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Abstract. Terrestrial plants play a key role in regulating the exchange of energy and materials between the land surface and
the atmosphere. Terrestrial biosphere models that simulate leaf dynamics and canopy photosynthesis are required to
understand the vegetation-climate interactions. This study proposes a simple time stepping scheme to simulate leaf area
index (LAI), phenology, and gross primary production (GPP) when forced with climate variables. The method establishes a

linear function between the steady-state LAI and the corresponding GPP, which is used to track the suitability of not sure

whatthis
Mmeans

environmental conditions for plant photosynthesis. The method applies j,l?aé :stablished function and the MOD17 algorithm to
form simultaneous equations together, which can be solved numerically. To account for the time-lagged responses of plant
growth to environmental conditions, a time stepping scheme is developed to simulate the LAI time series based on the solved
steady-state LAL The simulated LAI time serics is then used to derive the timing of key phenophases and simulate canopy
GPP with the MOD17 algorithm. The developed method is applied to deciduous broadleaf forests in eastern United States
and /h/:l's found to perform well })ﬁ sif‘l‘lglating canopy LAI and GPP at the site scale as evaluated using both flux tower and
satellite data. The method could also capture_Sthe spatiotemporal variation of vegetation LAI and phenology across eastern
United States as compared with satellite observations. The developed time-stepping scheme provides a simplified and

can

. . . . . bﬂc;tlé;heé. Scale>
improved version of our previous modeling approach and ferms-a potent[aljj -for regional to global applieatiens in future
studies. \l/ 5
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1 Introduction

Terrestrial plants play a key role in regulating the exchange of energy and materials (e.g., radiation, heat and moisture,
carbon, and trace gas_flyxes) between the land surface and the atmosphere (Beer et al., 2010; Zhu et al., 2017). The canopy
structure}! and characteristics govern solar radiation interception and absorption (Ni-Meister et al., 2010; Yuan et al., 2013).
Plants control water transpiration and photosynthetic carbon fixation through processes from transient changes in leaf
stomatal conductance to seasonal variation in foliage dynamics (Eagleson, 2005). In turn, external environmental conditions,

such as sunlight, temperature, and water and nutrient availability, selectively determine plant form and function (Bonan,
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2008). Numerical terrestrial biosphere models that integrate multidisciplinary knowledge of Earth sciences allow to

understand and predict the interactions between terrestrial ecosystems and the climate under a changing global environment.

Developments on the terrestrial biosphere models essentially seek accurate solution to the simulation of energy and material
exchanging fluxes between ecosystems and the atmosphere. In terrestrial biosphere models, plant canopies are typically
characterized using leaf area index (LAI; leaf area per unit ground area) because plant leaf is the basic organ that intercepts
solar radiation for photosynthesis and transpiration (Li et al., 2018; Yuan et al., 2013). The exchanging fluxes of energy and
materials over vegetation canopy can then be modeled as a function of environmental conditions (e.g.. sunlight, soil
moisture, temperature, and humidity) and vegetation LAI (Ding et al., 2014). The development of satellite remote sensing
technology offers large-scale observations for vegetation monitoring and a number of modeling approaches have been
developed to quantify and simulate the land surface fluxes based on climate variables and satellite-derived LAI. These
methods, including both the light use efficiency models (e.g., the Carnegie-Ames-Stanford Approach (CASA) model (Potter
et al., 1993), the MODI17 algorithm (Running et al., 2004), the Vegetation Photosynthesis Model (VPM) (Xiao et al., 2004),
the eddy covariance light use efficiency (EC-LUE) model (Yuan et al., 2010), and the two-leaf light use efficiency (TL-
LUE) model (He et al., 2013)) and the process-based models (e.g., the boreal ecosystem productivity simulator (BEPS)
model (Liu et al., 1997), the Breathing Earth System Simulator (BESS) model (Ryu et al., 2011), the Growing Production-
Day (GPD) model (Xin, 2016), the revised Simple Biosphere (SiB2) model (Sellers et al., 1996b)), despite differing from
each other on the representation of vegetation processes, have been successfully used for applications from field to global
scales. While remote scns%ﬂg ata pf vegetation factivities-perfectly complements the canopy process models, dexeloping the
simulate the-dynamies—ofe vegetation LAI is fundamental to ephance-our.abilities-ere predicting

terrestrial ecosystem processes under future scenarios.

Modeling vegetation leaf dynamics via climate variables requires in-depth understanding on plant phenological processes.
This modeling is still largely empirical to date and contributes considerable uncertainties to current terrestrial biosphere
models (Richardson et al., 2012). One common method for simulating vegetation phenology is to predict the timing of key
phenophases such as spring onset and autumn senescence in a growing season (Hufkens et al., 2018; Liu et al., 2018). For
example, most phenology models originate from the Growing Degree Day (GDD) model, a method first proposed by De
Réaumur dating back to 1735 (De Réaumur, 1735). The GDD model assumes that plant leaf onset begins when daily mean
temperatures accumulated from a fixed date reach a critical threshold. Studies have identified that various environmental
factors other than temperature could affect plant phenology to certain degrees (Polgar and Primack, 2011), and therefore,
efforts have been made to improve the GDD model by adding different influential factors, such as photoperiod, soil
temperature, humidity, and soil moisture (Chuine et al., 1999; Hufkens et al., 2018; Liu et al., 2018; Melaas et al., 2013;
Yang et al., 2012). Land surface models like the Community Land Model (Oleson et al., 2013) and the Biome-BGC model

