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Abstract. Terrestrial plants play a key role in regulating the exchange of energy and materials between the land surface and 

the atmosphere. Terrestrial biosphere models that simulate leaf dynamics and canopy photosynthesis are required to 

understand the vegetation-climate interactions. This study proposes a simple time stepping scheme to simulate leaf area 10 

index (LAI), phenology, and gross primary production (GPP) when forced with climate variables. The method establishes a 

linear function between the steady-state LAI and the corresponding GPP, which is used to track the suitability of 

environmental conditions for plant photosynthesis. The method applies the established function and the MOD17 algorithm to 

form simultaneous equations together, which can be solved numerically. To account for the time-lagged responses of plant 

growth to environmental conditions, a time stepping scheme is developed to simulate the LAI time series based on the solved 15 

steady-state LAI. The simulated LAI time series is then used to derive the timing of key phenophases and simulate canopy 

GPP with the MOD17 algorithm. The developed method is applied to deciduous broadleaf forests in eastern United States 

and has found to perform well on simulating canopy LAI and GPP at the site scale as evaluated using both flux tower and 

satellite data. The method could also capture the spatiotemporal variation of vegetation LAI and phenology across eastern 

United States as compared with satellite observations. The developed time-stepping scheme provides a simplified and 20 

improved version of our previous modeling approach and forms a potential basis for regional to global applications in future 

studies. 

1 Introduction 

Terrestrial plants play a key role in regulating the exchange of energy and materials (e.g., radiation, heat and moisture, 

carbon, and trace gas fluxes) between the land surface and the atmosphere (Beer et al., 2010; Zhu et al., 2017). The canopy 25 

structures and characteristics govern solar radiation interception and absorption (Ni-Meister et al., 2010; Yuan et al., 2013). 

Plants control water transpiration and photosynthetic carbon fixation through processes from transient changes in leaf 

stomatal conductance to seasonal variation in foliage dynamics (Eagleson, 2005). In turn, external environmental conditions, 

such as sunlight, temperature, and water and nutrient availability, selectively determine plant form and function (Bonan, 
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2008). Numerical terrestrial biosphere models that integrate multidisciplinary knowledge of Earth sciences allow to 

understand and predict the interactions between terrestrial ecosystems and the climate under a changing global environment. 

 

Developments on the terrestrial biosphere models essentially seek accurate solution to the simulation of energy and material 

exchanging fluxes between ecosystems and the atmosphere. In terrestrial biosphere models, plant canopies are typically 5 

characterized using leaf area index (LAI; leaf area per unit ground area) because plant leaf is the basic organ that intercepts 

solar radiation for photosynthesis and transpiration (Li et al., 2018; Yuan et al., 2013). The exchanging fluxes of energy and 

materials over vegetation canopy can then be modeled as a function of environmental conditions (e.g., sunlight, soil 

moisture, temperature, and humidity) and vegetation LAI (Ding et al., 2014). The development of satellite remote sensing 

technology offers large-scale observations for vegetation monitoring and a number of modeling approaches have been 10 

developed to quantify and simulate the land surface fluxes based on climate variables and satellite-derived LAI. These 

methods, including both the light use efficiency models (e.g., the Carnegie-Ames-Stanford Approach (CASA) model (Potter 

et al., 1993), the MOD17 algorithm (Running et al., 2004), the Vegetation Photosynthesis Model (VPM) (Xiao et al., 2004), 

the eddy covariance light use efficiency (EC-LUE) model (Yuan et al., 2010), and the two-leaf light use efficiency (TL-

LUE) model (He et al., 2013)) and the process-based models (e.g., the boreal ecosystem productivity simulator (BEPS) 15 

model (Liu et al., 1997), the Breathing Earth System Simulator (BESS) model (Ryu et al., 2011), the Growing Production-

Day (GPD) model (Xin, 2016), the revised Simple Biosphere (SiB2) model (Sellers et al., 1996b)), despite differing from 

each other on the representation of vegetation processes, have been successfully used for applications from field to global 

scales. While remote sensing data of vegetation activities perfectly complements the canopy process models, developing the 

sub-model that could simulate the dynamics of vegetation LAI is fundamental to enhance our abilities on predicting 20 

terrestrial ecosystem processes under future scenarios. 

 

Modeling vegetation leaf dynamics via climate variables requires in-depth understanding on plant phenological processes. 

This modeling is still largely empirical to date and contributes considerable uncertainties to current terrestrial biosphere 

models (Richardson et al., 2012). One common method for simulating vegetation phenology is to predict the timing of key 25 

phenophases such as spring onset and autumn senescence in a growing season (Hufkens et al., 2018; Liu et al., 2018). For 

example, most phenology models originate from the Growing Degree Day (GDD) model, a method first proposed by De 

Réaumur dating back to 1735 (De Réaumur, 1735). The GDD model assumes that plant leaf onset begins when daily mean 

temperatures accumulated from a fixed date reach a critical threshold. Studies have identified that various environmental 

factors other than temperature could affect plant phenology to certain degrees (Polgar and Primack, 2011), and therefore, 30 

efforts have been made to improve the GDD model by adding different influential factors, such as photoperiod, soil 

temperature, humidity, and soil moisture (Chuine et al., 1999; Hufkens et al., 2018; Liu et al., 2018; Melaas et al., 2013; 

Yang et al., 2012). Land surface models like the Community Land Model (Oleson et al., 2013) and the Biome-BGC model 

(White et al., 2000) use a set of complicated and empirical equations to predict the timing of key phenophases across plant 
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functional types. Another method for vegetation phenology modeling is to simulate the entire LAI time series over a growing 

season. For example, the DeNitrification DeComposition model uses an optimal seasonal growth curve of plant LAI and 

then calculates environmental stresses of water and nitrogen to limit daily carbon and nitrogen allocation to plant leaves (Yu 

et al., 2014). The Growing Season Index as proposed by (Jolly et al., 2005) is a widely used method that could simulate 

seasonal phenology curves using the climate variables of photoperiod, air temperature, and vapor pressure deficit. While 5 

these studies have greatly benefitted the development of the phenology models, there is still a need to improve the current 

phenology models.  

