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Abstract 14 

 15 

Sinking particles are the main form to transport photosynthetically fixed carbon from the euphotic 16 

zone to the ocean interior. Oxygen (O2) depletion may improve the efficiency of the biological 17 

carbon pump. However, how the lack of O2 mechanistically enhances particulate organic matter 18 

(POM) fluxes is not well understood. In the Baltic Sea, the Gotland Basin (GB) and the Landsort 19 

Deep (LD) exhibit permanent bottom-water hypoxia, this is on occasions alleviated by Major 20 

Baltic Inflow (MBI), such as the one that occurred in 2014/2015 which oxygenated the bottom 21 

waters of the GB (but not of the LD). Here, we investigate the distribution and fluxes of POM in 22 

the GB and the LD in June 2015 and how they were affected by the 2015 MBI. 23 

Fluxes and composition of sinking particles were different in the GB and the LD. In the GB, POC 24 

flux was 18% lower at 40 m than at 180 m. Particulate nitrogen (PN) and Coomassie stainable 25 

particles (CSP) fluxes decreased with depth, and particulate organic phosphorous (POP), biogenic 26 

silicate (BSi), Chl a, and transparent exopolymeric particles (TEP) clearly peaked within the core 27 

of the oxygen minimum zone (OMZ), which coincided with a high flux of manganese oxide 28 

(MnOx)-like particles. Contrastingly, in the LD, POC, PN, and CSP fluxes decreased 28, 42 and 29 

56% respectively from 40 to 180m. POP, BSi and TEP fluxes, however, did not decrease with 30 

depth and only a slightly higher flux was measured at 110 m. MnOx-like particle flux was two 31 

orders of magnitude higher in the GB relative to the LD. 32 

MnOx-like particles formed after the inflow of oxygenated water into the deep GB may form 33 

aggregates with POM. Our results suggest, that when the deep waters of GB were oxygenated 34 

(2014/2015 North Sea inflow), not only transparent exopolymeric particles, as indicated 35 

previously, but also POC, POP, BSi, and Chl a may bind to MnOx-like particles. POM associated 36 

with MnOx-like particles may accumulate in the redoxcline, where they formed larger particles 37 

that eventually sank to the seafloor. We propose that this mechanism would alter the vertical 38 

distribution and the flux of POM; and it may contribute to the higher transfer efficiency of POC in 39 

the GB. This is consistent with the fact that the OM reaching the seafloor was fresher and less 40 

degraded in the GB than in the LD. 41 
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1. Introduction 42 

Understanding the downward flux of organic matter (OM) from the euphotic zone is critical to 43 

understand biogeochemical cycles in the ocean. Sinking particles are the primary vehicles for 44 

transporting photosynthetically fixed carbon from the surface to the deep ocean (Boyd and Trull, 45 

2007; Turner, 2015). It has been suggested that the transfer of particulate organic carbon (POC) 46 

from the euphotic zone to the ocean interior is enhanced in oxygen minimum zones (OMZs) 47 

(Cavan et al., 2017; Devol and Hartnett, 2001; Engel et al., 2017; Keil et al., 2016; van Mooy et 48 

al., 2002). Possible mechanisms explaining the higher POC transfer include: i) the reduction of 49 

aggregate fragmentation due to the lower zooplankton abundance within the OMZ (Cavan et al., 50 

2017; Keil et al., 2016); ii) a higher refractory nature of sinking particles (Keil et al., 2016; van 51 

Mooy et al., 2002); iii) a decrease in heterotrophic microbial activity due to oxygen limitation 52 

(Devol and Hartnett, 2001); and iv) the preferential degradation of nitrogen-rich organic 53 

compounds (Kalvelage et al. 2013; Van Mooy et al. 2002, Engel et al. 2017). However, 54 

mechanisms of how low O2 concentration would affect the composition and fate of sinking OM, 55 

and the efficiency of the biologic carbon pump in oxygen deficient basins have hardly been 56 

investigated. 57 

The semi-enclosed, brackish Baltic Sea is a unique environment with strong natural gradients of 58 

salinity and temperature (Kullenberg and Jacobsen, 1981), primary productivity, nutrients 59 

(Andersen et al., 2017), and O2 concentrations (Carstensen et al., 2014a). New production, 60 

defined as the fraction of the autotrophic production supported by allochthones sources of 61 

nitrogen (Dugdale and Goering, 1967) is considered equivalent to the particulate OM export 62 

(Eppley and Peterson, 1979; Legendre and Gosselin, 1989) on appropriate timescales. In the 63 

Baltic Sea, new production varies seasonally (Thomas and Schneider, 1999); spring and summer 64 

are periods of elevated new production supported by the diatom-dominated spring bloom and by 65 

diazotrophic cyanobacteria, respectively (Wasmund and Uhlig, 2003). Based on sediment trap 66 

data, collected at 140 m in the Gotland Basin, Struck et al. (2004) reported that the highest fluxes 67 

of POC occur in fall, followed by summer and spring. Using 
15

N they showed that during the 68 
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summer, N2 fixation by diazotrophic species was the primary source (~41%) of the exported 69 

nitrogen, and that the majority of the particulate OM sedimenting in the central Baltic Sea is of 70 

pelagic origin.  71 

OM export from the euphotic zone to the seafloor has a dual significance in the deep basins of the 72 

Baltic Sea. On the one hand, it contributes to the long-term burial of POC, and consequently to 73 

the removal and long term storage of CO2 from surface waters (Emeis et al., 2000; Leipe et al., 74 

2011); on the other hand, it connects the pelagic and the benthic systems contributing to the 75 

oxygen consumption and hence deoxygenation at depth. Environmental and anthropogenic 76 

changes may alter the magnitude and composition of OM transferred from the surface to the 77 

seafloor in the Baltic Sea (Tamelander et al. 2017). On the long term, a decrease in OM 78 

downward flux may limit the oxygen depletion. However, to fully suppress hypoxia enhanced 79 

ventilation would be necessary the bottom waters of the Baltic Sea. 80 

The Gotland Basin (GB) and the Landsort Deep (LD) are the deepest basins of the Baltic Sea. 81 

They exhibit permanent bottom-water hypoxia (Conley et al. 2002), caused by a combination of 82 

limited water exchange with the North Sea through the Kattegat Strait, strong vertical 83 

stratification, and high production /remineralization of OM due to eutrophication (Carstensen et 84 

al., 2014b; Conley et al., 2009). The Baltic Sea is naturally prone to hypoxia due to physical 85 

factors such as permanent salinity stratification and restricted water exchange with the ocean. 86 

From the1950s to 1970s, the hypoxic zones (<60 µmol O2 kg
-1

) in the Baltic Sea had expanded 87 

fourfold (Carstensen et al. 2014). North Sea inflows are the primary mechanism renewing deep 88 

water in the central Baltic Sea. A Major Baltic Inflow (MBI) occurred in 2014/2015 (Mohrholz et 89 

al. 2015); this event ventilated bottom waters for five months between February and July 2015 90 

(Holtermann et al., 2017). Saltier, denser, O2-rich North Sea waters entered the western Baltic Sea 91 

in December 2014 and reached the Gotland Basin on February 2015. This caused the intrusion of 92 

O2 to deep hypoxic waters, a substantial temperature variability, and high turbidities that may be 93 

associated with redox reactions products (Schmale et al., 2016). At the time of sampling, this MBI 94 

also affected the neighboring Faroe Deep; but not the LD, located further northwest. At the LD, 95 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-360
Manuscript under review for journal Biogeosciences
Discussion started: 6 August 2018
c© Author(s) 2018. CC BY 4.0 License.



