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Abstract. We have compared a suite of recent global CO2 atmospheric inversion results to independent airborne observations

and to each other, to assess their dependence on differences in northern extratropical vertical transport and to identify some of

the drivers of model spread. We evaluate posterior CO2 concentration profiles against observations from the High-Performance

Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) aircraft cam-

paigns over the mid Pacific in 2009-2011. Although the models differ in inverse approaches, assimilated observations, prior5

fluxes, and transport models, their broad latitudinal separation of land fluxes has converged significantly since the Atmospheric

Carbon Cycle Inversion Intercomparison (TransCom3) and the REgional Carbon Cycle Assessment and Processes (RECCAP)

projects, with model spread reduced by 80 % since TransCom3 and 70 % since RECCAP. Most modelled CO2 fields agree

reasonably well with the HIPPO observations, specifically for the annual mean vertical gradients in the northern hemisphere.

Northern hemisphere vertical mixing no longer appears to be a dominant driver of northern versus tropical annual flux dif-10

ferences. Our newer suite of models still gives northern extratropical land uptake that is modest relative to previous estimates

(Gurney et al., 2002; Peylin et al., 2013) and near neutral tropical land uptake for 2009-2011. Given estimates of emissions

from deforestation, this implies a continued uptake in intact tropical forests that is strong relative to historical estimates (Gurney

et al., 2002; Peylin et al., 2013). The results from these models for other time periods (2004-2014, 2001-2004, 1992-1996), and

re-evaluation of the TransCom3 Level 2 and RECCAP results confirms that tropical land carbon fluxes including deforestation15
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have been near neutral for several decades. However, models still have large disagreements on ocean-land partitioning. The

fossil fuel and the atmospheric growth rate terms have been thought to be the best-known terms in the global carbon budget,

but we show that they currently limit our ability to assess regional scale terrestrial fluxes and ocean-land partitioning from the

model ensemble.

1 Introduction5

Current appraisals of the global atmospheric carbon budget are informed by surface fluxes computed by inverse transport mod-

els (e.g., Newsam and Enting, 1988; Tans et al., 1990; Rayner et al., 1999; Gurney et al., 2002, 2003, 2004; Peylin et al., 2013).

Net carbon flux to the atmosphere is derived from temporal and spatial CO2 gradients given by atmospheric observations and

prior estimates of component fluxes and their uncertainties. This assessment of atmospheric sources and sinks relies on 1)

atmospheric tracer transport models that link fluxes to atmospheric CO2 fields, 2) prior emissions and sinks (e.g., from process10

model flux estimates), 3) the spatial and temporal representativeness and coverage of the observational network, and 4) error

statistics associated with each information piece. Since the problem is underdetermined, it is essential to quantify the uncer-

tainty and biases of posterior fluxes and CO2 concentrations with independent observations and cross-model comparisons.

The most prominent community-wide inverse result intercomparison that included comparisons of posterior concentrations

to independent observations was the TransCom 3 study (Gurney et al., 2002, 2004), which studied fluxes for the 1992-199615

period. This comparison could focus on the impact of transport model differences by optimizing the fluxes using a common

method over the same regions (11 land and 11 ocean). One particular feature of the seasonally resolved (Level 2) TransCom

3 inversions (hereafter denoted as T3L2) was the direct dependence of flux estimates on vertical gradients of CO2 (Stephens

et al., 2007), leading to a different partitioning between Northern Extratropical (NET) versus Tropical (T) land sinks.

A more recent community-wide CO2 inverse model intercomparison was carried out as part of the REgional Carbon Cycle20

Assessment and Processes Project (RECCAP, https://www.globalcarbonproject.org/reccap; Canadell et al. 2011). The atmo-

spheric inversion component of RECCAP was a comprehensive intercomparison that analyzed long-term mean, long-term

trend, interannual variations and mean seasonal variations of CO2 fluxes using common post-processing (Peylin et al., 2013).

In RECCAP, the 11 inverse models used different inversion techniques, atmospheric models, and observational datasets. When

the fluxes were analyzed for the years 2001 to 2004, Peylin et al. (2013) found an overall improved consistency between in-25

versions at large scale and over specific regions compared to T3L2 when the network of atmospheric sites was less dense.

RECCAP inversions showed a general agreement on the total natural land carbon flux long-term mean and its interannual

variability over 1991-2010. The total ocean plus land sink estimates were more robust over the NET than for the Tropics and

in the Southern Extratropics (SET). The remaining spread led to a disagreement on the NET/T/SET land partitioning, with

some models simulating a stronger tropical source compensated by larger NET and SET sinks. Peylin et al. (2013) also noted30

that the group of models that assimilated observations at their corresponding times rather than using monthly means had more

consistent, weaker tropical sources, and weaker northern sink land fluxes.

