

1 Carbon Dioxide and Methane Emissions from Red Sea Mangrove

- 2 Sediments
- 3

4 Mallory A. Sea¹, Neus Garcias-Bonet¹, Vincent Saderne¹* and Carlos M. Duarte¹

5

6 [1] {King Abdullah University of Science and Technology (KAUST), Red Sea Research Center

7 (RSRC), Thuwal, 23955-6900, Saudi Arabia}

8

9 *Correspondence to: V. Saderne (vincent.saderne@kaust.edu.sa)

10

11 Abstract

Mangrove forests are highly productive tropical and subtropical coastal systems that provide a 12 variety of ecosystem services, including the sequestration of carbon. While mangroves are 13 reported to be the most intense carbon sinks among all forests, their sediments can also support 14 15 large emissions of greenhouse gases (GHG), such as carbon dioxide (CO₂) and methane (CH₄), 16 to the atmosphere. However, data derived from arid mangrove systems like the Red Sea are lacking. Here, we report emission rates of CO₂ and CH₄ from mangrove sediments along the 17 Saudi Arabian coast of the Red Sea, and assess the relative role of these two gases in supporting 18 total GHG emissions. Diel CO2 and CH4 emission rates in Red Sea mangrove sediments ranged 19 from -3452 to 7500 μ mol CO₂ m⁻² d⁻¹ and from 0.9 to 13.3 μ mol CH₄ m⁻² d⁻¹, respectively. The 20 rates reported here fall within previously reported ranges for both CO₂ and CH₄, but maximum 21 22 CO₂ and CH₄ flux rates in the Red Sea are 10 to 100-fold below those previously reported for 23 mangroves elsewhere. Based on the isotopic composition of the CO₂ and CH₄ produced by 24 mangrove sediments, we identified the origin of the organic matter that supports GHG emissions. 25 In most of the mangrove stands, GHG emissions were supported by organic matter from mixed

- 26 sources while only in one mangrove stand the GHG emissions were supported by organic matter 27 derived from mangrove tissues. Moreover, the organic matter derived from mangrove tissues 28 reduced CO₂ fluxes and enhanced CH₄ production, pointing out the importance of the origin of 29 the organic matter in GHG emissions. Methane was the main source of CO₂-equivalents, despite 30 the comparatively low emission rates, in most of the sampled mangroves, and therefore deserves 31 careful monitoring in this region. Despite the mean net emission of CO₂ and CH₄ by Red Sea 32 mangroves reported here, these forests become net organic carbon sinks when taking into 33 account the existing carbon burial rates for the Red Sea mangroves. By further resolving GHG 34 fluxes in arid mangroves, we will better ascertain the role of these forests in global carbon 35 budgets.
- 36
- 37

38 1 Introduction

39 Mangrove forests, typically growing in the intertidal zones of tropical and subtropical coasts, are highly productive components of coastal ecosystems and adapted to high salinity and anoxic 40 conditions associated with waterlogged sediments. Mangrove forests cover a global estimated 41 area of 137,760 km² (Giri et al., 2011) and are typically constrained by temperature, with 42 43 greatest biomass and species diversity in the equatorial zone (Alongi, 2012). Mangroves rank 44 amongst the most threatened ecosystems in the biosphere, with losses estimated at 50% of their 45 global extent over the past 50 years (Giri et al., 2011). These losses affect all mangrove regions, except for the Red Sea, where mangrove coverage has increased by 13% over the past four 46 47 decades (Almahasheer et al., 2016).

48

49 Loss of mangrove forest represents a loss of valuable ecosystem services, including habitat and 50 nursery for marine species, coastal protection from erosion due to wave action, and the filtration 51 of harmful pollutants from terrestrial sources (Alongi, 2008), as well as loss of CO₂ sink capacity 52 and a source of emissions of greenhouse gases (GHG) from disturbed soil carbon stocks (Donato 53 et al., 2011; Alongi, 2014). Hence, mangrove conservation and restoration have been proposed as 54 important components of so-called Blue Carbon strategies to mitigate climate change (Duarte, et 55 al., 2013). Indeed, mangroves are reported to be the most intense carbon sinks among all forests, 56 supporting carbon sequestration rates and organic carbon stocks as much as five times higher 57 than those in terrestrial forests (Donato et al., 2011). While mangrove forests cover less than 1% 58 of total coastal ocean area, they contribute to almost 15% of total carbon sequestration in coastal 59 ecosystems (Alongi, 2012), making mangrove forests highly effective in terms of carbon 60 sequestration per unit area. The management of mangroves to maximize CO₂ removal and 61 subsequent storage is gaining momentum as a cost-effective strategy to mitigate climate change.

62

63 However, mangroves act as both carbon sinks and sources, as their sediments have been reported 64 to support large GHG emissions, in the forms of CO_2 and CH_4 (Allen et al., 2007; Kristensen et 65 al., 2008a; Chen et al., 2016). Whereas concerns are focused on GHG emissions following

mangrove disturbance, estimated at 0.02 - 0.12 Pg C yr⁻¹ globally (Donato et al., 2011), 66 67 undisturbed mangrove sediments also support GHG emissions (Purvaja and Ramesh, 2000; 68 Kristensen et al., 2008b; Chauhan et al., 2015). Previous studies on GHG emission rates from 69 mangrove sediments show highly variable fluxes, with mangroves reported to act from negligible 70 (Alongi, 2005) to considerable sources (Livesley and Andrusiak, 2012; Chen et al., 2016). Comparisons of carbon sequestration rates between mangrove stands have revealed that climatic 71 72 conditions play an important role, with mangroves in the arid tropics, such as those in the Red 73 Sea, supporting the lowest carbon sequestration rates (Almahasheer et al. 2017). Likewise, GHG 74 emissions from mangrove forests may vary with climate, with most reported rates to-date derived 75 from the wet tropics (Alongi et al., 2005; Chauhan et al., 2015; Chen et al., 2016). Whereas Red 76 Sea mangroves are considered to play a minor role as CO_2 sinks, their role may be greater than 77 portrayed by low carbon burial rates if they also support very low GHG emissions, thereby 78 leading to a balance comparable to mangroves in the wet tropics.

