 13b & Table 6), a limitation 400 

also mentioned by other authors (e.g. Horning, 2010). This happens, because in regression RF the result is the average value 

of all the predictions (Breiman, 2001a).   

4.3.3 RF predicted distribution of Mn-nodules/m² 

The final application of the RF model for the entire block G77 predicts that the majority of the area is covered by 30-45 Mn-

nodules/m² (Figure 14). In the central-western part the distribution is quite uniform (at this scale) with few small areas of 405 
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lower numbers. In the western part, there are two extended areas along the base of the hill with the lowest number of Mn-

nodules/m
2
.  Both of these areas have a linear shape in N-S direction and follow the seafloor topography with increased slope 

(>3°). The third main patch with minimum Mn-nodules/m
2
 occurs in the eastern depression part. In contrast, areas of higher 

number of Mn-nodules/m
2
 are located mainly in the central upper part of the hill and eastward facing slope of eastern 

depression and south of the sub-recent hydrothermally active area.  410 

 

Figure 14. The RF predicted distribution of Mn-nodules/m² inside block G77. 

4.3.4 RF importance   

The analysis of the RF variable importance showed that the best explanatory variable for the distribution of Mn-nodules/m² 

is depth (Figure 15a). The partial dependence plot of depth shows that there are specific ranges of the depth ranges, which 415 

promote higher numbers of Mn-nodules/m² aggregated in a nonlinear way (Figure 15b). Such nonlinear relationships 

between predictor and response variables have already been described in the past, both in marine (e.g. Zhi et al., 2014; Li et 

al., 2017) and terrestrial environments (e.g. Cutler et al., 2007). The following two most important variables are the TPI_B 

and TPI_M. TRI, TPI_F, C, and S follow in importance (Figures 15a). All of them also contribute in a nonlinear way. 

(Appendix B). Pl.C and Pr.C do not contribute significantly as explanatory variables in the performance of the RF model 420 

(Figure 15a and Apendix B). Although the RF demonstrates good overall performance, the small study area and the arbitrary 

choice of the spatial scales for the TPI and other derivatives, limit the potential of these variables as indicative explanatory 

variables on a broader scale. It is well established that surface derivatives are scaled-depended with different analysis scales 

to create alterations in results. Thus the combined use of different scales (here TPI) in the analysis and modelling procedure 

can produce models that do capture the natural variability and scale dependence (Wilson et al., 2007; Miller et al., 2014;  425 

Ismail et al., 2015; Leempoe et al., 2015).  
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Figure 15: a) The variable importance of each predictor in the RF model. b) The partial dependence plot of the Depth 

(right). The ticks inside the graphs indicate the deciles of the data. 

4.3.5 Estimation of abundance (kg/m²) of Mn-nodules 430 

The predicted Mn-nodule distribution was combined with the abundance from box corer data (and corrected with the ratio 

between buried/unburied Mn-nodules, in order to include the top ~15 cm of the sediment), resulting in the Mn-nodules’ 

abundance map shown in Figure 16. According to this map, block G77 is a promising area for mining operations. The entire 

block is above the cut-off abundance of 5 kg/m2 (UNOET, 1987), with a mean value of 33.8 kg/m2. We calculated that 84% 

of block G77 has slopes below 3°, steeper slopes are located mainly at the outer parts of the block, a fact that would ease 435 

establishing an ideal mining path. In this respect, the AUV-scale mapping provides vital information for a potential mining 

path by decreasing the possibility of machine failure due to poorly mapped steep slopes not detected e.g. by ship-based 

bathymetry (Peukert et al., 2018b).  Mn-nodule distribution maps with this resolution increase the mining efficiency because 

local deposit variations can significantly affect the performance of the pick-up rate, which is likely determined by technical 

parameters of the mining vehicle as well as the size, burial depth and abundance of Mn-nodules in the seafloor (Chung, 440 

1996). The exclusion of areas with slopes > 3° resulted in 8 km
2
 mineable seafloor surface. Assuming a constant 80% 

collection efficiency (Volkmann & Lehnen, 2018) and a 30% reduction of the Mn-nodule weight by removal of water (Das 

& Anand, 2017), the dry mass of Mn-nodules that can be extracted from the surface and the first 15 cm of the sediment 

column amounts to ca. 190,000 t. In a back-of-the-envelope calculation this quantity, assuming constant metal content inside 

the study area, equal to the average metal concentrations inside the CCZ (Table 7) (Volkmann, 2015), and 90% metal 445 

recovery efficiency; could result in an estimated  resource haul of  45,450 t Mn, 2,232 t Ni, 1891 t Cu, 374 t Co, and 102 t   
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Mo (Table 7). 