Several additional inverse modelling intercomparison studies have more recently involved satellite, surface and joint surface-
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satellite inversion (e.g., Chevallier et al., 2014; Houweling et al., 2015). In these studies, the inversion systems used space

borne retrievals of column-average dry air-mole fraction of CO2 (XCO2) from the Orbiting Carbon Observatory-2 (OCO-2)

satellite since July 2014 (Eldering et al., 2017) and from the Greenhouse Gas Observing SATellite (GOSAT; Kuze et al. 2009)

instrument since January 2009. Those inverse exercises, however, are still sensitive to satellite retrieval algorithms and the

inversions’ prior assumptions. In particular, the results are sensitive to systematic errors from transport and satellite retrievals5

(Houweling et al., 2010; Chevallier, 2015).

Schimel et al. (2015) investigated the NET versus T+SET land flux partitioning as indicated by atmospheric inversions, bio-

sphere process model simulations, and forest inventory estimates, and estimated a large land uptake over the tropics by intact

forests due to a significant CO2 fertilization effect. This study argued for the importance of comparing posterior CO2 fields to

observations, which was not done in RECCAP, in order to fully understand and predict terrestrial land sinks, and their variation10

due to CO2 and climate feedbacks. A follow-up inversion intercomparison focused on East Asia and found that large flux

adjustments were possible even though models well simulated the observed gradient in vertical profiles measured by aircraft,

because the uncertainties from model transport and fossil fuel (FF) prior emissions were compensated by the flux adjustments

(Thompson et al., 2016).

The HIPPO campaign (Wofsy, 2011), spanned large latitudinal, vertical and temporal coverage (2009 to 2011) and provides15

a useful atmospheric trace gas data set for investigating the consistency of inverse fluxes and posterior concentration results.

Graven et al. (2013) found an increase of the CO2 seasonal amplitude by up to 50 % at mid to high latitudes of the northern

hemisphere and at altitudes ranging between 3 and 6 km between the HIPPO period and the 1950s. Deng et al. (2015) compared

posterior CO2 and O3 fields from GEOS-Chem to the HIPPO observations to diagnose the impact of the upper troposphere

and lower stratosphere (UTLS) definition on retrieved fluxes. These results indicate a significant impact of transport errors on20

retrieved fluxes. Frankenberg et al. (2016) evaluated the CarbonTracker CT2013B and Monitoring Atmospheric Composition

and Climate MACC v13r1 atmospheric inverse models, and satellite retrievals from GOSAT, TES (Tropospheric Emission

Spectrometer) and AIRS (Atmospheric Infrared Sounder) in comparison to HIPPO measurements. They found that despite an

overall agreement between inversions and HIPPO measurements, systematic model transport errors remain important.

After years of continuous model development, the goal of this study is to investigate whether global inverse models are still25

highly dependent on northern hemisphere vertical transport errors and on prior flux estimates and their uncertainties used in

the inversions.

Our two main approaches to answer this question are:

– First, we compare modelled CO2 after flux optimization to independent aircraft in-situ CO2 observations from the HIPPO

campaign (2009-2011).30

– Second, we compare the observationally-constrained fluxes for latitudinal bands and on a global scale both across models

and to budget estimates provided by the Global Carbon budget 2016 (hereafter denoted GCP2016; Le Quéré et al. 2016).

Measurements and inversion systems are described in Sect. 2. In Sect. 3.1, we present the results of the comparison of mod-

eled posterior CO2 vertical gradients with HIPPO measurements. In Sect. 3.2, we analyze the differences in the meridional
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distribution of land sinks and global carbon estimates for the years 2009 to 2011 from inverse modelling of atmospheric in-situ

observations together and with GCP2016. In Sect. 3.3, we compare inverse model and GCP2016 estimates at the global scale,

including prescribed fossil and retrieved atmospheric growth rate terms. Conclusions and a summary of the findings are given

in Sect. 4.

2 Methods5

2.1 Participating models

The list of participating inverse models is shown in Table 1 and more details are available in the supplement. These include

10 different inverse modeling systems or system variants. The inversion systems differ in many aspects such as transport

models, wind fields, analysis procedures, and subset of assimilated observations. The ACTM system performed 2 inversions

with different prescribed fossil fuel (FF) emissions (Saeki and Patra, 2017), one based on totals from the Carbon Dioxide10

Information Analysis Center (CDIAC; Boden et al. 2016) and another based on the International Energy Agency (IEA 2016),

which allows us to assess sensitivity to the FF prior only. This is also the case for the 2 Carbon Tracker Europe versions,

CTE2016-FT (Fast Track) and CTE2017-FT, where only the subset of observations and the FF prior are different (van der

Laan-Luijkx et al., 2017).

It is worth noting that some inverse models are constructed in a similar framework. Some share the same transport model, such15

as TM5 that is used in 4 inversions, and some use the same meteorological fields. Five inverse systems nudge their forecast field

to the ERA-Interim reanalysis (Dee et al., 2011). The two longest flux estimates, from CAMS (v16r1) and Jena (s85_v4.1),

are used to reproduce the comparison with observations as in (Stephens et al., 2007) over the T3L2 period (1992 to 1996). The

Jena s85_v4.1 and s04_v4.1 inversions differ in their calculation periods and station sets used: Jena s85_v4.1 starts in 1985

using only 23 stations that cover this entire period, while s04_v4.1 uses many more sites (59) and starts in 2004. This also20

allows us to separate the impact of the number of sites assimilated over the most recent period.