Here we report emission rates of CO₂ and CH₄, along with their carbon isotopic composition, from mangrove sediments along the Saudi coast of the Red Sea, and assess the relative role of these two gases in supporting total GHG emissions as well as their fluctuations along the daynight cycle.

83

84 2 Materials and Methods

85 2.1 Study area

86 We sampled seven mangrove forests along the eastern coast of the Red Sea (Fig. 1). We 87 collected triplicate sediment cores (translucent PVC tubes, 30.5 cm in height and 9.5 cm in 88 diameter) at each station in order to measure CO₂ and CH₄ fluxes. Additionally, we analyzed 89 sediment chlorophyll a and nutrient (organic carbon and nitrogen) content. Mangrove sediments 90 were sampled five to ten meters from the forest edge, typically in the center of the mangrove 91 belt. We sampled two stations (S1 and S2) in January and February 2017 and the other five 92 mangrove stations (S3-S7) in March on board the R/V Thuwal as part of a scientific cruise. The 93 sediment cores collected from S1 and S2 were immediately transported to the laboratory and

- placed in seawater baths and enclosed in environmental growth chambers (Percival Scientific
 Inc., Perry, IA, USA) with 12h-light:12h-dark cycles at a constant temperature of 26°C. The
 sediment cores collected during the scientific cruise were transported immediately on board and
 placed in open aquarium tanks with running seawater in order to keep them close to *in situ*temperature. Salinity and temperature were routinely recorded using a CTD.
- 99

100 2.2 Sediment characteristics

101 The chlorophyll a content of the sediment was measured by fluorometry. The surface layer of 102 each replicate core was collected and frozen until further analysis. Prior to chlorophyll a 103 extraction, the sediment samples were left at room temperature to thaw. The chlorophyll a was 104 extracted by adding 7 ml of 90% acetone to 2 ml of sediment sample. After a 24h incubation at 105 4° C in dark conditions, the samples were centrifuged and the chlorophyll *a* content in the 106 supernatant was measured on a Trilogy fluorometer. The nutrient (organic carbon and nitrogen) 107 content of the sediment was analyzed on an Organic Elemental Analyzer (Flash 2000) after 108 acidification of sediment samples.

109

110 **2.3** Measurement of greenhouse gas fluxes

We measured CO_2 and CH_4 fluxes in mangrove sediments using two different techniques. The CO₂ and CH_4 fluxes from S1 and S2 were measured using the closed water circuit technique and the CO₂ and CH_4 fluxes from the rest of the stations sampled during the scientific cruise (S3-S7) were measured using the headspace technique.

115

116 2.3.1 Measurement of CO₂ and CH₄ fluxes in sediment core incubations using 117 closed water circuit technique

118 We incubated mangrove sediment cores from stations S1 and S2 using a closed water circuit 119 technique in order to measure changes in CO₂ and CH₄ concentrations. Before starting the incubation, the seawater above the sediment from each core was replaced by fresh seawater 120 121 collected from the same location, avoiding disturbance of the sediment. Then, the seawater from 122 the core was recirculated by a peristaltic pump in an enclosed water circuit through a membrane 123 equilibrator (Liqui-cel mini module, 3M, Minnesota, USA). This setup enables the equilibration 124 of gases in dissolution with an enclosed air circuit. The air from the enclosed air circuit was then 125 passed through a desiccant (calcium sulfate, WA Hammond Drierite Co., LTD, Ohio, USA) 126 column and flowed into a cavity ring-down spectrometer (CRDS; Picarro Inc., Santa Clara, CA, 127 USA) to continuously measure the CO_2 and CH_4 concentration. We ran the incubations for at least 30 minutes under light (200 µmol photons m⁻² s⁻¹) and dark conditions. 128

129 The concentration of CO_2 in the water circuit (µmol ml⁻¹) was calculated by Eq. (1):

130
$$[CO_2] = Hcp x [HP_CO_2] x (1 - pH_20),$$
 (1)

where Hcp is the Henry constant (mol ml⁻¹ atm⁻¹) calculated using R marelac package (Soetaert et al., 2016); [HP_CO₂] is the given concentration of CO₂ (ppm), and pH₂0 is the water vapor pressure (atm).

The CO₂ fluxes were calculated from the change in CO₂ concentration over time during our incubations, correcting by the seawater volume present in each core. Then, the fluxes were transformed to an aerial basis (μ mol m⁻² h⁻¹) by taking into account the core surface area. Finally, the daily fluxes (μ mol m⁻² d⁻¹) were calculated by multiplying the CO₂ flux obtained under light conditions by the number of light hours plus the CO₂ flux obtained under dark conditions by the number of dark hours.

