Dear reviewer,

Thank you for taking time to review our manuscript.

We studied your comments and revised our draft accordingly.

We also went through our manuscript and made corrections on the texts.

Changes to the texts were marked in the manuscript and were presented as follows.
Hope that our revised draft will meet with your approval.

Best wishes,
Qinchuan Xin

Anonymous Referee # 1

The study provided by Q. Xin et al "A time-stepping scheme to simulate leaf area index, phenology,
and gross primary production across deciduous broadleaf forests in eastern United States" is mainly
focused on development of a new modeling algorithm to parameterize the temporal LAI and GPP
variability and its application to describe the spatial patterns of LAI, GPP and phenological properties
of deciduous broadleaf forests across eastern United States. Adequate parameterization of land surface
and vegetation properties is a very important scientific task for modern biogeochemistry. New
algorithms can be very useful to solve different applied problems related to adequate description of
the land surface - atmosphere interaction in different spatial and temporal scales.

In the paper authors showed new modeling results and their comparison with data obtained using
previously developed approaches. Obtained new results however didn’t show any significant accuracy
improvement in GPP estimations. The difference between measured (derived from measured NEE)
and simulated GPP (fig. 3) is still very high.

Reply: Thank you for your comments. This study does not try to improve the GPP simulation but tries
to develop a method that can use climate variables to simulate both LAI and GPP. For land surface
models that predict GPP values, they require either satellite-derived LAI data or an independent
phenology sub-model. The main idea for this study is to improve the phenology modeling by providing
time series of LAI simulated using climate variables. Because here we implement the MOD17
algorithm instead of the sophisticated process-based model for the purpose of model simplicity, we
have no expectation that the GPP simulated based on model-simulated LAI could be more accurate
than the GPP simulated based on satellite-observed LAI.

To address your concern, we add sentences to main texts in the discussion part as follow:

Land surface models that predict vegetation GPP require either satellite-derived LAI input data or the
phenology sub-model. The main idea for this study is to improve the phenology modeling by providing
time series of LAI simulated using climate variables, and hence enables to simulate GPP forced only
by climate variables. Because we implement the MOD17 algorithm instead of the sophisticated



process-based model for the purpose of simplicity, one should not expect that GPP simulated based on
the model-simulated LAI could be more accurate than GPP simulated based on the satellite-derived
LAL

Other point for discussion is model assumptions used in the study. In particular authors assumed a
linear relationship between the steady-state LAI and the corresponding GPP. However in reality the
GPP is non-linearly depended on LAI (not only on total LAI but even on LAI of green biomass) mainly
due to non-linear PAR (photosynthetically active radiation) interception within a plant canopy. Such
effects are especially pronounced in dense plant canopies with a high LAI. GPP rate is linked with
forest and tree architecture. The leaf photosynthesis properties are also varied among different
vegetation types. The assimilation rate is depended on biophysical properties of individual plants,
water availability, nutrient supply, etc. So, the correctness of made assumption in the study is not
obvious and it needs additional discussion.

Reply: We agree with your comments that additional discussion is needed. We conducted an
experiment and added paragraphs in the discussion to show the relationship between leaf area index
and other variables on the monthly basis. Note that our modeling approach does not try to model GPP
based on LAI, but tries to model LAI as a function of GPP. This provides another key function to close
the equation systems such that two unknown variables (i.e., LAI and GPP at the steady state) in two
independent equations can then be solved numerically. The added paragraphs in the discussion are as
follows:

Figure 8 further illustrate the relationship between mean LAI and different variables on a monthly
basis. All data were averaged to the monthly time scale such that canopy LAI can be considered as
nearly the steady state. On the monthly basis, mean LAI has a strong near-linear relationship with
mean GPP (R?=0.888) and the slope for the regression without intercept is 0.580, the same as we used
in the model simulation. On the monthly basis, mean LAI is strongly correlated with mean temperature
(R*=0.799), indicating that temperature is the dominate factor that determines vegetation phenology.
Factors like vapor pressure deficit and photoperiod also have positive relationships with mean LAI on
the monthly basis. Figure 8 suggests that the processes of leaf phenology and photosynthetic phenology
for deciduous broadleaf forest are closely related. Our modeling approach that links canopy GPP with
LAI reflects the empirical positive relationship found in Figure 8a.
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Figure 8: Scatter plots are shown for the relationship a) between mean leaf area index and mean gross
primary production, b) between mean leaf area index and mean temperature, c) between mean leaf
area index and mean vapor pressure deficit, and d) mean leaf area index and mean photoperiod on a
monthly basis. All available site-year flux tower data were included in the analysis. All data were

averaged to the monthly time scale for analysis. The dashed lines denote the regression lines. Figure
8a uses the regression without intercept.

Authors pointed out in result chapter about a gut agreement between leaf phenology derived by new
method and MODIS data. It is true. But it is not clear from the paper the reasons for available
differences between tower observed time of foliage expansion (indicated in shape of black GPP curve)
and corresponding time predicted by developed model (fig 1 a-b, page 11)? The model actually predicts
earlier leaf onset in spring than in situ observation (GPP data).

Reply: Thank you for pointing out that the model actually predicts earlier leaf onset in spring than in
situ observation in terms of the GPP data. We suspect that the flux tower GPP data as shown in the
figure suffer from instrument malfunction, because the GPP data increased sharply and unreasonably

within very short time in the spring time. To avoid the confusion, we update the figure using data from
US-UMB in 2004.



The updated figure looks as follows:
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Figure 1: The modeled and measured daily time series of a) leaf area index and b) gross primary
production are shown for the flux tower site of US-UMB in 2004. The reference LAI time series in
Figure 1a are derived from the MODIS data and the reference GPP time series in Figure 1b are obtained
from the flux tower measurements.

In the first half of introduction authors used many well known statements such as e.g. "energy and
mass exchange in a plant canopy can be modeled as a function of environmental conditions (e.g.,
sunlight, soil moisture, temperature, and humidity) and vegetation LAI "and refereed them to most
recent own publications only, and not to available synthesis studies conducted during the last several
decades and focused on the same problem.

Reply: Thank you for your comments. We removed the self-cited references and added some recent
studies to the texts as follows:

Hufkens, K., Basler, D., Milliman, T., Melaas, E. K., and Richardson, A. D.: An integrated phenology
modelling framework in R, Methods in Ecology and Evolution, 9, 1276-1285, 2018.



Li, W., Guo, Q., Tao, S., and Su, Y.: VBRT: A novel voxel-based radiative transfer model for
heterogeneous three-dimensional forest scenes, Remote Sensing of Environment, 206, 318-335, 2018.

Liu, Q., Fu, Y. H,, Liu, Y., Janssens, I. A., and Piao, S.: Simulating the onset of spring vegetation
growth across the Northern Hemisphere, Global change biology, 24, 1342-1356, 2018.

Yuan, H., Dickinson, R. E., Dai, Y., Shaikh, M. J., Zhou, L., Shangguan, W., and Ji, D.: A 3D Canopy
Radiative Transfer Model for Global Climate Modeling: Description, Validation, and Application,
Journal of Climate, 27, 1168-1192, 2013.

I find that the discussion chapter is too short. It should be extended. All obtained results have to be
discussed in more details.

Reply: Thank you for your comments. We agree that the discussion chapter should be extended. Based
on other comments, we further discussed the relationship between leaf area index and other climate
variables and we discussed the model limitations. Please find our responses mentioned above and in
the manuscript for details to changes in the discussion chapter.