2.2 The Global Carbon Budget 2016

The Global Carbon Project (GCP) gathers observational and model-based flux estimates from multiple organizations and

research groups around the world to yearly report a global budget of atmospheric CO2 (Le Quéré et al., 2016). GCP2016 is25

the most recent version with flux estimates forced to balance globally. The most recent version (GCP2017; Le Quéré et al.

2018) separated an explicit unknown ocean or land flux term, which prevents simple comparisons of the type presented here.

Specifically, the land/ocean partitioning in GCP2016 is based on multiple observational constraints on the ocean flux for

the 1990s, extrapolated forward with a suite of 7 global ocean models. As pointed out in Le Quéré et al. (2018), there are

considerable uncertainties in this extrapolation, with the estimated ocean/land partitioning for later decades dependent on the30

models.
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Acronym References
Grid Fossil Fuel Transport Number of Meteorological Available

Spacing priors Model vertical layers fields Period

CAMS (v16r1) Chevallier et al. (2005, 2010)*
3.75◦

CDIAC/GCP2016 LMDZ 39 ERA interim 1979 to 2016
x 1.875◦

Jena (s04_v4.1)
Rödenbeck et al. (2003)

4◦x5◦ CDIAC TM3 19 NCEP 2004 to 2016
Rödenbeck (2005)

Jena (s85_v4.1) // 4◦x5◦ CDIAC TM3 19 NCEP 2004 to 2016

CTE2016-FT van der Laan-Luijkx et al. (2017) 1◦x1◦ CDIAC TM5 25 ERA interim 2001 to 2015

CTE2017-FT // 1◦x1◦ CDIAC TM5 25 ERA interim 2000 to 2016

CT2016 Peters et al. (2007)** 1◦x1◦
ODIAC v2016

TM5 25 NCEP 2001 to 2015
and "Miller"

ACTM-IEA
Saeki and Patra (2017) Inversion

IEA ACTM
32 NCEP2

2003 to 2011
Patra et al. (2011) (2.8◦x2.8◦) (for inversion)

ACTM-CDIAC //
and forward

CDIAC ACTM
32 JRA25

2003 to 2011
(1.1◦x1.1◦) for forward

TM5-4DVar Basu et al. (2013) 3◦x2◦
EDGAR

TM5 25 ERA interim 2007 to 2012
+CDIAC

GEOS-Chem Deng et al. (2014) 4◦x5◦
CDIAC, ICOADS

GEOS 47 GEOS5 2009 to 2011
and 3-D aviation

Table 1. List of the inverse modelling systems used in this study and general characteristics. *with updates documented at

https://atmosphere.copernicus.eu/. **with updates documented at http://carbontracker.noaa.gov.

The GCP2016 atmospheric growth rate is derived from atmospheric CO2 measurements at marine boundary layer (MBL)

sites made by the US National Oceanic and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL;

Masarie and Tans 1995; Dlugokencky and Tans 2018). CO2 emissions from land-use-change (ELUC) are the net sum of all

anthropogenic activities: deforestation, afforestation, logging and shifting cultivation. Total emissions are estimated, following

the bookkeeping method (Houghton, 2003; 2012), with complementary inter-annual variability calculated from satellite data5

when available (van der Werf et al., 2010; Giglio et al., 2013). The average ELUC for the year 2009 to 2011 included here is

estimated to be 0.85 PgC yr−1 with an uncertainty of 0.5 PgC yr−1. These emissions are added to the GCP2016 land sink for

comparison to atmospheric inversion estimates.

Finally, the land sink is estimated in GCP2016 as a residual from all other components of the carbon budget. The GCP2016

method treats the riverine flux of carbon from land to ocean to atmosphere as separate components of the total air-land and10

air-sea fluxes and subtracts an estimate of this flux (0.45 PgC yr−1; Jacobson et al. 2007) from the pCO2-based sea-to-air
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flux estimates to match estimates of the anthropogenic ocean sink alone. Because the land sink is a residual, this increase in

the magnitude of the ocean sink results in a corresponding reduction by 0.45 PgC yr−1 in the magnitude of the land sink in

GCP2016. To compare to atmospheric inverse flux estimates, which represent the total air-sea and air-land fluxes, we have

adjusted the GCP2016 ocean and land flux estimates by this same 0.45 PgC yr−1, decreasing the ocean sink and increasing the

land sink.5

Note that we do not show GCP2016 estimates here as a truth metric against which to evaluate the models, but rather as one

estimate of an internally consistent global budget that provides a useful reference for exploring axes of variability in our models

and comparing to other community estimates.