(White et al., 2000) use a set of complicated and empirical equations to predict the timing of key phenophases across plant
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functional types. Another method for vegetation phenology modeling is to simulate the entire LAI time series over a growing
season. For example, the DeNitrification DeComposition model uses an optimal seasonal growth curve of plant LAI and
then calculates environmental stresses of water and nitrogen to limit daily carbon and nitrogen allocation to plant leaves (Yu
et al., 2014). The Growing Season Index as proposed by (Jolly et al., 2005) is a widely used method that could simulate
seasonal phenology curves using the-elimate-variables-of photoperiod, air temperature, and vapor pressure deficit. While

these studies have greatly benefitted the development of thciphenology models, there is still a need to improve the current

phenology models. Icaf

The physiological processes of leaf phenology and canopy photosynthesis are interrelated. Plants absorb carbon dioxide to
accumulate biomassgd through photosy'rll‘thesis and then redistribute the photosynthetic gain to organs such as leaves, roots,
and stems to optimize cr?:;am‘. Given limited external resources, plants have evolved to effectively allocate
photosynthate to organs in response to environment conditions so as to maximize photosynthetic carbon gain, the
fundamental bioenergy for survival (Givnish, 1986). The strategy of biomass allocation among growth, maintenance, and
reproduction in a continuously changing environment directly determines whether plants could persist under natural

competition pressures from both inter- and intra-species (Bonan, 2002). In essence, there is a need to synthesize the analysis

of both canopy photosynthesis and leaf phenology processes. disconnecbed and va que

(Xin, 2016) proposed a parameterization scheme to simulate vegetation productivity and phenology simultaneously. The
method, named as the Growing Production Day (GPD) model, uses canopy gross primary production (GPP) instead of air
temperature as an indicator that synthesizes various cnvironmental factors on plant photosynthesis to track how the
environment is suitable for vegetation growth. Analogous to the method that derives reference evapotranspiration, the
developed method defines a hypothetic canopy with fixed LAI to model potential GPP under certain environment conditions.
Similar to the GDD model, the GPD model predicts vegetation spring onset to occur when the accumulated reference GPP
reaches a critical threshold. The method has been successfully applied to the biomes of evergreen needleleaf forest,
deciduous broadleaf forest, and grassland. To allow for predicting the entire LAI time series over a growing season, (Xin et
al., 2018) further improved the GPD model by proposing a linear function between LAI and GPP at the steady state. The
proposed function and the sophistieated-canopy GPP model (i.c., modeling GPP as a function of LAI and climate variables)
together form a closed system of equations that includes both vegetation GPP and LAI. The improved GPD model uses the
numerical approach, a method that gives an initial value and then iterates to the convergence of the solution, to solve the
closed system of equations and derives LAI in the steady state. The improved GPD model then applies the simple moving
average method to the steady-state LAI to obtain the modcled LAI time series. The improved method cireumvents-the-need
m.cmpiﬂcauy_pmscﬁb&a—fmed-canupyﬂand—en%l{egtﬁlosdcling of LAI time series in addition to the timing of individual
phenophases. There remain shortcomings to overcome for the broad applications of the GPD model. First, the simple moving

average method, despite being widely used in many studics, is empirical and does-not mateh.with-the land surface models
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that commonly operate at incremental time steps. Second, the developed GPD model that includes many subtle vegetation
processes, such as canopy radiative transfer, leaf stomatal conductance, leaf transpiration, leaf photosynthesis, and soil

evaporation, is computationally intensive and requires various climate input data.

Aiming to solve the above-mentioned problems, the objectives of the study are to: 1) develop a time stepping scheme to

simulate leaf dynamics and vegetation productivity, and 2) simplify the GPD model to allow for long-term applications at a

large scale. Given that the phenology modeling in deciduous broadleaf forest, a biome ,Lha lfve distinct seasonal growing
v ay

hamics
cycles, still has large uncertainties (Melaas et al., 2016), this study choose to simulate/the deciduous broadleaf forests across

the eastern United States, such-:hat-&he-d&uslapad_maéheé{ successful could provide.a-potential-basis-fer future applications
to other biomes. Such a method can be P..h,, Ha“:'

used {for

2 Methods and materials
2.1 Modeling steady-state leaf area index

One difficulty in vegetation phenology modeling is that the time scale associated with leaf allocation far exceeds that of
many other vegetation processes. Unlike leaf photosynthesis that approaches equilibrium within a minute and stomatal
functioning that reaches the steady state in minutes (Sellers et al., 1996a), leaf dynamics takes days or even months in
response to weather variation (Zeng et al., 2013). (Xin et al., 2018) first put forward the concept of the steady-state leaf area
index, i.e., canopy LAI when time approaches infinity while the environmental conditions remain unchanging. An alternative
biological explanation to the steady-state LAI is the maximum canopy LAI that an environment can sustain infinitely by its
own photosynthetic activities. Supposing that the carrying capacity of canopy LAI is proportional to total canopy

photosynthetic rate under a given environment, the steady-state LAI can be modeled as follows:

LAI, = mGPP, (1

where LAl; denotes the steady-state leaf area i'ndex; m denotes the constant ratio of steady state leaf area index to
environmental capacity(aad’ GPF dcnetesu."!i\l:ecél;e;éy)/nstate gross primary production.
denoted by

The above equation, despite having a simple form, provides a critical function that complements the canopy photosynthesis
model. The only parameter m is dependent on plant functional type and can be quantified from field measurements as the
average ratio of LAI to GPP at canopy closure (i.e., the time when both canopy LAI and GPP reach equilibrium). Studies
have developed various canopy photosynthesis models, such as the light use efficiency models and the process-based
models. Qur previous studies (Xin, 2016; Xin et al., 2018) implemented a sophisticated canopy model that assembles the
sub-models of canopy radiative transfer, leaf stomatal conductance, leaf transpiration, soil evaporation, and leaf

photosynthesis. Although the method has been successfully applied to different biomes, the model structure is complicated