The sentence in page 4 is not clear "leaf dynamics takes days or even months in response to climate
variation". I guess authors mean weather not climate variations. Time scale for climate variation is
much larger.

Reply: We agree that using the word “weather” is precise. We revised the sentence as “Unlike leaf
photosynthesis that approaches equilibrium within a minute and stomatal functioning that reaches the
steady state in minutes (Sellers et al., 1996a), leaf dynamics takes days or even months in response to
weather variation (Zeng et al., 2013).”

I’m not agreed also that the term potential evapotranspiration assumes the fixed LAI (page 3) for any
hypothetic canopy. Fixed LAI can be obviously used for calculation of "reference evapotranspiration"
but not potential evapotranspiration. Potential evapotranspiration rate can be estimated for plant
canopy with different LAI values.

Reply: Thank you for your comments. We agree that using “reference evapotranspiration” is more
accurate than using “potential evapotranspiration”. Note that some researchers still use “potential
evapotranspiration” in their publications as the term ‘“potential evapotranspiration” is easy to
understand. Based on your suggestions, we revised the sentence as “Analogous to the method that
derives reference evapotranspiration, the developed method defines a hypothetic canopy with fixed
LAI to model potential GPP under certain environment conditions.”
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A simple time-stepping scheme to simulate leaf area index,
phenology, and gross primary production across deciduous
broadleaf forests in eastern United States

Qinchuan Xin !, Yongjiu Dai 2, Xiaoping Liu !

'Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou 510275, China
2School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China

Correspondence to: Qinchuan Xin (xinqinchuan@gmail.com); Yongjiu Dai (daiyj6@mail.sysu.edu.cn)

Abstract. Terrestrial plants play a key role in regulating the exchange of energy and materials between the land surface and
the atmosphere. Rebust—tTerrestrial biosphere models that simulate—beth—time——series—of leaf dynamics and canopy
photosynthesis are required to understand the vegetation-climate interactions. This study proposes a simple time stepping
scheme to simulate leaf area index (LAI), phenology, and gross primary production (GPP) simultaneeushy—ia—enbywhen
forced with climate variables-based-on-an-ecological-assumption-that plants-allocate leaf biomass-till-an-environment-could

: e : torr. The method establishes a linear function between the steady-state LAI and

the corresponding GPP, which is used to track the suitability of environmental conditions for plant photosynthesis. The

method ;and-applies the established function and the MOD17 algorithm to form simultaneous equations together, which can
i tationtime-lagged

responses of plant growth to environmental conditions, a time stepping scheme is developed to simulate the LAI time series

be solved numerically. To account for the

based on the solved steady-state LAI. The simulated LAI time series is then used to derive the timing of key phenophases
and simulate canopy GPP with the MOD17 algorithm. The developed method is applied to deciduous broadleaf forests in
eastern United States and has found to perform well on simulating canopy LAI and GPP at the site scale as evaluated using
both flux tower and satellite data. The method could also capture the spatiotemporal variation of vegetation LAI and
phenology across eastern United States as compared with satellite observations. The developed time-stepping scheme
provides a simplified and improved version of our previous modeling approach and forms a potential basis for regional to

global applications in future studies.

1 Introduction

Terrestrial plants play a key role in regulating the exchange of energy and materials (e.g., radiation, heat and moisture,
carbon, and trace gas fluxes) between the land surface and the atmosphere (Beer et al., 2010; Zhu et al., 2017). The canopy
structures and characteristics govern solar radiation interception and absorption as—wel-as—mementamflows—on-theland
surface-(Ni-Meister et al., 2010; Yuan et al., 2013). Individual-pPlants control water transpiration and photosynthetic carbon
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fixation through processes from transient changes in leaf stomatal conductance to seasonal variation in foliage dynamics
(Eagleson, 2005). In turn, external environmental conditions, such as sunlight, temperature, and water and nutrient
availability, selectively determine plant form and function (Bonan, 2008). Numerical terrestrial biosphere models that
integrates multidisciplinary knowledges of the—Earth sciences is—an—essentialtoolallow to understand and predict the

interactions between terrestrial ecosystems and the climate under a changing global environment.

Fo-mateh-the-atmesphere-eireulation-medels;—dDevelopments on the terrestrial biosphere models essentially seek accurate
representation-as-well-as-the-solution to the simulation of energy and material exchanging fluxes between ecosystems and the

atmosphere. In terrestrial biosphere models, plant canopies are typically characterized using leaf area index (LAI; leaf area
per unit ground area) because plant leaf is the basic organ that intercepts solar radiation for photosynthesis and transpiration
(Li et al., 2018; Yuan et al., 2013). The exchanging fluxes of energy and materials over vegetation canopy can then be
modeled as a function of environmental conditions (e.g., sunlight, soil moisture, temperature, and humidity) and vegetation
LAI (Ding et al., 2014). The As—the—vigerous—development of satellite remote sensing technology offers large-scale
observations for vegetation monitoring and; a number of modeling approaches have been developed to quantify and simulate
the land surface fluxes based on climate variables and satellite-derived LAI. These methods, including both the light use
efficiency models (e.g., the Carnegie-Ames-Stanford Approach (CASA) model (Potter et al., 1993), the MOD17 algorithm
(Running et al., 2004), the Vegetation Photosynthesis Model (VPM) (Xiao et al., 2004), the eddy covariance light use
efficiency (EC-LUE) model (Yuan et al., 2010), and the two-leaf light use efficiency (TL-LUE) model (He et al., 2013)) and

the process-based models (e.g., the boreal ecosystem productivity simulator (BEPS) model (Liu et al., 1997), the Breathing
Earth System Simulator (BESS) model (Ryu et al., 2011), the Growing Production-Day (GPD) model (Xin, 2016),_the

revised Simple Biosphere (SiB2) model (Sellers et al., 1996b)), despite differing from each other on the representation of

vegetation processes, have been successfully used for applications from field to global scales. While remote sensing data of
vegetation activities perfectly complements the canopy process models, developing the sub-model that could simulate the
dynamics of vegetation LAI is fundamental to enhance our abilities on predicting terrestrial ecosystem processes under

future scenarios.

Modeling vegetation leaf dynamics via climate variables requires in-depth understanding on plant phenelegysphenological
processes. ef-which-the-This modeling is still largely empirical to date and contributes considerable uncertainties to current
terrestrial biosphere models (Richardson et al., 2012). One common method for simulating vegetation phenology is to
predict the timing of key phenophases such as spring onset and autumn senescence in a growing season (Hufkens et al., 2018;
Liu et al., 2018). For example, most phenology models originate from the Growing Degree Day (GDD) model, a method
first proposed by De Réaumur dating back to 1735 (De Réaumur, 1735). The GDD model assumes that plant leaf onset
begins when daily mean temperatures accumulated from a fixed date reach a critical threshold. Studies have identified that

various environmental factors other than temperature could affect plant phenology to certain degrees (Polgar and Primack,