 

Figure 16: The total abundance of Mn-nodules from the surface and embedded in the sediment (max. 15 cm), in areas with 

slope ≤ 3° inside block G77 (continuous values of abundance are not given due to confidentiality).   450 

Table 7. The estimated amount of metal mass for 5 metals, based on the average values of metal content inside CCZ and a 

5metal HCl-leach recovery method (Volkmann, 2015). 

Total Wet Mass (t): 270,400 

Total Dry Mass (t): 189,280 

Metal Content Mn Ni Cu Co Mo 

wt%: 26.68 1.31 1.11 0.22 0.06 

Equal to (t): 50,500 2,480 2,101 416 113 

90% metal recovery (t) 45,450 2,232 1,891 374 102 

5. Discussion 

We present a case study that highlights the applicability of the combination of AUV bathymetric and optical data for Mn-

nodules resource modelling using RF machine learning. The use of AUVs for collecting hydroacoustic and optical data in 455 

areas of scientific and commercial interest can provide more precise bathymetric and Mn-nodules distribution maps. 

Regarding the bathymetric maps, the accurate and detailed reconstruction of the seafloor bathymetry in meter-scale 

resolution enables to use bathymetry and its derivatives as source data layers within a high-resolution RF model. These data 

should have high quality characteristics, as the presence of acquisition artefacts may affect the robustness of the modelling 
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procedure (Preston, 2009; Herkül et al., 2017). High-quality bathymetric data, as primary model explanatory variables, is a-460 

priori step, as the occurrence of acquisition artefacts may affect the robustness of the modelling procedure (Preston, 2009; 

Herkül et al., 2017). The combined use of cameras as the DeepSurveyCamera (Kwansnitschka et al., 2016) for acquiring 

high-resolution photographs, and an automated analysis with a state-of-the-art algorithm (Schoening et al., 2017a) provides 

essential quantitative information about the distribution of Mn-nodules. Image analysis results are more robust for constant 

AUV altitudes (7-9m) above flat areas (<3°), while the alternation of the flying altitude and camera orientation during the 465 

ascending & descending phases limit the quality of the obtained images and can affect the derived number of Mn-

nodules/m².  

Inside block G77, the number of Mn-nodules/m
2
 seems to follow a normal distribution without extreme outliers and without 

being linearly correlated with the used predictor variables. Spatially, a clumped autocorrelated pattern is demonstrated, 

mainly with clustered areas of H-H and L-L values. It is still unclear if this heterogeneity is caused by external processes 470 

(e.g. topographic characteristics, geochemical conditions, availability of nucleus material etc.) or it is resulted from the 

interaction of neighboring Mn-nodules. The areas with higher number of Mn-nodules could provide more fragments as 

potential nucleus material. However, the less available space in these areas may make more difficult the individual Mn-

nodule growth, resulting in smaller median sizes. Whether this heterogeneity is caused by external processes (e.g. 

topographic characteristics, geochemical conditions, availability of nucleus material etc.) or reflects the interaction of 475 

neighboring Mn-nodules is still unclear. The negative correlation between the number of Mn-nodules/m
2
 and the median 

Mn-nodule size implies that may higher numbers of Mn-nodules could provide more fragments as potential nucleus material 

at less available space and oxides for individual Mn-nodule growth. Conversely, a recent study from Kuhn and Rathke 

(2017) showed that the blanketing of the Mn-nodules by sediments is higher for larger Mn-nodules and, as a result, fewer 

large nodules will be counted; resulting in biased results in areas, where the Mn-nodules are bigger regarding the areas with 480 

bigger size of Mn-nodules. Probably, all of these effects can happen at the same time (with different degrees of influence) 

promoting a given, scale-dependent spatial structure.  