4
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for studies at the regional to global scales. To simulate canopy photosynthesis, this study implements the MOD17 algorithm,

a big-leaf light use efficiency model that uses routine satellite products (Running et al., 2004). The use of the MOD17
algorithm could greatly simplify the modeling processes and reduce the required climate variables, thereby allowing for
broad applications. A brief descriptionoyﬁ the MOD17 algorithm is provided here where details can be found from the user

. . 4
5 guide of the MODIS GPP product (Running and Zhao, 2015). enny . , .
P oLj isThis ;f'g&c{j shate | .2

PAe,‘r,ﬂc VD ave Hme varying 2

Based on the MOD17 algorithm, vegetation GPP can be modeled as follows:
GPP; = PAR X FPAR X gy X f(T) X f(VPD) 2)

where GPP; denotes the steady-state gross primary production; PAR denotes photosynthetically active radiation; FPAR

denotes the fraction of photosynthetically active radiation; €., denotes maximum light use efficiency; and f(T) and
10 f(VPD) denote the scalar functions that account for the limitation of temperature and vapor pressure deficit, respectively, on

canopy photosynthesis.

The fraction of photosynthetically active radiation can be modeled as follows (Turner et al., 2006):
FPAR = 1 — exp(—kLAl,) (3)

where k denotes the canopy light extinction coefficient and LAl denotes the steady-state leaf area index.

The environmental scalars can be modeled as follows:

— . ( TMIN — TMIN i, ) ) "
fn = max(mm TMIN,,, — TMIN_.." /’ )

VPD) = ( i (1 VPR VPl 1) ) 5
f( ) =R VPDmax _VPDmin‘ ’ )

where TMIN denotes daily minimum air temperature; TMIN ;, and TMIN,, denote the lower and upper thresholds of daily
minimum air temperature for vegetation photosynthetic activities, respectively; VPD denotes daily vapor pressure deficit;
and VPDy,;, and VPD,,,, denote the lower and upper thresholds of daily vapor pressure deficit for vegetation photosynthetic
20 activities, respectively. for & given vahes °F
FAR,T,4& VPD 22
Given the environmental conditions, Equations 1 and 2 together form simultaneous equationt, meaning that there are two
unknown variables (i.e., LAI and GPP at the steady state) and two different general equations‘. One may derive an analytic
solution if both equations have simple forms. But because the dependence of GPP on LAI is non-linear, deriving the analytic
25 solution is complicated and we could apply the numerical approach to obtain the solutions. Because LAl increases as a

linear function of GPP; in Equation 1 and GPP; increases as a logarithmic function of LAl in Equation 2, the simultaneous

5
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equations have one and only one nonzero solution of LAl;. To obtain the ROTIZero solution, the numerical approach starts
with a guess value of LAlg and then then iterates to obtain the approximated solution of LAl until converging. Note that the
numerical approach is widely used in the land surface models. For example, as the stomatal resistance, the CO2 partial
pressure at the leaf surface, the internal leaf CO2 partial pressure, and the leaf net photosynthesis are dependent on each
5 other, the Community Land Model 4.5 uses the numerical approach to solve stomatal resistance and leaf photosynthesis

iteratively until the internal leaf CO2 partial pressure converges.

2.2 Modeling leaf area index, phenology, and gross primary production

Because the physiological processes that plants allocate photosynthates to leaves do not respond instantaneously to climate
variation, there is a need to simulate vegetation LAI as lagging behind the steady state. One method to account for the time
10 lagging effect is to apply the simple moving average method to buffer abrupt changes from individual events in the time
series. Our previous study applied the simple moving average method to model LAI as the unweighted mean of the previous
LA as follows (Xin et al., 2018): Tm ohlW unsuve i€ LAl js caleulated dai l_:,
Aday~1 and is a -GMC-‘HG“ of —Hwne, .
Z LAL (i) (6)

i=0

1
n ) =
LA)C day LA Nday
where LAl denotes leaf area index at the n day; ng,, denotes the number of days; i denotes an index starting from 0 to

Ngay — 1; and LAl denotes the steady state leaf area index.

The simple moving average method, while showing useful in vegetation phenology modeling, is suitable for retrospective
analysis rather than prediction, and importantly, it does not match with most land surface models that operate at incremental
time steps. Analogous to the method used to simulate leaf stomatal conductance in response to environmental variation, this
study proposes a time stepping scheme to simulate LAI realistically as lagging behind the steady state by a simple restricted
20 growth model (Sellers et al., 1996a) as follows: no ‘|{'jv«s\: reflecte Hral !)}'10""‘.,‘S3h"i1\€ sis
dLAI e ins"—nn"[ct,ne.ouslj leads +o ?%w/blj leaves

— = ki(LAL — LAD)

where t denotes the time; k| denotes a time constant that reflects the responses of plant leaf allocation to climate variation;

and LAI and LAl denote the leaf area index and the steady state leaf area index, respectively.

In the time stepping scheme, vegetation LAI does not change much during winter or summer as the current LAl is close to
25 LAl whereas vegetation LAI increases (or decreases) during spring (or autumn) as the current LAI is less (or greater) than
LAl;. For example, when the environment turns favorable for plant growth in spring, LAl exceeds LAI and dLAI/dt is
positive such that the modeled canopy LAI increases. Note that the method developed here essentially uses the canopy
photosynthetic capacity (i.e., the steady-state gross primary production) instead of air temperature as a synthesized indicator

6
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to track the suitability of the environment to plant growth in time series, and therefore, the developed method is referred to as

the Simplied Growing Production-Day (SGPD) model following our previous studies (Xin et al., 2018).