 

The physiological processes of leaf phenology and canopy photosynthesis are interrelated. Plants absorb carbon dioxide to 

accumulate biomasses through photosynthesis and then redistribute the photosynthetic gain to organs such as leaves, roots, 10 

and stems to optimize reproduction. Given limited external resources, plants have evolved to effectively allocate 

photosynthate to organs in response to environment conditions so as to maximize photosynthetic carbon gain, the 

fundamental bioenergy for survival (Givnish, 1986). The strategy of biomass allocation among growth, maintenance, and 

reproduction in a continuously changing environment directly determines whether plants could persist under natural 

competition pressures from both inter- and intra-species (Bonan, 2002). In essence, there is a need to synthesize the analysis 15 

of both canopy photosynthesis and leaf phenology processes. 

 

(Xin, 2016) proposed a parameterization scheme to simulate vegetation productivity and phenology simultaneously. The 

method, named as the Growing Production Day (GPD) model, uses canopy gross primary production (GPP) instead of air 

temperature as an indicator that synthesizes various environmental factors on plant photosynthesis to track how the 20 

environment is suitable for vegetation growth. Analogous to the method that derives reference evapotranspiration, the 

developed method defines a hypothetic canopy with fixed LAI to model potential GPP under certain environment conditions. 

Similar to the GDD model, the GPD model predicts vegetation spring onset to occur when the accumulated reference GPP 

reaches a critical threshold. The method has been successfully applied to the biomes of evergreen needleleaf forest, 

deciduous broadleaf forest, and grassland. To allow for predicting the entire LAI time series over a growing season, (Xin et 25 

al., 2018) further improved the GPD model by proposing a linear function between LAI and GPP at the steady state. The 

proposed function and the sophisticated canopy GPP model (i.e., modeling GPP as a function of LAI and climate variables) 

together form a closed system of equations that includes both vegetation GPP and LAI. The improved GPD model uses the 

numerical approach, a method that gives an initial value and then iterates to the convergence of the solution, to solve the 

closed system of equations and derives LAI in the steady state. The improved GPD model then applies the simple moving 30 

average method to the steady-state LAI to obtain the modeled LAI time series. The improved method circumvents the need 

to empirically prescribe a fixed canopy and enables modeling of LAI time series in addition to the timing of individual 

phenophases. There remain shortcomings to overcome for the broad applications of the GPD model. First, the simple moving 

average method, despite being widely used in many studies, is empirical and does not match with the land surface models 
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that commonly operate at incremental time steps. Second, the developed GPD model that includes many subtle vegetation 

processes, such as canopy radiative transfer, leaf stomatal conductance, leaf transpiration, leaf photosynthesis, and soil 

evaporation, is computationally intensive and requires various climate input data. 

 

Aiming to solve the above-mentioned problems, the objectives of the study are to: 1) develop a time stepping scheme to 5 

simulate leaf dynamics and vegetation productivity, and 2) simplify the GPD model to allow for long-term applications at a 

large scale. Given that the phenology modeling in deciduous broadleaf forest, a biome that have distinct seasonal growing 

cycles, still has large uncertainties (Melaas et al., 2016), this study choose to simulate the deciduous broadleaf forests across 

the eastern United States such that the developed method if successful could provide a potential basis for future applications 

to other biomes. 10 

2 Methods and materials 

2.1 Modeling steady-state leaf area index 

One difficulty in vegetation phenology modeling is that the time scale associated with leaf allocation far exceeds that of 

many other vegetation processes. Unlike leaf photosynthesis that approaches equilibrium within a minute and stomatal 

functioning that reaches the steady state in minutes (Sellers et al., 1996a), leaf dynamics takes days or even months in 15 

response to weather variation (Zeng et al., 2013). (Xin et al., 2018) first put forward the concept of the steady-state leaf area 

index, i.e., canopy LAI when time approaches infinity while the environmental conditions remain unchanging. An alternative 

biological explanation to the steady-state LAI is the maximum canopy LAI that an environment can sustain infinitely by its 

own photosynthetic activities. Supposing that the carrying capacity of canopy LAI is proportional to total canopy 

photosynthetic rate under a given environment, the steady-state LAI can be modeled as follows: 20 

 LAIs = mGPPs (1) 

where LAIs  denotes the steady-state leaf area index; m  denotes the constant ratio of steady state leaf area index to 

environmental capacity; and GPPs denotes the steady-state gross primary production. 

 

The above equation, despite having a simple form, provides a critical function that complements the canopy photosynthesis 

model. The only parameter m is dependent on plant functional type and can be quantified from field measurements as the 25 

average ratio of LAI to GPP at canopy closure (i.e., the time when both canopy LAI and GPP reach equilibrium). Studies 

have developed various canopy photosynthesis models, such as the light use efficiency models and the process-based 

models. Our previous studies (Xin, 2016; Xin et al., 2018) implemented a sophisticated canopy model that assembles the 

sub-models of canopy radiative transfer, leaf stomatal conductance, leaf transpiration, soil evaporation, and leaf 

photosynthesis. Although the method has been successfully applied to different biomes, the model structure is complicated 30 
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for studies at the regional to global scales. To simulate canopy photosynthesis, this study implements the MOD17 algorithm, 

a big-leaf light use efficiency model that uses routine satellite products (Running et al., 2004). The use of the MOD17 

algorithm could greatly simplify the modeling processes and reduce the required climate variables, thereby allowing for 

broad applications. A brief description on the MOD17 algorithm is provided here where details can be found from the user 

guide of the MODIS GPP product (Running and Zhao, 2015). 5 

 

Based on the MOD17 algorithm, vegetation GPP can be modeled as follows: 

 GPPs = PAR × FPAR × εmax × 𝑓(T) × 𝑓(VPD) (2) 

where GPPs  denotes the steady-state gross primary production; PAR  denotes photosynthetically active radiation; FPAR 

denotes the fraction of photosynthetically active radiation; εmax  denotes maximum light use efficiency; and 𝑓(T)  and 

𝑓(VPD) denote the scalar functions that account for the limitation of temperature and vapor pressure deficit, respectively, on 10 

canopy photosynthesis. 

 

The fraction of photosynthetically active radiation can be modeled as follows (Turner et al., 2006): 

 FPAR = 1 − exp(−kLAIs) (3) 

where k denotes the canopy light extinction coefficient and LAIs denotes the steady-state leaf area index. 