140 The CH_4 fluxes were calculated in the same manner as for the CO_2 fluxes, with the exception 141 that the Henry constant was calculated using Eq. (2):

142
$$\beta = \operatorname{Hep} x (RT),$$
 (2)

- 143 where Hcp is the Henry constant (mol ml⁻¹ atm⁻¹), R is the ideal gas constant (82.057338 atm ml
- 144 mol⁻¹ K⁻¹), T is standard temperature (273.15 K), and β is the Bunsen solubility coefficient of
- 145 CH₄, extracted from Wiesenburg and Guinasso (1979).

146 2.3.2 Measurement of CO₂ and CH₄ fluxes in sediment core incubations using the 147 headspace technique

148 Mangrove sediment cores from stations S3 to S7 were incubated using a headspace technique in 149 order to measure changes in CO_2 and CH_4 concentrations. Before starting the incubation, the 150 seawater above the sediment from each core was replaced by fresh seawater from the running 151 seawater system, leaving a headspace of 200 ml. Each core was sealed with a stopper equipped 152 with a gas-tight valve serving as a headspace sampling port. The sealed core was left for 1 hour 153 before the first headspace sampling to allow equilibration between seawater and air phases. Each 154 core was sampled with a syringe, withdrawing 15 ml of air from the equilibrated headspace. 155 Headspace samples were periodically drawn from each sediment incubation over a 24-hour 156 incubation period. The CO₂ and CH₄ concentrations in the headspace samples along with their isotopic composition (δ^{13} C-CO₂ and δ^{13} C-CH₄) were measured with a cavity ring-down 157 158 spectrometer (CRDS; Picarro Inc., Santa Clara, CA, USA) connected to a small sample isotopic 159 module extension (SSIM A0314, Picarro Inc., Santa Clara, CA, USA). We ran standards (730 160 ppm CO₂, 1.9 ppm CH₄) before and after every three samples.

161 The concentration of dissolved CO_2 in the seawater after equilibrium was calculated from the 162 concentration in the equilibrated headspace (ppm) as described previously by Wilson et al. 163 (2012) for other gases:

164
$$[CO_2]_w = 10^{-6} \beta m_a p_{dry},$$
 (3)

165 where β is the Bunsen solubility coefficient of CO₂ (mol ml⁻¹ atm⁻¹), m_a is the given 166 concentration of CO₂ in the equilibrated headspace (ppm), and p_{dry} is atmospheric pressure (atm) 167 of dry air. The Bunsen solubility coefficient of CO₂ was calculated using Eq. (4):

168
$$\beta = \text{Hep x}(RT)$$
 (4)

where Hcp is the Henry constant (mol ml⁻¹ atm⁻¹) calculated using R marelac package (Soetaert et al., 2016), R is the ideal gas constant (82.057338 atm ml mol⁻¹ K⁻¹) and T is standard

171 temperature (273.15 K). The atmospheric pressure of dry air (p_{dry}) was calculated using Eq. (5):

172
$$p_{dry} = p_{wet} (1 - \% H_2 0)$$
 (5)

- 173 where p_{wet} is the atmospheric pressure of wet air corrected by the effect of multiple syringe
- draws from the same core, applying Boyle's law.
- 175 The initial concentration of dissolved CO₂ in seawater before equilibrium was then calculated as:

176
$$[CO_2]_{aq} = ([CO_2]_w V_w + 10^{-6} m_a V_a) / V_w$$
 (6)

where $[CO_2]_w$ is the concentration of dissolved CO_2 in the seawater after equilibrium, V_w is the volume of seawater (ml) and V_a is the headspace volume (ml) in the core. Finally, treating the

179 gas as ideal, the units were converted to nM using Eq. (7):

180
$$[CO_2]_{aq} = 10^9 * p_{dry}[CO_2]_{aq}/(RT)$$
 (7)

181 where *R* is the ideal gas constant (0.08206 atm $1 \text{ mol}^{-1} \text{ K}^{-1}$) and *T* is temperature (K).

182 The CO₂ fluxes were calculated from the change in CO₂ concentration over time during our 183 incubations, correcting by the seawater volume present in each core. Then, the fluxes were 184 transformed to an aerial basis (μ mol m⁻² d⁻¹) by taking into account the core surface area. Finally, 185 the day and night fluxes (μ mol m⁻² h⁻¹) were calculated from the change in CO₂ concentration 186 between consecutive samplings during day and night time, respectively.

187 The CH₄ fluxes were calculated in the same manner as for the CO_2 fluxes, with the exception 188 that the Bunsen solubility coefficient of CH₄ was calculated according to Wiesenburg and 189 Guinasso (1979).

190

191 2.4 Isotopic composition of CO₂ (δ^{13} C- CO₂) and CH₄ (δ^{13} C- CH₄)

192	The isotopic signature of the CO ₂ and CH ₄ produced in the sediment incubations was estimated
193	by conducting keeling plots (Pataki et al. 2003; Thom et la. 2003; Garcias-Bonet and Duarte
194	2017). Briefly, the $\delta^{13}C$ of the CO_2 and CH_4 produced was extracted from the intercept of the
195	linear regression between the inverse of the gas partial pressure and the isotopic signature.

196

197 **3 Results**

The mean (\pm SE) diel CO₂ and CH₄ emission rates for the seven sites were 372 \pm 1309 µmol CO₂ m⁻² d⁻¹ and 5.6 \pm 1.6 µmol CH₄ m⁻² d⁻¹, respectively. We observed high variability among the seven mangrove forest sites studied, with net CO₂ and CH₄ diel emission rates ranging from -3452 to 7500 µmol CO₂ m⁻² d⁻¹ and from 0.9 to 13.3 µmol CH₄ m⁻² d⁻¹, respectively (Table 1).

