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Abstract: Microorganisms in sediments play an important role in C-, N- and S-cycles by regulating
forms and contents of these elements. The coupled system or synergistic reaction among three
elemental cycles can effectively alleviate the pollution of C, N, and S in sediments. However,
ecological processes coupling C-, N- and S-cycles in sediments are still poorly understood. In order to
understand the ecological processes mediated by microorganisms living in river sediments, a total of
135 sediment samples were collected from Huaihe River and its branches located in the Northern of
Anhui Province, the abundance of functional marker genes (mcrA4, pmoA, cmo, amoA, hzo, nirK, nirsS,
nosZ, dsrB, aprAd), involving in C-, N- and S-transformation, were determined by ¢gPCR. The
correlation among functional genes from 135 river sediment samples was calculated. We supposed
that the correlationship among functional genes could be used as a reference index speculating the
coupled systems of C-N-S in this reasearch, then the distinct coupling relation of C-N-S was revealed,
and probable genetic mechanisms were also expounded based on the hypothesis. The study found that

amoA-AOA and dsrB possibly played a secondary role, while S-functional gene (apr4), C-functional
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gene (mcrA) and N-functional gene (hzo) were the key functional genes that participate in the coupled
processes in the elemental biogeochemical cycle. The results also demonstrated that C, N might have
combined effects on the coupling of carbon, nitrogen and sulphur transformation.

Keywords: river sediment, coupled systems, C, N, and S cycles, functional genes

1 Introduction

Rivers play a substantial part in elemental biogeochemical processes (Aufdenkampe et al., 2011),
which can regulate the carbon (C), nitrogen (N) and sulphur (S) cycles and act as a good indicator of
environmental changes (Crump et al., 2009;Williamson et al., 2008). However, the nutrient elements
(such as carbon, nitrogen and sulphur) originating from domestic sewage, farm drainage, industrial
effluent, etc. flow into the river, and deposit into the sediments (Cheng et al., 2014;Liu et al.,
2014;Fonti et al., 2015), which lead to the deterioration of river ecosystems.

Studies demonstrated that microorganisms in the artificial environments could couple the
transformation processes of different elements by inter-specific cooperation or coordination of
inter-gene from the same species (Zhi and Ji, 2014). In coupling with methane-nitrogen cycle,
anammox-methanogenesis (Bai et al., 2013), nitrite-driven anaerobic methane oxidation (Ettwig et al.,
2010), aerobic methane oxidation-denitrification (AME-D) (Knittel and Boetius, 2008;Modin et al.,

2008;Modin et al., 2007) and denitrification-methanogenesis (Kodera et al., 2017;Wang et al., 2017)
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have been confirmed. For the coupling of S and N cycles, Fdz-Polanco et al. (2001) firstly approved
the sulfate-reducing anaerobic ammonium oxidation (SRAQO) process to explain “abnormal” losses of
nitrogen and sulfate. And subsequently several laboratory studies were conducted for purpose of
speculate the pathway of SRAO (Rikmann et al., 2012;Zhang et al., 2009;Schrum et al., 2009). The
occurrence of microaerophilic sulfate and nitrate co-reduction system has been previously reported
(Bowles et al., 2012;Brunet and Garciagil, 1996). For the coupling of C and S cycles, the pathway of
sulfate-dependent anaerobic methane oxidation had been discovered, which was common completed
by anaerobic methanotrophic archaea and sulfate-reducing bacteria (M et al., 2003).

Recently, the coupling cycle between different elements in natural or constructed wetlands, such
as methane oxidation coupled to nitrogen fixation (Larmola et al., 2014), methane oxidation coupled
to ammonium oxidation (Zhu et al., 2010), methane oxidation coupled to denitrification (Zhu et al.,
2016;Long et al., 2016;Long et al., 2017;Luo et al., 2017;Zhang et al., 2018), methane oxidation
coupled to sulfate reduction (Xu et al., 2014;Weber et al., 2017;Emil et al., 2016), etc., received
extensive attention. The coupling cycle between different elements was mainly driven by functional
groups from bacteria and/or archaea living in sediments. The enzymes coded by functional gene(s) in
functional groups catalyze each reaction step in the biogeochemical cycle of elements. At presently,
the functional genes have been regarded as appropriate indicators for the related biogeochemical

processes in the C and N cycles (Petersen et al., 2012;Rocca et al., 2014). The development of
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molecular biological technique greatly facilitate the quantitation of functional genes in environmental
samples (Lammel et al., 2015;Petersen et al., 2012). Many studies have used the abundance of
functional groups or functional genes involving in elemental cycle to explore the elemental metabolic
pathways in different ecosystems (Bru et al., 2011;Xie et al., 2014;Smith et al., 2015).