Given the modeled LAI time series, both vegetation phenology and canopy GPP can be casily modeled (Xin et al., 2018).
Various approaches have already been developed to derive the timing of key phenophases such as spring onset and autumn
senescence from seasonal LAI trajectories. This study models the phenological transition dates using a simple method that
derives the first spring and last autumn dates at which LAI reaches 20%, 50%, and 80% of the seasonal amplitudes
(Richardson et al., 2012). The selected relative amplitudes (20%, 50%, and 80%) are correspondent to different plant growth
stages over a growing season. Because the MOD17 algorithm only requires LA, daily minimum temperature, daily vapor
pressure deficit, and daily photosynthetically active radiation as model inputs, the canopy GPP is simply modeled by
substituting the modeled LAI time series and the climate variables into the MOD17 algorithm. For the first day of spring

when the LAI is zero, the modeled GPP is zero. As times move forward, the modeled GPP increases as LAI increases but is

still dependent on other climate variables such as solar radiation, temperature and vapor pressure deficit,

2.3 Comparative studies using Growing Season Index

The Growing Season Index (GSI), a widely used method in vegetation phenology modeling (Jolly et al., 2005), allows for
modeling seasonal LAI time series rather than individual phenophases and is implemented to make direct comparisons with
the SGPD model. The GSI model performs comparably to or even outperforms other terrestrial biosphere models on

predicting the timing of key phenophases for deciduous broadleaf forests (Melaas et al., 2013).

The instantaneous GSI is first derived based on the work of (Jolly et al., 2005) as follows:
iGSI = iTMIN X iVPD X iPhoto (8)

where iGSI denotes instantaneous growing season index; and iTMIN, iVPD, and iPhoto denote the instantaneous scalar
functions that account for the constraints of daily minimum air temperature, vapor pressure deficit, and photoperiod,

respectively, on vegetation growth.

of’\(—ninec\

The scalar functions for iTMIN, iVPD, and iPhoto have the mathematic forms similar to Equations 4 and 5 and are.derdved

the same as defined-in-€Jolly et al., 2005) as-felews:
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TMIN — TMIN i1 )

iTMIN = max (mm (TMINmax ZTMIN,,..

0) )

VPD — VPDin ) 0)

iVPD = ( i (1——
iv max | min VPD,oy — VPD,py

(10)

Photo — Photop,
),0) (1

it = i ,
1HRoto = max{min Photo,,, — Photo;,

where TMIN denotes daily minimum temperature; TMIN,y,;,, and TMIN ., denote the lower and upper thresholds of daily
minimum air temperature for vegetation photosynthetic activities, respectively; VPD denotes daily vapor pressure deficit;
VPDyn and VPD,,, denote the lower and upper thresholds of daily vapor pressure deficit for vegetation photosynthetic
activities, respectively; Photo denotes daily photoperiod; and Photoy,,, and Photo,;, denote the lower and upper thresholds

5 of daily photoperiod for vegetation photosynthetic activities, respectively.

LAI can be modeled as the simple moving average of the instantancous GSI scaled using maximum LAI as follows:

i “day‘1
s = Z iGSI (12)
Mday i=0
LAI = GSI X LAl . (13)

where GSI denotes growing season index at the n day; ng,, denotes the number of days; i denotes an index starting from 0 to

the previous one day; iGSI denotes the instantaneous growing season index; and LAI,,, denotes the maximum leaf area

10 index at canopy closure.

It is noteworthy that the instantaneous GSI uses the product of the scalars of minimum temperature, vapor pressure deficit,
and photoperiod as an indicator to track the potential canopy photosynthetic capacities on the daily basis. Both the GSI
model and the SGPD model, despite having different forms, share the same modeling idea. To understand the differences
15 between the simple moving average method and the time stepping method, the GSI model is also implemented with the

simple restricted growth model as follows:

LAI; = iGSI X LAl (14)
dLAI
e k(LAL; — LAI) (15)

where iGS] denotes the instantanecous growing season index; LAl , denotes the maximum leaf area index at canopy closure;
k; denotes a time constant that accounts for the lagged responses of plant leaf allocation to climate variation; and LAI and
LAl denote the leaf area index and the steady state leaf area index, respectively.

20
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With the modeled LAI time series, the phenological transition dates are then retrieved based on the seasonal amplitude ratio
method, the same way as processing the LAI time series derived from the SGPD model. Vegetation GPP is modeled by

substituting the modeled LAI time series into the MOD17 algorithm.

2.4 Model comparison and parameterization

This study compares four different modeling approaches, including the results simulated using both the SGPD model and the
simple moving average method (hereinafter referred to as SGPD-SMA), using both the SGPD model and the time stepping
scheme (hereinafter referred to as SGPD-TS), using both the GSI model and the simple moving average method (hereinafter
referred to as GSI-SMA), and using both the GSI model and the time stepping scheme (hereinafter referred to as GSI-TS).
The commonly used metrics, including the Pearson correlation coefficient (R), the coefficient of determination (R2), the root-

mean-square error (RMSE), and the mean bias error (MBE), are derived for model assessment and comparison.