Figure 1. Reconstructed annual cycle in northern extratropical vertical CO2 gradients, obtained from 2-harmonic fits of the HIPPO data and

correspondingly sampled model outputs, averaged over 20◦N to 90◦N (1000 hPa to 800 hPa minus 800 hPa to 400 hPa). The CO2 average

curtain observations for each of 9 atmospheric transects have been added on the graph to illustrate the data uncertainties and temporal

coverage, the y-axis errorbar is derived from the range of disagreement among the three in situ instruments on board (QCLS, OMS, and

AO2; see supplement), the line average is derived from the CO2.X merged dataset. The horizontal whiskers represent the time span of the

flights contributing to each average. The observed line shown here is not a direct fit to the observation points, but rather comes from an

average of fits to individual 100 hPa by 5 degree latitude bins as described in the text.
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2.3 HIPPO observations and fitting procedures

The HIPPO project (Wofsy, 2011) used the NSF/NCAR Gulfstream V aircraft (GV) to conduct 5 month-long campaigns in

different seasons over three years (2009-2011, see supplement), that consisted of vertical profiling along north-south Pacific

transects between 87◦N and 67◦S. The 5 campaigns included 9 transects of the NET Pacific. We exclude observations over

North America conducted between Colorado and Alaska (Fig. S1). HIPPO flew three different in situ CO2 instruments and5

2 whole air samplers with laboratory CO2 measurements. We use the recommended CO2.X variable which comes primarily

from the Harvard Quantum Cascade Laser Spectrometer (QCLS), gap filled during calibration sequences, and compare to the

other systems to constrain potential systematic biases (see supplement). We calculate the NET vertical gradient as the differ-

ence between the average from 1000 hPa to 800 hPa for the lower troposphere (LT), and the average from 800 hPa to 400 hPa

for the upper troposphere (UT), spanning the latitude range from 20◦N to 90◦N. To do this, we first detrend the observations10

and model sampled along the flight-track output by subtracting a deseasonalized and smoothed long-term trend record from

the fit of the Mauna Loa Observatory in-situ measurement time series to provide a common reference for both observations

and models, and bin the observations by 100 hPa in pressure and 5 degrees in latitude bins. We then fit each bin with a 2-

harmonic curve and constant offset, and average the resulting fits across boxes and pressure levels, with latitude weighting (see

supplement). Fig. 1 shows the resulting daily fit of the annual cycle for the HIPPO observations and model simulations of the15

NET vertical gradient. Qualitatively, it shows that most models reproduce the CO2 cycle well, with positive gradients in winter

over a broad peak and negative gradients in summer over a narrower trough. The three CarbonTracker inversions (CT2016,

CTE2016-FT, and CTE2017-FT) have somewhat lower seasonal gradient amplitude, while the two ACTM inversions (ACTM-

IEA and ACTM-CDIAC) show larger amplitude. More quantitative details are given in Section 3.1. To illustrate the temporal

coverage of the observations, we plot the measurements of the 9 HIPPO transects on Fig. 1 as simple differences of the latitude20

weighted average concentrations within the LT and UT boxes for each transect, while an example of a fit to an individual bin

is shown in Fig. S1.

The QCLS instrument has a 1-σ precision of 20 ppb (Santoni et al., 2014), and for all 5 CO2 systems on the GV the instrumental

precision is negligible for the large-scale average metrics we present here. More relevant sources of uncertainty are associated

with the potential for altitude dependent biases that might result from inlet or cabin-pressure effects, and misrepresentation of25

synoptic transport in the models. We estimate uncertainty in the annual-mean NET vertical gradient metric by comparison of

the 5 independent instruments and whole air samplers to be ± 0.15 ppm (see supplement), and uncertainty on the individual

HIPPO transect values to range from 0.02 ppm to 0.48 ppm as shown by the vertical bars in Fig. 1 These values are derived from

the maximum absolute differences between the sensors, which we conservatively treat as best-guess 1 σ uncertainty estimates.

These uncertainty estimates correspond to the vertical gradient as observed by the HIPPO flight tracks and calculated with30

the fitting procedure used here. Because we use model output along the flight tracks and treat model output and observations

identically in our calculations, we do not include an estimate of potential spatial sampling bias, but we do use model output to

assess the spatial representativeness of our calculated metrics with respect to full 150◦W transect and full zonal means in Sect.

4 of supplement (Fig. S5, S6). Also, because the models are driven by reanalysis winds, they should capture the position of
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synoptic systems and associated transport. However, the wind fields and model transport may be biased which could result in

different vertical gradients for reasons unrelated to the fluxes of interest. We have estimated synoptic variability in the vertical

gradient metric and find a worst-case potential model synoptic sampling bias of ± 0.06 ppm for the annual mean, ± 0.14 ppm

for JFM, ± 0.15 ppm for JAS (1 σ; see supplement).

5

3 Results

3.1 Fluxes and posterior CO2 comparisons with HIPPO

Each individual inversion system adjusts fluxes to fit the concentration fields with its given transport scheme and a priori

source/sink information. Biases can appear in the retrieved posterior CO2 resulting from errors in the estimated fluxes or from

specific biases in transport to the location of the independent data (here in particular vertical transport to the upper atmosphere).10

We first evaluate if the spread of retrieved land fluxes over different zonal bands is correlated with NET vertical CO2 gradients

and if the modelled gradients match observations, as was previously done for the T3L2 models by Stephens et al. (2007).