 15 

The environmental scalars can be modeled as follows: 

 𝑓(𝑇) = max (min (
TMIN − TMINmin

TMINmax − TMINmin

, 1) , 0) (4) 

 𝑓(VPD) = max (min (1 −
VPD − VPDmin

VPDmax − VPDmin

, 1) , 0) (5) 

where TMIN denotes daily minimum air temperature; TMINmin and TMINmax denote the lower and upper thresholds of daily 

minimum air temperature for vegetation photosynthetic activities, respectively; VPD denotes daily vapor pressure deficit; 

and VPDmin and VPDmax denote the lower and upper thresholds of daily vapor pressure deficit for vegetation photosynthetic 

activities, respectively. 20 

 

Given the environmental conditions, Equations 1 and 2 together form simultaneous equations, meaning that there are two 

unknown variables (i.e., LAI and GPP at the steady state) and two different general equations. One may derive an analytic 

solution if both equations have simple forms. But because the dependence of GPP on LAI is non-linear, deriving the analytic 

solution is complicated and we could apply the numerical approach to obtain the solutions. Because LAIs increases as a 25 

linear function of GPPs in Equation 1 and GPPs increases as a logarithmic function of LAIs in Equation 2, the simultaneous 
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equations have one and only one nonzero solution of LAIs. To obtain the nonzero solution, the numerical approach starts 

with a guess value of LAIs and then then iterates to obtain the approximated solution of LAIs until converging. Note that the 

numerical approach is widely used in the land surface models. For example, as the stomatal resistance, the CO2 partial 

pressure at the leaf surface, the internal leaf CO2 partial pressure, and the leaf net photosynthesis are dependent on each 

other, the Community Land Model 4.5 uses the numerical approach to solve stomatal resistance and leaf photosynthesis 5 

iteratively until the internal leaf CO2 partial pressure converges. 

2.2 Modeling leaf area index, phenology, and gross primary production 

Because the physiological processes that plants allocate photosynthates to leaves do not respond instantaneously to climate 

variation, there is a need to simulate vegetation LAI as lagging behind the steady state. One method to account for the time 

lagging effect is to apply the simple moving average method to buffer abrupt changes from individual events in the time 10 

series. Our previous study applied the simple moving average method to model LAI as the unweighted mean of the previous 

LAIs as follows (Xin et al., 2018): 

 LAI =
1

nday

∑ LAIs

nday−1

i=0

 (6) 

where LAI denotes leaf area index at the n day; nday  denotes the number of days; i denotes an index starting from 0 to 

nday − 1; and LAIs denotes the steady state leaf area index. 

 15 

The simple moving average method, while showing useful in vegetation phenology modeling, is suitable for retrospective 

analysis rather than prediction, and importantly, it does not match with most land surface models that operate at incremental 

time steps. Analogous to the method used to simulate leaf stomatal conductance in response to environmental variation, this 

study proposes a time stepping scheme to simulate LAI realistically as lagging behind the steady state by a simple restricted 

growth model (Sellers et al., 1996a) as follows: 20 

 
dLAI

dt
= kl(LAIs − LAI) (7) 

where t denotes the time; kl denotes a time constant that reflects the responses of plant leaf allocation to climate variation; 

and LAI and LAIs denote the leaf area index and the steady state leaf area index, respectively. 

 

In the time stepping scheme, vegetation LAI does not change much during winter or summer as the current LAI is close to 

LAIs, whereas vegetation LAI increases (or decreases) during spring (or autumn) as the current LAI is less (or greater) than 25 

LAIs . For example, when the environment turns favorable for plant growth in spring, LAIs  exceeds LAI and dLAI/dt is 

positive such that the modeled canopy LAI increases. Note that the method developed here essentially uses the canopy 

photosynthetic capacity (i.e., the steady-state gross primary production) instead of air temperature as a synthesized indicator 
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to track the suitability of the environment to plant growth in time series, and therefore, the developed method is referred to as 

the Simplied Growing Production-Day (SGPD) model following our previous studies (Xin et al., 2018). 

 

Given the modeled LAI time series, both vegetation phenology and canopy GPP can be easily modeled (Xin et al., 2018). 

Various approaches have already been developed to derive the timing of key phenophases such as spring onset and autumn 5 

senescence from seasonal LAI trajectories. This study models the phenological transition dates using a simple method that 

derives the first spring and last autumn dates at which LAI reaches 20%, 50%, and 80% of the seasonal amplitudes 

(Richardson et al., 2012). The selected relative amplitudes (20%, 50%, and 80%) are correspondent to different plant growth 

stages over a growing season. Because the MOD17 algorithm only requires LAI, daily minimum temperature, daily vapor 

pressure deficit, and daily photosynthetically active radiation as model inputs, the canopy GPP is simply modeled by 10 

substituting the modeled LAI time series and the climate variables into the MOD17 algorithm. For the first day of spring 

when the LAI is zero, the modeled GPP is zero. As times move forward, the modeled GPP increases as LAI increases but is 

still dependent on other climate variables such as solar radiation, temperature and vapor pressure deficit, 

2.3 Comparative studies using Growing Season Index 

The Growing Season Index (GSI), a widely used method in vegetation phenology modeling (Jolly et al., 2005), allows for 15 

modeling seasonal LAI time series rather than individual phenophases and is implemented to make direct comparisons with 

the SGPD model. The GSI model performs comparably to or even outperforms other terrestrial biosphere models on 

predicting the timing of key phenophases for deciduous broadleaf forests (Melaas et al., 2013). 

 

The instantaneous GSI is first derived based on the work of (Jolly et al., 2005) as follows: 20 

 iGSI = iTMIN × iVPD × iPhoto (8) 

where iGSI denotes instantaneous growing season index; and iTMIN , iVPD , and iPhoto  denote the instantaneous scalar 

functions that account for the constraints of daily minimum air temperature, vapor pressure deficit, and photoperiod, 

respectively, on vegetation growth.  

 

The scalar functions for iTMIN, iVPD, and iPhoto have the mathematic forms similar to Equations 4 and 5 and are derived 25 

the same as defined in (Jolly et al., 2005) as follows: 
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 iTMIN = max (min (
TMIN − TMINmin

TMINmax − TMINmin

, 1) , 0) (9) 

 iVPD = max (min (1 −
VPD − VPDmin

VPDmax − VPDmin

, 1) , 0) (10) 

 iPhoto = max (min (
Photo − Photomin

Photomax − Photomin

, 1) , 0) (11) 

where TMIN denotes daily minimum temperature; TMINmin and TMINmax denote the lower and upper thresholds of daily 

minimum air temperature for vegetation photosynthetic activities, respectively;  VPD denotes daily vapor pressure deficit; 

VPDmin and VPDmax denote the lower and upper thresholds of daily vapor pressure deficit for vegetation photosynthetic 

activities, respectively; Photo denotes daily photoperiod; and Photomax and Photomin denote the lower and upper thresholds 

of daily photoperiod for vegetation photosynthetic activities, respectively. 5 

 