Mangrove sediments absorbed CO₂ during daytime and emitted CO₂ during night time, with means (\pm SE) of -54.6 \pm 37 µmol CO₂ m⁻² d⁻¹ and 86 \pm 120 µmol CO₂ m⁻² d⁻¹ respectively (Table 1, Fig. 2). However, in three out of seven sites, heterotrophic activities outbalanced photosynthesis on a 24h basis. At two sites, S3 and S6, we found an increase of the CO₂ emissions between day and night, contradictory to the classical daytime primary production– night-time respiration pattern, possibly indicative of a light mediated increase of heterotrophic processes.

209 Methane emissions did not show circadian patterns with linear increases in CH₄ concentration in 210 our incubations (Fig. 2) and with similar light and dark rates $(0.26 \pm 0.08 \text{ and } 0.21 \pm 0.07 \mu \text{mol}$ 211 CH₄ m⁻² h⁻¹ (mean ± SE), respectively (Table 1)). In terms of total GHG contribution, the mean 212 CO₂-equivalents (CO₂e) emission was 564 ± 1284 µmol CO₂e m⁻² d⁻¹ (mean ± SE); mangrove 213 sediments were net emitters of CO₂e in three out of seven sites (Table 1), and in five out of seven 214 mangrove stands sampled, CH₄ was the main source of CO₂e to the atmosphere.

While no overall trend was revealed through the relationship between day and night fluxes for CO₂ and CH₄ (Fig. 3), consistencies are evident at specific mangrove stations. For example, night CO₂ emissions are clearly visible at S2, while S3 appears to emit CO₂ during daylight hours. No relationship was apparent between GHG fluxes and the densities of organic carbon or

nitrogen in the sediment. There was no discernible trend between gas fluxes and chlorophyll *a*content in surface sediments.

- 221 The isotopic signatures of the produced CO₂ (δ^{13} C-CO₂) ranged from -11.21 to -25.72 ‰ as
- 222 derived from keeling plots (Fig. 4, Table 1). The δ^{13} C-CO₂ was similar for almost all stations,
- 223 with the exception of S3 that had a δ^{13} C-CO₂ of -25.72 ‰. The isotopic composition of the
- produced CH₄ (δ^{13} C-CH₄) ranged from -71.28 to -87.08 ‰, with a mean δ^{13} C signature of -80.61
- 225 % (Fig. 4, Table 1). The data set is available from Sea et al. (2018).

226

227 **4 Discussion**

The CO₂ and CH₄ emissions reported in this study show that Red Sea mangrove sediments can 228 229 act as a source of GHG to the atmosphere. Values reported from this study fall within previously 230 reported ranges for both CH₄ and CO₂, but maximum CH₄ and CO₂ flux rates in the Red Sea are 231 over 10 to 100 fold below those reported elsewhere (Table 2). The variability in GHG emission 232 rates reported here could be attributed to spatial differences, as cores were taken from different 233 parts of each forest. Previous studies report significant discrepancies in emission rates in fringe 234 versus forest positions (Allen et al., 2007), although this is likely to be a minor source of 235 variability provided the narrow belt Red Sea mangroves typically form, about 30 m, due to the 236 restricted tidal range of about 0.6 m in this region.

237 The uniformity of day and night emission rates for CH₄ we observed in Red Sea mangrove 238 stands is consistent with previous work reporting that emission rates for CH4 do not vary 239 significantly during light and dark hours in mangrove forests (Allen et al., 2007). It has been 240 suggested instead that variables such as sediment temperature are more significant in their 241 contributions to emission rates (Allen et al., 2007; Allen et al., 2011). Indeed, seasonal studies of 242 longer duration have reported increased emission rates during warmer seasons (Chen et al., 2016; 243 Livesley and Andrusiak, 2012). Methane concentrations typically remain low due to anaerobic 244 methane oxidation processes that take place near sediment surfaces (Kristensen et al., 2008a), 245 consistent with the low CH₄ emission rates from Red Sea mangrove sediments observed here. 246 Additionally, environments of high salinity like the Red Sea have been associated with decreased