Fig. 2A presents the results for the HIPPO and model vertical gradients and model fluxes, broken into NET and T+SET regions

for the years 2009-2011. The mean and relative spread of 10 simulations for the posterior annual mean NE land flux is -2.24

PgC yr−1 ± 0.29 PgC yr−1 (13 %, 1 σ). Aside from the ACTM-IEA simulation, all models are within the uncertainty range of15

0.15 ppm or 50 % of the measured vertical gradient. This contrasts to the TransCom3 Level 2 simulations which had an annual

mean of -2.42 PgC yr−1 ± 1.05 (43 %) PgC yr−1 for NE land flux and disagreed with the observed vertical gradient by 0̃.5

ppm on average and as much as 1.3 ppm (186 %). As listed in Table 1, the inversions have significant differences in transport

model, resolution, and driving meteorology and are converging despite these differences. In addition, there are no apparent

relationships between vertical gradients and NET nor T+SET land fluxes. The standard deviation across 10 simulations on the20

difference between NET Land and T+SET is 0.4 PgC yr−1 while it was 2.1 PgC yr−1 in T3L2 (Gurney et al., 2004; Gurney and

Denning, 2013) and 1.28 PgC yr−1 in RECCAP (Peylin et al., 2013), representing a steady and dramatic convergence of model

estimates over the past 15 years. We reproduce the Stephens et al. (2007) annual mean figure in Fig. 2B, with the exception of

showing T+SET instead of T, to highlight those differences. It is important to note that these results correspond to a different

period and different models, with a smaller network of assimilated in-situ network measurements, and assimilation of monthly-25

mean rather than discrete measurements. We took advantage of the 2 models that span the 1992-1996 period, CAMS (v16r1)

and Jena (s85_v4.1) to further investigate differences from the T3L2 period. Those two models are quite close to the 2009-2011

vertical gradient observations (Fig. 2A), but they both overestimate the 1992-1996 vertical gradients (Fig. 2B). Notably, they

fall along the lines fit to the T3L2 models in Fig. 2B, which could be a coincidence, but might also suggest that despite agreeing

with the other models on the latitudinal flux distribution for 2009-2011 these models overestimate tropical sources and northern30

sinks during 1992-1996. This would require that these models be more dependent on vertical mixing biases in the earlier period.

The different number of assimilated sites is one potential factor that might explain different biases in retrieved fluxes for these

two periods, but this is not seen for the comparison of the 2 versions of the Jena model assimilating different numbers of
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sites during 2009-2011. It is worth noting that reanalyses of meteorological observations have noticeably improved thanks

to a better representation of unresolved processes in global models, improved data assimilation methods, and the increasing

availability of satellite data, which makes the reanalyses perform better in the 2000s than for the 1990s and earlier (e.g., Gelaro

et al., 2017; Bauer et al., 2015). As an example, the assimilation of new observations from the constellation of COSMIC global

positioning system radio occultation (GPSRO) satellites has led to a significant improvement in meteorological analyses and5

forecasts (e.g., Healy, 2008).

One concern is the spatial representativeness of the HIPPO measurements which were made over the Pacific Ocean while

the light aircraft observations used by Stephens et al. (2007) were mostly measuring profiles over land. We discuss this issue

in the supplement and show that across models HIPPO vertical gradients are significantly representative of the zonal mean

for the three-year mean and every year individually (Fig. S5). Seasonally (Fig. S6), it appears that the vertical gradients are10

representative of the parallel 150W for winter (JFM), spring (AMJ) and fall (OND) seasons, representative of the zonal mean

for winter (JFM) and fall (OND), and representative of the zonal average over land only in boreal summer (JAS). We did find

a significant correlation between vertical gradients defined by the HIPPO flight tracks and land zonal means during summer

(JAS), when vertical gradients are weak.

Fig. 2C and Fig. 2D show the vertical gradients and fluxes for 2009-2011 winter (JFM) and summer (JAS). The agreement15

between the models and HIPPO observations is not as strong as for annual means. The vertical gradient in the NET winter is

reasonably well reproduced by 9 models with differences lower than 0.36 ppm. The ACTM-IEA inversion is an outlier and

overestimates by 0.94 ppm the winter season average vertical gradient. For ACTM, the global annual IEA emissions are less

than CDIAC (Fig. 4C and D) which results in a weaker northern extratropical sink (Fig. 2A and 3A) which corresponds with a

more positive LT-UT northern extratropical gradient (Fig. 2A and S2) and a more positive N-S gradient (Figure S2), comparing20

just the 2 ACTM versions. Differences across inversion systems in Figure S2 also depend on transport and inversion scheme

and the resulting spatial distribution of sources and sinks.

There are generally larger differences between observed and modelled vertical gradients in northern hemisphere summer (JAS),

with only 2 models (ACTM-IEA and CAMS) within observation error bars, but the whole range of values is only 0.75 ppm. In

this case a linear relationship (r2=0.4) is found between the modelled vertical gradient and the retrieved T+SET fluxes, but not25

for the NET flux. There is a significant relationship between HIPPO and the land only zonal average vertical gradient and both

are correlated with the T+SET fluxes (Figure S7), but with a slope of 2.16 ppm/PgC yr−1 for HIPPO while it is 0.93 ppm/PgC

yr−1 over land where the vertical gradients are bigger. This suggests that transport errors may be more critical in the summer

season or that other factors compensate to obscure the relationship for these relatively coarse time averages in other seasons

and for the annual means. While additional insights into model behavior could be gained from more detailed comparisons30

to individual models or in more controlled inversion ensembles, the varied nature of these inversion systems makes detailed

analyses more challenging and beyond the scope of our current study.