2



10

15

20

25

30

2011), and therefore, efforts have been made to improve the GDD model by adding different influential factors, such as
photoperiod, soil temperature, humidity, and soil moisture (Chuine et al., 1999; Hufkens et al., 2018; Liu et al., 2018; Melaas
et al., 2013; Yang et al., 2012). Land surface models like the Community Land Model (Oleson et al., 2013) and the Biome-
BGC model (White et al., 2000) use a set of complicated and empirical equations to predict the timing of key phenophases
across plant functional types. Another method for vegetation phenology modeling is to simulate the entire LAI time series

over a growing season. For example, the DeNitrification DeComposition model uses an optimal seasonal growth curve of

plant LAI and then calculates environmental stresses of water and nitrogen to limit daily carbon and nitrogen allocation to
plant leavesleaf-biemass—allecation (Yu et al., 2014). The Growing Season Index as proposed by (Jolly et al., 2005) is a
widely used method that could simulate seasonal phenology curves using the climate variables of photoperiod, air
temperature, and vapor pressure deficit. While these studies have greatly enriched-the-avatabilitybenefitted the development
of the phenology models, there is still a need to improve the current phenology models. the-eurrent-development-of-the

the-The physiological processes of leaf distribution—phenology and canopy photosynthesis are interrelated. Plants absorb

carbon dioxide to accumulate biomasses through photosynthesis and then redistribute the photosynthetic gain to organs such
as leaves, roots, and stems to optimize reproduction. Given limited external resources, plants have evolved to effectively

allocate the—leafbiomassphotosynthate to organs in response to environment variation—conditions so as to maximize

photosynthetic carbon gain, the fundamental bioenergy for survival (Givnish, 1986). The strategy of biomass allocation
among growth, maintenance, and reproduction in a continuously changing environment directly determines whether plants
could persist under natural competition pressures from both inter- and intra-species (Bonan, 2002). In essence, there is a

need to synthesizeé the analysis of both canopy photosynthesis and leaf distribution-phenology processes-is-reeded-te-selve

(Xin, 2016) first—proposed a
parameterization scheme to simulate vegetation productivity and phenology simultaneously. The method, named as the
Growing Production Day (GPD) model, uses canopy gross primary production (GPP) instead of air temperature as an
indicator that synthesizes various environmental factors on plant photosynthesis to track how the environment is suitable for
vegetation growth. Analogous to the method that derives petential-reference evapotranspiration, the developed method
defines a hypothetic canopy with fixed LAI to model potential GPP (or—reference—GPP—to—be—preeise)—under certain
environment conditions. Similar to the GDD model, the GPD model predicts vegetation spring onset to occur when the

accumulated reference GPP reaches a critical threshold. The method has been successfully applied to the biomes of

3
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evergreen needleleaf forest, deciduous broadleaf forest, and grassland. To allow for predicting the entire LAI time series

over a growing season, (Xin et al., 2018) further improved the GPD model by proposing a linear function between LAI and

GPP at the steady state. The proposed function and the sophisticated canopy GPP model (i.e., modeling GPP as a function of

LAI and climate variables) together form establishing-a closed system of equations that includes both vegetation GPP and

LAI The improved GPD model first-sebes—uses the numerical approach, a method that gives an initial value and then

iterates to the convergence of the solution, to solve the closed system of equations awmericatly-te-and derives LAI in the

steady stateand-. The improved GPD model then applies the simple moving average method to the steady-state LAI to obtain

the modeled LAI time series. The improved method circumvents the need to empirically prescribe a fixed canopy and
enables modeling of LAI time series in addition to the timing of individual phenophases. There remain shortcomings to
overcome for the broad applications of the GPD model. First, the simple moving average method, despite being widely used
in many studies, is empirical and does not match with the land surface models that commonly operate at incremental time
steps. Second, the developed GPD model that includes many subtle vegetation processes, such as canopy radiative transfer,

leaf stomatal conductance, leaf transpiration, leaf photosynthesis, and soil evaporation, is computationally intensive and

requires various climate input data-that-are

Aiming to solve the above-mentioned problems, the objectives of the study are to: 1) develop a time stepping scheme to
simulate leaf dynamics and vegetation productivity, and 2) simplify the GPD model to allow for long-term applications at a
large scale. Given that the phenology modeling in deciduous broadleaf forest, a biome that have distinct seasonal growing
cycles, still has large uncertainties (Melaas et al., 2016), this study choose to simulate the deciduous broadleaf forests across
the eastern United States such that the developed method if successful could provide a potential basis for future applications

to other biomes.

2 Methods and materials
2.1 Modeling steady-state leaf area index

One difficulty in vegetation phenology modeling is that the time scale associated with leaf allocation far exceeds that of
many other vegetation processes. Unlike leaf photosynthesis that approaches equilibrium within a minute and stomatal
functioning that reaches the steady state in minutes (Sellers et al., 1996a), leaf dynamics takes days or even months in
response to elimate-weather variation (Zeng et al., 2013). (Xin et al., 2018) first put forward the concept of the steady-state
leaf area index, i.e., canopy LAI when time approaches infinity while the environmental conditions remain unchanging. An
alternative biological explanation to the steady-state LAI is the maximum canopy LAI that an environment can sustain
infinitely by its own photosynthetic activities. Supposing that the carrying capacity of canopy LAI is proportional to total

canopy photosynthetic rate under a given environment, the steady-state LAI can be modeled as follows:
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LAI; = mGPP, (1)

where LAl denotes the steady-state leaf area index; m denotes the constant ratio of steady state leaf area index to

environmental capacity; and GPP; denotes the steady-state gross primary production.

The above equation, despite having a simple form, provides a critical function that complements the canopy photosynthesis
model. The only parameter m is dependent on plant functional type and can be quantified from field measurements as the
average ratio of LAI to GPP at canopy closure (i.c., the time when both canopy LAI and GPP reach equilibrium). Studies
have developed various canopy photosynthesis models, such as the light use efficiency models and the process-based models.
Our previous studies (Xin, 2016; Xin et al., 2018) implemented a sophisticated canopy model that assembles the sub-models
of canopy radiative transfer, leaf stomatal conductance, leaf transpiration, soil evaporation, and leaf photosynthesis.
Although the method has been successfully applied to different biomes, the model structure is complicated for studies at the
regional to global scales. To simulate canopy photosynthesis, this study implements the MOD17 algorithm, a big-leaf light
use efficiency model that is—used-to-prevideuses routine satellite products (Running et al., 2004). The use of the MOD17
algorithm could greatly simplify the modeling processes and reduce the required climate variables, thereby allowing for
broad applications. A brief description on the MOD17 algorithm is provided here where details can be found from the user

guide of the MODIS GPP product (Running and Zhao, 2015).

Based on the MOD17 algorithm, vegetation GPP can be modeled as follows:
GPPs = PAR X FPAR X g,.4 X f(T) x f(VPD) 2)

where GPP; denotes the steady-state gross primary production; PAR denotes photosynthetically active radiation; FPAR
denotes the fraction of photosynthetically active radiation; €, denotes maximum light use efficiency; and f(T) and
f(VPD) denote the scalar functions that account for the limitation of temperature and vapor pressure deficit, respectively, on

canopy photosynthesis.

The fraction of photosynthetically active radiation can be modeled as follows (Turner et al., 2006):

FPAR = 1 — exp(—KkLAI) (3)
where k denotes the canopy light extinction coefficient and LAIg denotes the steady-state leaf area index.
The environmental scalars can be modeled as follows:

TMIN — TMIN ) o)
TMIN, . — TMIN,;," /)’

f(T) = max (min ( 4)
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min_ 1) ’ 0) )

VPD) = in(1—
f(VPD) = max (mm< VPD,,., — VPD,.,

where TMIN denotes daily minimum air temperature; TMIN;, and TMIN,,, denote the lower and upper thresholds of daily
minimum air temperature for vegetation photosynthetic activities, respectively; VPD denotes daily vapor pressure deficit;
and VPD,;, and VPD,,,« denote the lower and upper thresholds of daily vapor pressure deficit for vegetation photosynthetic

activities, respectively.