5 
 

water properties did not change due to the MBI, the sulfidic layer was maintained (hydrogen 96 

sulfide, H2S concentrations of 20.7- 21.2 M), and salinity varied between 10.6 and 10.9 97 

(Holtermann et al., 2017). 98 

In the GB and the LD, a permanent transition zone of about 15 to 20 m thickness separates the 99 

surface oxygenated and the anoxic waters. This zone is known as “pelagic redoxcline” and it is 100 

only disrupted by sporadic intrusions of saline, well-oxygenated waters from the North Sea 101 

(Günter et al., 2008). In the GB, the 2014/2015 MBI oxygenated the deep water column, removed 102 

the sulfidic waters in the deeper layers below the redoxcline, and created a secondary near-bottom 103 

redoxcline (Schmale et al., 2016). A steep redox gradient characterizes the pelagic redoxcline; 104 

here electron acceptors and their reduced counterparts are vertically segregated, and 105 

biogeochemical transformations mediated by microbial processes are actively occurring (Bonaglia 106 

et al., 2016; Brettar and Rheinheimer, 1991; Neretin et al., 2003). For instance, iron (Fe) and 107 

manganese (Mn) undergo rapidly reversible transformations at the redox interface. Under anoxic 108 

conditions, these metals are present in dissolved reduced forms Mn(II) and Fe(II); under oxic 109 

conditions they form particulate oxides, when react with O2 or nitrate. Manganese oxides (MnOx) 110 

production may be microbially mediated (Neretin et al., 2003; Richardson et al., 1988), or 111 

authigenic (Glockzin et al., 2014). The reduction of Mn(IV) with sulfide occurs within a scale of 112 

seconds to minutes (Neretin et al., 2003), and is inhibited by nitrate (Dollhopf et al., 2000). The 113 

sporadic oxygenation of the deep water of the GB combined with the release of Mn from the 114 

sediments into the water column (Lenz et al., 2015) generate appropriate conditions for particulate 115 

MnOx formation. MnOx particles have previously been observed in pelagic redoxclines in the 116 

Baltic Sea (Glockzin et al., 2014; Neretin et al., 2003). They are amorphous or star-shaped 117 

particles that can occur as single particles or form aggregates enriched in OM (Neretin et al., 118 

2003), specifically in transparent exopolymer particles (TEP) (Glockzin et al., 2014). TEP are 119 

highly sticky, polysaccharide-rich particles that can enhance aggregation and the formation of 120 

marine snow (Engel, 2000; Logan et al., 1995). Thus, MnOx-OM aggregates may significantly 121 

contribute to the downward flux of POC. However, TEP are less dense than seawater (Azetsu-122 
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Scott and Passow, 2004); therefore they could also reduce the density of marine aggregates and 123 

decrease their sinking velocity if the ratio of dense particles to TEP is too small (Azetsu-Scott and 124 

Passow, 2004; Engel and Schartau, 1999; Mari et al., 2017). Mixed aggregates containing MnOx 125 

and TEP have reported before for the GB and LD (Dellwig et al. 2010; Glockzin et al. 2014). 126 

Their sizes ranged between 0.8 and 41 m equivalent spherical diameter, and their sinking 127 

velocity (0.76 m d
-1

) was lower than what was predicted by the Stokes’ law (Glockzin et al., 128 

2014) possibly due to their star-shaped morphology and the high OM content attached to them. 129 

Additionally, MnOx aggregates may affect the cycling of particle-reactive elements like 130 

phosphorous and trace metals via scavenging processes (Dellwig et al., 2010). To date, there are 131 

no measurements of the density of MnOx-OM aggregates, their potential ballast effect of sinking 132 

OM, or their effect on the flux of particle-reactive elements in the Baltic Sea.  133 

In this study, first, we characterize the amount and composition of particles sinking out of the 134 

euphotic zone in two deep basins of the Baltic Sea: the GB and the LD. Second, we compare the 135 

sinking fluxes of POM at two stations with different O2 concentrations below pycnocline (70 m): 136 

the GB affected by the MBI that changed the increased the O2 concentration in the deep waters 137 

(between 140 and 220 m) and the LD that was not affected by the MBI and exhibited low O2 138 

concentration and sulfidic conditions in the deep water (from 74 to 430 m). We hypothesize that 139 

the different O2 conditions in the water column of the GB compared with the LD, affected the 140 

formation of MnOx rich-aggregates and subsequently OM distribution causing differences in 141 

degradation and export of OM between those two stations. 142 

2. Methods 143 

2.1. Sampling location and water column properties 144 

Samples were collected during the BalticOM cruise in the Baltic Sea onboard the RV Alkor form 145 

June 3
th
 to June 19

th
, 2015. We collected sinking particles using surface-tethered sediment traps 146 

(Engel et al., 2017; Knauer et al., 1979) in the GB and the LB (Fig.1). Additionally, water column 147 

samples were collected using a Niskin-bottle rosette at the locations of the trap deployments. 148 

Temperature, salinity and O2 concentration were determined at each station using a conductivity 149 
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temperature depth (CTD, Sea-Bird) instrument with an Oxyguard (PreSens) oxygen sensor, 150 

calibrated with discrete samples measured using the Winkler method (Strickland and Parsons, 151 

1968; Wilhelm, 1888). 152 

2.2. Sediment trap design and deployment 153 

We deployed two surface-tethered sediment traps for two days in the GB, and one day in the LD 154 

(Fig.1). Each trap collected particles at four depths between 40 and 180 m (Table 1) to estimate 155 

POM fluxes to and within the OMZ. The sediment trap consisted in five arrays of 12 acrylic 156 

particle interceptor tubes (PITs) mounted in a PVC cross frame; each tube was equipped with an 157 

acrylic baffle at the top to minimize the collection of swimmers (Engel et al., 2017; Knauer et al., 158 

1979). Two particle collector arrays were located at 40 m to estimate the replicability of the 159 

system. The PITs were 7 cm in diameter and 53 cm in height with an aspect ratio of 7.5 and a 160 

collection area of 0.0038 m
-2

. The cross frame and PITs were attached to a line that had a bottom 161 

weight and a set of surface and subsurface floats. The procedures for PIT preparation and sample 162 

recovery followed Engel et al. (2017). Shortly before deployment, each PIT was filled with 1.5 L 163 

of seawater previously filtered through a 0.2 m pore size cartridge. A preservative solution of 164 

saline brine (50 g L
-1

) was added slowly to each PIT and underneath the 1.5 L of filtered seawater, 165 

carefully keeping the density gradient. The PITs were kept caped until deployment and again 166 

immediately after recovery to avoid contamination. After recovery, the density gradient was 167 

visually verified. Then, the supernatant seawater was siphoned off the PIT, the remaining bottom 168 

waters (approx. 0.6 L) containing the particles were pooled together and filled-up to 10L with 169 

filtered seawater. After that, the samples were screened with a 500 m mesh to remove 170 

swimmers. Subsequently, samples were split into aliquots that were processed for the different 171 

biogeochemical analysis as described in Engel et al. (2017). 172 

2.3. Biogeochemical analysis 173 

Nutrients were measured in unfiltered seawater samples of the deployment stations. Ammonium 174 

(detection limit 0.05 µM) was measured directly on board after Solórzano (1969). Phosphate, 175 

nitrate, and nitrite (detection limit 0.04 µM) were stored frozen until their analysis; samples were 176 
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measured photometrically with continuous flow analysis on an auto-analyzer (QuAAtro; Seal 177 

Analytical) after Grasshoff et al. (1999).  178 

Particulate organic carbon (POC), nitrogen (PN), organic phosphorous (POP), and chlorophyll a 179 

(Chl a) were determined as described in Engel et al. (2017). Aliquots of 100 to 200 ml of the 180 

trapped material, and 500 ml for the sampled seawater were filtered in duplicated for each 181 

parameter at low vacuum (<200 mbar), onto pre-combusted GF/F filters (8h at 500°C). After 182 

filtration, the filters were stored frozen (-20°C) until analysis. Prior analysis, filters for POC-PN 183 

determination were exposed to acid fumes (37% hydrochloric acid) to remove carbonates, and 184 

subsequently dried for 12h at 60 °C. POC and PN concentrations were determined using an 185 

elemental analyzer (Euro EA, Hechatech) after Sharp (1974). 186 

POP was analyzed after Hansen and Koroleff (1999). POP was oxidized to orthophosphate by 187 

heating the filters in 40 mL of deionized water (18.2M) with Oxisolv (MERCK 112936) for 30 188 

min in a pressure cooker. Orthophosphate was determined spectrophotometrically at 882 nm in a 189 

Shimadzu UV-VIS Spectrophotometer UV1201. 190 

Chl a was analyzed after extraction with 10 mL of 90% acetone, the fluorescence of the samples 191 

was measured using a Turner fluorimeter (Turner, 10-AU) according to Strickland et al. (1972). 192 

The fluorometer was calibrated with a standard solution of Chl a (Sigma-Aldrich C-5753). 193 

Phytoplankton composition and abundance in the stations where we deployed sediment traps was 194 

characterized microscopically and using a flow cytometer. Phytoplankton, > 5 m, was counted 195 

and identified in 50 ml of fixed samples (Lugol's solution, 1% final concentration) using a Zeiss 196 