LAI can be modeled as the simple moving average of the instantaneous GSI scaled using maximum LAI as follows: 

 GSI =
1

nday

∑ iGSI

nday−1

i=0

 (12) 

 LAI = GSI × LAImax (13) 

where GSI denotes growing season index at the n day; nday denotes the number of days; i denotes an index starting from 0 to 

the previous one day; iGSI denotes the instantaneous growing season index; and LAImax denotes the maximum leaf area 

index at canopy closure. 10 

 

It is noteworthy that the instantaneous GSI uses the product of the scalars of minimum temperature, vapor pressure deficit, 

and photoperiod as an indicator to track the potential canopy photosynthetic capacities on the daily basis. Both the GSI 

model and the SGPD model, despite having different forms, share the same modeling idea. To understand the differences 

between the simple moving average method and the time stepping method, the GSI model is also implemented with the 15 

simple restricted growth model as follows: 

 LAIs = iGSI × LAImax (14) 

 
dLAI

dt
= kl(LAIs − LAI) (15) 

where iGSI denotes the instantaneous growing season index; LAImax denotes the maximum leaf area index at canopy closure; 

kl denotes a time constant that accounts for the lagged responses of plant leaf allocation to climate variation; and LAI and 

LAIs denote the leaf area index and the steady state leaf area index, respectively. 

 20 
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With the modeled LAI time series, the phenological transition dates are then retrieved based on the seasonal amplitude ratio 

method, the same way as processing the LAI time series derived from the SGPD model. Vegetation GPP is modeled by 

substituting the modeled LAI time series into the MOD17 algorithm. 

2.4 Model comparison and parameterization 

This study compares four different modeling approaches, including the results simulated using both the SGPD model and the 5 

simple moving average method (hereinafter referred to as SGPD-SMA), using both the SGPD model and the time stepping 

scheme (hereinafter referred to as SGPD-TS), using both the GSI model and the simple moving average method (hereinafter 

referred to as GSI-SMA), and using both the GSI model and the time stepping scheme (hereinafter referred to as GSI-TS). 

The commonly used metrics, including the Pearson correlation coefficient (R), the coefficient of determination (R²), the root-

mean-square error (RMSE), and the mean bias error (MBE), are derived for model assessment and comparison. 10 

 

As the MOD17 algorithm is a well-parameterized model, this study applies the model parameters from literature directly. 

Following the user guide of the MODIS GPP product (Running and Zhao, 2015), key parameters in the MOD17 algorithm 

are set as εmax = 1.165 gC/MJ , TMINmin = −6.0 °C, TMINmax = 9.94 °C, VPDmin = 0.65 kPa, and VPDmax = 1.65 kPa. 

The light extinction coefficient of the canopy is 0.5. The parameter that defines the ratio of leaf area index to environmental 15 

capacity is set as m = 0.58 m²(leaf area)/gC/day as quantified using the average ratio of LAI to GPP at canopy closure 

using the flux tower data. The canopy maximum LAI is set as 5.80 based on the maximum 95th percentile of satellite-

derived LAI across sites and years (Xin et al., 2018). The parameter nday in the simple moving average method and the 

parameter kl  in the time stepping method control the response of plant leaf allocation to environmental variation. The 

parameter nday is set as 21 days and the parameter kl is calibrated as 0.080 day
-1

.  20 

2.5 Study materials and pre-processing 

We evaluate our approach at the site scale using both the flux tower data and remote sensing data and at the regional scale 

using both the climate data and remote sensing data for deciduous broadleaf forests in eastern United States. For the site-

scale studies, all the flux tower sites of deciduous broadleaf forests (Table 1) that are available in the AmeriFlux website 

(http://ameriflux.ornl.gov/) were used for analysis. As the developed SGPD model is a simplified version of our previous 25 

modeling approach, the site-scale modeling studies only require daily incoming solar radiation, minimum air temperature, 

vapor pressure deficit, photoperiod, LAI, and GPP data. Daily incoming solar radiation, vapor pressure deficit, and GPP 

have already been provided in the Level 4 flux tower data, whereas daily minimum air temperature was processed from the 

half-hourly gap-filled Level 2 data and daily photoperiod as required by the GSI model was computed based on Equation 13 

as a function of geolocation and the day of year (Allen et al., 1998). As the MODIS LAI has been found to match field 30 

measurements well for deciduous broadleaf forests in eastern United States (Myneni et al., 2002), the 8-day 500 m MODIS 

http://ameriflux.ornl.gov/
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LAI Version 6 products (MOD15A2H) that are downloaded from the Land Processes Distributed Active Archive Center 

(https://lpdaac.usgs.gov/) were used as the reference data. Canopy LAI at each site were extracted from MOD15A2H for the 

pixel that contains the corresponding site. The extracted 8-day MODIS LAI if identified as poor quality in MOD15A2H 

were replaced using the three-point median-value moving window technique. Spikes in the LAI time series were removed 

using the Hampel filter and then gap-filled using the autoregressive modeling approach (Akaike, 1969). The obtained 8-day 5 

LAI time series were further smoothed using the Savitzky-Golay filter and then linearly interpolated to generate daily time 

series. The phenological transition dates were retrieved from daily LAI time series using the method that derives the first 

spring and last autumn dates at which LAI reaches 20%, 50%, and 80% of the seasonal amplitudes, respectively (Richardson 

et al., 2012). 

 Pho =
24

π
arccos (− tan(φ) tan (0.409 sin (

2π

365
DOY − 1.39))) (16) 

where Pho denotes daily photoperiod; φ denotes the latitude; and DOY denotes the day of year. 10 

 

Table 1: Site information for the studied flux towers of deciduous broadleaf forests. 