Given the environmental conditions, Equations 1 and 2 together form simultaneous equations, meaning that there are two

unknown variables (i.e., LAI and GPP at the steady state) and two different general equations. One may derive an analytic

solution if both equations have simple forms. But because the dependence of GPP on LAI is non-linear, deriving the analytic

solution is complicated and we could apply the numerical approach to obtain the solutions. Because LAl increases as a

linear function of GPPs in Equation 1 and GPPy increases as a logarithmic function of LAl in Equation 2, the simultaneous
equations have one and only one nonzero solution of LAl;. The-nonzero-solution—can-be-obtained-byimplementinga-To

obtain the nonzero solution, the numerical approach that-starts with a given—initial-guess value of LAl and then sebves-the

equations—iteratively-then iterates to obtain the approximated solution of LAlg until converging. Note that the numerical

approach is widely used in the land surface models. For example, as the stomatal resistance, the CO2 partial pressure at the

leaf surface, the internal leaf CO2 partial pressure, and the leaf net photosynthesis are dependent on each other, the

Community Land Model 4.5 uses the numerical approach to solve stomatal resistance and leaf photosynthesis iteratively

until the internal leaf CO2 partial pressure converges.

2.2 Modeling leaf area index, phenology, and gross primary production

Because the physiological processes that plants allocate photosynthates to leaves Beeause-thephysielogical processes—that
plantsaleecate leafbiemass-do not respond instantaneously to climate variation, there is a need to simulate vegetation LAI as

lagging behind the steady state. One method to account for the time lagging effect is to apply the simple moving average
method to buffer abrupt changes from individual events in the time series. Our previous study applied the simple moving

average method to model LAI as the unweighted mean of the previous LAl as follows (Xin et al., 2018):

Ngay—

1

ng

LAI =

1
LAI (6)

ay =0

where LAI denotes leaf area index at the n day; ng,y, denotes the number of days; i denotes an index starting from 0 to

N4,y — 1; and LA denotes the steady state leaf area index.
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The simple moving average method, while showing useful in vegetation phenology modeling, is suitable for retrospective
analysis rather than prediction, and importantly, it does not match with most land surface models that operate at incremental
time steps. Analogous to the method used to simulate leaf stomatal conductance in response to environmental variation, this
study proposes a time stepping scheme to simulate LAI realistically as lagging behind the steady state by a simple restricted
growth model (Sellers et al., 1996a) as follows:

dLAI
—— = k;(LAL; — LAD) @)

dt
where t denotes the time; k; denotes a time constant that reflects the responses of plant leaf allocation to climate variation;

and LAI and LAIg denote the leaf area index and the steady state leaf area index, respectively.

In the time stepping scheme, vegetation LAI does not change much during winter or summer as the current LAl is close to
LAI, whereas vegetation LAI increases (or decreases) during spring (or autumn) as the current LAI is less (or greater) than
LAI;. For example, when the environment turns favorable for plant growth in spring, LAls exceeds LAI and dLAI/dt is
positive such that the modeled canopy LAI increases. Note that the method developed here essentially uses the canopy
photosynthetic capacity (i.e., the steady-state gross primary production) instead of air temperature as a synthesized indicator
to track the suitability of the environment to plant growth in time series, and therefore, the developed method is referred to as

the Simplied Growing Production-Day (SGPD) model following our previous studies (Xin et al., 2018).

Given the modeled LAI time series, both vegetation phenology and canopy GPP can be easily retrievedmodeled (Xin et al.,
2018). Various approaches have already been developed to derive the timing of key phenophases such as spring onset and
autumn senescence from seasonal LAI trajectories. This study models the phenological transition dates using a simple
method that derives the first spring and last autumn dates at which LAI reaches 20%, 50%, and 80% of the seasonal
amplitudes (Richardson et al., 2012). The selected relative amplitudes (20%, 50%, and 80%) are correspondent to different
plant growth stages over a growing season. Because the MOD17 algorithm only requires LAI, daily minimum temperature,
daily vapor pressure deficit, and daily photosynthetically active radiation as model inputs, Giventemperature—and-vapor
pressure-defieit—the canopy GPP is simply modeled by substituting the modeled LAI time series and the climate variables
baek-into the MOD17 algorithm. For the first day of spring when the LAI is zero, the modeled GPP is zero. As times move

forward, the modeled GPP increases as LLAI increases but is still dependent on other climate variables such as solar radiation,

temperature and vapor pressure deficit

2.3 Comparative studies using Growing Season Index

The Growing Season Index (GSI), a widely used method in vegetation phenology modeling;aHews—for-medeling seasonal

A me-serie he han-—11d dual-pnhenoph e nd mlemented—to—m e-dire atants on h-the PD) made
a a Aada a a a a W od

(Jolly et al., 2005), allows for modeling seasonal LAI time series rather than individual phenophases and is implemented to

7



10

15

20

make direct comparisons with the SGPD model. The GSI model performs comparably to or even outperforms other

terrestrial biosphere models on predicting the timing of key phenophases for deciduous broadleaf forests (Melaas et al.,

2013).

The instantaneous GSI is first derived based on the work of (Jolly et al., 2005) as follows:
iGSI = iTMIN X iVPD X iPhoto ®)

where iGSI denotes instantaneous growing season index; and iTMIN, iVPD, and iPhoto denote the instantaneous scalar
functions that account for the constraints of daily minimum air temperature, vapor pressure deficit, and photoperiod,

respectively, on vegetation growth.

The scalar functions for iTMIN, iVPD, and iPhoto have the mathematic forms similar to Equations 4 and 5 and are derived

the same as defined in (Jolly et al., 2005)_as follows:-

TMIN = < ) < TMIN — TMIN,ip, ) 0) 9
HE = M TMIN e — TMIN i/ ol
iVPD = ( i (1 VED — VP Dintn ) 0) 10
i = max ( min VPD, . —VPD, ")’ (10)
Photo — Photoy;,
iPhoto = max (min ( , ) , O) (11)
Photo,,,x — Photop,i,

where TMIN denotes daily minimum temperature; TMIN ;, and TMIN,, ., denote the lower and upper thresholds of daily

minimum air temperature for vegetation photosynthetic activities, respectively; VPD denotes daily vapor pressure deficit;

VPDhin_and VPD,, ., denote the lower and upper thresholds of daily vapor pressure deficit for vegetation photosynthetic

activities, respectively: Photo_denotes daily photoperiod: and Photo,,,,_and Photo,,;, denote the lower and upper thresholds

of daily photoperiod for vegetation photosynthetic activities, respectively.

LAI can be modeled as the simple moving average of the instantaneous GSI scaled using maximum LAI as follows:

nday—l
1
GSI = z iGSI (12)
fday {5
LAI = GSI X LAl .y (13)

where GSI denotes growing season index at the n day; ng,y, denotes the number of days; i denotes an index starting from 0 to

the previous one day; iGSI denotes the instantaneous growing season index; and LAl ,, denotes the maximum leaf area

index at canopy closure.



10

15

20

25

It is noteworthy that the instantaneous GSI uses the product of the scalars of minimum temperature, vapor pressure deficit,
and photoperiod as an indicator to track the potential canopy photosynthetic capacities on the daily basis. Both the GSI
model and the SGPD model, despite having different forms, share the same modeling idea. To understand the differences
between the simple moving average method and the time stepping method, the GSI model is also implemented with the

simple restricted growth model as follows:

LAI = iGSI X LAI a4 (14)
dLAI
arTa k,(LAI; — LAI) (15)

where iGSI denotes the instantaneous growing season index; LAl,,,; denotes the maximum leaf area index at canopy closure;
k; denotes a time constant that accounts for the lagged responses of plant leaf allocation to climate variation; and LAI and

LAI denote the leaf area index and the steady state leaf area index, respectively.