As the MODI17 algorithm is a well-parameterized model, this study applies the model parameters from literature directly.
Following the user guide of the MODIS GPP product (Running and Zhao, 2015), key parameters in the MOD17 algorithm
are set as Emay = 1.165 gC/M] , TMIN i, = —6.0 °C, TMIN4, = 9.94 °C, VPDyiq = 0.65 kPa, and VPD,, = 1.65 kPa.
The light extinction coefficient of the canopy is 0.5. The parameter that defines the ratio of leaf area index to environmental
capacity is set as m = 0.58 m?(leaf area)/gC/day as quantified using the average ratio of LAI to GPP at canopy closure
using the flux tower data. The canopy maximum LAI is set as 5.80 based on the maximum 95th percentile of satellite-
derived LAI across sites and years (Xin et al., 2018). The parameter ny,y in the simple moving average method and the
parameter k, in the time stepping method control the response of plant leaf allocation to environmental variation. The

parameter Ny, is set as 21 days and the parameter K is calibrated as 0.080 day’.

2.5 Study materials and pre-processing

We evaluate our approach at the site scale using both the flux tower data and remote sensing data and at the regional scale
using both the climate data and remote sensing data for deciduous broadleaf forests in eastern United States. For the site-
scale studies, all the flux tower sites of deciduous broadleaf forests (Table 1) that are available in the AmeriFlux website

(http://ameriflux.ornl.gov/) were used for analysis. As the developed SGPD model is a simplified version of our previous

modeling approach, the site-scale modeling studies only require daily incoming solar radiation, minimum air temperature,
vapor pressure deficit, photoperiod, LAI, and GPP data. Daily incoming solar radiation, vapor pressure deficit, and GPP
have already been provided in the Level 4 flux tower data, whereas daily minimum air temperature was processed from the
half-hourly gap-filled Level 2 data and daily photoperiod as required by the GSI model was computed based on Equatioy.a/
as a function of geolocation and the day of year (Allen et al., 1998). As the MODIS LAI has been found to match field

measurements well for deciduous broadleaf forests in eastern United States (Myneni et al., 2002), the 8-day 500 m MODIS

16
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results. The R? values between the SGPD-TS model and the SGPD-SMA model and between the GSI-TS model and the

GSI-SMA model are 0.989 and 0.994, respectively, and the regression lines are close to the lines of equity, indicating that

the time stepping method is an alternative representation for the simple moving average method.
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Figure 2: Scatter plots are shown for the comparisons a) between the SGPD-SMA LAl and the MODIS LAL b) between the
SGPD-TS LAI and the MODIS LAI, ¢) between the SGPD-TS LAI and the SGPD-SMA LAI d) between the GSI-SMA LAI and
the MODIS LAI, ¢) between the GSI-TS LAI and the MODIS LAl and f) between the GSI-TS LAI and the GSI-SMA LAI on a
weekly basis. All available site-year flux tower data were included in the analysis. The solid lines denote the 1:1 lines and the
dashed lines denote the regression lines.

Table 2 lists the statistical metrics that illustrate the model performance on predicting the timing of different phenophases.
As evaluated against satellite observations, the SGPD-SMA model could well retrieve the spring onset dates when LAI
reaches 50% scasonal amplitude and the obtained correlation coefficient is 0.718 with RMSE of 13.04 days. The SGPD-TS
meodel performs comparable to the SGPD-SMA model and the resulted correlation coefficients are all significant expect for

the dates that autumn LAI reaches 80% seasonal amplitudes. The SGPD-based models generally outperform the GSI-based
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models as the achieved correlation coefficients are higher and the RMSE are smaller ,fb‘r’ more than 10 days. Both the GSI-

SMA and GSI-TS models predict spring onsets earlier than observatlonﬁ.fﬂr-—m@se—than— 30 days and predict autumn
b

senescence later than observations for—m?g; than 20 days. By comparison, the SGPD TS model predicts the dates that spring

and autumn LAJ reaches 50% seasonal amplitudes well with the MBE of only -2.56 and -2.86 days, respectively.

Table 2: The performance of the modeled timings of phenophases as evaluated against satellite observations. The timings of
phenophases were derived based on dates at which the leaf area index reaches 20%, 50%, 80% of seasonal amplitude. Positive
mean bias error (MBE) indicates that the modeled spring onsets are earlier than the observed ones and negative MBE indicates
the opposite.

* phenophases T sGPDsMA T SGPD-TS GSI-SMA GSI-TS
R RMSE  MBE R RMSE  MBE R RMSE  MBE R RMSE  MBE
(days) (days) (days) (days) (days) (days) (days) (days)
“Spring LAI20%  0.790%*%*  16.17 -10.85 0824¥ 1337 -834 0763 4038 -3830 07707 3062 -37.58

Spring LAI 50% 0.718%#* 13.04 -1.97  0.691%%* 13.68 -2.56  0.653%** 38.47  -3492  0.657%%* 38.22  -34.63
Spring LAI 80% 0.432%%% 20.91 1263  0.409*** 21.19 1241 0.560++* 3286 -28.00 0.565%%* 28.54 -2355

Autumn LAI 80% 0.220 31.80 -2556 0.164 2790 -20064 0.021 35.38 3242 -0.004 35.23 32:27
Autumn LAI 50% 0.686%#* 9.80 =542 0.625%%%F 9.48 -2.86  0.621%** 2420 23.07 0.616%#F 24.63 23.51