 

Our regional-scale studies used both the climate data and satellite remote sensing data from 1982 to 2016. The daily 1000 m 

Daymet Version 3 dataset (Thornton et al., 2012) was downloaded from the Oak Ridge National Laboratory Distributed 15 

Active Archive Center (http://daymet.ornl.gov/). The Daymet dataset provided daily incoming solar radiation, minimum 

temperature, vapor pressure, and photoperiod data and we derived daily vapor pressure deficit as the difference between 

average saturated vapor pressure and vapor pressure. Two different satellite LAI products, including the Global Land 

Surface Satellite (GLASS) dataset (Xiao et al., 2014) spanning from 1982 to 2014 and the MODIS LAI dataset (Myneni et 

al., 2002) spanning from 2001 to 2016, were used for the regional studies. The 8-day GLASS LAI product was generated at 20 

Site Code Site Name Lat (°N) Lon (°W) Elev (m) Years Reference 

US-Bar Bartlett Experimental Forest 44.0646 -71.2881 272 2004-2011 Jenkins et al. (2007) 

US-ChR Chestnut Ridge 35.9311 -84.3324 286 2006-2010 Hollinger et al. (2010) 

US-Dk2 Duke Forest Hardwoods 35.9736 -79.1004 168 2007-2008 Oishi et al. (2008) 

US-Ha1 Harvard Forest EMS Tower 42.5378 -72.1715 340 2000-2012 Urbanski et al. (2007) 

US-MMS Morgan Monroe State Forest 39.3231 -86.4131 275 2000-2014 Dragoni et al. (2011) 

US-MOz Missouri Ozark 38.7441 -92.2000 219 2005-2013 Gu et al. (2006) 

US-Oho Oak Openings 41.5545 -83.8438 230 2005-2011 Xie et al. (2014) 

US-Slt Silas Little Experimental Forest 39.9138 -74.5960 30 2005-2012 Clark et al. (2012) 

US-UMB Univ. of Mich. Biological Station 45.5598 -84.7138 234 2000-2012 Gough et al. (2013) 

US-UMd UMBS Disturbance 45.5625 -84.6975 239 2008-2012 Gough et al. (2013) 

US-WBW Walker Branch 35.9588 -84.2874 343 2000-2006 Miller et al. (2007) 

US-WCr Willow Creek 45.8060 -90.0798 515 2000-2013 Desai et al. (2008) 

https://lpdaac.usgs.gov/
http://daymet.ornl.gov/


11 

 

the 0.05° resolution using the AVHRR data for the time period from 1982 to 1999 and at the 1000 m resolution using the 

MODIS data for the time period from 2000 to 2012. The 8-day satellite LAI data across eastern United States were 

processed the same way as the processing of the site-scale data to obtain daily LAI time series. Because seasonal LAI 

amplitudes for each individual pixel could vary from year to year, the 2001-2010 average seasonal LAI amplitude were used 

as a baseline to derive the start of the season (SOS) and the end of the season (EOS) for each pixel for each year as the dates 5 

when seasonal LAI reaches 50% of the multi-year average seasonal LAI amplitude. The growing season length (GSL) was 

derived as the difference between EOS and SOS. A 500 m MODIS-based land cover map was obtained from the USGS Land 

Cover Institute (https://landcover.usgs.gov/). The land cover map was generated by choosing the land cover classification 

with the highest overall confidence for each pixel in 10-year (2001-2010) Collection 5.1 MODIS land cover type 

(MCD12Q1) data (Broxton et al., 2014). The 500 m land cover map was resampled to 1000 m resolution using the majority 10 

resampling approach and was reprojected to the Lambert Conformal Conic projection to mask areas that are not covered by 

deciduous broadleaf forests. 

3 Results 

3.1 Site-scale modeling 

Figure 1 shows an example for the simulated time series of LAI and GPP using data acquired at the US-UMB in 2004. The 15 

LAI time series simulated using both the SGPD-SMA and SGPD-TS methods are consistent with that obtained from 

MODIS. The LAI simulated using both the GSI-SMA and GSI-TS methods could also capture the observed seasonal 

variation of LAI but the modeled phenophases obviously have a leading phase in spring and a lagging phase in autumn as 

compared with observations. For both the SGPD model and the GSI model, the results derived using the time stepping 

method are consistent with those derived using the simple moving average method, indicating that the time stepping method 20 

is an effective way to reflect the lagging responses of plant leaf allocation to environmental conditions. By substituting the 

time series of LAI derived from different modeling approaches into the MOD17 algorithm, all the simulated GPP time series 

could match the flux tower measurements. Daily fluctuation in the observed GPP time series is largely due to variation in 

solar radiation from day to day. The GPP modeled using both the GSI-SMA and GSI-TS methods have slight overestimates 

in the phenological transition periods like spring and autumn and match well with the flux tower observations in summer and 25 

winter. 

 

https://landcover.usgs.gov/global_climatology.php
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Figure 1: The modeled and measured daily time series of a) leaf area index and b) gross primary production are shown for the flux 

tower site of US-UMB in 2004. The reference LAI time series in Figure 1a are derived from the MODIS data and the reference 

GPP time series in Figure 1b are obtained from the flux tower measurements. 

 5 

Figure 2 shows the regression analysis between the modeled and satellite-derived LAI. Overall, the SGPD model 

outperforms the GSI model on modeling LAI. When evaluated against the MODIS LAI data, the SGPD-SMA and SGPD-TS 

models achieved the R² of 0.887 and 0.890, respectively, and the RMSE of 0.804 and 0.778 m²/m², respectively, whereas the 

GSI-SMA and GSI-TS models achieved the R² of 0.746 and 0.759, respectively, and the RMSE of 1.356 and 1.303 m²/m², 

respectively. Both the GSI-SMA and GSI-TS models simulate LAI reasonably in summer and winter but overestimate LAI 10 

in spring and autumn, and therefore, the strong correlations between the GSI-modeled and MODIS-derived LAI are largely 

due to the underlying seasonality of deciduous broadleaf forests. It is noteworthy that the time stepping method and the 

simple moving average method, despite having different mathematical expressions, generate nearly the same simulation 
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results. The R² values between the SGPD-TS model and the SGPD-SMA model and between the GSI-TS model and the 

GSI-SMA model are 0.989 and 0.994, respectively, and the regression lines are close to the lines of equity, indicating that 

the time stepping method is an alternative representation for the simple moving average method. 

 

 5 

Figure 2: Scatter plots are shown for the comparisons a) between the SGPD-SMA LAI and the MODIS LAI, b) between the 

SGPD-TS LAI and the MODIS LAI, c) between the SGPD-TS LAI and the SGPD-SMA LAI, d) between the GSI-SMA LAI and 

the MODIS LAI, e) between the GSI-TS LAI and the MODIS LAI, and f) between the GSI-TS LAI and the GSI-SMA LAI on a 

weekly basis. All available site-year flux tower data were included in the analysis. The solid lines denote the 1:1 lines and the 

dashed lines denote the regression lines.  10 

 

Table 2 lists the statistical metrics that illustrate the model performance on predicting the timing of different phenophases. 