Axiovert inverted microscope (200x magnification). The size of the counted phytoplankton 197 

species ranged from 10 to 200 μm. Phytoplankton, <20 m, cell abundance was quantified using a 198 

flow cytometer (FACSCalibur, Becton, Dickson, Oxford, UK). 2 ml samples were fixed with 199 

formaldehyde (1% final concentration) and stored frozen (-80 °C) until analysis (two weeks later). 200 

Cell counts were determined with CellQuest software (Becton Dickenson); pico- and 201 

nanoplankton populations of naturally containing chlorophyll or phycoerythrin (i.e., 202 

Synechococcus) were identified and enumerated.  203 
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Biogenic silica (BSi) was determined by filtering duplicate aliquots of 50 to 100 mL onto 0.4 µm 204 

cellulose acetate filters. Samples were stored at -20°C until analysis. For the measurements, filters 205 

were digested in NaOH at 85°C for 135 min; the pH was adjusted to 8 with HCl. Silicate was 206 

measured spectrophotometrically according to Hansen and Koroleff (2007). 207 

Transparent exopolymeric particles (TEP) and coomassie stainable particles (CSP) from trap and 208 

water column were analyzed by microscopy according to Alldredge et al. (1993) and Long and 209 

Azam (1996) respectively. Duplicate aliquots of 5 to 20 ml were filtered onto 0.4 m Nuclepore 210 

membrane filters (Whatmann) and stained with 1 ml of Alcian Blue solution for TEP and 211 

Coomassie brilliant blue solution for CSP. Filters were transferred onto Cytoclear ® slides and 212 

frozen (-20°C) until microscopy analysis. Thirty images for each filter were captured under 200x 213 

magnification using a light microscope (Zeiss Axio Scope A.1) connected to a color camera 214 

(AxioCam MRc). Particle number and area was measured semi-automatically using WCIF ImageJ 215 

software. Image analysis of TEP and CSP were conducted after Engel (2009). Additionally, TEP 216 

and CSP in water samples from the stations where we deployed sediment traps were analyzed 217 

spectrophotometrically according to Passow and Alldredge (1995) and Cisternas‐Novoa et al. 218 

(2014) respectively. 219 

MnOx-like particle abundance was determined microscopically using the same images that for 220 

TEP and CSP determination and a modification of the method described above. Thirty images per 221 

filter (200x) were analyzed semi-automatically using Image J. The RGB image was split in three 222 

channels: red, blue and green, and the blue, instead of the red channel, was used to quantify the 223 

amount of MnOx-like particles in the water column and sediment traps, in this manner the MnOx-224 

like particles were clearly visible with a negligible disruption from TEP or CSP stained blue. 225 

Total amino acids (TAA) were analyzed directly in the unfiltered seawater and trapped material. 226 

Samples were stored at -20°C until analysis. Duplicate samples were hydrolyzed at 100 °C in 6N 227 

HCl (Suprapur® Hydrochloric acid 30%) and 11 mM ascorbic acid for 20 h. Amino acids were 228 

separated and measured by high-performance liquid chromatography (HPLC), after derivatization 229 

with ortho-phthaldialdehyde using a fluorescence detector (Excitation/Emission 330/445 nm) 230 

(Dittmar et al., 2009; Lindroth and Mopper, 1979).  231 
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Total combined carbohydrates (TCHO) were determined by ion chromatography according to 232 

Engel and Händel (2011). TCHO were analyzed directly in the unfiltered seawater and sediment 233 

trap material. Samples were stored at -20°C until analysis. Prior to analysis, the samples were 234 

desalted by membrane dialysis using dialysis tubes with 1 kDa molecular weight cut-off 235 

(Spectra Por). The desalination was conducted for 4.5 h at 1°C. Then, a 2 mL subsample was 236 

sealed with 1.6 mL 1M HCl in pre-combusted glass ampoules and hydrolyzed. Samples were 237 

hydrolyzed for 20 h at 100°C. After hydrolysis, the subsamples were neutralized by acid 238 

evaporation under N2 atmosphere at 50°C, resuspended with ultrapure Milli-Q water and analyzed 239 

by ion chromatography.  240 

2.4 Statistics 241 

A Mann-Whitney U-test was used to test for significant differences between two parameters. The 242 

results of statistical analyses were assumed to be significant at p-values < 0.05. Statistical 243 

analyses were performed using Matlab software (MatlabR2014a). 244 

 245 

3. Results 246 

3.1. Biogeochemistry of the water column  247 

The water column of both stations was stratified during the study. Deeper in the water column, a 248 

pycnocline (halocline) coincided with the oxycline and was located between 63 and 80 m in the 249 

GB and between 55 and 75 m in the LD (Fig. 2). Additionally, a seasonal thermocline was located 250 

between 20 and 30 m in the GB and between 12 and 38 m in the LD. The GB had a hypoxic layer 251 

(<60 mol O2 L
-1

) between 74 and 140 m and the core of the OMZ (<10 mol O2 L
-1

) was located 252 

between 96 and 125 m. The increasing oxygen concentrations at depth (>140m) can be related to 253 

the MBI event in 2014/2015 that ventilated the otherwise anoxic deep layer of the GB 254 

(Holtermann et al., 2017) and caused a rise in O2 concentration  from less than 40 mol O2 L
-1

 at 255 

140 m to 79 mol O2 L
-1

 at 220 m (Fig. 2a). The MBI, however, did not reach the LD (Fig. 2b), 256 

where oxygen was below the detection limit (<3 mol O2 L
-1

) from 74 m to the bottom (430 m). 257 

The vertical profile of nutrients was different at both stations (Fig. 2). In the GB, nitrate increased 258 

from below the detection limit in the surface waters to 0.17M at 40 m. Nitrate concentrations 259 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-360
Manuscript under review for journal Biogeosciences
Discussion started: 6 August 2018
c© Author(s) 2018. CC BY 4.0 License.



11 
 

were variable within the OMZ (6 M at 80 and 140 m, and 0.12 M at 110 m). At 220 m nitrate 260 

concentration decreased to 4.8 M (Fig. 2a). Nitrite was below the detection limit in most of the 261 

water column except for 60 m (0.09M) and 110 m (0.11 M). Ammonium increased from 0.14 262 

M in the surface to 1.15 M at 60 m; concentrations were variable in the OMZ with less than 263 

0.15 M at 80 and 140 m, and maximum concentration of 3.28 ± 0.01 M at 110m. Vertical 264 

profiles of phosphate and silicate at the GB were similar; the concentrations steadily increased 265 

from the surface (0.29 M and 10.36 M respectively) to the OMZ (2.67 M and 39.07 M 266 

respectively), and gradually decreased below the OMZ (Fig. 2a). Hydrogen sulfide was not 267 

detectable in the GB. 268 

In the LD, nitrate and nitrite concentrations were below the detection limit between the surface 269 

and 250 m (<0.06 M) (Fig. 2b). Ammonium concentrations varied between 0.06 and 0.59 M in 270 

the upper 70 m and increased to 5.97 and 8.03 M in the OMZ. The lowest concentration 271 

(0.07M) was measured in the surface and maximum concentration of 8.03 M at 110 m. 272 

Phosphate and silicate concentrations varied between 1.58 ± 0.04 (at 40 m) and 2.18± 0.80 M 273 

phosphate and between 21.75 ± 4.78 (at 40 m) and 35.67 ±14.59 M silicate in the upper 110 m 274 

of the water column; lowest concentrations were measured at 180 m (0.2 2 M and 7.4 M 275 

respectively). Highest concentrations of nitrate and nitrite (6.01 and 0.22 M) were observed at 276 

400 and 350 m, respectively. Hydrogen sulfide was measurable below 180 m, with the highest 277 

concentration (3.97 M) measured at 250 m and the lowest (0.04 M) between 300 and 350 m 278 

(Fig. 2b). 279 

3.2. Particulate organic matter concentration in the water column 280 

Chl a concentration in the upper 10 m was slightly higher in the GB (1.5-1.7 g L
-1

, Fig. 3b) than 281 

in LD (1.4-1.2 g L
-1

 and 0.1-0.3 M, Fig. 3e). This agrees with estimates of integrated total 282 

primary production, which were 380 mg C m
-2

 d
-1

 in the GB and 334 mg C m
-2

 d
-1 

in the LD 283 

(Piontek et al., unpublished). Pico- (<2 m) and nanophytoplankton (2-20 m) abundances, as 284 

determined by flow cytometry, were higher in the upper 60 m, although detectable in the entire 285 
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water column. Pico- and nanophytoplankton abundances were 10% higher in GB than in LD 286 