This study did not consider geochemical properties of the sediments as input data in the modelling process, which might give 

additional clues as to why Mn-nodules are distributed as they are. However, RF importance and partial dependence plots 

show that bathymetric and topographic factors tend to affect this distribution in a non-linear way and with the bulk of data 485 

plotting in specific ranges of the bathymetric derivatives. Such nonlinear relationships between predictor and response 

variables have already been described in the past, both in marine (e.g. Zhi et al., 2014; Li et al., 2017) and terrestrial 

environments (e.g. Cutler et al., 2007).   

It should be acknowledged that the aim of any ML predictive model is to derive accurate predictions based on an existing 

(large) number of measurements, to capture a complex underlying relationship (e.g. non-linear and multi-variate) between 490 

different types of data, for which our theoretical knowledge or conceptual understanding is still under development 

(Schmueli, 2010; Lary et al 2016). Especially due to the constantly increasing size of scientific multivariate data in marine 

sciences, ML and RF are considered important analytic tools that can objectively reveal patterns of a (unknown) 
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phenomenon (Genuer et al, 2017; Kavenski et al, 2009; Lary et al 2016). Such predictions may be used to derive causalities 

or may drive the creation of new hypotheses. In other words, for a predictive model the ‘unguided’ data analyses come first 495 

and the interpretation follows (Breiman, 2001b; Schmueli, 2010; Obermeyer and Emanuel, 2016). The RF modelling takes 

advantage of the multi-layer information and is able to handle non-linear and complex relationships between image-derived 

Mn-nodule data and explanatory variables from hydroacoustics while being resistant to overfitting (Breiman, 2001a). 

Moreover, the randomization of the input training points in each tree in each run, resulting in a complete different training 

dataset each time with mixed points from the entire study area. This random selection and mixing of points, is appropriate 500 

for clustered data, as it ignores their spatial locations and consequently limits the influence of spatial autocorrelation.  To this 

direction several authors Along these lines, several authors have included the values of latitude/longitude and even the LMI 

values as predictor variables in order to increase the model performance (e.g. Li, 2013; Li et al., 2011b; Li et al., 2013). RF 

has a high operational character due to its relatively simple calibration, which does not request extensive data 

preparation/transformation or need for geostatistical assumptions (e.g. stationarity). RF model runs can easily be 505 

implemented inside various software packages and its increased stability can even allow a small number of iterations to 

compute sufficient results (Cutler et al., 2007; Millard and Richardson, 2015). The examination of the main two tuning 

parameters (ntree and mtry) showed that the model performance can be increased compared to default values. However, the 

largest improvement results from using more training data. In this respect, more photos would potentially improve the RF 

performance as no clear threshold was observed. Although the number of 11,276 photos seems to represent a large data set, 510 

the heterogeneity of the distribution and the occurrence of spatial clusters (patches) in different sizes and the inherent need of 

RF and ML in general for big training datasets (van der Ploeg et al, 2014; Obermeyer and Emanuel, 2016), stresses the need 

for collecting more and well distributed data.  

Although the exact reasons for the patchy distribution are not fully understood, the distribution pattern is essential for 

planning box corer sampling. A random spatial sampling reduces the possibility of dependence among observations in a 515 

homogeneously distributed population (Cochran 1977), but it is not appropriate for clustered populations as it cannot 

eliminate autocorrelation between neighboring sample locations that are inside the spatial influence of the underlying 

phenomenon (Legendre and Legendre, 1998). In other words, if two or more box-corers are obtained from the same patch, 

the results will still not be representative for the entire study area. Thus, the deployment of box corers should be executed 

only after the acquisition, processing and spatial analysis of bathymetric and optical data. The number of box corers should 520 

be the maximum feasible, with at least one within each main patch. Moreover, sampling should occur in locations with 

available photos (to enable direct comparison) and locations without photos for a true validation of the RF prediction. In 

other words, the optical data acquisition should be guided by the bathymetric and backscatter seafloor characteristics, and be 

followed by box core sampling that targets all defined ‘seafloor-classes’ by considering direct correlations with the 

previously gathered optical and hydroacoustic data.   525 

This ‘a priori’ knowledge of the distribution of the Mn-nodules number and size in such scale can contribute to the biological 

data survey planning, too.  Recent studies showed that the abundance and species richness of nodule fauna inside the CCZ is 
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affected by the abundance of Mn-nodules (Amon et al., 2016; Vanreusel et al., 2016) as long as from the size of them  as 

well as their size (Veillette et al., 2007). Thus, high priority areas (e.g. these with highest commercial interest) can be 

targeted for sampling based on the results of optic data and RF modelling based on the needs of studies the results of optic 530 

data and RF modelling can lead the data sampling in high priority areas (e.g. these with highest commercial interest). 