As evaluated against satellite observations, the SGPD-SMA model could well retrieve the spring onset dates when LAI 

reaches 50% seasonal amplitude and the obtained correlation coefficient is 0.718 with RMSE of 13.04 days. The SGPD-TS 

model performs comparable to the SGPD-SMA model and the resulted correlation coefficients are all significant expect for 15 

the dates that autumn LAI reaches 80% seasonal amplitudes. The SGPD-based models generally outperform the GSI-based 
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models as the achieved correlation coefficients are higher and the RMSE are smaller for more than 10 days. Both the GSI-

SMA and GSI-TS models predict spring onsets earlier than observations for more than 30 days and predict autumn 

senescence later than observations for more than 20 days. By comparison, the SGPD-TS model predicts the dates that spring 

and autumn LAI reaches 50% seasonal amplitudes well with the MBE of only -2.56 and -2.86 days, respectively. 

 5 

Table 2: The performance of the modeled timings of phenophases as evaluated against satellite observations. The timings of 

phenophases were derived based on dates at which the leaf area index reaches 20%, 50%, 80% of seasonal amplitude. Positive 

mean bias error (MBE) indicates that the modeled spring onsets are earlier than the observed ones and negative MBE indicates 

the opposite. 

 10 

The modeled and measured GPP are compared in Figure 3 to address the key question that whether the simulated LAI could 

be applied to model canopy GPP. Compared with the flux tower measurements, the results modeled using the SGPD-SMA, 

SGPD-TS, GSI-SMA, and GSI-TS LAI could achieve the R² values of 0.768, 0.773, 0.722, and 0.719, respectively, and the 

RMSE values of 2.273, 2.239, 2.577, 2.535 gC/m²/day, respectively. The modeled results using the GSI-based LAI have 

higher errors, in terms of both RMSE and MBE, than those using the SGPD-based LAI. The accuracies of the modeled GPP 15 

using the SGPD-based LAI are only slightly lower than to that using the MODIS-based LAI directly. The modeling results 

obtained based on the simple moving average method are nearly the same as those obtained based on the time stepping 

method. Given the high degrees of consistency between the simple moving average method and the time stepping method on 

modeling LAI, phenology, and GPP, only the results obtained using the time stepping method are shown and discussed in the 

regional studies as presented in the following section. 20 

 

phenophases SGPD-SMA SGPD-TS GSI-SMA GSI-TS 

R RMSE 

(days) 

MBE 

(days) 

R RMSE 

(days) 

MBE 

(days) 

R RMSE 

(days) 

MBE 

(days) 

R RMSE 

(days) 

MBE 

(days) 

Spring LAI 20% 0.790*** 16.17 -10.85 0.824*** 13.37 -8.34 0.763*** 40.38 -38.30 0.770*** 39.62 -37.58 

Spring LAI 50% 0.718*** 13.04 -1.97 0.691*** 13.68 -2.56 0.653*** 38.47 -34.92 0.657*** 38.22 -34.63 

Spring LAI 80% 0.432*** 20.91 12.63 0.409*** 21.19 12.41 0.560*** 32.86 -28.00 0.565*** 28.54 -23.55 

Autumn LAI 80% 0.220 31.80 -25.56 0.164 27.90 -20.64 0.021 35.38 32.42 -0.004 35.23 32.27 

Autumn LAI 50% 0.686*** 9.80 -5.42 0.625*** 9.48 -2.86 0.621*** 24.20 23.07 0.616*** 24.63 23.51 

Autumn LAI 20% 0.703*** 8.87 2.15 0.676*** 10.91 6.37 0.689*** 19.64 18.48 0.713*** 22.93 22.00 
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Figure 3: Scatter plots are shown for the comparisons a) between the GPP modeled using SGPD-SMA LAI and the flux tower 

GPP, b) between the GPP modeled using SGPD-TS LAI and the flux tower GPP, c) between the GPP modeled using MODIS LAI 

and the flux tower GPP, d) between the GPP modeled using GSI-SMA LAI and the flux tower GPP, and e) between the GPP 

modeled using GSI-TS LAI and the flux tower GPP on a weekly basis. All available site-year flux tower data were included in the 5 
analysis. All the modeled GPP were derived using the MOD17 algorithm. The solid lines denote the 1:1 lines and the dashed lines 

denote the regression lines.  

 

3.2 Regional-scale modeling 

Figure 4 shows the spatial extents of the 10-year (2001-2010) mean LAI and associated errors as derived from remote 10 

sensing data and model simulations. The SGPD-TS method could well capture the spatial pattern of the satellite-derived 

LAI, including the decreasing gradients from south to north and the decreases in mountain areas (Figure 4a and 4b). The 10-

year mean LAI derived from the GSI-TS method (Figure 4c) also show a decreasing trend from south to north but the 

modeled LAI is much larger than the MODIS LAI. Because the GSI-TS method defines the maximum leaf area index for the 

growing season, the overestimation on the modeled 10-year mean LAI is primarily due to model overestimates in the spring 15 
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and autumn phenological transitions. As compared with the MODIS observations, RMSE and MBE obtained by the SGPD-

TS method are much smaller than and distribute more evenly than those obtained by the GSI-TS method. RMSE for the GSI-

TS LAI exhibit a decreasing north-south gradient, implying that the model accuracies are lower in southern areas lower than 

in northern areas. MBE for the GSI-TS model are greater than 0.5 m²/m² for most areas. When comparing SGPD-TS LAI 

with MODIS LAI, RMSE are less than 0.5 m²/m² and MBE are minor across the study region. The amplitudes of the error 5 

metrics in the regional-scale studies are consistent with those in the site-scale studies. Note that some studies applied the 

multi-year mean LAI as derived from the remote sensing data to simulate the land surface processes, the results obtained 

here indicate that the SGPD-TS method can be used alternatively to provide multi-year mean LAI time series via climate 

variables for land surface studies. 

 10 
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Figure 4: The spatial extents are shown for a) the 2001-2010 mean MODIS LAI, b) the 2001-2010 mean SGPD-TS LAI, c) the 

2001-2010 mean GSI-TS LAI, d) RMSE between SGPD-TS LAI and MODIS LAI, e) RMSE between GSI-TS LAI and MODIS 

LAI, f) MBE between SGPD-TS LAI and MODIS LAI, and g) MBE between GSI-TS LAI and MODIS LAI across eastern United 

States. The units for both RMSE and MBE are m² (leaf area) per m² (ground area). 5 

 

The spatial extents for the 10-year mean phenological metrics including the start of the season (SOS), the end of the season 

(EOS), and the growing season length (GSL) are shown in Figure 5. The SGPD-TS method predicts lower SOS (i.e., earlier 

spring onset), higher EOS (i.e., later autumn senescence), and longer GSL in southern areas than in northern areas. The 
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spatial distributions of all phenological metrics derived using SGPD-TS LAI agree well with those derived using MODIS 

LAI. From the statistical analysis as shown in the subplots, the phenological metrics derived from the SGPD-TS method 

could achieve the correlation coefficient values of 0.879, 0.552, and 0.844, the RMSE values of 8.13, 7.54, and 13.73 days, 

and the MBE values of 0.71, -2.82, and -3.54 days, for SOS, EOS, and GSL, respectively, as compared to those derived from 

the MODIS data. Although the spatial distributions of the phenological metrics derived from the GSI-TS method match 5 

those derived from the satellite observations, the modeled results have considerable biases, where the RMSE values are 

38.05, 14.37, and 51.58 days, and the MBE values are -36.33, 12.91, and 49.23 days, for SOS, EOS, and GSL, respectively. 