Studies have shown that the microbial functional groups that complete a biogeochemical reaction
may come from different microbial groups, and the same type of bacteria or archaea may also
participate in different steps of the biogeochemical cycle. Therefore, compared with the microbial
functional group, the correlationship among the functional genes can not only better reveal the
coupling relationship of elemental metabolic processes in environmental media (especially for some
natural ecosystems or more complex environmental media, such as sediments), but also predict some
undetected coupling reactions. The main aims of this study were: (1) to analyze the correlation among
the different functional genes related to some known coupled metabolic processes in sediments, and (2)
to predict the possible coupling systems in sediments based on the correlation among the functional
genes; and (3) to illustrate the key functional genes that participate in certain specific metabolic

processes or steps in the elemental biogeochemical cycle.

2 Materials and Methods

2.1 Site description
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The Huaihe River is located in the eastern China, watershed area of approximately 270,000 km?,
involving 5 Provinces (Henan, Anhui, Shandong, Jiangsu and Hubei) and 165 million population,
situated in a transition zone of northern-southern climates in China (Meng et al., 2014;He et al., 2015)
and belongs to monsoon climate from north subtropical to south warm temperature, and from humid
to semihumid-semiarid. The average annual precipitation and the annual evaporation in the basin are
some 883mm and 900-1500mm, respectively. The rainfall of flood season (June to September) usually
amounts to 70% of the annual value. The average annual temperature ranges 13.2-15.7°C and frost
free period is about 200-240 day. In the basin, a complex interaction of meteorological and
hydrological processes frequently trigger and exacerbate flood and drought events (Wang et al.,
2014;Zhang et al., 2015). Water resources per capita and per unit area in Huaihe River basin is less
than one-fifth of the Chinese average. And more than 50% of the water resources are over-exploited
(Jiang, 2011). In this basin, agricultural cultivation and livestock have a long history. Textile,
household appliances, steel, cement and fertilizer, as the major industries, mainly distribute along the
main stream and branches of Huaihe River, which are running through the main economic areas in the
middle-eastern of China (Tian et al., 2013). In recent decades, a large number of nutrient from farm
drainage, domestic sewage, industrial effluent, etc., had entered into the main stream and branches and
deposited in the river sediment.

2.2 Sample collection and pretreatment
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In this study, the main stream and the leftward branches located in the Anhui Province were
chosen to do as the investigated area. The length of main stream of Huaihe River in Anhui Province is
more than 400km and its leftward branches in Anhui Province mainly include Honghe river, Guhe
River, Runhe River, Shayinghe River, Xifeihe River, Cihuai River, Qianhe River, Guohe River,
Beifeihe River, Xiehe-Huihe River, Tuohe River, Bianhe River, Suihe River, etc. All branches
investigated are situated in Wanbei plain, which is a part of North China Plain. A total of 135 sections
from main stream and its branches were chosen to collect the sediment samples. Before field sampling,
all of sampling sections were set by the remote sensing map (Fig 1).

In each sampling section, 5 subsamples of surface sediment (depth: 0-10cm) were collected by
Pedersen sampler and then mixed into a sample. The sediment sample was immediately loaded into a
sterile self-sealing bag and then stored in the incubator with 4°C in the field. After returning to
laboratory, each sample was divided into two parts, one was used to analyze the chemical properties
and anetherthe other was directly extracted DNA for the molecular biological test. The samples using
to analyze chemical properties were desiccated by the method of vacuum freeze drying and then
screened. After screening, the samples were loaded into the self-sealing bag and then stored in the
refrigerating cabinet with -20°C until the chemical analysis was carried out.