Finally, the resource assessment showed that block G77 is a potential mining area with high average Mn-nodules density and 

gentle slopes. While here the threshold of 3° (UNOET, 1987) was used, newer plans for mining machines seem to enable 

operations on steeper slopes (Atmanand and Ramadass, 2017) increasing the total amount of collected Mn-nodules within 

the herein considered area.  535 

6. Conclusions 

The results of this study show that the acquisition and analysis of optical seafloor data can provide quantitative information 

on the distribution of Mn-nodules. This information can be combined with AUV-based MBES data using RF machine 

learning to compute predictions of Mn-nodule occurrence on small operational scales. Linking such spatial predictions with 

sampling based physical Mn-nodule data provides an efficient and effective tool for mapping Mn-nodule abundance. 540 
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Appendix A: Methodology 

3.1 Hydroacoustic Data Acquisition & Post Processing 

The calculation of the bathymetric derivatives was performed with the SAGA GIS v6.3.0 Morphometry library 560 

(http://www.saga-gis.org/saga_tool_doc/6.3.0/ta_morphometry.html). 

 

3.4 Spatial Statistics 

Global Moran’s I and Local Moran’s I were performed with the ArcMap™ 10.1 software, using the Spatial Statistic 

Toolbox, according to its provided equations. As a null hypothesis, it is assumed that the examined attribute is randomly 565 

distributed among the features in the study area. For the optimal conceptualization of spatial relationships, the Inverse 

Euclidian Distance Method was selected, as it is appropriate for modelling processes with continuous data in which the 

closer two samples are in space, the more likely they are to interact/influence each other or have been influenced from the 

same reasons. The distance threshold was set at 50m and the increment analysis was performed with a step of 50m. 

Moreover, the spatial weights were standardized in order to minimize any bias that exists due to sampling design (uneven 570 

number of neighbors). Apart from the index value, the p-value and z-score are also provided. The Local Moran’s I indicates 

statistically significant clusters and outliers for a 95% confidence level. The high number of observations (>>30) that was 

used ensures the robustness of the indexes. 

3.5 RF Predictive modelling (Selection of Predictor Variables)  

Correlation among the derivatives was checked by Spearman’s correlation coefficient (ρ). This coefficient was preferred due 575 

to the skewed distribution of the values in the derivatives. The majority of the possible pairs is uncorrelated or weakly 

correlated. Only C vs. TPI_F and TRI vs. S have a strong correlation. However, they should not be excluded as they express 

different topographic characteristics and they are not correlated with the remainder of derivatives. 

Table A1. Spearman’s correlation coefficient for each pair of predictor variables 

 580  D S Pl.C Pr.C TPI_B TPI_M TPI_F C TRI 

D          

S -0.07         

Pl.C 0.06 -0.02        

Pr.C 0.08 -0.01 0.37       

TPI_B 0.76 -0.09 0.13 0.16      

TPI_M 0.36 -0.06 0.20 0.27 0.72     

TPI_F 0.23 -0.05 0.33 0.41 0.47 0.77    

C -0.30 0.05 -0.25 -0.34 -0.54 -0.79 -0.90   

TRI -0.10 0.91 -0.02 -0.03 -0.12 -0.06 0.04 0.05  

http://www.saga-gis.org/saga_tool_doc/6.3.0/ta_morphometry.html
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The 9 training samples with different size were created by the MGET tool: Randomly Split Table into training and testing 

records. The spatial randomness of the procedure, combined with the many available data resulted in training samples with 

similar descriptive statistics.  

Table A2. Descriptive Statistics of different training samples 585 

% Training Sample: 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Training set size 1127 2255 3383 4511 5638 6766 7894 9021 10148 

Mean 36.5 36.3 36.6 36.6 36.6 36.7 36.6 36.7 36.6 

Std. Error 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 

Std. Deviation 9.3 9.2 9.4 9.2 9.2 9.3 9.3 9.2 9.3 

Minimum 7 13 12 13 12 14 7 7 7 

Maximum 63 70 72 66 78 78 78 72 78 

Appendix B: Results 

3.5 RF Predictive modelling (Calibration of the model):  

The descriptive statistics of the performance of each model were used as decision factors for the number of iterations. In all 

cases, the mean value with very low standard error, the very low standard deviation, range and the 95% confidence interval 

indicate a rather stable performance, without the need for further iterations.  590 

Table Β2. Descriptive statistics of MSR from different training set sizes, after 10 iterations with default settings. 