(Table 2). Phycoerythrin fluorescence, mainly from picophytoplankton (92% in GB and 96% in 287 

LD), was 30% higher in GB than in LD. 288 

The abundance of larger phytoplankton (>5 m) was determined by microscopy. Microscopic 289 

counts of cells showed about 63% higher phytoplankton abundance in the LD than in the GB 290 

(Table 3). Filamentous, unicellular cyanobacteria dominated the large phytoplankton community 291 

at both stations with up to 90% corresponding to Aphanizomenon sp. Cyanobacteria were 60% 292 

less abundant in the GB than in the LD (Table 3). They represented 56% of the total 293 

phytoplankton counts in the GB and up to 74% in the LD. Dinoflagellates (dominated by 294 

Dinophysis sp.) were significant in both stations (19%), whereas chlorophytes (dominated by 295 

filaments of Planctonema sp. containing cylindrical cells) were more abundant in the GB than in 296 

LD (25% and 4% of the total respectively). Diatoms represented less than 1% of the 297 

phytoplankton in both stations, and they were slightly more abundant at 40 m in the LD (Table 3). 298 

BSi was higher in the upper 10 m (0.4-0.5 M) and decreased with depth in the GB (Fig. 3b), 299 

whereas in the LD, BSi showed a peak at 40 m and then decreased with depth (Fig. 3f). 300 

Vertical profiles of POC, PN, and POP concentration were similar in the water column of the two 301 

stations (Fig. 3a, d). In the GB, the concentrations were higher in the surface (POC: 40.38 ± 0.80, 302 

PN: 3.89± 0.01, and POP: 0.26± 0.04 M ) and decreased gradually with depth until 110 m where 303 

relatively high concentrations (POC 18 ± 0.63, PN: 2± 0.08, and POP: 0.2 M) were observed. 304 

The lowest concentrations were found at 180 m (POC: 11.97 ± 1.03, PN: 1.05± 0.02, and POP 305 

<0.03M) (Fig. 3a). In the LD, POM decreased with depth from the surface (POC: 35 ± 0.99, 306 

PN: 4± 0.09, and POP: 0.2 M) to 40 m, remained relatively constant between 40 and 80 m and 307 

decreased again between 110 and 250 m (Fig. 3d). 308 

We observed high concentrations of TEP and CSP in the upper 10 m in both stations. The highest 309 

TEP concentration was measured at 1 and 10 m at both stations, and it was slightly higher (19%) 310 

in the GB than in the LD (Fig. 3c, f). TEP and CSP vertical profiles were different from each 311 

other in the GB (Fig. 3c) and covaried in the LD (Fig. 3f). Like observed for POC, PN, and POP, 312 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-360
Manuscript under review for journal Biogeosciences
Discussion started: 6 August 2018
c© Author(s) 2018. CC BY 4.0 License.



13 
 

TEP concentrations showed a peak at 110 m (50.29± 6.17 g XG eq. L
-1

) in the GB. The highest 313 

concentration of CSP at this station was observed in the shallowest (1 m) sample, CSP 314 

concentration decreased quickly at 10 m, and then it increased at 140 and 230 m (the deepest 315 

sample ~20 m above the seafloor) (Fig. 3c). In the LD, the highest concentrations of TEP and 316 

CSP were measured in surface (1 and 10 m) and at 110 m (Fig. 3f). TEP and CSP decreased with 317 

depth in the first 80 m (from 53.26± 7.10 to 18.39± 4.57 g XG eq. L
-1

 and from 53.26± 7.10 to 318 

31.57± 18.78 g BSA eq. L
-1

). Both types of gel-like particles showed an increase in 319 

concentration at 110 m (49.25± 4.08 g XG eq. L
-1

 and 66.89± 22.33 g BSA eq. L
-1

 320 

respectively). Bellow 110m, TEP concentrations stayed relatively constant, while CSP 321 

concentrations decreased at 180 m and kept relatively constant below that depth. 322 

3.3. MnOx-like particles vertical distribution in the water column 323 

Dark, star-shaped, MnOx-like particles (Glockzin et al., 2014; Neretin et al., 2003) were observed 324 

below the fully oxygenated mixed layer in the GB and, in less abundance, in the LD (Fig. 4). In 325 

GB, single MnOx-like particle and large aggregates were observed from 80 m to 220 m (the 326 

deepest sample, approximately 28 m above the seafloor). Relatively high concentration of MnOx-327 

like particles (2x10
6 
particles L

-1
), were measured in the upper (80 m) and lower (140 m) oxycline 328 

where the O2 concentration was less than 40 M, and at 220 m (4x10
6 
particles L

-1
)(Fig. 4a). The 329 

lowest abundance of MnOx-like particles (7x10
5 
particles L

-1
) was observed at 110 m, in the core 330 

of the OMZ where the O2 concentration was less than10 M. The ESD varied between 0.6 and 331 

30.5 m and the median was 3.0 m. The largest aggregates were observed in the upper oxycline 332 

(80 m). In the LD, MnOx-like particles were less abundant, smaller and had a narrow distribution 333 

in the water column than in the GB. MnOx-like particles were not detected in the fully oxic (0-40 334 

m) or fully anoxic (180 to 430 m) water column. At 60 m, right above the oxycline, MnOx-like 335 

particles began to appear, however, in relatively low abundance. The maximum abundance, 9x10
5 336 

particles L
-1

, was observed in the oxycline at 70 m (Fig. 4b). The ESD varied ranged between 0.6 337 

and 13.4 m, the largest aggregates were observed at 70 m.  338 
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3.4. Fluxes of Particulate Organic Matter  339 

Fluxes of particulate organic matter varied little with depth in the GB (Fig. 5a-c). POC flux 340 

slightly increased by 18% from the shallowest (40 m) to the deepest (180 m) depth. Fluxes of PN 341 

and CSP were higher at 40 and 60 m and decreased by 19 and 70% from 60 to 180 m, 342 

respectively (Fig. 5a and 5c). On the other hand, fluxes of POP, BSi, Chl a (Fig. 5b) and TEP 343 

(Fig. 6a) peaked at 110 m. Those fluxes increased by 68, 61, 44 and 68% respectively from 40 m 344 

to 110 m; then they decreased by 22, 65, 27 and 19% from 110 m to 180 m. This increment of 345 

fluxes at 110 m coincided with the presence of abundant MnOx-like particles associated with TEP 346 

(Fig. 6a). In addition, TEP size distribution, determined by image analysis, indicated an increase 347 

in large TEP at 110 m (data not shown). In contrast, in the LD, POC, PN (Fig. 5d) and CSP (Fig. 348 

6d) fluxes decreased with depth. Fluxes were 28, 42 and 56% less at 180 than at 40 m. However, 349 

the POP, BSi (Fig. 5e) and TEP (Fig. 6c) showed highest fluxes at 110 m. 350 

MnOx-like particles were drastically less abundant in sediment trap samples from the LD than in 351 

the GB and when present, only as single particles not as aggregates with TEP or CSP (Fig. 6c, d). 352 

The flux of MnOx-like particles at 110 and 180 m was two orders of magnitude larger in the GB 353 

than in the LD (Table 4). At both stations, and similar to the water column, MnOx-like particles 354 

were not observed in sediment trap samples collected at 40 and 60 m. In the GB, MnOx-like 355 

particles were present in the sediment traps at 110 m and 180 m. MnOx- like were as single 356 

particles and forming aggregates with each other and other particles such as: TEP (Figure 6a, f), 357 

phytoplankton cells, or detrital material. The ESD of MnOx-like particles and aggregates ranged 358 

from 0.6 to 167 m (median 2.8 m) at 110 m and from 0.6 to 153 m (median 3.3 m) at 180 m. 359 

In the LD, only a few, single MnOx-like particles were observed at 110 and 180 m and their size 360 

ranged from 0.6 to 16.5 mm (media 1.8) at 110 m (Table 4). 361 

TAA flux ranged from 371±12 to 501± 33 mol m
-2

d
-1

 in the GB and from 502± 84 to 785± 54 362 

mol m
-2

d
-1

 in the LD (Fig. 7a). In the GB, the flux decreased with depth whereas, in the LD, the 363 

TAA flux at 40 m was lower than at 60 m and decreased with depth from 60 to 180 m (Fig. 7b). 364 