Autumn LAT 20% 0.703++* 8.87 2,15  0.676%** 10.91 6.37  0.689%* 19.64 18.48  0.7]3%* 22.93 22.00

what does this means 9

The modeled and measured GPP are compared in Figure 3 to address the key question that whether the simulated LAI could

be applied to model canopy GPP. Compared with the flux tower measurements, the results modeled using the SGPD-SMA,
SGPD-TS, GSI-SMA, and GSI-TS LAI could achieve the R? values of 0.768, 0.773, 0.722, and 0.719, respectively, and the
RMSE values of 2.273, 2.239, 2.577, 2.535 gC/m?day, respectively. The modeled results using the GSI-based LAI have

higher errors, in terms of both RMSE and MBE, than those using the SGPD-based LAI. The accuracies of the modeled GPP
using the SGPD-based LAI are only slightly lower than to that using the MODIS-based LAI directly. The modeling results
obtained based on the simple moving average method are nearly the same as those obtained based on the time stepping
method. Given the high degrees of consistency between the simple moving average method and the time stepping method on
modeling LAI, phenology, and GPP, only the results obtained using the time stepping method are shown and discussed in the

regional studies as presented in the following section.
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Figure 3: Scatter plots are shown for the comparisons a) between the GPP modeled using SGPD-SMA LAI and the flux tower
GPP, b) between the GPP modeled using SGPD-TS LAI and the flux tower GPP, c) between the GPP modeled using MODIS LAI
and the flux tower GPP, d) between the GPP modeled using GSI-SMA LAI and the flux tower GPP, and e¢) between the GPP
modeled using GSI-TS LAI and the flux tower GPP on a weekly basis. All available site-year flux tower data were included in the
analysis. All the modeled GPP were derived using the MOD17 algorithm. The solid lines denote the 1:1 lines and the dashed lines
denote the regression lines.

3.2 Regional-scale modeling A '5%1-‘\7“;‘\0“9
A

Figure 4 shows the spatial W of the 10-year (2001-2010) mean LAI and associated errors as derived from remote
sensing data and model simulations. The SGPD-TS method could- well captunsthe spatial pattern of the satellite-derived
LAI including the decreasing gradients from south to north and the decreases in mountain areas (Figure 4a and 4b). The 10-
year mean LAI derived from the GSI-TS method (Figure 4¢) also show a decreasing trend from south to north but the
modeled LAI is much larger than the MODIS LAL Because the GSI-TS method defines the maximum leaf area index for the

growing season, the overestimation on the modeled 10-year mean LAI is primarily due to model overestimates in the spring
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and autumn phenological transitions. As compared with the MODIS observations, RMSE and MBE obtained by the SGPD-
TS method are much smaller than and distribute more evenly than those obtained by the GSI-TS method. RMSE for the GSI-
TS LAI exhibit a decreasing north-south gradient, implying that the model accuracies are lower in southern areas lower than
in northern areas. MBE for the GSI-TS model are greater than 0.5 m*m? for most areas. When comparing SGPD-TS LAI
with MODIS LAI, RMSE are less than 0.5 m*m? and MBE are minor across the study region. The amplitudes of the error
metrics in the regional-scale studies are consistent with those in the site-scale studies. Note that some studies applied the
multi-year mean LAI as derived from the remote sensing data to simulate the land surface processes, the results obtained
here indicate that the SGPD-TS method can be used alternatively to provide multi-year mean LAI time series via climate

variables for land surface studies.
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Figure 4: The spatial extents are shown for a) the 2001-2010 mean MODIS LAI b) the 2001-2010 mean SGPD-TS LAI ¢) the
2001-2010 mean GSI-TS LAI, d) RMSE between SGPD-TS LAI and MODIS LAI e) RMSE between GSI-TS LAI and MODIS
LALI f) MBE between SGPD-TS LAI and MODIS LAIL and g) MBE between GSI-TS LAI and MODIS LAI across eastern United
States. The units for both RMSE and MBE are m? (leaf area) per m? (ground area).

diskr butien?
The spatial c/mnﬂfor the 10-year mean phenological metrics including the start of the season (SOS), the end of the season
(EOS), and the growing season length (GSL) are shown in Figure 5. The SGPD-TS method predicts lower SOS (i.e., earlier

spring onset), higher EOS (i.c., later autumn senescence), and loenger GSL in southern areas than in northern areas. The

17



spatial distributions of all phenological metrics derived using SGPD-TS LAI agree well with those derived using MODIS
LAIL From the statistical analysis as shown in the subplots, the phenological metrics derived from the SGPD-TS method
could achieve the correlation coefficient values of 0.879, 0.552, and 0.844, the RMSE values of 8.13, 7.54, and 13.73 days,
and the MBE values of 0.71, -2.82, and -3.54 days, for SOS, EOS, and GSL, respectively, as compared to those derived from
the MODIS data. Although the spatial distributions of the phenological metrics derived from the GSI-TS method match
those derived from the satellite observations, the modeled results have considerable biases, where the RMSE values are
38.05, 14.37, and 51.58 days, and the MBE values are -36.33, 12.91, and 49.23 days, for SOS, EOS, and GSL, respectively.
Consistent with the site-scale studies, the GSI-TS method predicts spring onset much earlier and autumn senescence later

than the satellite-derived data, resulting in large overestimation of the growing season length.
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Figure 5: The spatial extents are shown for a) the start of the season (SOS) derived from MODIS LAIL, b) SOS derived from
SGPD-TS LAI, c) SOS derived from GSI-TS LAI, d) the end of the season (EOS) derived from MODIS LAI, e} EOS derived from
SGPD-TS LAI, f) EOS derived from GSI-TS LAI, g) the growing season length (GSL) derived from MODIS LAI, h) GSL derived
from SGPD-TS LAI and i) GSL derived from GSI-TS LAI using the 10-year (2001-2010) mean data across eastern United States.
The embedded subplots show the comparisons between modeled and MODIS-derived phenological metrics for SOS, EOS, and
GSL, respectively.