With the modeled LAI time series, the phenological transition dates are then retrieved based on the seasonal amplitude ratio
method, the same way as processing the LAI time series derived from the SGPD model. Vegetation GPP is modeled by
substituting the modeled LAI time series into the MOD17 algorithm.

2.4 Model comparison and parameterization

This study compares four different modeling approaches. including the results simulated using both the SGPD model and the

simple moving average method (hereinafter referred to as SGPD-SMA), using both the SGPD model and the time stepping

scheme (hereinafter referred to as SGPD-TS), using both the GSI model and the simple moving average method (hereinafter

referred to as GSI-SMA), and using both the GSI model and the time stepping scheme (hereinafter referred to as GSI-TS).

The commonly used metrics, including the Pearson correlation coefficient (R), the coefficient of determination (R?), the root-

mean-square error (RMSE), and the mean bias error (MBE), are derived for model assessment and comparison.

As the MOD17 algorithm is a well-parameterized model, this study applies the model parameters from literature directly.

Following the user guide of the MODIS GPP product (Running and Zhao, 2015), key parameters in the MOD17 algorithm
are set as €, = 1.165 gC/MJ_, TMIN;, = —6.0 °C,_ TMIN .« = 9.94 °C, VPD,,;, = 0.65 kPa, and VPD ., = 1.65 kPa,

The light extinction coefficient of the canopy is 0.5. The parameter that defines the ratio of leaf area index to environmental

capacity is set as m = 0.58 m?(leaf area)/gC/day as quantified using the average ratio of LAI to GPP at canopy closure

using the flux tower data. The canopy maximum LAI is set as 5.80 based on the maximum 95th percentile of satellite-

derived LAI across sites and years (Xin et al., 2018). The parameter ng,y_in the simple moving average method and the
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parameter k; in the time stepping method control the response of plant leaf allocation to environmental variation. The

parameter ng,y is set as 21 days and the parameter k is calibrated as 0.080 day".

2-42.5 Study materials_and pre-processing

Our-medelingstudiesare-made-We evaluate our approach at the site scale using both the flux tower data and remote sensing

data and at the regional scale using both the climate data and remote sensing data for deciduous broadleaf forests in eastern
United States. Ja-For the site-scale studies, all the flux tower sites of deciduous broadleaf forests (Table 1) that are available

in the AmeriFlux website (http://ameriflux.ornl.gov/) were used for analysis. As the developed SGPD model is a simplified

version of our previous modeling approach, the site-scale modeling studies only require daily incoming solar radiation,
minimum air temperature, vapor pressure deficit, photoperiod, LAI, and GPP data. Daily incoming solar radiation, vapor
pressure deficit, and GPP have already been provided in the Level 4 flux tower data, whereas daily minimum air temperature
was processed from the half-hourly gap-filled Level 2 data and daily photoperiod as required by the GSI model was
computed based on Equation 13 as a function of geolocation and the day of year (Allen et al., 1998). As the MODIS LAI has
been found to match field measurements well for deciduous broadleaf forests in eastern United States (Myneni et al., 2002),
the 8-day 500 m MODIS LAI Version 6 products (MOD15A2H) that are downloaded from the Land Processes Distributed

Active Archive Center (https://Ipdaac.usgs.gov/) were used as the reference data. Canopy LAI at each site were extracted

from MOD15A2H for the pixel that contains the corresponding site. The extracted 8-day MODIS LAI if identified as poor
quality in MOD15A2H were replaced using the three-point median-value moving window technique. Spikes in the LAI time
series were removed using the Hampel filter and then gap-filled using the autoregressive modeling approach (Akaike, 1969).
The obtained 8-day LAI time series were further smoothed using the Savitzky-Golay filter and then linearly interpolated to
generate daily time series. The phenological transition dates were retrieved from daily LAI time series using the method that
derives the first spring and last autumn dates at which LAI reaches 20%, 50%, and 80% of the seasonal amplitudes,
respectively (Richardson et al., 2012).

24 2T
Pho = - arccos (— tan(¢) tan <0.409 sin <ﬁ DOY — 1.39))) (16)

where Pho denotes daily photoperiod; ¢ denotes the latitude; and DOY denotes the day of year.

Table 1: Site information for the studied flux towers of deciduous broadleaf forests.

Site Code Site Name Lat (°N) Lon (°W) Elev (m) Years Reference

US-Bar Bartlett Experimental Forest 44.0646 -71.2881 272 2004-2011 Jenkins et al. (2007)
US-ChR Chestnut Ridge 359311 -84.3324 286 2006-2010 Hollinger et al. (2010)
US-Dk2 Duke Forest Hardwoods 35.9736 -79.1004 168 2007-2008 Oishi et al. (2008)
US-Hal Harvard Forest EMS Tower 42.5378 -72.1715 340 2000-2012 Urbanski et al. (2007)
US-MMS Morgan Monroe State Forest 39.3231 -86.4131 275 2000-2014 Dragoni et al. (2011)

10


http://ameriflux.ornl.gov/
https://lpdaac.usgs.gov/

US-MOz Missouri Ozark

US-Oho Oak Openings

US-SIt Silas Little Experimental Forest
US-UMB Univ. of Mich. Biological Station
US-UMd UMBS Disturbance

US-WBW Walker Branch

US-WCr Willow Creek

Our regional-scale studies used both the climate data and satellite remote sensing data from 1982 to 2016. The daily 1000 m
Daymet Version 3 dataset (Thornton et al., 2012) was downloaded from the Oak Ridge National Laboratory Distributed

38.7441
41.5545
39.9138
45.5598
45.5625
35.9588
45.8060

Active Archive Center (http://daymet.ornl.gov/). The Daymet dataset provided daily incoming solar radiation, minimum

5 temperature, vapor pressure, and photoperiod data and we derived daily vapor pressure deficit as the difference between
average saturated vapor pressure and vapor pressure. Two different satellite LAI products, including the Global Land
Surface Satellite (GLASS) dataset (Xiao et al., 2014) spanning from 1982 to 2014 and the MODIS LAI dataset (Myneni et

al., 2002) spanning from 2001 to 2016, were used for the regional studies. The 8-day GLASS LAI product was generated at

the 0.05° resolution using the AVHRR data for the time period from 1982 to 1999 and at the 1000 m resolution using the

10 MODIS data for the time period from 2000 to 2012. The 8-day satellite LAI data across eastern United States were
processed the same way as the processing of the site-scale data to obtain daily LAI time series. Because seasonal LAI
amplitudes for each individual pixel could vary from year to year, the 2001-2010 average seasonal LAI amplitude were used

as a baseline to derive the start of the season (SOS) and the end of the season (EOS) for each pixel for each year as the dates
when seasonal LAI reaches 50% of the multi-year average seasonal LAI amplitude. The growing season length (GSL) was

15 derived as the difference between EOS and SOS. A 500 m MODIS-based land cover map was obtained from the USGS Land

Cover Institute (https://landcover.usgs.gov/). The land cover map was generated by choosing the land cover classification

with the highest overall confidence for each pixel in 10-year (2001-2010) Collection 5.1 MODIS land cover type
(MCD12Q1) data (Broxton et al., 2014). The 500 m land cover map was resampled to 1000 m resolution using the majority

resampling approach and was reprojected to the Lambert Conformal Conic projection to mask areas that are not covered by

20 deciduous broadleaf forests.