% Training Sample: 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Mean 34.8 30.2 26.1 23.3 22.2 21.3 19.7 18.3 18.1 

Std. Error 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Median 34.8 30.3 26.1 23.2 22.2 21.3 19.7 18.3 18.1 

Mode 34.7 30.3 26.1 23.2 22.2 21.3 19.7 18.3 18.1 

Std. Deviation 0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 

Minimum 34.5 30.1 25.9 23.2 22.1 21.2 19.6 18.2 18.1 

Maximum 35.1 30.4 26.3 23.5 22.3 21.3 19.7 18.3 18.1 

C.I. (95.0%) 0.1 0.1 0.1 0.1 0.1 0.0 0.0. 0.0 0.0 
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Table Β3. Descriptive Statistics of MSR from a different number of ntree parameter, after 10 iterations with 80% of the 

sample as training data and mtry = 3. 

ntree: 100 200 300 400 500 600 700 800 900 1000 

Mean 18.8 18.4 18.3 18.3 18.3 18.2 18.2 18.2 18.2 18.2 

Std. Error 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Median 18.8 18.4 18.3 18.3 18.3 18.2 18.2 18.2 18.2 18.2 

Mode 18.8 18.4 18.3 18.3 18.3 18.2 18.2 18.2 18.2 18.2 

Std. Deviation 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 

Minimum 18.5 18.4 18.2 18.2 18.2 18.1 18.1 18.1 18.1 18.1 

Maximum 18.9 18.5 18.5 18.4 18.3 18.3 18.3 18.3 18.2 18.2 

C.I. (95.0%) 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

 595 

Table Β4. Descriptive Statistics of MSR from different number of mtry parameter, after 10 iterations with 80% of the 

sample as training data and ntree = 600. 

mtry: 1 2 3 4 5 6 7 

Mean 23.4 19.3 18.2 17.9 17.7 17.6 17.6 

Std. Error 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Median 23.4 19.3 18.2 17.9 17.7 17.6 17.6 

Mode 23.4 19.3 18.2 17.9 17.7 17.6 17.6 

Std. Deviation 0.0 0.1 0.1 0.1 0.0 0.0 0.0 

Minimum 23.3 19.1 18.1 17.8 17.6 17.5 17.6 

Maximum 23.5 19.4 18.3 17.9 17.7 17.7 17.7 

C.I. (95.0%) 0.0 0.1 0.0 0.0 0.0 0.0 0.0 

Table Β5. Descriptive Statistics of MSR for the optimum selected RF model, after 30 iterations with 80% of the sample as  

training data, ntree = 600, and mtry = 6. 

 Mean Std. Error Median Mode Std. Deviation Minimum Maximum C.I. (95%) 

Optimum RF 17.6 0.0 17.6 17.6 0.0 17.5 17.7 0.0 

 600 
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Table Β6. Descriptive statistics of validation measures for the optimum RF model, after 30 iterations with 80% of the 

sample as training data, ntree = 600, and mtry = 6 . 

RF Importance: Depth  TPI_B TPI_M TRI TPI_F C S Pl.C Pr.C 

Mean 80.1 63.6 46.7 36.1 24.5 19.7 12.0 2.6 2.4 

Std. Error 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

Median 80.1 63.5 46.7 36.1 19.7 19.7 11.9 2.6 2.4 

Mode 80.1 63.3 46.9 36.1 19.8 19.8 11.9 2.6 2.4 

Std. Deviation 0.4 0.6 0.6 0.2 0.2 0.2 0.2 0.0 0.0 

Minimum 79.1 62.6 45.0 35.7 19.2 19.2 11.7 2.5 2.3 

Maximum 80.8 64.9 47.7 36.4 20.1 20.1 12.4 2.6 2.5 

C.I. (95.0%) 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0 

4.1 Data Exploration:   

The histogram of Mn-nodules/m
2 
(Figure B1) shows a good fit with the superimposed theoretical normal curve, with most of 

the frequency counts in the middle and the counts die out in the tails with the shape of the distribution being rather 605 

symmetrical. This fact is approved supported by the equal mean and median and the slightly different mode (Table B6). 