19



Figure 6 displays the multi-year phenology anomalies that are spatially averaged for deciduous broadleaf forest across
eastern United States. The use of phenology anomalies relative to the 2001-2010 average instead of absolute values makes
the results directly comparable. The SGPD-TS method could capture the interannual variation of vegetation phenology
retrieved from the remote sensing data. When comparing the SGPD-TS method with the MODIS (2001-2016) data, the
correlation coefficients are 0.896 (p<0.001), 0.650 (p=0.006), and 0.817 (p<0.001), for SOS, EOS, and GSL, respectively.
When comparing the SGPD-TS method with the GLASS (1982-2014) data, as derived from and the correlation coefficients
are 0.554 (p=0.001), 0.717 (p<0.001), 0.637 (p<0.001), for SOS, EOS, and GSL, respectively. The SGPD-TS method
outperforms the GSI-TS method on capturing the long-term trends of vegetation phenophases, as the correlation coefficients
obtained using the GSI-TS method are lower and sometimes insignificant. Yearly fluctuation in EOS derived using the GSI-
TS method is smaller than those derived from both the SGPD-TS method and the satellite data. The SOS and EOS derived
from the GLASS data have much larger variation in 1982-2000 than in 2001-2010, suggesting that the use of the AVHRR
and MODIS data in the GLASS dataset could contribute uncertainties in the satellite-derived phenological metrics. Both
Figure 5 and 6 indicate that the SGPD-TS method is reliable on capturing the spatiotemporal patterns of regional vegetation

phenophases.
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Figure 6: The spatially-averaged phenology anomalies relative to the 2001-2010 average are shown for a) the start of the season
(S0S), b) the end of the season (EOS), and c) the growing season length (GSL). SOS and EOS are derived as the date that LAI first
and last reaches 50% of the seasonal amplitudes and GSL is derived as the difference between EOS and SOS.
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Figure 7 compares the simulated GPP using the MOD17 algorithm and LAI derived from different approaches. The 10-year
average annual GPP obtained using SGPD-TS LAI has a similar spatial pattern with that obtained using MODIS LAI and
has lower values than that obtained using GSI-TS LAI Taking the GPP simulated using MODIS LAI as reference, the
results simulated using SGPD-TS LAI achieve the correlation coefficient of 0.898 with RMSE of 78.78 gC/m?#/year and
MBE of 12.22 gC/m?/year, whereas the results simulated using GSI-TS LAI achieve the correlation coefficient of 0.898 with
RMSE of 173.45 gC/m¥year and MBE of 153.43 gC/m?/year. Although the obtained correlation coefficients are close, the
SGPD-TS method results in the regression lines closer to the 1:1 lines with smaller bias errors than the GSI-TS method. The
zonally average profiles of the 2001-2010 average annual GPP as shown in Figure 7d suggest that the results obtained from
the SGPD-TS method are close to those obtained using MODIS LAI, whereas the results obtained from the GSI-TS method
have positive biases of approximately 120 - 180 gC/m2/year (roughly 10 - 15%) across latitudes. Note that the MOD17
algorithm has positive MBE of 0.247 gC/m2/day and 0.571 gC/m2/day when using SGPD-TS LAI and GSI-TS LAI,
respectively, as model input data in the site-scale study. The differences in MBE between the two modeling methods are
0.324 ¢C/m2/day (or 118.26 gC/m2/year in equivalence) for the site-scale studies, which are consistent with the regional-

scale studies.
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Figure 7: Comparisons are shown for a) the spatial extent of annual GPP modeled using MODIS LAIL b) the spatial extent of
annual GPP modeled using SGPD-TS LAI c) the spatial extent of annual GPP modeled using GSI-TS LAI d) the zonally
averaged profiles of annual gross primary preduction modeled using LAI derived from different approaches, ¢) the regression
between GPP modeled using SGPD-TS LAI and MODIS LAI, and f) the regression between GPP modeled using GSI-TS LAI and
MODIS LAIL The simulated daily GPP were first summed for each individual year and were then averaged across years to derive
the 20012010 average annual GPP as shown in Figure 7a, 7b, and 7c. The shaded areas in Figure 7d mark the range of the
standard deviation. All pixels of deciduous broadleaf forest across eastern United States are included in analysis in Figure 7e and
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4 Discussion

Here we provide a solution that bridges the canopy photosynthesis model and the leaf dynamics model. The developed

method first proposes a linear function between the canopy photosynthetic capacity and the steady state LAI so as to
complement the canopy photosynthesis model and then applies a simple restricted growth model to account for the lagged
responses of plant leaf allocation to natural environment. In essence, the developed method, although having a simple form,
has synthesized the impacts of various climate factors on leaf dynamics because any climate variable that influences
vegetation photosynthesis would affect the process of plant leaf allocation in the models as well. Consistent with field
observations, the simulated LAI increases as the environmental conditions turn favorable for photosynthetic activities such

as increases in photoperiod and temperature.
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Figure 8 further illustrate the relationship between mean LAI and different variables on a monthly basis. All data were

averaged to the monthly time scale such that canopy LAI can be considered as nearly the steady state. On the monthly basis,

mean LAI has a strong near-linear relationship with mean GPP (R?=0.888) and the slope for the regression without intercept

is 0.580, the same as we used in the model simulation. On the monthly basis, mean LAI is strongly correlated with mean

temperature (R?=0.799), indicating that temperature is the dominate factor that determines vegetation phenology. Factors like

vapor pressure deficit and photoperiod also have positive relationships with mean LAI on the monthly basis. Figure 8

suggests that the processes of leaf phenology and photosynthetic phenology for deciduous broadleaf forest are closely related

e

Our modeling approach that links canopy GPP with LAI reflects the empirical positive relationship found in Figure 8a. Ry C‘LJ
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Figure 8: Scatter plots are shown for the relationship a) between mean leaf area index and mean gross primary production, b)
between mean leaf area index and mean temperature, ¢) between mean leaf area index and mean vapor pressure deficit, and d)
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mean leaf area index and mean photoperiod on a monthly basis. All available site-year flux tower data were included in the
analysis. All data were averaged to the monthly time scale for analysis. The dashed lines denote the regression lines. Figure 8a uses
the regression without intercept.