For the annual means and winter there are no statistical relationships between the vertical gradients and the retrieved fluxes.

This suggests that northern hemisphere vertical mixing errors do not play a major role in biasing the flux estimation across

these models. However, the retrieved fluxes can still be biased because of the transport errors.35
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One potential limitation in our analysis could be the use of similar meteorological fields from the ECMWF base analysis and

forecast cycle, which is the case for 5 out of 10 simulations. A careful comparison of model transport suggests that nudging to

a particular reanalysis product does not imply identical tracer transport between the models (e.g., Prather et al., 2008; Locatelli

et al., 2015; Orbe et al., 2017). The transport errors arise from resolved advection and heavily parameterized transport schemes

such as convection and boundary layer mixing (Locatelli et al., 2015; Orbe et al., 2017; Krol et al., 2018). Qualitatively, we5

cannot distinguish the CO2 vertical gradient from models using ERA-Interim winds from the 5 other models.

3.2 The latitudinal distribution of retrieved land fluxes

In this section, we present the retrieved land flux partitioning between the NET and the T+SET, as shown in Fig. 3 and Fig.

2. Because the total sink is the sum of T+SET and NET, these lines have a slope of -1 and any deviation perpendicular to10

the lines indicates disagreement on the total land sink from the GCP2016 estimate. As noted in the previous section, inverse

modelling results for the HIPPO period (2009-2011) are remarkably close to one another (Fig. 3A). These results converge on

a NET land sink value slightly larger than 2 PgC yr−1 (-2.24 ± 0.29 PgC yr−1) and a T+SET land sink of -0.38 ± 0.31 PgC

yr−1. In Fig. 3, multi model means are represented by blue diamonds and associated error bars are estimated by the standard

deviation across models. The 2009-2011 period is marked by a large tropical land sink because of the strong La Niña event of15

2011 (Bastos et al., 2013; Poulter et al., 2014). For these 3 years, the models clearly indicate a negative flux over the Tropics

and SET land. There are also increasing lines of evidence that the rate of deforestation and climate stress over tropics have

been moderated in recent decades (e.g., 2000s), compared to the 1990s (Kondo et al., 2018), with a reduced change in tropical

forest cover because the decrease in the South American deforestation has been compensated by an increased South East Asian

deforestation (Hansen et al., 2013).20

In order to place these recent fluxes estimates in the context of previous studies, we show the flux estimates by the new models

that also estimate fluxes for the earlier periods; 2 models have available outputs for the T3L2 period (1992-1996) and 4 for the

RECCAP period (2001-2004), as shown in Fig. 3B and 3C. For Jena, one inversion (s85_v4.1) starts in 1985 and is constrained

by only 23 atmospheric sites while the other (s04_V4.1) starts in 2004 and uses 59 sites. Interestingly, the difference between

s85_v4.1 and s04_V4.1 for 2009-2011 is rather small (Fig. 3a), less than 0.15 PgC yr−1.25

According to GCP2016, the total land sink in 2009-2011 was around twice as large (around 3 PgC yr−1) than for 1992-1996

(around 1.7 PgC yr−1) and 2001-2004 (around 1.3 PgC yr−1). This is due to the combined effect of natural inter-annual

variability as well as a long-term trend (Ballantyne et al., 2012). The retrieved total land fluxes for all study periods appear

to be close to the corresponding GCP estimates with most models falling within the GCP2016 1 σ uncertainty range. For the

2001-2004 period, the newer simulations move fluxes parallel to the GCP line in the direction of a weaker tropical source and30

a weaker NE sink relative to the original RECCAP estimates. For the 1992-1996 period, 1 of the 2 newer simulations shifts

fluxes in that same direction, but not as far as suggested by Stephens et al. (2007).

However, we have revisited the Stephens et al. (2007) estimates, by considering the intercept of the regression lines with the

aircraft observations rather than the mean of the 3 models nearest the annual mean observations, and evaluating the error using
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Figure 2. Retrieved fluxes versus NE vertical gradients. A) Annual mean NET land and T+SET land fluxes versus posterior NE vertical

gradients (lower minus upper troposphere) from model output along HIPPO flight tracks and HIPPO observations (pink line) for the period

2009-2011. The shaded area represents an estimate of measurement uncertainty of ± 0.15 ppm for the annual mean, as estimated in the Sect.

2 of the supplement. Inverse model posterior concentration gradients and fluxes are shown as points (squares = NET, triangles = T+SET).