247 CH₄ emissions, as sulfate-reducing bacteria are thought to outcompete methanogens
248 (Poffenbarger et al., 2011).

249 There were no relationships between GHG fluxes and sediment properties, such as chlorophyll a, 250 nitrogen density, and organic carbon density, suggesting that other factors have greater influence 251 on GHG flux rates in this region. Since mangroves can receive large contributions of organic 252 carbon from other sources (Newell et al., 1995), such as algal mats, seagrass and seaweed, the 253 examination of the isotopic composition of emitted carbon provides insights into the origin of the 254 organic carbon supporting GHG fluxes in mangrove sediments. The isotopic signature of the 255 CO_2 ($\delta^{13}C-CO_2$) produced by mangrove sediments in four out of the five mangrove stands with 256 available isotopic data was heavier (from -11.2 ± 0.6 to -15.9 ± 1.1 % (Table 1)) than the 257 isotopic signature of mangrove tissues, suggesting the decomposition of organic matter from 258 mixed sources (Kennedy et al. 2010). Specifically, the isotopic signature of the mangroves found in the central Red Sea has been recently reported as $\delta^{13}C_{leaves} = -26.98 \pm 0.15$ ‰, $\delta^{13}C_{stems} = -$ 259 25.75 ± 0.16 ‰ and $\delta^{13}C_{roots} = -24.90 \pm 0.17$ ‰ for mangrove leaves, stems and roots while the 260 261 mean isotopic signature of other primary producers in the central the Red Sea has been reported 262 as $\delta^{13}C_{seaweed} = -12.8 \pm 0.5$ ‰ and $\delta^{13}C_{seagrass} = -8.2 \pm 0.2$ ‰ for seaweed and seagrass tissues, respectively (Almahasheer et al. 20170). However, in one mangrove stand (S3) the δ^{13} C-CO₂ 263 264 was much lighter (-25.72 \pm 0.21 ‰), indicative of mangrove tissues. Thus, according to the 265 isotopic signature, the CO₂ produced in mangrove sediments would be supported by mangrove 266 biomass in only one mangrove stand out of the five sampled sites with available isotopic data. 267 Moreover, the mean isotopic signature of the CH₄ produced in mangrove sediments (δ^{13} C-CH₄= 268 -80.6 ‰) confirms its biogenic origin, which normally ranges from -40 to -80 ‰, depending on 269 the isotopic signature of the organic compounds being biologically decomposed (Reeburgh, 2014). The lowest δ^{13} C-CH₄ was detected in S3, coinciding with the lowest δ^{13} C-CO₂ value, 270 271 suggesting that the organic matter being decomposed by methanogens came from mangrove 272 tissues as well.

Interestingly, the mangrove with the lightest δ^{13} C-CO₂ and δ^{13} C-CH₄ (S3), showed the lowest daily CO₂ flux (-1524 ± 686 µmol CO₂ m⁻² d⁻¹) but the highest CH₄ emission rate (13.3 ± 9.5 µmol CH₄ m⁻² d⁻¹), compared to the fluxes detected in the rest of mangrove stands with available isotopic data. Part of the variability in the CO₂ (R²=0.42) and CH₄ (R²=0.40) emission rate seems

to be explained by the origin of the organic matter being decomposed, estimated here as the δ^{13} C-CO₂ and δ^{13} C-CH₄. Organic matter with lighter isotopic composition would enhance CO₂ emissions; whereas organic matter with heavier isotopic composition would enhance CH₄ emissions (Fig. 5), suggesting a different preferential use of organic matter by different microbial groups in mangrove sediments. This corroborates the importance of the origin of the organic carbon stored in mangrove sediments on their GHG emissions.

283 This study is first in reporting CO₂ and CH₄ fluxes from Red Sea mangrove sediments, 284 contributing to the scant data on arid mangrove systems (Atwood et al. 2017, Almahasheer et al. 285 2017) essential to establish a solid baseline on GHG emissions for future studies. Seasonal 286 variation should be considered in future studies on GHG emissions by Red Sea mangroves to 287 better determine annual emission rates from this system, which reaches some of the warmest 288 temperatures experienced by mangrove forests worldwide. Similarly, a wider spatial coverage 289 within the mangrove forest should be considered to confidently determine net GHG fluxes that 290 can be upscaled to the entire stock of Red Sea mangroves. While many studies use the static 291 chamber technique to determine concentrations of methane and carbon dioxide, the highly 292 sensitive CRDS was able to detect trace gases at very low concentrations, making this device 293 useful in future flux studies. However, it is recognized that inherent differences in reported 294 emissions exist as a result of two different sampling techniques used in this study. Establishing a 295 unified GHG sampling technique for mangrove sediments will aid future researchers in 296 establishing total carbon budgets and accurately informing policymakers of their findings.

297 Methane emission rates from Red Sea mangrove sediments, although quite low, become more 298 substantial when considered in terms of global warming potential. In this study, CH₄ was, despite 299 the comparatively low emission rates, the main source of CO_2e in the majority of sampled 300 mangroves, and therefore deserves careful monitoring in this region. Reported organic carbon burial rates of Red Sea mangroves of 3.42 mmol C m⁻² d⁻¹ (Almahasheer et al. 2017), are 10 301 302 times larger than the combined average CO₂ and CH₄ emission rates reported here (0.37 mmol C $m^{-2} d^{-1}$), identifying mangrove sediments as net carbon sinks. The balance is lower when 303 computed in terms of CO2e, the relevant metric in terms of radiative forcing, but still resulted in 304 a net CO₂e removal rate of about 2.9 mmol C m⁻² d⁻¹ by Red Sea mangrove sediments. Whereas 305 306 our results show that, despite sizeable CH₄ and CO₂ emissions, Red Sea mangrove sediments are

307 net sinks for organic carbon; their contribution to climate change, by either promoting it or 308 mitigating it is not reflected on this balance. The role of Red Sea mangrove sediments in climate 309 change depends on the changes experienced. In contrast to mangrove forests elsewhere around 310 the world, Red Sea mangroves are not in decline and, rather, have expanded 12% from the 120 Km² occupied in 1972 to 132 Km² in 2013 (Almhasheer et al. 2016). Hence, Red Sea mangroves 311 312 would have had a modest, but measurable contribution to climate change mitigation. Moreover, 313 protection measures and further reforestation efforts are being deployed along the Red Sea that 314 will further expand the area of mangroves (Almhasheer et al. 2016). The rationale for conserving 315 mangroves, in the climate change context, is not adequately represented by their net carbon sink 316 capacity when undisturbed, but rather by the emissions resulting from their disturbance. Indeed, 317 previous studies analyzing anthropogenic impacts on methane emission rates from mangrove 318 sediments have shown that disturbance significantly increases methane emissions (Purvaja and 319 Ramesh, 2001; Chen et al., 2011). This provides an additional rationale to conserve, and 320 continue to expand, Red Sea mangroves. 321 Data availability. All data will be accessible in the repository Pangea pending manuscript 322 acceptance.