The TCHO flux varied between 303± 8 and 428± 14 mol m
-2

d
-1

 in the GB (Fig. 7a) and between 365 
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503± 19 and 584± 8 mol m
-2

d
-1

 in the LD (Fig. 7b). Vertical profile of TCHO flux was similar in 366 

both stations. TCHO flux increased from 40 to 110 m, where the highest TCHO flux was 367 

measured, and then TCHO flux decreased at 180 m. The TCHO flux at 180 m was 22% higher 368 

than at 40 m in the GB, and the same that at 40 m in the LD. 369 

3.5. Chemical composition of sinking and suspended OM 370 

Elemental ratios for sinking and suspended OM in the GB and the LD are shown in Table 5. The 371 

POC:PN ratio of the sinking OM increased with depth at both stations. In suspended OM, this 372 

ratio was more variable in the GB and decreased with depth in LD. The POC:PN molar ratio of 373 

suspended and sinking OM may be compared to the classical Redfield ratio for living plankton 374 

which is 106: 16: 1 for C:N:P(Redfield et al., 1963). Sinking OM was slightly above Redfield’s at 375 

both stations. The POC:PN ratios of the sinking OM in both GB and LD were not significantly 376 

different. Contrastingly, in the suspended OM, POC:PN ratios were higher in the GB compared to 377 

the LD (p<0.001; Mann–Whitney U-test). In the LD the POC:PN of sinking OM was significantly 378 

lower than in suspended OM (p<0.001).  379 

The POC:POP molar ratio of sinking OM was lower (p<0.05) in the GB than in the LD; and it 380 

was higher (p<0.01) in sinking than in suspended OM in the LD (Table 5). The POC:BSi molar 381 

ratio was lower in sinking than in suspended OM in both stations (GB: p<0.05; LD: p<0.01). In 382 

suspended OM, the POC:BSi ratio was above Redfield ratio, whereas in sinking OM it was below 383 

Redfield value (Table 5). The PN:POP molar ratio was lower in sinking OM than in suspended 384 

OM in both stations (p<0.001). In sinking OM this value was always below the Redfield ratio, 385 

while in suspended OM, it was always above the Redfield ratio.  386 

At both stations, the fraction of sinking POC composed of AA was larger than in suspended OM. 387 

Similarly, the C contained in CHO made up a larger percentage in sinking OM than in suspended 388 

OM (Table 5).  389 

The amino acid-based degradation index (DI, Dauwe et al., 1999) in sinking OM varied from 0.1 390 

to 1.14 and was higher than in suspended OM (-1.25 to -0.42). The DI was higher in the GB than 391 

in the LD in sinking and suspended OM. In the sinking OM of the GB, the DI decreased with 392 

depth but in the LD was more positive at 110m than at 60 m (Table 5).  393 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-360
Manuscript under review for journal Biogeosciences
Discussion started: 6 August 2018
c© Author(s) 2018. CC BY 4.0 License.



16 
 

4. Discussion  394 

In this study, we described the results of: 1) the characterization of the surface biogeochemical 395 

conditions and the amount and composition of the particles produced in the euphotic zone of two 396 

deep basins in the central Baltic Sea, i.e., the GB and the LD, during early summer 2015, and 2) 397 

the flux of sinking particles out of the euphotic zone as well as their variation at depth in the two 398 

basins. We assess the potential influence of increased O2 concentration caused by the 2014/2015 399 

MBI in the GB on the chemical composition and degradation stage of the sinking and suspended 400 

OM relative to the anoxic LD. 401 

4.1 Characterization of biogeochemical conditions in GB and LD  402 

Temperature, O2, and inorganic nutrient concentrations were similar in surface at both stations. 403 

Moreover, though there were slight differences in biogeochemical conditions, such as primary 404 

production, phytoplankton composition and chemical composition of POM, in the surface water 405 

column, those were not significant. The concentration of Chl a (Fig. 3), the abundance of 406 

picophytoplankton, nanophytoplankton (Table 2) and primary production (PP, Piontek et al. 407 

unpublished data) were slightly higher (20, 10 and 10 % respectively) in the GB than in the LD. 408 

At both stations, phycoerythrin-containing cyanobacteria were a small fraction of the pico- and 409 

nano-phytoplankton. Pico-phytoplankton cell abundance (cell mL
-1

) dominated the small 410 

phytoplankton (Table 2), suggesting a significant contribution to PP and Chl a concentration. 411 

These findings coincide with what was described previously for early summer, in the Baltic Sea 412 

that indicate that this period corresponded to a low productivity transition phase characterized by 413 

low Chl a concentration ( ≤ 2 µg L
-1

) sustained mostly by nano- and picophytoplankton 414 

communities (Leppänen et al., 1995) which co-existed with cyanobacteria and other 415 

phytoplankton species (Kreus et al. 2015). Microscopic analysis of larger phytoplankton (>5 m), 416 

on the other hand, showed that filamentous cyanobacteria Aphanizomenon sp. (up to 200 m 417 

large) was the dominant type on this size fraction in the upper 40 m (Table 3). Aphanizomenon sp. 418 

and Nodularia spumigena, are known to form summer blooms in the Baltic Sea, where they 419 

accumulate at the sea surface of the thermally stratified water column (Bianchi et al., 2000; 420 
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Nausch et al., 2009; Wasmund, 1997). Cell abundance of total phytoplankton (>5 m) were not 421 

significantly different (p=0.74) in the GB and the LD.  422 

POC, PN, POP, BSi, TEP and CSP concentrations in the surface waters were also similar at both 423 

stations (Fig. 3). The concentration of TEP was higher than of CSP, both types of gel-like 424 

particles were most abundant in the euphotic zone indicating a phytoplankton origin. In the 425 

surface water column, TEP concentrations (48 and 62 g X.G. Eq. L
-1 

in the GB and the LD, 426 

respectively) were 69 and 76% lower than the value previously reported for summer in the central 427 

Baltic Sea in June (200 g X.G. Eq. L
-1

) (Engel et al., 2002). Likewise, our dissolved inorganic 428 

nitrogen concentrations were below the detection limit in the surface; however phosphate 429 

concentrations were higher (0.2-0.65 M) than the ones on the Engel et al. (2002) study. Mari and 430 

Burd (1998) reported that TEP concentration peaked during the spring bloom and in summer in 431 

the Kattegat. TEP production may be enhance by enviromental conditions such as nutrient 432 

limitation (Mari et al., 2005; Passow, 2002), which are characteristic of late summer in the Baltic 433 

Sea (Mari and Burd 1998). Our samples were collected right after the peak of the spring bloom 434 

(Le Moigne et al., 2017), thus, likely TEP concentrations had not reached the usually higher 435 

summer value yet since phosphate remained present in the water column (potentially not limiting 436 

the PP).Anoter possible explanation for the rather low concentrations of TEP could be that TEP 437 

may be removed from the surface by aggregation and subsequent sedimentation during the spring 438 

bloom due to the high abundance of cells and detrital particles during this time (Engel et al., 439 

2002).  440 

Although the composition and amount of OM in the surface waters at the two trap stations were 441 

similar, below the euphotic zone (40 m) the vertical profile of nutrients and POM concentrations 442 

were clearly different; likely due to the 2014/2015 MBI (Holtermann et al., 2017) that reached the 443 

deep waters of the GB. The MBI changed the vertical distribution and increse the concentration of 444 

O2 in the GB compared with the LD. In the GB the oxygen-deficient zone (O2 <40 mol L
-1

) was 445 

constrained between 74 and 140 m and the core of the OMZ (O2 <10 mol L
-1

) between 96 and 446 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-360
Manuscript under review for journal Biogeosciences
Discussion started: 6 August 2018
c© Author(s) 2018. CC BY 4.0 License.