25

-92.2000
-83.8438
-74.5960
-84.7138
-84.6975
-84.2874
-90.0798
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3 Results

3.1 Site-scale modeling

Figure 1 shows an example for the simulated time series of LAl and GPP using data acquired at the-US-W-Crsite-in2610
US-UMB in 2004. The LAI time series simulated using both the SGPD-SMA and SGPD-TS methods are consistent with
that obtained from MODIS. The LAI simulated using both the GSI-SMA and GSI-TS methods could also capture the

observed seasonal variation of LAI but the modeled phenophases obviously have a leading phase in spring and a lagging
phase in autumn as compared with observations. For both the SGPD model and the GSI model, the results derived using the
time stepping method are consistent with those derived using the simple moving average method, indicating that the time
stepping method is an effective way to reflect the lagging responses of plant leaf allocation to environmental conditions. By
substituting the time series of LAI derived from different modeling approaches into the MOD17 algorithm, all the simulated
GPP time series could match the flux tower measurements. Daily fluctuation in the observed GPP time series is largely due
to variation in solar radiation from day to day-and-is—wel-ecaptured-bythe-medels. The GPP modeled using both the GSI-
SMA and GSI-TS methods have slight overestimates in the phenological transition periods like spring and autumn and

match well with the flux tower observations in summer and winter.
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Figure 1: The modeled and measured daily time series of a) leaf area index and b) gross primary production are shown for the flux
tower site of US-WCr-in2010 US-UMB in 2004. The reference LAI time series in Figure 1a are derived from the MODIS data and
the reference GPP time series in Figure 1b are obtained from the flux tower measurements.

Figure 2 shows the regression analysis between the modeled and satellite-derived LAI. Overall, the SGPD model
outperforms the GSI model on modeling LAI. When evaluated against the MODIS LAI data, the SGPD-SMA and SGPD-TS
models achieved the R? of 0.887 and 0.890, respectively, and the RMSE of 0.804 and 0.778 m?/m?, respectively, whereas the
GSI-SMA and GSI-TS models achieved the R? of 0.746 and 0.759, respectively, and the RMSE of 1.356 and 1.303 m*m?,
respectively. Both the GSI-SMA and GSI-TS models simulate LAI reasonably in summer and winter but overestimate LAI
in spring and autumn, and therefore, the strong correlations between the GSI-modeled and MODIS-derived LAI are largely
due to the underlying seasonality of deciduous broadleaf forests. It is noteworthy that the time stepping method and the

simple moving average method, despite having different mathematical expressions, generate nearly the same simulation
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results. The R? values between the SGPD-TS model and the SGPD-SMA model and between the GSI-TS model and the
GSI-SMA model are 0.989 and 0.994, respectively, and the regression lines are close to the lines of equity, indicating that
the time stepping method is an alternative representation for the simple moving average method.—Beeause—ecesysterm
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Figure 2: Scatter plots are shown for the comparisons a) between the SGPD-SMA LAI and the MODIS LAI, b) between the
SGPD-TS LAI and the MODIS LAI, c) between the SGPD-TS LAI and the SGPD-SMA LAI, d) between the GSI-SMA LAI and
the MODIS LAI, e) between the GSI-TS LAI and the MODIS LAI, and f) between the GSI-TS LAI and the GSI-SMA LAI on a
weekly basis. All available site-year flux tower data were included in the analysis. The solid lines denote the 1:1 lines and the
dashed lines denote the regression lines.

Table 2 lists the statstitealstatistical metrics that illustrate the model performance on preditingpredicting the timing of
different phenophases—ee—teiedin, i ook onesho e o mpedel e snnmen climfn e b vensepaliee ollbep ol e

EAl-times—series—As evaluated against satellite observations, the SGPD-SMA model could well retrieve the spring onset
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dates when LAI reaches 50% seasonal amplitude and the obtained correlation coefficient is 0.718 with RMSE of 13.04 days.
The SGPD-TS model performs comparable to the SGPD-SMA model and the resulted eerretioncorrelation coefficients are
all significant expect for the dates that autumn LAI reaches 80% seasonal amplitudes. The SGPD-based models generally
outperforms the GSI-based models as the achieved correlation coefficients are higher and the RMSE are smaller for more
than 10 days. Both the GSI-SMA and GSI-TS models predict spring onsets earlier than observations for more than 30 days
and predict autumn senensseneesenescence later than observations for more than 20 days. By comparison, the SGPD-TS
model predicts the dates that spring and autumn LAI reaches 50% seasonal amplitudes well with the MBE of only -2.56 and
-2.86 days, respectively.

Table 2: The performance of the modeled timings of phenophases as evaluated against satellite observations. The timings of
phenophases were derived based on dates at which the leaf area index reaches 20%, 50%, 80% of seasonal amplitude. Positive
mean bias error (MBE) indicates that the modeled spring onsets are earlier than the observed ones and negative MBE indicates
the opposite.

phenophases SGPD-SMA SGPD-TS GSI-SMA GSI-TS
R RMSE MBE R RMSE  MBE R RMSE MBE R RMSE MBE
(days)  (days) (days)  (days) (days)  (days) (days)  (days)

Spring LAI20% 0.790%** 16.17  -10.85  0.824%*** 13.37 -8.34  0.763%** 4038  -38.30 0.770%** 39.62 -37.58
Spring LAI 50% 0.718%** 13.04 -1.97  0.691%** 13.68 -2.56  0.653%** 3847  -34.92  0.657*** 3822  -34.63
Spring LAI 80% 0.432%** 20.91 12.63  0.409*** 21.19 12.41  0.560%*** 3286  -28.00 0.565%** 28.54  -23.55

Autumn LAI 80% 0.220 31.80 -2556 0.164 2790 -20.64 0.021 35.38 3242 -0.004 35.23 32.27
Autumn LAI 50% 0.686%** 9.80 =542 0.625%** 9.48 -2.86  0.621%** 24.20 23.07 0.616%** 24.63 23.51
Autumn LAI 20% 0.703%*** 8.87 2.15  0.676%** 10.91 637  0.689%** 19.64 18.48  0.713%*** 22.93 22.00

The modeled and measured GPP are compared in Figure 3 to address the key question that whether the simulated LAI could
be applied to model canopy GPP. Compared with the flux tower measurements, the results modeled using the SGPD-SMA,
SGPD-TS, GSI-SMA, and GSI-TS LAI could achieve the R? values of 0.768, 0.773, 0.722, and 0.719, respectively, and the
RMSE values of 2.273, 2.239, 2.577, 2.535 gC/m?/day, respectively. The modeled results using the GSI-based LAI have
higher errors, in terms of both RMSE and MBE, than those using the SGPD-based LAI. The accuracies of the modeled GPP
using the SGPD-based LAI are only slightly lower than to that using the MODIS-based LAI directly. The modeling results
obtained based on the simple moving average method are nearly the same as those obtained based on the time stepping
method. Given the high degrees of consistency between the simple moving average method and the time stepping method on
modeling LAI, phenology, and GPP, only the results obtained using the time stepping method are shown and discussed in the

regional studies as presented in the following section.
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Figure 3: Scatter plots are shown for the comparisons a) between the GPP modeled using SGPD-SMA LAI and the flux tower GPP,
b) between the GPP modeled using SGPD-TS LAI and the flux tower GPP, c¢) between the GPP modeled using MODIS LAI and
the flux tower GPP, d) between the GPP modeled using GSI-SMA LAI and the flux tower GPP, and e) between the GPP modeled
using GSI-TS LAI and the flux tower GPP on a weekly basis. All available site-year flux tower data were included in the analysis.
All the modeled GPP were derived using the MOD17 algorithm. The solid lines denote the 1:1 lines and the dashed lines denote the
regression lines.