2.3 Chemical analysis of sediment samples

The pH was assessed by the Mettler Toledo FE20 pH meter (sedimentass: H2Ovorume=1g: Sml).
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The organic matter (OM) was determined by the loss of ignition (LOI) in a muffle furnace at 550+£5°C
for 6 h. The total nitrogen (TN) content was measured using the Kjeldahl method. Concentrations of
NH4"-N, NO3-N and NO>-N__ —and—in sediment samples were determined using a UV-1800
spectrophotometer (Shimadzu, Kyoto, Japan). SMT (standard measurement and test) (Ruban et al.,
2001) method is used to measure the total phosphorus (TP) inorganic phosphorus (IP) and organic
phosphorus(OP) in the sediment.
2.4 DNA extraction

Total DNA in sediment samples were extracted by using the PowerSoil® DNA isolation kit (Mo
Bio Carlsbad USA) in accordance with the manufacturer's instructions. Each extracted genomic DNA
was preserved at —20°C until use.
2.5 Real-time fluorescent quantitative PCR

Quantitative analyses of functional genes, including amoAd of AOA, amoA of AOB, hzo, nirK,
nirS, nosZ, mcrA, pmoA, dsrB and aprA, were performed. The information on the primers selected for
amplification are listed in supporting information (Table S1). Real-time PCRs were implemented on a
Stepone real-time PCR system (Applied Biosystems USA). Each PCR mixture (10 uL) was composed
of SuL of Bestar® SYBR qPCR Master Mix Ex TaqTM II (2x), 0.25 uL of each primer (concentration
of 10 uM), 0.2 uLL of ROX reference dye (50%), 3.3 uL of ddH>O and 1uL of template DNA (Bestar

Biosystem, German). After generating PCR fragments of the respective functional genes using M13
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PCR from clones, standard curves for real-time PCR were prepared based on a serial dilution of
known copies of PCR fragments. The R? value of each standard curve was above 0.99.
2.6 Data analysis

To further investigate the interactions among the environmental parameters, pearson correlation
analysis was applied to determine the significant correlations among the chemical properties.
Correlation analysis was calculated to evaluate ecological associations among different functional
marker genes involving in C-, N- and S-transformation using SPSS Statistics 20 (IBM, USA).
NetworkSpearman graphanalysis was employed to investigate the key functional genes and nutrient

elements of affecting the coupling transformation of C, N and S, the p-values in the correlation were

adjusted statistically significant (PFDR<0.05). Network analysis was carried out by Gephi software

according to the relationships between sediment parameters and functional genes..C., N and S cycles

and coupled pathways were carried out following Auto CAD software.-

Stepwise regression models between functional genes and chemical parameters were established
by using SPSS Statistics 20 (IBM, USA). In stepwise regression analysis, environmental parameters,
(i.e. pH, OM, NH4"-N, NOs™-N, NO>-N, TN, IP, OP and TP) were used as candidate variables to

integrate with functional genes related to C, N and S cycles.

3 Results
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3.1 Chemical properties of river sediments

Table 1 presented the main chemical properties of 135 sediment samples. The pH walues-of river
sediments were alkaline (with a mean of 7.78) and exhibited a lower coefficient of variance (CV) in
all of chemical properties detected. TN displayed a higher CV among the different sampling sections
rather than OM and TP. In 135 investigated sections-investigated, the content of inorganic nitrogen in
sediments displayed a following order: NH4"-N > NO3-N > NO2-N, and NO3-N contents among
different sections showed the highest CV in inorganic nitrogen. IP content with a lower CV is higher
than OP content in sediments. In five sections (i.e., sections C1, Q2, T3, TA1 and G6) with higher OM,
NH4*-N, TN and TP, there were three sections (C1, TA1 and G6) locating in the farmland area. The
first branch of the Huaihe River generally exhibited a lower content of nutrients rather than the
secondaty branches, especially OM, NH4"-N, NO3-N and TN contents in sediments. Data analysis
presented that OM (29.50+13.98 g-kg!), NH4™-N (34.92+34.33 mg-kg!), NO3™-N (7.01+6.85 mg-kg™!)
and TN (0.41+0.34 g-kg!) in the sediments of Guohe River (a first branch of the Huaihe River) were
significantly lower than those in the sediments of its secondary branches (OM: 43.54+21.68 g-kg'!;
NH4"-N: 73.454+58.09 mg-kg™! ; NO5-N: 35.35+20.01 mg-kg' and TN: 0.85+0.66 g-kg!, p<0.05). The
similar characteristics were found in the Shayinghe River (a first branch of Huaihe River) with the
secondary branches.

Data analysis indicated that there was a significantly positive correlation among the different
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chemical properties except for the pH and NO2-N (Fig 2). The higher positive correlation between
OM and TN in sediments indicated that both had the same source.
3.2 Quantities of functional genes related to C,N and S cycles in river sediments

In 13 functional genes investigated in this study, the abundance of dsrB and pmoA1l genes was
relative higher, and that of 4zo and aprA genes lower (Table 2).