Similarly, the visual inspection of the probability plot (Figure B1) shows a good match as a linear pattern is observed for the 

greatest part, with slight deviation existing only in the outer parts of the curve. According to the boxplot, there are only 21 

mild outliers (according to Hoaglin et al., 1986; Dawson, 2011), which correspond to the 0.18% of the total observation. 

This percentage is smaller than the 0.8% threshold that has been suggested for normal disturbed data (Dawson, 2011).The 610 

small values for skewness and kurtosis combined with the large sample size further support the normal distributed pattern of 

the data (Table B6). Especially for large data samples, measurements of skewness and kurtosis combined with the visual 

inspection of histogram and probability plot are recommended ways of examining normality of data (D’ Agostino et al., 

1990; Yaziki and Yolacan, 2007; Field, 2009; Ghasemi and Zahediasl, 2012; Kim, 2013).  

 615 



31 

 

Figure B1 a) Histogram of Mn-nodules/m
2 

with the superimposed normal curve. b) The normal probability plot of Mn-

nodules/m
2
. c) The box plot of Mn-nodules/m

2
.  

Table B6. The descriptive statistics of the number of Mn-nodules/m². 

 Mean 5% Trim. 

Mean 

Median Mode SD Min. Max. Skew. Kurtosis 

Mn-nodules/m² 36.6 36.4 36.4 39 9.2 6.8 78.2 0.1 -0.4 

A potential linear correlation between depth, bathymetric derivatives, and number of Mn-nodules/m
2
 was investigated using 

the Spearman’s rank correlation coefficient (ρ) because of the skewed distribution and presence of extreme values in the 620 

depth and bathymetric derivative values (Mukaka, 2012).  

Table B7. The Spearman’s rank correlation coefficient between Mn-nodules/m
2, 

depth, and bathymetric derivatives 

Depth Slope TRI Pl.C Pr.C TPI_B TPI_M TPI_F Con. 

0.38 0.08 0.07 0.03 0.04 0.29 0.24 0.05 -0.14 

4.3.2 Selection, application and external validation of the optimal model 

Despite the fact that RF is a full non-parametric technique and there is no need for the residuals to follow specific 

assumptions (Breiman, 2001a), the examination of them can provide an in-depth look into its performance characteristics. 625 

The scatterplot of residuals against predicted values shows a random pattern, which is also confirmed by the low values of 

Pearson, Spearman, and R² coefficients between predicted values and residuals (Figure B1a and Table B6). Moreover, the 

residuals tend to cluster towards the middle of the plot without being systematically high or low, and having zero mean value 

(Figure B1 and Table B7).  Their constant variance (homoscedasticity) implies that the distribution of error has the same 

range for almost all fitted values. Indeed, 99.3% of the residuals are inside the range ±15 and mainly the 81.2% inside the 630 

range ±5 (Table B8). The presence of outliers is very limited without affecting the main statistical characteristics of residuals 

(Table B7) indicating that the model adequately fits the overwhelming majority of the observations (>2165) and only 

random variation (that exists in any real natural phenomenon) or noise can occur. 
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Figure B2. Scatterplot between residuals and predicted values. 635 

Table B8. Pearson, Spearman, and R² correlation coefficients between residuals and predicted values. 

 Pearson Spearman R² 

Correlation of residuals 

and predicted values 

 

0.1 0.2 0.0 

Table B9. Main descriptive statistics of residuals and 5% trimmed residuals   

 Mean Std. Error Median Mode Std. Deviation 

Residuals -0.2 0.1 -0.2 0.6 4.4 

5% Trimmed Residuals -0.2 0.1 -0.2 0.6 2.9 

Table B10. Residuals range  

Residuals Range ±20 ±15 ±10 ±5 

% of Residuals 99.8 99.3 96.1 81.2 

 

4.3.4 RF importance   640 

The production of the RF partial depedence plots, show the non-linear character between the Mn-nodules/m² and the 

bathymetric derivatives.  
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Figure B2. Partial dependence plots for each of the predictor variables. The y axis represent the number of Mn-nodules/m² 645 

and the x axis the values of each predictor variable (depth derivatives). The ticks inside the graphs indicate the deciles of the 

data. 
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