The vertical axis represents the integrated annual mean land fluxes (PgC yr−1). B) Same as (A) but for 1992-1996 and showing TransCom3

Level 2 models and our 2 current models that span this time period, showing dependence of posterior fluxes on transport and a large range

of transport biases. Annual mean NE (red squares) and T+SET (blue triangles) land carbon fluxes for 1992-1996 estimated by the 12 T3L2

models plotted as a function of the models’ post-inversion predicted mean vertical CO2 gradients at 10 light aircraft profiling sites (adapted

from Stephens et al. 2007) with fluxes partitioned by TransCom region. The Jena (s85_v4.1) and the CAMS (v16r1) simulations have also

been sampled at the same light aircraft locations but their fluxes are partitioned at 20◦N and 20◦S. The crosses show our new best estimate

of the fluxes estimated by the regression of all T3L2 models. The error bars on these points are estimated using the standard error of the

regressions. C) same as panel A for January-February-March (JFM), and D) same as panel A for July-August-September (JAS). For the

seasonal plots, the width of the pink bar is of 0.07 ppm for JFM and 0.17 for JAS. On panel D, the black line represents the regression line,

shown because the relationship is statistically significant at a 95% confidence interval.
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the standard error of the linear regressions. The selection of 3 models by Stephens et al. (2007) was somewhat arbitrary as

they did not directly overlap the observations and did not agree as well as other models seasonally. This new approach relying

on the correlated signal from all models leads to a NET flux of -1.7 ± 0.59 PgC yr−1 and a T+SET flux of 0.15 ± 0.66 PgC

yr−1, a similar shift in NE fluxes but only 2/3 of the shift in T+SET fluxes using the Stephens et al. (2007) subset of models,

as shown in Fig. 3B.5

For the RECCAP period, we used their Group 1 simulations (JENA, LSCE, MACC-II, CT2011_oi, CTE2013) identified in

Peylin et al. (2013), four of which assimilated the observations at the sample time as opposed to using monthly means and all

of which solved for fluxes at the resolution of the transport model or for small ecoregions over land. The T+SET flux estimate

averaged over the RECCAP Group 1 models is 0.34 ± 0.27 PgC yr−1. This is nearly identical to the average of the new models

from this study (0.34 ± 0.27 PgC yr−1; using CTE2016-FT, CTE2017-FT, CT2016, CAMSv16r1, and Jena s85_v4.1). Both10

estimate slightly positive T+SET fluxes that are only half of the RECCAP all-model average (0.93 ± 0.90 PgC yr−1). Our NET

land sink estimates using newer models are less than the previous estimates in the original T3L2 and RECCAP studies for the

1992-1996 and 2001-2004 periods. Conversely, our new estimates suggest a change in the T+SET flux towards greater uptake /

less emission for these periods; we found a decrease of the T+SET land flux by 0.71 PgC yr−1 from 0.56 ± 0.32 PgC yr−1 for

the 1994-2004 period compare to -0.15 ± 0.43 PgC yr−1 for the 2004-2014 period (Figure S9). Then, to obtain a flux estimate15

less sensitive to year to year variability we calculate the fluxes for the full 11-year 2004-2014 period (Fig. 3D), for which we

have 5 model estimates. For this longer period, the model spread is largely reduced, in particular for the NET land fluxes,

and again we find near neutral T+SET land fluxes. Taking all 4 of the estimation periods together (Table 2) all of our central

estimates for T+SET are within 0.4 PgC yr−1 of zero. The tropical land fluxes are -0.2 ± 0.3 PgC yr−1 for 2009-2011 and 0.0

± 0.12 PgC yr−1 for 2004-2014. This implies a consistent uptake of carbon by intact tropical forests over several decades.20

3.3 Variation in retrieved global carbon budgets

The global carbon budget partitioning for 2009-2011 is shown for our suite of models and for GCP2016 (river adjusted) on

Fig. 4 with the model mean and GCP2016 reported in Table 3. On every panel of Fig. 4, the light pink error band shows the

constraint imposed by fixing the values to those of GCP2016, and the associated equation is shown on the graph. The pink25

diamond represents the GCP2016 estimate while the cross and the gray shaded area show the model mean and 1 standard

deviation in darker and 2 standard deviations in lighter gray. For the models, the total flux is calculated as the subtraction of the

ocean and land sink from the FF emissions. Note that by mass conservation the total flux equals the whole-atmosphere growth

rate (WAGR), but that WAGR may differ from the MBL atmosphere growth rate (AGR) defined by surface stations, because

of sampling biases or interannual variability in tropospheric mixing or stratosphere-troposphere exchange. GCP uses the MBL30

AGR (Dlugokencky and Tans, 2018) as an estimate of total flux, and assigns uncertainty of ± 0.19 PgC yr−1 (Le Quéré et al.,

2016) for recent decades, with speculation that the relative uncertainty should decrease when averaging multiple years. Note

that even though the CAMS results systematically align with the GCP2016 estimates in Fig. 4, the two are independent, except

for the FF and for the atmospheric data that serve to estimate the total flux in GCP2016. By mass balance, the total annual flux

12



Figure 3. Tropical and Southern Extratropical (T+SET) versus Northern Extratropical (NET) land fluxes for the periods A) 2009-2011, B)

1992-1996, C) 2001-2004 and D) 2004-2014. The new models used in this study are represented by squares and the average of the available

or selected simulations is shown in blue with 1 standard deviation error bars. The pink line and shaded area represents the GCP2016 (river

adjusted) estimates of the total land sink for the given period. A) results for the HIPPO period 2009-2011, B) results for the T3L2 period