For N-cycling genes, the abundance of amoA-AOB was substantially lower as compared to
amoA-AOA. Comparing to nirK and nosZ, nirS displayed higher abundance. In the functional genes
related to C-cycle, the mcrA abundance exhibited the highest coefficient of variance. Table 2 also
demonstrated that in contrast to pmoA and pmoA2 genes, type Il methanotrophs possessing the pmoA1
gene were predominant. In two genes involving in sulfate reduction, the abundance of dsrB gene was
significantly more than that of aprA4 gene in sediments.

All of the functional genes investigated in this study displayed higher CV (67.38%-317.86%),
indicating a significant difference in abundance of detected N-, C- and S-cycling genes among 135
river sections.

Table 3 displayed the correlation coefficent among 13 functional genes involving in C-, N- and
S-cycle in sediments. In the functional genes involving in N-cycle, abundances of cmo, hzo,
amoA-AOB, nirS, nosZ genes were correlated betweenwith each other. Meanwhile, abundances of

methanotrophic (pmoAd, pmoAl, pmoA2), mcrA genes were correlated between each other in C-cycle.
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With regard to S-functional genes, no direct relationships between dsrB and aprA were found.

Concerning the correlations among N-, C- and S-functional genes, the methanotrophic (pmoA,
pmoAl and pmoA2) genes were correlated with the abundance of nosZ. The abundance of mcrd gene
had a positive correlation with denitrifying genes (nirK, nirS and nosZ) and hzo genes. It was noted
that the dsrB and aprd gene abundance were positively correlated with /zo gene abundance.
Interestingly, positive correlation was also found between the abundance of aprd gene and
C-functional genes (mcrA, pmoA, pmoAland pmoA?2).
4 Discussions

The cycles of carbon, nitrogen and sulphur in environment are made up of a series of chemical
reactions (Parey et al., 2011;Lammel et al., 2015). For the sediment containing a large amount of
organic matter and being in the state of reduction, the oxidation-reduction reaction should be the most
important chemical reaction (Vincent et al., 2017). The substance of the oxidation-reduction reaction
is the gain or loss of electrons or the offset of share electron pair. In river sediment, some elements get
electrons to be reduced, while other elements lose electrons to be oxidized in the oxidation-reduction
reaction. The enzymes from microorganisms, as catalyzer, can accelerate the oxidation-reduction
reactions in sediment (Kandeler et al., 2006;Rocca et al., 2014;Parey et al., 2011). Although sediment
is an important place of elemental cycles, ecological processes regulating methane, nitrogen and sulfur

cycles are poorly understood.
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4.1 Coupling of methane / nitrogen cycles in river sediments

Bai et al. (2013) revealed that the methanogenesis could coexist with anammox in a single
anaerobic reactor. Based on the hypothesis of this research, there was a positive correlation between
the abundance of szo gene and mcrA gene, predicting that methanogenesis and anammox could work
together, which also proved that anammox coupled to methanogenesis (Fig 3).

Studies showed that coupling the nitrate reduction and anaerobic digestion to form a bioreactor,
in which denitrification and methanogenesis process can be carried out simultaneously. The coupled
process could handle the high-strength carbon- and nitrate-containing wastewater, which had received
extensive attention recently (Chen et al., 2009;Sun et al., 2015;Kodera et al., 2017). Based on our
hypothesis, the abundance of mcrA gene was positively correlated with denitrifying genes (nirK, nirS
and nosZ) in this study, which can also speculate that simultaneous denitrification and methanogenesis
(SDM) process might occurred (Fig. 3). The simultaneous removal of carbon and nitrogen in the
anaerobic environment through methanogenesis and denitrification was proved to be achievable (Chen
et al., 2009).

CH30H + NO3 - N, + CO; + OH™ + H,0
CH30H - H,0 + CO, + CH,
Du et al. (2017) confirmed that it existed in reactor that a novel partial-denitrification combied

with anammox process, since the nitrite for anammox could be acquired from partial-denitrification
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process. In our study, the abundance of hzo gene showed positive correlations with the denitrifying
genes (nirK, nirS and nosZ), suggesting that denitrification might cooperate with anammox. Bai et al.
(2013) proposed that an integrated process was developed by an anaerobic reactor, in which
methanogenesis, denitrification and anammox were coupled, with methanogenesis first, then
denitrification and anammox simultaneously. Accordingly, the whole abundance of mcrA gene was the
highest compared with denitrifying genes (nirK, nirS and nosZ) and hzo gene in this study. Therefore,
we postulated the plausible stoichiometric equations, which were deciped in table S2.