3.2 Regional-scale modeling

Figure 4 shows the spatial extents of the 10-year (2001-2010) mean LAI and associated errors as derived from remote
sensing data and model simulations. The SGPD-TS method could well capture the spatial pattern of the satellite-derived LAI,
including the decreasing gradients from south to north and the decreases in mountain areas (Figure 4a and 4b). The 10-year
mean LAI derived from the GSI-TS method (Figure 4c) also show a decreasing trend from south to north but the modeled
LAI is much larger than the MODIS LAI. Because the GSI-TS method defines the maximum leaf area index for the growing

season, the overestimation on the modeled 10-year mean LAI is primarily due to model overestimates in the spring and
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autumn phenological transitions. As compared with the MODIS observations, RMSE and MBE obtained by the SGPD-TS
method are much smaller than and distribute more evenly than those obtained by the GSI-TS method. RMSE for the GSI-TS
LAI exhibit a decreasing north-south gradient, implying that the model accuracies are lower in southern areas lower than in
northern areas. MBE for the GSI-TS model are greater than 0.5 m*m? for most areas. When comparing SGPD-TS LAI with
MODIS LAI, RMSE are less than 0.5 m*m? and MBE are minor across the study region. The amplitudes of the error metrics
in the regional-scale studies are consistent with those in the site-scale studies. Note that some studies applied the multi-year
mean LAI as derived from the remote sensing data to simulate the land surface processes, the results obtained here indicate
that the SGPD-TS method can be used alternatively to provide multi-year mean LAI time series via climate variables for

land surface studies.
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Figure 4: The spatial extents are shown for a) the 2001-2010 mean MODIS LAI, b) the 2001-2010 mean SGPD-TS LAI, c) the
2001-2010 mean GSI-TS LAI, d) RMSE between SGPD-TS LAI and MODIS LAIL e) RMSE between GSI-TS LAI and MODIS
LAL f) MBE between SGPD-TS LAI and MODIS LAI, and g) MBE between GSI-TS LAI and MODIS LAI across eastern United
States. The units for both RMSE and MBE are m? (leaf area) per m” (ground area).

The spatial extents for the 10-year mean phenological metrics including the start of the season (SOS), the end of the season
(EOS), and the growing season length (GSL) are shown in Figure 5. The SGPD-TS method predicts lower SOS (i.e., earlier

spring onset), higher EOS (i.e., later autumn senescence), and longer GSL in southern areas than in northern areas. The
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spatial distributions of all phenological metrics derived using SGPD-TS LAI agree well with those derived using MODIS
LAI From the statistical analysis as shown in the subplots, the phenological metrics derived from the SGPD-TS method
could achieve the correlation coefficient values of 0.879, 0.552, and 0.844, the RMSE values of 8.13, 7.54, and 13.73 days,
and the MBE values of 0.71, -2.82, and -3.54 days, for SOS, EOS, and GSL, respectively, as compared to those derived from
the MODIS data. Although the spatial distributions of the phenological metrics derived from the GSI-TS method match
those derived from the satellite observations, the modeled results have considerable biases, where the RMSE values are
38.05, 14.37, and 51.58 days, and the MBE values are -36.33, 12.91, and 49.23 days, for SOS, EOS, and GSL, respectively.
Consistent with the site-scale studies, the GSI-TS method predicts spring onset much earlier and autumn senescence later

than the satellite-derived data, resulting in large overestimation of the growing season length.-Despite-having limited-medel
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Figure 5: The spatial extents are shown for a) the start of the season (SOS) derived from MODIS LAI, b) SOS derived from
SGPD-TS LALI, c) SOS derived from GSI-TS LAI, d) the end of the season (EOS) derived from MODIS LAI, e) EOS derived from
SGPD-TS LAL f) EOS derived from GSI-TS LAI, g) the growing season length (GSL) derived from MODIS LAI, h) GSL derived
from SGPD-TS LAI, and i) GSL derived from GSI-TS LAI using the 10-year (2001-2010) mean data across eastern United States.
The embedded subplots show the comparisons between modeled and MODIS-derived phenological metrics for SOS, EOS, and
GSL, respectively.
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Figure 6 displays the multi-year phenology anomalies that are spatially averaged for deciduous broadleaf forest across
eastern United States. The use of phenology anomalies relative to the 2001-2010 average instead of absolute values makes
the results directly comparable. The SGPD-TS method could capture the interannual variation of vegetation phenology
retrieved from the remote sensing data. When comparing the SGPD-TS method with the MODIS (2001-2016) data, the
correlation coefficients are 0.896 (p<0.001), 0.650 (p=0.006), and 0.817 (p<0.001), for SOS, EOS, and GSL, respectively.
When comparing the SGPD-TS method with the GLASS (1982-2014) data, as derived from and the correlation coefficients
are 0.554 (p=0.001), 0.717 (p<0.001), 0.637 (p<0.001), for SOS, EOS, and GSL, respectively. The SGPD-TS method
outperforms the GSI-TS method on capturing the long-term trends of vegetation phenophases, as the correlation coefficients
obtained using the GSI-TS method are lower and sometimes insignificant. Yearly fluctuation in EOS derived using the GSI-
TS method is smaller than those derived from both the SGPD-TS method and the satellite data. The SOS and EOS derived
from the GLASS data have much larger variation in 1982-2000 than in 2001-2010, suggesting that the use of the AVHRR
and MODIS data in the GLASS dataset could contribute uncertainties in the satellite-derived phenological metrics. Both
Figure 5 and 6 indicate that the SGPD-TS method is reliable on capturing the spatiotemporal patterns of regional vegetation

phenophases.
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Figure 6: The spatially-averaged phenology anomalies relative to the 2001-2010 average are shown for a) the start of the season
(SOS), b) the end of the season (EOS), and c) the growing season length (GSL). SOS and EOS are derived as the date that LAI first
and last reaches 50% of the seasonal amplitudes and GSL is derived as the difference between EOS and SOS.
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Figure 7 compares the simulated e-GPP using the MOD17 algorithm and LAI derived from different approaches. The 10-
year average annual GPP obtained using SGPD-TS LAI has a similar spatial pattern with that obtained using MODIS LAI
and apparenthy-has lower values than that obtained using GSI-TS LAI. Taking the GPP simulated using MODIS LAI as
reference, the results simulated using SGPD-TS LAI achieve the correlation coefficient of 0.898 with RMSE of 78.78
gC/m*year and MBE of 12.22 gC/m?/year, whereas the results simulated using GSI-TS LAI achieve the correlation
coefficient of 0.898 with RMSE of 173.45 gC/m?/year and MBE of 153.43 gC/m?*/year. Although the obtained correlation
coefficients are close, the SGPD-TS method results in the regression lines closer to the 1:1 lines with smaller bias errors than
the GSI-TS method. The zonally average profiles of the 2001-2010 average annual GPP as shown in Figure 7d suggest that
the results obtained from the SGPD-TS method are close to those obtained using MODIS LAI, whereas the results obtained
from the GSI-TS method have positive biases of approximately 120 - 180 gC/m2/year (roughly 10 - 15%) across latitudes.
Note that the MOD17 algorithm has positive MBE of 0.247 gC/m2/day and 0.571 gC/m2/day when using MOBIS-SGPD-TS
LAI and GSI-TS LAI respectively, as model input data in the site-scale study. The differences in MBE between the two
modeling methods are 0.324 gC/m2/day (or 118.26 gC/m2/year in equivalence) for the site-scale studies, which are

consistent with the regional-scale studies.
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Figure 7: Comparisons are shown for a) the spatial extent of annual GPP modeled using MODIS LAI, b) the spatial extent of
annual GPP modeled using SGPD-TS LAI c) the spatial extent of annual GPP modeled using GSI-TS LAI, d) the zonally
averaged profiles of annual gross primary production modeled using LAI derived from different approaches, e) the regression
between GPP modeled using SGPD-TS LAI and MODIS LAI, and f) the regression between GPP modeled using GSI-TS LAI and
MODIS LALI The simulated daily GPP were first summed for each individual year and were then averaged across years to derive
the 2001-2010 average annual GPP as shown in Figure 7a, 7b, and 7¢. The shaded areas in Figure 7d mark the range of the
standard deviation. All pixels of deciduous broadleaf forest across eastern United States are included in analysis in Figure 7e and
7f.