323 *Competing interests.* The authors declare that they have no conflict of interest.

324

325 Author contribution

MAS, NG-B, VS and CMD designed the study. MAS and NG-B performed the measurements
and calculations. MAS, NG-B, VS and CMD interpreted the results. All authors contributed
substantially to the final manuscript.

329

330 Acknowledgements

This research was funded by King Abdullah University of Science and Technology (KAUST)
through baseline funding to C.M.D. We thank D. Krause-Jensen, Nabeel Massoudi, and

- 333 Kimberlee Baldree for help during sampling, and the captain and crew of KAUST R/V Thuwal
- 334 for support. M.A.S. was supported by King Abdullah University of Science and Technology
- through the VRSP program. We thank P. Carrillo de Albornoz for lab instrument support, and
- 336 Mongi Ennasri for help with sediment analysis.

337

338 References

339 Allen, D. E., Dalal, R. C., Rennenberg, H., Meyer, R., L., Reeves, S., Schmidt, S.: Spatial and

340 temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments

and the atmosphere, Soil Biology and Biochemistry, 39, 622-631, 2007.

342 Allen, D. E., Dalal, R.C., Rennenberg, H., and Schmidt, S.: Seasonal variation in nitrous oxide

343 and methane emissions from subtropical estuary and coastal mangrove sediments, Australia,

- 344 Plant Biology, 13, 126-133, 2011.
- Almahasheer, H., Aljowair, A., Duarte, C. M., Irigoien, X.: Decadal stability of Red Sea
 mangroves, Estuarine, Coastal and Shelf Science, 169, 164-172, 2016.
- Almahasheer, H., Serrano, O., Duarte, C. M., Arias-Ortiz, A., Masque, P., and Irigoien, X.: Low
 carbon sink capacity of Red Sea mangroves, Scientific Reports, 7, 9700, doi:10.1038/s41598017-10424-9, 2017.
- 350 Alongi, D. M.: Mangrove forests: Resilience, protection from tsunamis, and responses to global
- 351 climate change, Estuarine, Coastal, and Shelf Science, 76, 1-13, 2008.
- 352 Alongi, D. M.: The energetics of mangrove forests, Springer Press, London, England, 2009.
- Alongi, D. M.: Carbon sequestration in mangrove forests, Carbon Management, 3, 313-322, doi:
- 354 10.4155/cmt.12.20, 2012.
- Alongi, D. M.: Carbon cycling and storage in mangrove forests, Annu. Rev. Mar. Sci., 6, 195-
- 356 219, doi: 10.1146/annurev-marine-010213-135020, 2014.

- 357 Alongi, D. M., Pfitzner, J., Trott, L. A., Tirendi, F., Dixon, P., and Klumpp, D. W.: Rapid
- 358 sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel
- in the Jiulongjiang Estuary, China, Estuarine, Coastal, and Shelf Science, 63, 605-618, 2005.
- 360 Atwood, T.B., Connolly, R.M., Almahasheer, H., Carnell, P., Duarte, C. M., Ewers, C., Irigoien,
- 361 X., Kelleway, J., Lavery, P. S., Macreadie, P. I., Serrano, O., Sanders, C., Santos, I., Steven, A.,
- 362 and Lovelock, C. E.: Global patterns in mangrove soil carbon stocks and losses, Nature Climate
- 363 Change, doi:10.1038/nclimate3326, 2017.
- 364 Chauhan, R., Datta, A., Ramanathan, A. L., Adhya, T. K.: Factors influencing spatio-temporal
- 365 variation of methane and nitrous oxide emission from a tropical mangrove of eastern coast of
- 366 India, Atmospheric Environment, 107, 95-106, 2015.
- 367 Chen, G., Tam, N. F. Y., Wong, Y. S., and Ye, Y.: Effect of wastewater discharge on greenhouse
- 368 gas fluxes from mangrove soils, Atmospheric Environment, 45, 1110-1115, 2011.
- 369 Chen, G., Chen, B., Yu, D., Tam, N. F. Y., Ye, Y., and Chen, S.: Soil greenhouse gas emissions
- 370 reduce the contribution of mangrove plants to the atmospheric cooling effect, Environmental
- 371 Research Letters, 11, 1-10, doi:10.1088/1748-9326/11/12/124019, 2016.
- 372 Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., and Marbà, N.: The role of coastal
- plant communities for climate change mitigation and adaptation, Nature Climate Change, 3, 961968, doi: 10.1038/NCLIMATE1970, 2013.
- 375 Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., and Kanninen, M.:
- 376 Mangroves among the most carbon-rich forests in the tropics, Nature Geoscience, 4, 293-297,
- doi: 10.1038/NGEO1123, 2011.
- Garcias-Bonet, N. and Duarte, C. M.: Methane production by seagrass ecosystems in the Red
 Sea, Frontiers in Marine Science, 4, 340 doi: 10.3389/fmars.2017.00340, 2017.
- 380 Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., and Duke, N.:
- 381 Status and distribution of mangrove forests of the world using earth observation satellite data,
- 382 Global. Ecol. Biogeogr., 20, 154-159, 2011.