Methane oxidation coupled to denitrification consisted of nitrite-driven anaerobic methane
oxidation (Ettwig et al., 2010) and aerobic methane oxidation coupling to denitrification (Zhu et al.,
2016). This research exhibited that methanotrophic (pmoA, pmoAl and pmoA2) genes and cmo gene
were positively correlated with denitrifying genes (nirS and nosZ), which inferred the existence of
aerobic methane oxidation coupled to denitrification (AME-D) process and anaerobic
nitrite-dependent methane oxidation process in river sediments as is hypothesized (Fig 3). According
to the speculation of the electron transfer pathway, since aerobic/anaerobic methane oxidation both are
the processes of releasing electrons, while the released electrons are accepted by denitrification
processes (NOy—NO and NO—N;). To date, the aerobic methane oxidation coupled to
denitrification (AME-D) mechanism still remains obscure, and relevant studies have been carried out

to propose different explanations of AME-D progress (Stein and Klotz, 2011); (Modin et al., 2007).
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Zhu et al. (2016) summarized the potential energy reactions included in AME-D process. Under
anaerobic conditions, NO3~ and NO: played a crucial role in supplying electron acceptors in
denitrification processes (Zhu et al., 2016), a tentative inference about AME-D progress on this result
is depicted in table S2. Ettwig et al. (2010) confirmed the existence of nitrite-driven anaerobic
methane oxidation and explained the source of Oz and the production of N>. Dedicated stable isotope
studies showed that this organism could make its own molecular oxygen from nitrite via nitric oxide.
The produced oxygen was mainly used to oxidize methane in an anaerobic environment according to
the expected stoichiometry:
3CH4 + 8NO; + 8H, - 3C0O; + 4N, + 10H,0

In our study, methanotrophic genes (pmoA, pmoAl and pmoA2) were positively correlated with
amoA-AOB, which can predict the coupled system of aerobic methane oxidation-aerobic ammonia
oxidation based on the correlationship between the functional genes related to C, N cycles (Fig 3).
Some investigators had confirmed that aerobic methanotrophs could oxidize ammonium through
pMMO, since methane monooxygenase (pMMO) and ammonia monooxygenase (AMO) may be
evolutionarily related (Holmes et al., 1995;Klotz and Norton, 1998). The coupled system might be:
CH,4 + NH, ++ O, —» CH30H + NO; + H,0

Recent study had confirmed the co-occurrence of nitrite-dependent anaerobic ammonium and

methane oxidation processes in subtropical acidic forest soils (Meng et al., 2016). Anammox and
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nitrite-dependent anaerobic methane oxidation (n-damo) which linked the microbial nitrogen and
carbon cycles are two new processes of recent discoveries (Zhu et al., 2010;Meng et al., 2016). In this
research, the abundance of cmo gene had a positive correlation with /zo, which also predicted the
coupled system of nitrite-dependent anaerobic ammonium and methane oxidation processes on the
basis of our hypothesis (Fig 3).

4.2 Coupling of nitrogen / sulphur cycles in river sediments

Sulfate-reducing ammonia oxidation (SRAO) could simultaneously remove ammonium and
sulfate in one anaerobic reactor, and several published works verified this process could occurred both
in laboratory-scale bioreactors or nature (Fdz-Polanco et al., 2001;Rikmann et al., 2012). Our results
found that the abundance of szo gene had a positive correlation with dsrB and aprA gene, indicating
the occurrence of sulfate-reducing ammonia oxidation (SRAQO) process, which further support our
hypothesis (Fig. 4).

The pathway of sulfites reduced to hydrogen sulfide may be: (1) transforming trithionate and
thiosulfate through three consecutive pairs of electron transfer (350%‘ - 3302_ - 5205_ - SZ_).
(2) losing six electrons directly, and not forming above intermediates, which is called the coordinate 6
electron reaction (Parey et al., 2011). In addition, the process of anammox was responsible for
anaerobic nitrogen removal (Rikmann et al., 2012). At present, the transformation of intermediate

involved in anammox still remains ambiguous and it is reported that the intermediate contained
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NH20H, N>2H4 and HNO, NO and N:O, etc. Up to now, many investigations have been focused on the
feasible metabolic pathway and reaction equations of the synchronously ammonia and sulfate removal.
Sulfate-reducing ammonium oxidation (SRAQO) process was first proposed to explain “abnormal”

losses of nitrogen and sulfate (Fdz-Polanco et al., 2001).