18 
 

125 m; below 140 m O2 concentrations increased <40 mol L
-1

. In contrast, the LD maintained 447 

permanent suboxic (<5 mol L
-1

) waters below 74 m and hydrogen sulfide was detectable at 180 448 

and 250 m (Fig. 2). In the GB nitrate concentration increased possibly as a consequence of the 449 

oxidation of reduced nitrogen compounds (e.g., ammonium, ammonia and organic nitrogen 450 

compound like urea) (Le Moigne et al., 2017) that accumulated during the stagnation (anoxic) 451 

period previous to the MBI (Hannig et al., 2007). MBIs can have a major impact on nutrient 452 

recycling. For instance, phosphorous could bind to iron hydroxides and MnOx and settle down 453 

during oxic conditions, building up a phosphate pool in the sediments that later on when the O2 454 

decreases close to the sediments, it may become a source of phosphate (Gustafsson and 455 

Stigebrandt, 2007) . In addition to changes in O2 concentration, the MBI altered the redox 456 

conditions in the GB creating a secondary redoxcline at 140 m, where the O2 and the MnOx-like 457 

particles concentration increased (Fig. 4a). One consequence of those changes is the vertical 458 

extension of the layer in which MnOx aggregates could form. A previous study showed that 459 

MnOx might precipitate from the water column of the GB following a MBI event (Lenz et al., 460 

2015). Scavenging of phosphate into Mn or Fe oxides had been shown in previous studies 461 

(Neretin et al., 2003). Moreover, there is a downward flux of phosphate associated to particule 462 

iron and MnOx in the oxic water column to the anoxic basin where particles dissolved and 463 

phosphate is release (Gustafsson and Stigebrandt, 2007). This process may be responsible for the 464 

decrease of phosphate concentration below 110 m in our study (Fig. 2a). In contrast, in the LD, 465 

the water column remained suboxic down the sea floor (430 m), below the oxycline an increase of 466 

ammonium was observed (Fig.2) which could be an indicator for anaerobic respiration of OM, 467 

e.g., denitrification (Bonaglia et al., 2016; Hietanen et al., 2012). Low phosphate and silicate 468 

concentrations within the mixed layer due to phytoplankton consumption gradually increased 469 

below the pycnocline and decreased between 110 and 180 m.  470 

In summary, although the GB and the LD had similar surface conditions in terms of 471 

phytoplankton production and POM stocks, during this study, we found differences the vertical 472 

concentration of POM (Fig. 3)in the GB, ventilated by the MBI, relative to the LD, a station that 473 
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remains suboxic.Our results suggest that differences in the vertical profile of O2 may modify the 474 

redox conditions of the water column, enhancing the formation of MnOx-like particles(Fig. 4) 475 

that may aggregate with POM in the GB and changed its vertical distribution. 476 

4.2 Potential influence of O2 concentration and redox conditions on sinking fluxes of POM in the 477 

GB and the LD  478 

During this study, we also investigated the effect of different O2 concentrations and redox 479 

conditions on the fluxes of particles. Our measurement of carbon flux below the euphotic zone 480 

(40 m) were 11.7±0.82 mmol C m
-2

 d
-1 

 in the GB and
 
19.8±1.22 mmol C m

-2
 d

-1 
in the LD. 481 

Extrapolating those measurements to annual flux we obtain 4.37±0.31 mol C m
-2

 a
-1

 in the GB and 482 

7.44±0.46 mol C m
-2

 a
-1

 in the LD. Our results from the LD are compable with the long-term 483 

annual estimations from models that varied between 3.8 to 4.2 mol C m
-2

 d
-1

 (Kreus and Schartau, 484 

2015; Sandberg et al., 2000; Stigebrandt, 1991) for the Baltic Sea; however, the estimations based 485 

on our results from the GB are higher than the C fluxes predicted by those models.  486 

The vertical flux of POM was different the two studied stations; likely due to differences in O2 487 

concentrations that may affect POM remineralization and transport; in the GB, the POC flux 488 

between 40 and 180 m showed a small increase while PN slightly decreased from the bellow the 489 

oxycline (60 m) to 180 m. In the LD, the POC flux decreased greatly between 40 and 60 m, and 490 

remained relatively constant between 60 and 180 m; PN flux, however, decreased with depth. In 491 

the GB, and to a lower degree in the LD, we observed a distinctive peak of POP, BSi, Chl a and 492 

TEP fluxes at 110 m. This high flux of POM coincided with the appearance of dark, star-shaped 493 

particles (Fig. 6a, f) which may correspond to MnOx particles enriched in OM that have been 494 

described in the GB and the LD before (Neretin et al., 2003; Pohl et al., 2004). We observed a 495 

higher concentration of MnOx-like aggregates associated with TEP at 110 m in the GB. The 110 496 

m sediment trap was located between the upper (80 m) and lower (140 m) oxycline where the 497 

MnOx-like particles are likely formed. This corresponds to the depth range where lowest O2 498 

concentration was measured but hydrogen sulfide (H2S) was absent in the water column, which 499 
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allows the presence of those aggregates also at 180 m. On the contrary, in the LD, we measured 500 

H2S at 180 m, this could explain why although those aggregates were present in this station below 501 

the oxycline (i.e., 70 m) at 110 m, they dissolved in sulfidic waters, thus were not as abundant, 502 

and did not form aggregates with TEP (Fig.6c).  503 

The presence of MnOx-containing aggregates enriched in OM (see TEP fluxes, Fig 6c) may have 504 

implications for the vertical flux of C and N in a stratified system with a pelagic redoxcline like 505 

the Baltic Sea. Under steady state, the upward diffusion and oxidation rate of the dissolved Mn 506 

are balanced by the sinking and dissolution rate of MnOx. During the Mn-oxidation, the POM 507 

could aggregate with the MnOx including particulate elements, and trace metals. Then, in the 508 

sulfidic waters, slow-sinking MnOx enriched in OM will be dissolved liberating the OM and 509 

altering the vertical distribution and the flux of all associated particle elements (Glockzin et al., 510 

2014). The precipitation of MnOx could be enhanced by the oxygenation of the otherwise anoxic 511 

deep of the Baltic Sea caused by the 2014/105 MBI (Dellwig et al., 2018), those particles could 512 

bind with phosphorous and trace metals trapping them in the redoxcline (Dellwig et al., 2010). 513 

For example, in the Cariaco Basin, total particulate phosphorous reached their maximum flux in 514 

sediment traps close to the redoxcline (Benitez-Nelson et al., 2004; Benitez-Nelson et al., 2007). 515 

MnOx formation and scavenging of trace metal may be a relevant mechanism for transfer trace 516 

metals from the oxygenated to the anoxic deep waters (Dellwig et al., 2010). Moreover, even in 517 

the anoxic zone, the abundant aggregate associated bacteria (Grossart et al., 2006) could partially 518 

or completely degrade the organic compounds in those particles using NO3
-
 or Mn

2+
 as an electron 519 

acceptor. This may be the reason why we observed a clear peak in the flux of POP, BSi, Chl a 520 

(Fig. 3a, b), TEP (Fig. 6a) and TCHO (Fig. 7a) at 110 m followed by a small decrease at 180 m in 521 

the GB. In the LD a smaller increment in the flux of POP, BSi (Fig. 3d), TEP (Fig. 6c) and TCHO 522 

(Fig. 7b) was also observed. The vertical fluxes of those compounds coincided with the 523 

abundance of MnOx particles; we assume that the MnOx aggregated not only with TEP as 524 

described before (Glockzin et al. 2014) and observed in this study (Fig. 6a) but also with POP, 525 

BSi, Chl a, and TCHO. On the other hand, nitrogen-rich compounds like PN (Fig. 3a), TAA (Fig. 526 
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7a), and CSP (Fig. 6a) gradually decreased with depth in the GB, suggesting that those 527 

compounds were less scavenge by MnOx organic-rich aggregates.  528 

Primary production (PP) in the GB was 10% higher than in LD during our study (Piontek et al. 529 

unpublished data). However, the POC flux below the euphotic zone (at 40 m) was 42% higher in 530 

LD than in GB and comparable at both stations at 180 m. The fraction of PP exported as POC is 531 

termed export production (e-ratio) (Buesseler et al., 1992) , and it is calculated as the POC flux 532 

bellow the euphotic zone divided by the primary production. The e-ratio was calculated here 533 

using the 
14

C based PP (Piontek et al. unpublished data) and carbon flux at 40 m (shallowest 534 

sediment trap depth, considered at the base of the euphotic zone). The e-ratio was 0.41 in the GB 535 

and 0.77 in the LD; i.e., in GB 41% of the primary production was exported as POC below the 536 

euphotic zone (40 m) versus 77% in the LD). This suggests that a higher proportion of the 537 

primary production was remineralized in the euphotic zone of the GB compared with the LD. On 538 

the other hand, the transfer efficiency of POC to the deeper water column (i.e. the ratio of POC 539 

flux at180 m over POC flux at 40 m) was higher in the GB (115%) than in the LD (69%). The 540 

transfer efficiency of POM is largely controlled by the remineralization rate and the sinking 541 

velocity of particles (De La Rocha and Passow, 2007; McDonnell et al., 2015; Trull et al., 2008). 542 