- 383 Kanninen, M.: Mangroves among the most carbon-rich forests in the tropics, Nature Geoscience,
- 384 4, 293-297, doi:10.1038/ngeo1123, 2011.
- 385 Kennedy, H., Beggins, J., Duarte, C. M., Fourqurean, J. W., Holmer, M., Marbà, N., and
- 386 Middelburg, J. J.: Seagrass sediments as a global carbon sink: isotopic constraints, Global
- 387 Biogeochemical Cycles, 24, GB4026, doi: 10.1029/2010GB003848, 2010.
- Kristensen, E., Bouillon, S., Dittmar, T., and Marchand, C.: Organic carbon dynamics in
 mangrove ecosystems: A review, Aquatic Botany, 89, 201-219,
 doi:10.1016/j.aquabot.2007.12.005, 2008a.
- 391 Kristensen, E., Flindt, M. R., Ulomi, S., Borges, A. V., Abril, G., Bouillon, S.: Emissions of CO₂
- 392 and CH₄ to the atmosphere by sediments and open waters in two Tanzanian mangrove forests,
- 393 Marine Ecology Progress Series, 370, 53-67, doi: 10.3354/meps07642, 2008b.
- Livesley, S. J., and Andrusiak, S. M.: Temperate mangrove and salt marsh sediments are a small
 methane and nitrous oxide source but important carbon store, Estuarine, Coastal, and Shelf
 Science, 97, 19-27, 2012.
- Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D.,
 Lamarque, J. F., Lee, D., Mendoza, B., and Nakajima, T.: Anthropogenic and natural radiative
 forcing, Climate Change, 423, 2013.
- Newell, R. I. E., Marshall, N., Sasekumar, A., Chong, V. C.: Relative importance of benthic
 microalgae, phytoplankton, and mangroves as sources of nutrition for penaeid prawns and other
 coastal invertebrates from Malaysia, Marine Biology, 123, 595-606, 1995.
- Pataki, D., Ehleringer, J. R., Flanagan, L. B., Yakir, D., Bowling, D. R., Still, C. J., Buchmann,
 N., Kaplan, J. O., and Berry, J. A.: The application and interpretation of Keeling plots in
 terrestrial carbon cycle research, Global Biogeochemical Cycles, 17, 1022, doi:
 10.1029/2001GB001850, 2013.
- 407 Poffenbarger, H. J., Needelman, B. A., and Megonigal, J. P.: Salinity influence on methane
 408 emissions from tidal marshes, Wetlands, 31, 831-842, doi: 10.1007/s13157-011-0197-0, 2011.

- 409 Purvaja, R. and Ramesh, R.: Human impacts on methane emission from mangrove ecosystems in
- 410 India, Regional Environmental Change, 1, 86-97, doi: 10.1007/PL00011537, 2000.
- 411 Purvaja, R. and Ramesh, R.: Natural and anthropogenic methane emission from wetlands of
- 412 south India, Environmental Management, 27, 547-557, doi: 10.1007/s002670010169, 2001.
- 413 Reeburgh, W. S.: Global Methane Biogeochemistry Treatise on Geochemistry (Second Edition),
- Holland, H. D., and Turekian, K. K., Oxford, Elsevier, 71-94, 2014.
- 415 Sea, M. A., Garcias-Bonet, N., Saderne, V., and Duarte, C. M.: Data set on methane emissions
- 416 from Red Sea mangrove sediments. Pangea DOI: [data set will be published in the Pangea open
- 417 data repository at the acceptance of paper], 2018.
- 418 Soetaert, K., Petzoldt, T., and Meysman, F.: Marelac: A tool for aquatic sciences (R package),
- 419 available at: https://cran.r-project.org/web/packages/marelac/marelac.pdf, 2016.
- Thom, M., Bosinger, R., Schmidt, M., and Levin, I.: The regional budget of atmospheric
 methane of a highly populated area, Chemosphere, 26, 143-160, doi: 10.1016/00456535(93)90418-5, 1993.
- Wiesenburg, D. A. & Guinasso, N. L.: Equilibrium solubilities of methane, carbon monoxide,
 and hydrogen in water and sea water, Journal of Chemical and Engineering Data, 24, 356-360,
 1979.
- 426 Wilson, S. T., Böttjer, D., Church, M. J., and Karla, D. M.: Comparative assessment of nitrogen
- fixation methodologies, conducted in the oligotrophic north Pacific Ocean, Applied andEnvironmental Microbiology, 78, 6516-6523, 2012.

Fig. 1. Mangrove stands sampled along the Saudi coast of the Red Sea. Numbers indicate
positions of sampling sites from this study. S1 and S2: King Abdullah University of Science and
Technology; S3: Duba; S4 and S5: Al Wahj; S6 and S7: Farasan Banks.

Fig. 2. Change in CO_2 (left panels) and CH_4 (right panels) concentrations over time in triplicated mangrove sediment cores from mangrove stations S3-S7. Shaded areas represent night time and each replicate is coded by different symbols.

443

445 Fig. 3. Relationship between day and night fluxes for CO₂ (top panel) and CH₄ (bottom panel) at
446 all mangrove stations.