5 The performance of our developed method is largely dependent on the canopy photosynthesis model used. In our previous
studies, we developed a process-based canopy photosynthesis model that synthesizes sub-models such as canopy radiative
transfer, leaf transpiration, leaf stomatal conductance, leaf photosynthesis, and soil evaporation and applied it for modeling
the LAI time series. When applying the simple moving average method, implementing the process-based model in Xin et al.
(2018) achieved higher accuracies than implementing the MOD17 algorithm on modeling canopy GPP and LAI as reflected

10 by higher R? and lower errors. The MOD17 algorithm only assumes the monotonic relationship between air temperature and
photosynthesis and between vapor pressure deficit and photosynthesis. It also does not account for the impacts of CO» on

photosynthesis. The use of the MODI17 algorjthm in this study thus has limitations in the model structure. It implies that the

ol
LAI modeling in our developed pegodﬁ\ikely beneﬁt; from improvements on the canopy photosynthesis model. This study :
chooses the MODI7 algorithm instead' of the sophisticated process-based model because the MODI7 algorithm is well L“‘t ot In

15 parameterized across biomes and requires quite limited model inputs of climatc variables. Successful implementation with Lsﬂj
the MOD17 algorithm allows for extending the developed method to applications across biomes at regional to global scales. -G'r Uyl
in ead gstem models -
Land surface models that predict vegetation GPP require either satellite-derived LAI input data or the phenology sub-model.
The main idea for this study is to improve the phenology modeling by providing time series of LAI simulated using climate
20 variables, and hence enables to simulate GPP forced only by climate variables. Because we implement the MODI7
algorithm instead of the sophisticated process-based model for the purpose of simplicity, one should not expect that GPP
simulated based on the model-simulated LAI could be more accurate than GPP simulated based on the satellite-derived LAIL

Mes bk vt \asfn.j MOPIF GPP and hat about yout LAY o nota fuanch m o 0y

The time stepping scheme developed here is also an improvement over the simple moving average method as used in our

previous studies. The results obtained using the time stepping method are consistent with the simple moving average method
at the site scale and show to be reasonable at the regional scale. Compared to the simple moving average method, the time
stepping method could fit seamlessly into the land surface models that operate at incremental time steps such as the

Community Land Model and the Common Land Model (Dai et al., 2003). Because the state-of-the-art land surface models

all include the canopy photosynthesis sub-model, the developed method can then be easily embedded into these land surface
30 models as an alternative phenology model. Compared to the simple light use efficiency model like the MOD17 algorithm,
implementation of the developed time-stepping scheme in the land surface models relies on supercomputing for global
applications. To better understand the performance of the developed method, one study is now undertaken to implement the
developed method with the Common Land Model for simulating multi-decadal LAI and GPP for global biomes forced only
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Applying the developed method to other biomes and other regions still has issues to be solved appropriately. The time
stepping method uses the parameter k; to account for the time lags of leaf allocation in response to environmental changes.
For the deciduous broadleaf forests, a biome with strong seasonality, the developed scheme achieved reasonable results with
appropriate parameterization. Short vegetation like grasslands tends to respond much quickly to abrupt environment changes
like precipitation and tropical ecosystems have strong resilience to short-term environmental variation (Levine et al., 2016;
Shen et al., 2011). Another issue is to find the appropriate values of m for different biomes. One way to determine the values
of m is to find the regression slope between leaf area index and gross primary production on a monthly basis. Model
parameterization however still requires broad tests. These understandings from the observational studies imply that biomes
have varied response speeds to the environment and proper model calibration and assessment are required for the developed
method. Using the observation data from remote sensing alone is inadequate for model development as satellite-derived LAI
could have large uncertainties for some specific biomes other than deciduous broadleaf forests. Fortunately, global flux
tower network and regional phenology observation networks arec now established and offer abundant data for comprehensive

model assessment.

5 Conclusions

Terrestrial biosphere models provide a basic tool for understanding the interactions between the land surface and the
atmosphere. To provide a complete solution to the simulation of plant leaf dynamics and canopy photosynthesis, this study
establishes a linear rclationship between the steady state leaf area index and the corresponding canopy photosynthetic
capacity. The proposed leaf allocation function complements the canopy photosynthesis model of the MOD17 algorithm to
form simultaneous equations that can be solved using the numerical approach. To account for the time lagging of plant leaf
allocation in response to climate variation, a time stepping scheme based on a simple restricted growth model is applied to
the solved steady state leaf area index to obtain time series of leaf area index. The developed method could perform
reasonably well on simulating leaf area index, phenology, and gross primary production for deciduous broadleaf forests
across eastern United States over years as found in both the site-scale and regional-scale modeling studies. Compared to the
simple moving average method, the time stepping scheme developed here is consistent with and can be easily embedded into
the state-of-the-art land surface models that typically operate at incremental time steps. The developed method allows for
simulating leaf arca index and gross primary production simultaneously and provides a much simplified and improved

version of our previous model as a basis for global applications in future studies.
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