The higher POC transfer efficiency in the GB than in the LD can be attributable to differences in 543 

the sinking velocities of the particles in those two stations. The presence of MnOx-OM rich 544 

aggregates in the GB may fast sinking organic particles that spend less time in the water column 545 

limiting the opportunity of particle- attached microbes to remineralized them. Assuming that 546 

MnOx had a density between 1.5 and 2.0 g cm
-3

 (Glockzin et al., 2014). The largest particles 547 

measured in GB (167 m, Table 4) will have a sinking velocity based in Stokes’ law between 508 548 

and 1014 m d
-1

. If we considered a mix aggregate that is 50% TEP, density 0.9 g cm
-3

 (Azetsu-549 

Scott and Passow, 2004) and 50% MnOx ( density 1.5 g cm
-3

), its density would be 1.2 g cm
-3

 , 550 

and its theoretical sinking velocity will be 204 m d
-1

. This indicate that theoretically, the largest 551 

mix aggregates composed of MnOx and TEP observed in the GB could reach 180 m (the location 552 

of our deepest sediment trap) in less than one day. However, the average measured sinking 553 
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velocity of MnOx in the laboratory for particles between 2 and 20 m was 0.76 m d
-1

, this is 554 

significantly lower that the theoretical value (Glockzin et al., 2014). Glockzin et al. (2014) 555 

suggested that the star shape and the content of OM were responsible for the lower than predicted 556 

sinking velocity. There is not information about the amount of OM relatively to MnOx particles in 557 

those mix aggregates, or how the MnOx to OM ratio may affect the density and sinking velocity 558 

of larger aggregates like the ones we observed. Due to the shape and size of MnOx-OM 559 

aggregates observed in our study (Fig. 6e), we could assume those are the same type of aggregates 560 

described before by Glockzin et al. (2014). Although, we did not measure the sinking velocity of 561 

those aggregates, we did observe a higher abundance of them associated with TEP at 110 and 180 562 

m in the GB than in the LD. The formation of these organic matter rich MnOx aggregates could 563 

represent an additional mechanism (see introduction) to explain why the efficiency of the OM 564 

export is different under anoxic that under oxic conditions in the Baltic Sea. The oxygenation of 565 

anoxic deep water in the GB caused by the 2014/2015 MBI, may have led to an enhanced 566 

precipitation of manganese, iron and phosphorous particles (Dellwig et al., 2010; Dellwig et al., 567 

2018). For example, the formation of P-rich, metal oxides precipitates occur in the anoxic waters 568 

of the Black Sea (Shaffer, 1986) and Cariaco Basin (Benitez-Nelson et al., 2004; Benitez-Nelson 569 

et al., 2007) were higher concentration of particulate inorganic and organic phosphorous have 570 

been observed in sediment traps close to the redoxcline. 571 

4.3 Differences on composition and lability of sinking and suspended organic matter in the GB 572 

and the LD 573 

In the sections above, we discussed how similar biogeochemical conditions and the size of the 574 

surface POM pool in both the GB and the LD were. We then looked at how the sinking flux of 575 

OM was affected by the different O2 concentrations in the water column. We now focus on the 576 

influence of O2 in the chemical composition of sinking and suspended POM. Suspended or slow 577 

sinking POM, that spend more time in the water column, should theoretically, show a larger 578 

degree of degradation (Goutx et al., 2007). Relative to the Redfield molar ratio: 106 POC:16 579 

PN:POP, OM showed an enrichment in carbon, especially in sinking particles from the LD and 580 
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suspended OM from the GB (Table 5). Our measured values of POC:PN (~10) and POC:POP 581 

(between 89 and 506) in suspended OM coincide with the simulated ratio reported by Kreus et al. 582 

(2015) immediately after the culmination of the spring bloom, those relatively high ratios are 583 

consequence of the nitrogen depletion and are characteristic during the summer in the Baltic Sea. 584 

The same study had suggested that POC:POP higher than Redfield ratio might lead to an 585 

enhancement of particle export (Kreus et al., 2015), however, no direct observations had 586 

confirmed this hypothesis. Our measurements showed that the relative higher POC:POP ratios in 587 

sinking OM from LD, compared with the GB, do not lead to a higher transfer efficiency at this 588 

station. Compared to the suspended OM in the LD, the POP content was lower in the GB, 589 

possible related to scavenging of POP into MnOx aggregates (see section 3.4). 590 

The AA based degradation index, DI (Dauwe et al. 1999) covers a wide range of alteration stages; 591 

the more negative the DI, the more degraded the samples, positive DI indicates fresh organic 592 

matter. In our study, the sediment trap material had a DI between 0.10 and 1.14, while suspended 593 

OM has a DI between -0.26 and -1.25 (Table 4). These values coincide with what reported earlier 594 

by Dauwe et al. (1999), and indicate that: first, the sinking particles collected in the sediment 595 

traps were less altered (they have a more positive DI) than the suspended OM collected in the 596 

CTD. Second, sinking particles from the GB were fresher than the ones from the LD, and the 597 

degradation stage increased with depth in both stations. The higher contribution of AA and CHO 598 

to the POC pool in sinking than in suspended OM and the AA- DI indicates that suspended OM 599 

was more degraded than sinking OM. The highest degree of degradation in suspended OM and 600 

sinking OM from the LD may be the result of a long time that light suspended OM or slow 601 

sinking particles spend exposed to degradation in fully oxygenated surface waters than dense, fast 602 

sinking particles collected in sediment traps. 603 

The higher abundance of aggregates, formed by a combination of MnOx-like particles and OM, 604 

observed at 110 and 180 m in the GB could act as bacteria hot spots that combined with a higher 605 

O2 concentration in the GB may increase the microbial degradation on sinking particles collected 606 

in the GB. However, the AA-DI, indicated that sinking OM was less altered and therefore more 607 
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labile than the sinking OM in the LD. This implied that in addition to the higher transfer 608 

efficiency of POC in the GB (see discussion above); the OM reaching the seafloor was fresher 609 

and less degraded. This support the idea that mix aggregates composed by MnOx and OM may be 610 

larger and faster sinking than the previously described by Glockzin et al. (2014). This explanation 611 

is mostly speculative, and based on the observation of large mixed aggregates in the 110 and 180 612 

m traps (Fig. 6, Table 4). However, as mention in the previous section, further work on directly 613 

determines sinking velocity is required to prove this hypothesis.  614 

Conclusion 615 

Fluxes and composition of sinking particles were different in two deep basins in the Baltic Sea: 616 

the GB and the LD during early summer 2015. The two stations had similar surface characteristics 617 

and POM stock; however, at depth, the vertical profile of the O2 concentration was different. The 618 

2014/2015 MBI supplied oxygen-rich waters to the GB modifying the O2 vertical profile and the 619 

redox conditions in the otherwise permanent suboxic deep waters. This event did not affect the 620 

LD allowing the comparing POM fluxes and composition under two different O2 concentrations 621 

with similar surface water conditions. Export efficiency (e-ratio) derived from in-situ PP 622 

measurements and POC flux derivate from sediment traps indicated higher export efficiency in 623 

LD than in GB. However, the transfer efficiency (POC flux at 180 m over POC flux at 40 m) 624 

suggested that under anoxic conditions found in the LD, a smaller portion of the POC exported 625 

below the euphotic zone was transferred to 180 m than under re-oxygenated conditions present in 626 

the GB. Our results suggest that a new possible mechanism to explain the differences in the OM 627 

fluxes under different O2 concentration could be the formation and prevalence of aggregates 628 

composed of MnOx and organic matter in the GB. Those aggregates were significantly larger and 629 

more abundant in the GB compared to the LD where sulfidic waters constrained their presence. 630 

We propose that after a MBI in the GB, the aggregates containing MnOx-like particles and 631 

organic matter could reached the sediments relatively fast and unaltered, scavenging not only 632 

phosphorous, as described previously (Dellwig et al., 2010), but also other organic compounds. 633 

The remineralization of this organic matter reaching the sediments may contribute to the quick re-634 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-360
Manuscript under review for journal Biogeosciences
Discussion started: 6 August 2018
c© Author(s) 2018. CC BY 4.0 License.



25 
 

establishment of anoxic conditions in the sediment-water interface in the GB. The relevance of 635 

this process need to be further investigate in order to be included in O2 budget and long-term 636 

predictions of the MBI impact in the O2 and OM cycles. 637 
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Figure Captions 

Figure 1. Monthly averaged Chl a distribution derived from VIIRS for June 2015 in the Baltic Sea. 