Consistent with the site-scale studies, the GSI-TS method predicts spring onset much earlier and autumn senescence later 

than the satellite-derived data, resulting in large overestimation of the growing season length. 
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Figure 5: The spatial extents are shown for a) the start of the season (SOS) derived from MODIS LAI, b) SOS derived from 

SGPD-TS LAI, c) SOS derived from GSI-TS LAI, d) the end of the season (EOS) derived from MODIS LAI, e) EOS derived from 

SGPD-TS LAI, f) EOS derived from GSI-TS LAI, g) the growing season length (GSL) derived from MODIS LAI, h) GSL derived 

from SGPD-TS LAI, and i) GSL derived from GSI-TS LAI using the 10-year (2001-2010) mean data across eastern United States. 5 
The embedded subplots show the comparisons between modeled and MODIS-derived phenological metrics for SOS, EOS, and 

GSL, respectively.  
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Figure 6 displays the multi-year phenology anomalies that are spatially averaged for deciduous broadleaf forest across 

eastern United States. The use of phenology anomalies relative to the 2001-2010 average instead of absolute values makes 

the results directly comparable. The SGPD-TS method could capture the interannual variation of vegetation phenology 

retrieved from the remote sensing data. When comparing the SGPD-TS method with the MODIS (2001-2016) data, the 

correlation coefficients are 0.896 (p<0.001), 0.650 (p=0.006), and 0.817 (p<0.001), for SOS, EOS, and GSL, respectively. 5 

When comparing the SGPD-TS method with the GLASS (1982-2014) data, as derived from and the correlation coefficients 

are 0.554 (p=0.001), 0.717 (p<0.001), 0.637 (p<0.001), for SOS, EOS, and GSL, respectively. The SGPD-TS method 

outperforms the GSI-TS method on capturing the long-term trends of vegetation phenophases, as the correlation coefficients 

obtained using the GSI-TS method are lower and sometimes insignificant. Yearly fluctuation in EOS derived using the GSI-

TS method is smaller than those derived from both the SGPD-TS method and the satellite data. The SOS and EOS derived 10 

from the GLASS data have much larger variation in 1982-2000 than in 2001-2010, suggesting that the use of the AVHRR 

and MODIS data in the GLASS dataset could contribute uncertainties in the satellite-derived phenological metrics. Both 

Figure 5 and 6 indicate that the SGPD-TS method is reliable on capturing the spatiotemporal patterns of regional vegetation 

phenophases. 

 15 
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Figure 6: The spatially-averaged phenology anomalies relative to the 2001-2010 average are shown for a) the start of the season 

(SOS), b) the end of the season (EOS), and c) the growing season length (GSL). SOS and EOS are derived as the date that LAI first 

and last reaches 50% of the seasonal amplitudes and GSL is derived as the difference between EOS and SOS.  
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Figure 7 compares the simulated GPP using the MOD17 algorithm and LAI derived from different approaches. The 10-year 

average annual GPP obtained using SGPD-TS LAI has a similar spatial pattern with that obtained using MODIS LAI and 

has lower values than that obtained using GSI-TS LAI. Taking the GPP simulated using MODIS LAI as reference, the 

results simulated using SGPD-TS LAI achieve the correlation coefficient of 0.898 with RMSE of 78.78 gC/m²/year and 5 

MBE of 12.22 gC/m²/year, whereas the results simulated using GSI-TS LAI achieve the correlation coefficient of 0.898 with 

RMSE of 173.45 gC/m²/year and MBE of 153.43 gC/m²/year. Although the obtained correlation coefficients are close, the 

SGPD-TS method results in the regression lines closer to the 1:1 lines with smaller bias errors than the GSI-TS method. The 

zonally average profiles of the 2001-2010 average annual GPP as shown in Figure 7d suggest that the results obtained from 

the SGPD-TS method are close to those obtained using MODIS LAI, whereas the results obtained from the GSI-TS method 10 

have positive biases of approximately 120 - 180 gC/m2/year (roughly 10 - 15%) across latitudes. Note that the MOD17 

algorithm has positive MBE of 0.247 gC/m2/day and 0.571 gC/m2/day when using SGPD-TS LAI and GSI-TS LAI, 

respectively, as model input data in the site-scale study. The differences in MBE between the two modeling methods are 

0.324 gC/m2/day (or 118.26 gC/m2/year in equivalence) for the site-scale studies, which are consistent with the regional-

scale studies. 15 
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Figure 7: Comparisons are shown for a) the spatial extent of annual GPP modeled using MODIS LAI, b) the spatial extent of 

annual GPP modeled using SGPD-TS LAI, c) the spatial extent of annual GPP modeled using GSI-TS LAI, d) the zonally 

averaged profiles of annual gross primary production modeled using LAI derived from different approaches, e) the regression 

between GPP modeled using SGPD-TS LAI and MODIS LAI, and f) the regression between GPP modeled using GSI-TS LAI and 5 
MODIS LAI. The simulated daily GPP were first summed for each individual year and were then averaged across years to derive 

the 2001-2010 average annual GPP as shown in Figure 7a, 7b, and 7c. The shaded areas in Figure 7d mark the range of the 

standard deviation. All pixels of deciduous broadleaf forest across eastern United States are included in analysis in Figure 7e and 

7f. 