Coupled with the process of anammox, summary possibile equations of SRAO was noted by

Strous et al. (2002), Zhang et al. (2009), Schrum et al. (2009)was-displayed:

389%‘ +-8NH; —=-3HS™ +4N, +12H,0+5H*

In addition to SO4*, NO>" is the most favourable electron acceptor (Rikmann et al., 2012). The
possible half-reactions for SRAO, as suggested by Yang et al. (2009), would be as follows:
4NH; + 8H,0 — 4NO; + 32H* + 24e”
350%™ + 24H* + 24e” — 35%7 4+ 12H,0

Previous research did not clearly indicate the existence of aerobic ammonia oxidation-sulfate
reduction process. In this research, the abundance of amoA-AOA gene was positively correlated with
dsrB gene, we can speculate the coupled system of aerobic ammonia-sulfate reduction according to
our hypothesis, which might occur through horizontal gene transfer (Fig. 4).

Previous studies had confirmed the existence of microaerophilic sulfate and nitrate co-reduction
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system under laboratory conditions (Bowles et al., 2012;Brunet and Garciagil, 1996). The abundance
of denitrifying genes (nirS, nirK and nosZ) had a positive correlation with aprd4 gene, which also
inferred the co-reduction system based on the assumption of this research (Fig 4). Additionally,
several sulfur-reduced compounds (HS, FeS and S>03%) could act as electron donors for dissimilatory
nitrate reduction (Brunet and Garciagil, 1996).
4.3 Coupling of methane / sulphur cycles in river sediments

There were two methane-oxidizing mechanisms of aerobic and anaerobic/aerobic oxidation in
sediment. For the coupling of C and S, the pathway of sulfate-dependent anaerobic methane oxidation
had also been discovered (M et al., 2003;Xu et al., 2014). In this study, the positive correlation
between cmo gene and aprA gene could speculate the coupling relation of anaerobic methane
oxidation-sulfate reduction. Similarly, the abundance of methanotrophic genes (pmoAd, pmoA1l and
pmoA2) were positively correlated with aprd gene, which can also infer the occurrence of
sulfate-dependent aerobic methane oxidation process, thereby futher supporting the hypothesis (Fig.
5).

The coexistence of methanogenesis and sulfate reduction has been shown before (Maltby et al.,
2018). In this research, the positive correlation between aprd gene and mcrA gene could also deduce

the presence of methanogenesis within the sulfate reduction zone, which further verified the
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hypothesis that the correlationship among functional genes could be used to predict the coupled
systems (Fig 5).
4.4 Linking the abundance of functional genes and environmental parameters

In the methane cycle, the mcrd gene (methylcoenzyme M reductase) is exclusively linked to
methanogens. Although previous studies have been performed to identify the main factors controlling
CH4 dynamics from wetlands, the effect of nutrients on CHs dynamics is poorly understood.
Previousty studies found that organic matter, nitrogen and phosphorus was the important regulating
factors in the process of methanogenesis (Yang, 1998). In our study, correlation analysis indicated that
the content of OM, NH4"-N, NOs, TN and OP had significantly positive correlation with the
abundances of methanogenic (mcrA4) gene (Fig 6). And, the stepwise regression presented a following
regression: logmcrA = 6.359 + 0.006 * NH; — N + 0.5 * TN — 0.001 * TP + 0.325 * pH (R? = 0.49,
P<0.001), which indicated that N had a greater effect on mcr4 than C and P. The abundance of
methanotrophic genes (pmoA, pmoAl and pmoA2) and cmo gene were positively influenced by OM,
NH4"-N, NOs-, TN (Fig. 6), suggesting that C and N  co-limitation of the methanotrophs.

In the process of ammonia oxidation, studies indicated that the amoA-AOB was generally more
sensitive to higher OM and NH4" concentrations (Lammel et al., 2015;Stempthuber et al., 2014). From
Fig 6, it could be seen that both of OM and NH4"-N contributed to the increase of the abundance of

AOB and the correlation coefficent between amoA-AOB and OM and between amoA-AOB and
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NH4"-N was (r=0.424, p<0.01) and (r=0.459, p<0.01), respectively.