4 Discussion

Here we provide a solution that bridges the canopy photosynthesis model and the leaf dynamics model;-which-evercomes-the

developed method first proposes a linear function between the canopy photosynthetic capacity and the steady state LAI so as

to complement the canopy photosynthesis model and then applies a simple restricted growth model to account for the lagged
responses of plant leaf allocation to natural environment. In essence, the developed method, although having a simple form,
has synthesized the impacts of various climate factors on leaf dynamics because any climate variable that influences
vegetation photosynthesis would affect the process of plant leaf allocation in the models as well. Consistent with field

observations, the simulated LAI increases as the environmental conditions turn favorable for photosynthetic activities such
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Figure 8 further illustrate the relationship between mean LLAI and different variables on a monthly basis. All data were

averaged to the monthly time scale such that canopy LAI can be considered as nearly the steady state. On the monthly basis,

mean LAI has a strong near-linear relationship with mean GPP (R?=0.888) and the slope for the regression without intercept

is 0.580, the same as we used in the model simulation. On the monthly basis, mean LAI is strongly correlated with mean

temperature (R>=0.799), indicating that temperature is the dominate factor that determines vegetation phenology. Factors like

vapor pressure deficit and photoperiod also have positive relationships with mean LAI on the monthly basis. Figure 8

suggests that the processes of leaf phenology and photosynthetic phenology for deciduous broadleaf forest are closely related.

Our modeling approach that links canopy GPP with LAI reflects the empirical positive relationship found in Figure 8a.
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Figure 8: Scatter plots are shown for the relationship a) between mean leaf area index and mean gross primary production, b)
between mean leaf area index and mean temperature, ¢) between mean leaf area index and mean vapor pressure deficit, and d)
mean leaf area index and mean photoperiod on a monthly basis. All available site-year flux tower data were included in the

analysis. All data were averaged to the monthly time scale for analysis. The dashed lines denote the regression lines. Figure 8a uses
the regression without intercept.

The performance of our developed method is largely dependent on the canopy photosynthesis model used. In our previous
studies, we developed a process-based canopy photosynthesis model that synthesizes sub-models such as canopy radiative
transfer, leaf transpiration, leaf stomatal conductance, leaf photosynthesis, and soil evaporation and applied it for modeling
the LAI time series. When applying the simple moving average method, implementing the process-based model in Xin et al.
(2018) achieved higher accuracies than implementing the MOD17 algorithm on modeling canopy GPP and LAI as reflected

by higher R? and lower errors. The MOD17 algorithm only assumes the monotonic relationship between air temperature and
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photosynthesis and between vapor pressure deficit and photosynthesis. It also does not account for the impacts of CO, on

photosynthesis. The use of the MOD17 algorithm in this study thus has limitations in the model structure. It implies that the

LAI modeling in our developed method likely benefits from improvements on the canopy photosynthesis model. This study
chooses the MOD17 algorithm instead of the sophisticated process-based model because the MOD17 algorithm is well
parameterized across biomes and requires quite limited model inputs of climate variables. Successful implementation with

the MOD17 algorithm allows for extending the developed method to applications across biomes at regional to global scales.

Land surface models that predict vegetation GPP require either satellite-derived LAI input data or the phenology sub-model.

The main idea for this study is to improve the phenology modeling by providing time series of LAI simulated using climate

variables, and hence enables to simulate GPP forced only by climate variables. Because we implement the MOD17

algorithm instead of the sophisticated process-based model for the purpose of simplicity, one should not expect that GPP

simulated based on the model-simulated LAI could be more accurate than GPP simulated based on the satellite-derived LAL

The time stepping scheme developed here is also an improvement over the simple moving average method as used in our
previous studies. The results obtained using the time stepping method are consistent with the simple moving average method
at the site scale and show to be reasonable at the regional scale. Compared to the simple moving average method, the time
stepping method could fit seamlessly into the land surface models that operate at incremental time steps such as the
Community Land Model and the Common Land Model (Dai et al., 2003). Because the state-of-the-art land surface models
all include the canopy photosynthesis sub-model, the developed method can then be easily embedded into these land surface
models as an alternative phenology model. Compared to the simple light use efficiency model like the MOD17 algorithm,
implementation of the developed time-stepping scheme in the land surface models relies on supercomputing for global
applications. To better understand the performance of the developed method, one study is now undertaken to implement the
developed method with the Common Land Model for simulating multi-decadal LAI and GPP for global biomes wta-forced

only by climate variables.

Applying the developed method to other biomes and other regions still has issues to be solved appropriately. The time
stepping method uses the parameter k; to account for the time lags of leaf allocation in response to environmental changes.
For the deciduous broadleaf forests, a biome with strong seasonality, the developed scheme achieved reasonable results with
appropriate parameterization. Short vegetation like grasslands tends to respond much quickly to abrupt environment changes
like precipitation and tropical ecosystems have strong resilience to short-term environmental variation (Levine et al., 2016;

Shen et al., 2011). Another issue is to find the appropriate values of m_for different biomes. One way to determine the values

of mis to find the regression slope between leaf area index and gross primary production on a monthly basis. Model

parameterization however still requires broad tests. These understandings from the observational studies imply that biomes

have varied response speeds to the environment and proper model calibration and assessment are required for the developed
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method. Using the observation data from remote sensing alone is inadequate for model development as satellite-derived LAI
could have large uncertainties for some specific biomes other than deciduous broadleaf forests. Fortunately, global flux
tower network and regional phenology observation networks are now established and offer abundant data for comprehensive

model assessment.

5 Conclusions

RebusttTerrestrial biosphere models is-provide a basic tool for understanding the interactions between the land surface and
the atmosphere. To provide a complete solution to the simulation of plant leaf dynamics and canopy photosynthesis, this

study establishes a linear relationship between the steady state leaf area index and the corresponding canopy photosynthetic

capacity-ba

in. The proposed leaf allocation function complements the canopy photosynthesis

model of the MOD17 algorithm to form simultaneous equations that can be solved-iteratively using the numerical approach.

To account for the time lagging of plant leaf allocation in response to climate variation, a time stepping scheme based on a
simple restricted growth model is applied to the solved steady state leaf area index to obtain time series of leaf area index.
The developed method could perform reasonably well on simulating leaf area index, phenology, and gross primary
production for deciduous broadleaf forests across eastern United States over years as found in both the site-scale and
regional-scale modeling studies. Compared to the simple moving average method, the time stepping scheme developed here
is consistent with and can be easily embedded into the state-of-the-art land surface models that typically operate at
incremental time steps. The developed method allows for simulating leaf area index and gross primary production
simultaneously and provides a much simplified and improved version of our previous model as a basis for global

applications in future studies.
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