4 Discussion 10 

Here we provide a solution that bridges the canopy photosynthesis model and the leaf dynamics model. The developed 

method first proposes a linear function between the canopy photosynthetic capacity and the steady state LAI so as to 

complement the canopy photosynthesis model and then applies a simple restricted growth model to account for the lagged 

responses of plant leaf allocation to natural environment. In essence, the developed method, although having a simple form, 

has synthesized the impacts of various climate factors on leaf dynamics because any climate variable that influences 15 

vegetation photosynthesis would affect the process of plant leaf allocation in the models as well. Consistent with field 

observations, the simulated LAI increases as the environmental conditions turn favorable for photosynthetic activities such 

as increases in photoperiod and temperature. 
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Figure 8 further illustrate the relationship between mean LAI and different variables on a monthly basis. All data were 

averaged to the monthly time scale such that canopy LAI can be considered as nearly the steady state. On the monthly basis, 

mean LAI has a strong near-linear relationship with mean GPP (R²=0.888) and the slope for the regression without intercept 

is 0.580, the same as we used in the model simulation. On the monthly basis, mean LAI is strongly correlated with mean 5 

temperature (R²=0.799), indicating that temperature is the dominate factor that determines vegetation phenology. Factors like 

vapor pressure deficit and photoperiod also have positive relationships with mean LAI on the monthly basis. Figure 8 

suggests that the processes of leaf phenology and photosynthetic phenology for deciduous broadleaf forest are closely related. 

Our modeling approach that links canopy GPP with LAI reflects the empirical positive relationship found in Figure 8a. 

 10 

Figure 8: Scatter plots are shown for the relationship a) between mean leaf area index and mean gross primary production, b) 

between mean leaf area index and mean temperature, c) between mean leaf area index and mean vapor pressure deficit, and d) 
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mean leaf area index and mean photoperiod on a monthly basis. All available site-year flux tower data were included in the 

analysis. All data were averaged to the monthly time scale for analysis. The dashed lines denote the regression lines. Figure 8a uses 

the regression without intercept.  

 

The performance of our developed method is largely dependent on the canopy photosynthesis model used. In our previous 5 

studies, we developed a process-based canopy photosynthesis model that synthesizes sub-models such as canopy radiative 

transfer, leaf transpiration, leaf stomatal conductance, leaf photosynthesis, and soil evaporation and applied it for modeling 

the LAI time series. When applying the simple moving average method, implementing the process-based model in Xin et al. 

(2018) achieved higher accuracies than implementing the MOD17 algorithm on modeling canopy GPP and LAI as reflected 

by higher R² and lower errors. The MOD17 algorithm only assumes the monotonic relationship between air temperature and 10 

photosynthesis and between vapor pressure deficit and photosynthesis. It also does not account for the impacts of CO2 on 

photosynthesis. The use of the MOD17 algorithm in this study thus has limitations in the model structure. It implies that the 

LAI modeling in our developed method likely benefits from improvements on the canopy photosynthesis model. This study 

chooses the MOD17 algorithm instead of the sophisticated process-based model because the MOD17 algorithm is well 

parameterized across biomes and requires quite limited model inputs of climate variables. Successful implementation with 15 

the MOD17 algorithm allows for extending the developed method to applications across biomes at regional to global scales. 

 

Land surface models that predict vegetation GPP require either satellite-derived LAI input data or the phenology sub-model. 

The main idea for this study is to improve the phenology modeling by providing time series of LAI simulated using climate 

variables, and hence enables to simulate GPP forced only by climate variables. Because we implement the MOD17 20 

algorithm instead of the sophisticated process-based model for the purpose of simplicity, one should not expect that GPP 

simulated based on the model-simulated LAI could be more accurate than GPP simulated based on the satellite-derived LAI. 

 

The time stepping scheme developed here is also an improvement over the simple moving average method as used in our 

previous studies. The results obtained using the time stepping method are consistent with the simple moving average method 25 

at the site scale and show to be reasonable at the regional scale. Compared to the simple moving average method, the time 

stepping method could fit seamlessly into the land surface models that operate at incremental time steps such as the 

Community Land Model and the Common Land Model (Dai et al., 2003). Because the state-of-the-art land surface models 

all include the canopy photosynthesis sub-model, the developed method can then be easily embedded into these land surface 

models as an alternative phenology model. Compared to the simple light use efficiency model like the MOD17 algorithm, 30 

implementation of the developed time-stepping scheme in the land surface models relies on supercomputing for global 

applications. To better understand the performance of the developed method, one study is now undertaken to implement the 

developed method with the Common Land Model for simulating multi-decadal LAI and GPP for global biomes forced only 

by climate variables. 
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Applying the developed method to other biomes and other regions still has issues to be solved appropriately. The time 

stepping method uses the parameter kl to account for the time lags of leaf allocation in response to environmental changes. 

For the deciduous broadleaf forests, a biome with strong seasonality, the developed scheme achieved reasonable results with 

appropriate parameterization. Short vegetation like grasslands tends to respond much quickly to abrupt environment changes 5 

like precipitation and tropical ecosystems have strong resilience to short-term environmental variation (Levine et al., 2016; 

Shen et al., 2011). Another issue is to find the appropriate values of m for different biomes. One way to determine the values 

of m is to find the regression slope between leaf area index and gross primary production on a monthly basis. Model 

parameterization however still requires broad tests. These understandings from the observational studies imply that biomes 

have varied response speeds to the environment and proper model calibration and assessment are required for the developed 10 

method. Using the observation data from remote sensing alone is inadequate for model development as satellite-derived LAI 

could have large uncertainties for some specific biomes other than deciduous broadleaf forests. Fortunately, global flux 

tower network and regional phenology observation networks are now established and offer abundant data for comprehensive 

model assessment. 

5 Conclusions 15 

Terrestrial biosphere models provide a basic tool for understanding the interactions between the land surface and the 

atmosphere. To provide a complete solution to the simulation of plant leaf dynamics and canopy photosynthesis, this study 

establishes a linear relationship between the steady state leaf area index and the corresponding canopy photosynthetic 

capacity. The proposed leaf allocation function complements the canopy photosynthesis model of the MOD17 algorithm to 

form simultaneous equations that can be solved using the numerical approach. To account for the time lagging of plant leaf 20 

allocation in response to climate variation, a time stepping scheme based on a simple restricted growth model is applied to 

the solved steady state leaf area index to obtain time series of leaf area index. The developed method could perform 

reasonably well on simulating leaf area index, phenology, and gross primary production for deciduous broadleaf forests 

across eastern United States over years as found in both the site-scale and regional-scale modeling studies. Compared to the 

simple moving average method, the time stepping scheme developed here is consistent with and can be easily embedded into 25 

the state-of-the-art land surface models that typically operate at incremental time steps. The developed method allows for 

simulating leaf area index and gross primary production simultaneously and provides a much simplified and improved 

version of our previous model as a basis for global applications in future studies. 
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