The hzo gene involving in the anaerobic ammonia oxidation (anammox, NH4+NO3 " —H>0+N>)
process (Schmid et al., 2010) mainly mediated by anammox bacteria and was shaped by various
environmental factors in natural habitats (Bai et al., 2015). The abundance of #zo gene was mainly
related to the contents of OM, NH4*, NOs~, TN in this study (Fig 6).

In this study, all of the denitrifying genes (nirK, nirS and nosZ) was positively correlated with
OM, NH4"-N, NOs3-N, TN and OP (Fig 6), which implied that the lower content of nitrogen in
sediments was disadvantageous for denitrification in river sediments.

The aprA gene and dsrB gene could serve as marker genes for sulfate reduction energy
metabolism (Bae et al., 2015;Meyer and Kuever, 2007). We found that the abundance of apr4 gene
was positively correlated with OM, NH4*-N, NO3™-N, TN, and OP, but no direct correlations between
the dsrB copy numbers and any nutrient characteristics of the Huaihe river sediment were detected.
This result is different from study of (Bae et al., 2015), who presented that there was a positive
correlation between dsrB gene and TP concentrations.

Integrating the gene abundance data with environmental parameters provided a comprehensive
overview of these interactions related to nitrogen, methane and sulphur cycle, which showed that
among the nutrient characteristics of Huaihe River sediment, organic matter and nitrogen nutrients had

comprehensive and complicate impact on the coupling transformational processes of C, N and S in
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river sediment (Fig 6).

Network graph also showed that amoA-AOA and dsrB played a secondary role in the coupling
transformation of C, N and S, while aprA, mcrA and hzo closely participate in the coupling processes
(Fig 6). There was a positive correlation between the abundance of dsrB gene and amoA-AOA gene,
but dsrB gene was not related to amoA-AOB gene. It indicated that amoA-AOA gene had an important
effect on the coupling process of ammonia oxidation and sulfite reduction. Similarly, in ammonia
oxidation genes (amoA-AOA and amoA-AOB), apr4 gene only had a positive correlation with.
amoA-AOB gene, which suggested that amoA-AOB gene played a key role in the coupling process of
ammonia oxidation and sulfate reduction. Network graph displayed that aprA gene played a more
important role than dsrB gene in the coupling of N-S and C-S, indicating that the process of sulfite
reduction might occur toughly.

In addition, network graph showed that the nirS gene exhibited a greater weight than the nirK
gene, indicating that nirS-encoding bacteria may take precedence over nirK-encoding bacteria in river
sediments investigated in the coupling processes of N-C and N-S. Enwall et al. (2010) held that
different habitat and nutrient content resulted in the differences in abundance of the nirS- and
nirK-type denitrifiers. Kim et al. (2011) also suggested that both types of denitrifiers apparently

occupy different ecological niches.

20



353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

5 Conclusions

Appropriate marker genes abundance can determine quantification of microbial functional groups.
A direct relationship was established between the nutritional status and the distributions of functional
genes. The C-N, C-S and N-S coupled systems might be inferred in this research based on the
correlationship among functional genes. Compared with other genes, the amoA-AOA and dsrB played
a minor role in the coupling transformation of C, N and S, while S-functional gene (aprA),
C-functional gene (mcrAd), N-functional gene (hzo) were the key functional genes that participate in

the coupled processes in the elemental biogeochemical cycle. Despite the fact that this hypothesis still

has to be verified experimentally it is safe to conclude that the abundance of functional genes involved

in C, N and S cycles were mainly influenced by OM, NH4'-N., NOs-N. and TN contents, indicating

that organic matter and nitrogen nutrients might play an important modulating role in the coupling of

carbon, nitrogen and sulphur.Pespite—the—faet—that—this—hypothesis—stil—has—to—be—verifted-

coupling-ef-carbon,nitrogen-and-sulphur: Transcription and protein group can be carried out to further

verify if the processes exactly occurred.
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572

573
574
575
576
577
578
579
580
581
582
583 Table 1. The chemical properties of sediment samples
. OM NH4"-N NO3;-N NO>-N TN Ip OP TP .
Indices pH C/N ratio
gkg! mgkg! mgkg' mgkg' gkg' mgkg' mgkg' mgkg!
Mean 7.78 38.45 62.40 22.04 0.24 0.87 47093 85.82 674.52 79.12
Median  7.80 34.66 4421 12.62 0.15 0.69 44872 73.94 64456 52.17
Minimum 6.08 10.31  2.87 0.10 0.01 0.01 92.93 2.16 152.65 21.17
Maximum 8.83 173.09 304.46 15748 140 4.77 1631.96 509.17 2108.46 1184.45
CV(%)" 544 5675 8691 12430 94.93 85.17 39.96 6588 39.05 145.03