- 448 Fig. 4. Keeling plots for mangrove stations S3-S7, showing the linear regression of the inverse of
- 449 CO₂ concentration (left panels) and CH₄ concentration (right panels) versus δ^{13} C–CO₂ and δ^{13} C–
- 450 CH₄. Y-intercepts were used to estimate the isotopic signatures of produced gases.

451

Fig. 5. Relation between the carbon isotopic signature of the produced CO₂ (δ^{13} C–CO₂) and CO₂ fluxes (top panel) and carbon isotopic signature of the produced CH₄ (δ^{13} C–CH₄) and the CH₄ fluxes (bottom panel) in Red Sea mangroves. Error bars indicate standard error of the mean.

455

Table 1. Summary of greenhouse gas fluxes and sediment characteristics from studied mangrove forests. CH₄ fluxes in brackets represent CO₂ equivalents in terms of global warming potential for a time horizon of 100 years (GWP₁₀₀), taking into account climate-carbon feedback as suggested by the AR5 of IPCC (Myhre et al., 2013). Data represent the mean \pm SEM and nd means no data available.

Station	$\begin{array}{c} CO_2 \ Day \ Flux \\ (\mu mol \ m^{-2} \ hr^{-1}) \end{array}$	CH ₄ Day Flux (µmol m ⁻² hr ⁻¹)	$\begin{array}{c} CO_2 \ Night \ Flux \\ (\mu mol \ m^{-2} \ hr^{-1}) \end{array}$	$\begin{array}{c} CH_4 \ Night \ Flux \\ (\mu mol \ CH_4 \ m^{-2} \ hr^{-1}) \end{array}$	$\begin{array}{c} \text{Daily CO}_2 \ Flux \\ (\mu mol \ m^{-2} \ d^{\cdot 1}) \end{array}$	$\begin{array}{c} Daily \ CH_4 \ Flux \\ (\mu mol \ m^{-2} \ d^{\cdot 1}) \end{array}$	$\overset{\delta^{13}C\text{-}CO_2}{(\%)}$	δ ¹³ C-CH ₄ (‰)	Nitrogen Density (mg cm ⁻³)	Corg Density (mg cm ⁻³)	Chl a (µg Chl a g ⁻¹ sediment)
1	$\textbf{-188} \pm 25$	0.30 ± 0.17 [10.2]	$\textbf{-99} \pm 18$	0.19 ± 0.04 [6.46]	-3452 ± 271	5.9 ± 1.3 [201]	nd	nd	nd	nd	nd
2	-157 ± 89	0.05 ± 0.02 [1.7]	782 ± 66	0.03 ± 0.01 [1.02]	7500 ± 894	0.9 ± 0.25 [31]	nd	nd	nd	nd	nd
3	49 ± 37	0.69 ± 0.4 [23.46]	$\text{-}176\pm23$	0.42 ± 0.39 [14.28]	$\text{-}1524\pm686$	13.3 ± 9.5 [452]	$\textbf{-25.7} \pm 0.2$	$\textbf{-87.1} \pm 2.3$	1.03 ± 0.05	13.33 ± 1.01	nd
4	-86 ± 79	0.28 ± 0.1 [9.52]	29 ± 19	0.01 ± 0.03 [0.34]	$\textbf{-684} \pm 1038$	3.5 ± 0.8 [119]	$\textbf{-}11.1\pm0.6$	$\textbf{-71.3} \pm 2.3$	0.80 ± 0.03	8.98 ± 0.86	1.02 ± 0.05
5	-22 ± 11	0.09 ± 0.03 [3.06]	24 ± 20	0.13 ± 0.10 [4.42]	23 ± 331	2.6 ± 1.6 [88]	$\textbf{-15.6} \pm 2.3$	$\textbf{-83.6} \pm 2.3$	1.12 ± 0.05	13.34 ± 0.98	1.03 ± 0.04
6	73 ± 10	0.27 ± 0.10 [9.18]	35 ± 17	0.45 ± 0.18 [15.30]	1289 ± 280	8.7 ± 3.4 [296]	$\textbf{-12.9}\pm0.5$	$\textbf{-82.5} \pm 1.7$	1.51 ± 0.14	10.58 ± 0.82	0.43 ± 0.14
7	-51 ± 28	0.13 ± 0.05 [4.42]	5 ± 3	0.26 ± 0.03 [8.84]	-547 ± 363	4.6 ± 1.0 [156]	$\textbf{-15.9}\pm1.1$	$\textbf{-78.6} \pm 0.6$	3.30 ± 0.55	33.43 ± 6.69	1.86 ± 0.12

Table 2. Comparison of GHG fluxes from global mangrove forests and Red Sea mangroves. Literature values converted from reported form for comparison purposes.

		(mmol	O ₂ m ⁻² d ⁻¹)	$\begin{array}{c} CH_4 \\ (\mu mol \ m^{-2} \ d^{-1}) \end{array}$		
		Minimum	Maximum	Minimum	Maximum	
Kristensen, 2008a	Global	2	373	0	5000	
Kristensen, 2008b	Tanzania	28	115	0	87.6	
Livesley & Andrusiak, 2012	Australia	50	150	50	749	
Alongi, 2005	China	17	121	5	66	
Alongi, 2014	Global	49	69	0	5100	
Chen, 2016	China	-16.9	279.2	-2.1	8015.1	
Allen, 2007	Australia	-	-	4.5	25974	
Allen, 2011	Australia	-	-	70.3	2348	
Chuang, 2015	Mexico	-	-	12	11000	
This Study	Red Sea	-3.5	7.5	0.9	13.3	