Black circle and “x”  indicate the position of the trap deployment and the seawater collection 

respectively in Gotland Deep (GB) and Landsort Deep (LD). The lower panel shows the trajectory of 

the trap deployed at GB and LD. 

Figure 2. Water column profiles at the location of the sediment trap deployments in (A) the GB, and 

(B) the LD. Left panel: oxygen (blue), temperature (red), and salinity (black). Middle panel: nitrate 

(NO3), nitrite (NO2), and ammonium (NH4). Right panel: phosphate (PO4), and silicate (Si(OH)4). 

Grey lines indicate the depths at which we deployed sediment traps. 

Figure 3. Particulate organic matter profiles in the water column at the location of the sediment traps 

deployments in the GB (A, B and C) and the LD (D, E and F). (A and D) particulate organic carbon 

(POC), particulate nitrogen (PN), and particulate organic phosphorous (POP). (B and E) chlorophyll a 

(Chl a) and biogenic silicate (BSi). (C and F) transparent exopolymeric particles (TEP) and 

Coomassie stainable particles (CSP). Grey lines as figure 2. 

Figure 4. MnOx-like containing particles and O2 concentration profiles in the water column at the 

location of the sediment traps deployments. (A) the GB and (B) the LD. Grey lines as in figure 3. 

Figure 5. Particulate organic matter fluxes in the GB (A and B) and the LD (C and D) . (A and C) 

POC, PN and O2. (B and D) POP, Chl a, and BSi. 

Figure 6. TEP and CSP fluxes in the GB (A and B) and the LD (C and D). In addition to the vertical 

distribution of the flux, each profile is complemented with images captured under the microscope 

(200x) at each depth. Star-shaped MnOx-like particles are clearly visible in the GB associated to TEP 

(A), but not with CSP (B). MnOx-like particles were significantly less abundant in the LD (C and D). 

(F) A larger magnification (400x) image of MnOx-like particles at 110 m showing more detail on the 

shape of those particles and aggregates formed with TEP.   
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Figure 7. Total hydrolyzable amino acids (TAA) and total carohydrates (TCHO) fluxes in (A) the GB, 

and (B) the LD. 
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Table 1. Sediment traps deployment and recovery locations, dates, collection times and depths. 

Station Lat Lon  Date Station 

depth 

Deployment 

time (d) 

Trap depths 

(m) 

Gotland Basin 

(GB) 

57.21 °N 

57.27 °N 

20.03 °E 

20.25 °E 

08/06/2015 

10/06/2015 

248 m 2 40A, 40B, 60, 

110, and 180m 

Landsort  

Deep 

(LD) 

58.69 °N 

58.68 °N 

18.55 °E 

18.68 °E 

15/06/2015 

16/06/2015 

460 m 1 40A, 40B, 55, 

110, and 180m 
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Table 2. Abundance of chlorophyll and phycoerythrin containing pico- and nanoplankton measured 

by flow-cytometry in the GB and the LD. 

 

    Phytoplankton (mL-1) Cyanobacteria-like cells (mL-1) 

  
Depth 
(m) picoplankton nanoplankton Total picoplankton nanoplankton Total 

GB 1 87963 2097 90060 5225 731 5956 

 
10 94369 2628 96997 8795 920 9716 

 
40 4999 68 5067 2174 69 2243 

 
60 4125 35 4160 1990 42 2032 

 
80 599 7 606 238 15 253 

 
110 594 7 601 326 29 356 

 
140 1144 14 1158 356 2 358 

 
180 908 9 917 366 20 385 

  220 2270 19 2289 1063 34 1097 

LD 1 92359 2283 94642 834 177 1011 

 
10 86426 1708 88134 2990 232 3223 

 
40 2022 92 2114 2243 69 2312 

 
60 1524 62 1586 1294 24 1318 

 
70 908 43 951 613 17 630 

 
110 1735 82 1817 1181 17 1198 

 
180 1339 75 1415 946 34 980 

 
250 1593 82 1676 949 36 985 

 
300 1521 48 1569 1047 17 1064 

 
350 1608 57 1665 908 12 920 

 
400 1548 73 1621 1047 22 1069 

  430 1562 68 1631 875 19 894 
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Table 3. Phytoplankton abundances analyzed microscopically in the GB and the LD, volume analyzed 

was 50 ml per sample. 

  
GB (cells mL-1) LD (cells mL-1) 

    1 m 10 m 40 m Total 1 m 10 m 40 m Total 

Cyanophyceae *  Total  14148 13536 0 27684 37368 32526 96 69990 

Chryptophyta Total  140 112 28 280 1400 882 56 2338 

Bacillariophyceae Total  96 94 44 234 462 112 102 676 

 
Chaetoceros sp. 58 42 24 124 434 106 26 566 

 
Skeletonema sp. 26 8 12 46 12 0 8 20 

 
Thalassiosira sp. 12 44 8 64 16 6 68 90 

Dinophyceae  Total  3772 4424 1192 9388 9032 7662 1404 18098 

 
Dinophysis sp. 678 742 2 1422 450 214 4 668 

 
other 3094 3682 1190 7966 8582 7448 1400 17430 

Chlorophyta Total  5320 6860 28 12208 2072 1022 238 3332 

 
Planctonema sp. 5320 6860 28 12208 2072 1022 238 3332 

* >90% were filamentous unicellular cyanobacteria Aphanizomenon sp. 
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Table 4. MnOx-like particles fluxes and size determined by image analysis in GB  and LD. 

Station Depth (m) MnOx-like particles (cm2 m-2d-1) Median size ESD 

(m) 

Size range 

ESD (m) 
GB 110 5666.1± 993.5 2.8 0.6-166.7 

 180 7789.1± 954.7 3.3 0.6-152.7 

LD 110 50.3±1.8 1.8 0.6-16.5 

 180 2.6±0.3 1.4 1.2-9.3 
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Table 5. Amino acids (AA), carbohydrates (CHO) and elemental molar ratios of sinking and 

suspended OM in the GB and in the LD. 

  Depth (m) AA-C:POC % CHO-C:POC % POC:PN POC:POP POC:Bsi PN:POP 

GB 40 19.19 18.26 9.80 244.05 3.86 0.39 

sinking OM 40 17.58 17.21 9.43 222.42 4.07 0.43 

 
60 15.78 17.56 9.52 231.56 2.78 0.29 

 
110 13.87 22.24 11.31 90.12 1.73 0.15 

  180 11.13 18.47 12.68 122.87 2.97 0.23 

LD 40 13.52 9.43 12.17 771.70 3.58 0.29 

sinking OM 40 14.27 8.40 11.09 413.14 4.12 0.37 

 
55 19.10 10.97 12.43 331.81 3.03 0.24 

 
110 13.37 11.97 15.44 229.70 2.67 0.17 

  180 14.32 12.85 15.29 341.33 4.19 0.27 

GB 1 8.22 16.94 10.39 154.56 91.45 14.88 
suspended 

OM 10 10.81 8.84 10.48 150.51 87.15 14.36 

 
40 4.91 2.80 9.19 88.78 133.75 9.66 

 
60 5.43 2.66 9.78 127.36 125.24 13.02 

 
80 4.67 

 
10.43 144.92 

 
13.89 

 
110 9.01 6.63 8.45 245.26 

 
29.01 

 
140 5.34 

 
10.60 283.42 

 
26.73 

 
180 5.73 4.29 11.37 506.21 

 
44.54 

  220 8.57 3.35 12.06 270.78   22.45 

LD 1 6.96 
 

8.66 205.29 514.94 23.71 
suspended 

OM 10 12.97 9.12 8.43 196.44 100.91 23.31 

 
40 0.00 8.88 8.09 335.66 24.48 41.51 

 
60 6.09 10.26 7.83 300.75 16.89 38.43 

 
70 7.92 10.72 7.71 291.81 247.80 37.86 

 
110 12.22 5.41 7.93 224.56 

 
28.32 

 
180 10.12 11.32 7.02 205.33 

 
29.23 

 
250 11.97 8.81 6.52 249.36 

 
38.22 

 
300 10.88 

 
6.71 136.67 

 
20.37 

 
350 10.67 10.12 6.76 145.80 

 
21.56 

 
400 9.99 

 
6.18 229.53 

 
37.16 

  430 9.35 9.45 7.82 148.61   19.01 
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Fig. 1 
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Fig. 3
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 Fig. 4
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 Fig. 5
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Fig. 6
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 Fig. 7 
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