584 Notes: CV—coefficient of variance.

585
586 Table 2. The abundance of functional genes (copies- g dw soil) related to C, N, S cycles
Functional genes Mean CV% Minimum Maximum
nirkK 1.27x108 128.94 2.17x10° 9.00x103
nirS 1.55x10° 163.00 6.63x10° 1.54x101°
nosZ 1.44x108 193.50 3.30x10° 1.73%10°
hzo 1.28x10° 126.67 3.33x104 1.13x107
amoA-AOA 7.76x107 317.86 1.16x10° 2.43x10°
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588

589

590

591

592

593

594

595

amoA-AOB 1.25%107 67.38 2.32x10° 6.5x107

mcrA 7.76x107 315.34 4.31x107 2.15x10"
pmoA 1.32x10° 248.39 3.38x10° 2.58%101°
pmoAl 1.82x101 210.38 9.88x10° 2.08x10"
pmoA2 5.06x108 225.95 5.29x10° 6.18x10°
cmo 1.18x108 91.29 4.15%10° 7.45%x108
dsrB 7.82x10° 146.30 1.92x108 5.80x101
aprA4 6.62x10° 205.35 8.62x103 1.09x108

Notes: CV—coefficient of variance. Denitrification, including nirS and nirK for nitrite reductase, and nosZ for
nitrous oxide reductase; Anammox, including szo for hydrazine oxidoreductase; Nitrification, including amoA
encoding bacterial and archaeal ammonia monooxygenase; Methanogenesis, including mcrd for the methyl
coenzyme M reductase; Aerobic methane oxidation, including pmoA encoding the alpha-subunit of pMMO, in which
pmoA gene from conventional type I methanotrophs, conventional type II methanotrophs and type II methanotrophs
possessing the pmoA2 gene. Anaerobic nitrite-dependent methane oxidation, including c¢cmo gene for M. oxyfera
specific primers; Sulfur reduction, including ds#B for dissimilatory sulfite reductase and aprd for

adenosine-5’-phosphosulfate (APS) reductase.

Table 3. The correlation coefficent among the abundance of 13 functional genes (n=135)

Items  hzo cmo  AOA  AOB  nirK  nirS  nosZ mcrA  pmoA pmoAl pmoA2  dsrB

cmo 0.763%*

A04  0.042 -0.04

AOB  0.492%* 0.575%* 0.361**

nirK  0.294** 0.462** -0.161 0.159

nirS 0.366%* 0.617** -0.188* 0.253** 0.810**

nosZ  0.251*%* 0.534** -0.069 0.394** 0.483** (0.550**

merd  0.515%*% 0.677** 0.210% 0.501%* 0.259%* 0.357** 0.444**

pmoA  0.503** 0.510** 0.142 0.308** 0.135 0.260** 0.316** 0.594**

pmoAl 0.566** 0.788** -0.107 0.503** 0.414** 0.586** 0.540%* 0.481** 0.402**
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pmoA2 0.565%* 0.766** -0.138 0.373** 0.429** 0.599** 0.476** 0.525%** 0.457** 0.874**
dsrB 0.247** 0.021 0.294** 0.151 -0.088 -0.121 -0.14 0.123 0.102 -0.078 -0.051
aprdA  0.324%* 0.497** -0.005 0.334** 0.373** 0.440%** 0.342%* 0.323** 0.246** 0.450** 0.408** -0.103
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598  Fig.1. Sketch map of sampling sites of rivers in northern Anhui province

599  Z-Zhaohe River, Y-Youhe River, XS-Xinhe River, X-Xiehe River, XF-Xifeihe River, WJ-Wujiahe
600  River, W-Guohe River, T-Tuohe River, TA-Tanghe River, S-Shayinghe River, R-Runhe River,
601  Q-Quanhe River, QI-Qianhe River, L-Suihe River, H-Huihe River, HG-Huaigan river, HO-Honghe
602  River, G-Guhe River, CH-Cihuai River, C-Cihe River, XB-Bianhe River, BT-Beituohe River,

603  BF-Beihe River.
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Fig.6. Relationships between different chemical properties and functional genes
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