1992-1996. The TransCom 3 Level 2 outputs (Gurney et al., 2004) are shown in red, with the vertical gradient selected models froms

(Stephens et al., 2007) as circles outlined in green and the rest as red squares outlined in black. The intercept of the regression line with

the observed vertical gradient (Fig. 2) is use to define our best flux estimate with error bars estimated by the standard error of the linear

regression. C) results for the RECCAP period 2001-2004. Also, from Peylin et al. (2013), model means and standard deviations are shown in

pink for the subgroup 1 (Jena, LSCEa, MACC-II, CTE2013, CT2011_oi) and in gray for the subgroup 2 (MATCH, CCAM, TrC, NICAM).

Panel D shows the results from our new set of models for the period 2004-2014.
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Figure 4. Synthesis of globally integrated fluxes for the 2009-2011 period, in PgC yr−1. Each inversion is represented by a square and the

model mean by a ×. The GCP2016 estimates are a pink diamond, sometimes hard to see because it is superimposed in each panel by the gray

CAMS point. We have adjusted the GCP2016 ocean and land flux estimates by the riverine flux of carbon from land to ocean to atmosphere

(0.45 PgC yr−1; Jacobson et al. 2007; Le Quéré et al. 2018), decreasing the ocean sink and increasing the land sink. The magenta line and

light pink shaded area shows the corresponding mass balance estimates from GCP2016. In each panel the line and equation shown represent

the sum of the x and y variables, and thus has a slope of -1 and any deviation perpendicular to the line indicates disagreement on the sum.

Here we use the total flux which by mass balance is the whole-atmosphere growth rate (see text), and for panels A and D, the total flux - FF

line also equals O + L, while for panels B and C, the total flux line equals O + L + FF. Ellipses denote the variability around the model means

of 1 σ (darker gray) and 2 σ (lighter gray). A) ocean versus land; B) ocean versus land + FF; C) ocean + land versus FF; D) total flux versus

-1 × FF.
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Time period Source Number of models NET Land T+SET Land

1992-1996 T3L2 12 -2.42 ± 1.05 0.95 ± 1.17

Stephens et al. 2007 3 -1.52 ± 0.53 -0.49 ± 0.25

T3L2 (Intercept) 12 -1.70 ± 0.59 0.15 ± 0.66

2001-2004

RECCAP All models 11 -2.25 ± 0.58 0.93 ± 0.90

RECCAP Group 1 5 -1.85 ± 0.25 0.34 ± 0.27

This study 5 -1.67 ± 0.46 0.34 ± 0.27

2009-2011

This study 10 -2.24 ± 0.29 -0.38 ± 0.31

2004-2014

This study 6 -2.17 ± 0.36 -0.05 ± 0.11
Table 2. Previous and our new best estimates (in bold) of the latitudinal partitioning of land fluxes over 4 time periods. All values are in

PgC yr−1. Values are indicated by the model mean ± 1 standard deviation or 1 σ error uncertainties. Regarding the T3L2 period (Gurney

et al., 2004), our new estimate for the 1992-1996 period comes from the intercept of the fit lines with the observations in Fig. 2B, and the

uncertainties on these values from the standard error on these metrics from the fits. Regarding the RECCAP period (Peylin et al., 2013), our

new estimate for the 2001-2004 period is the average of the 5 new models from this study.

must equal the total growth rate integrated over the entire atmosphere, and this is what we refer to as the total flux.

The integrated ocean versus land fluxes are presented in Fig. 4A. The equation for the range of ocean and land fluxes that

would match FF and the total flux estimates from GCP2016 is also shown on Fig. 4A. The models and GCP2016 agree well

on the ocean flux with a mean of -2.04 ± 0.51 PgC yr−1 for the over the three years 2009-2011. The multi model mean of the

land flux is -2.61 ± 0.42 PgC yr−1. The GCP2016 land flux is -3.04 ± 0.5 PgC yr−1 and thus overestimates the model mean.5

The cloud of model ocean versus land flux estimates are rather scattered around the model mean with a correlation coefficient

of only 0.51.

To better understand the reasons for these discrepancies, and specifically to investigate how much of the land spread in Fig.

FF Land Ocean total flux

GCP2016 9.21 ± 0.46 -3.04 ± 0.50 -2.05 ± 0.50 4.06 ± 0.20

Multi-model 8.9 ± 0.29 -2.61 ± 0.42 -2.04 ± 0.51 4.25 ± 0.14
Table 3. Global Carbon budget for 2009 to 2011 inclusive, estimated by the Global Carbon Project 2016 (first row, with river adjustment)

and by the suite of models from this study (second row), all values are in PgC yr−1. Values are indicated by the model mean ± 1 σ error

uncertainties, provided by GCP2016 or by the model standard deviation.

4a is a result of differences in fossil fuel priors, we plotted the ocean flux versus the sum of land and FF emissions in Fig. 4B.

This figure shows a tight correlation across models for these 2 parameters (r2 = 0.93). Given that prior uncertainties specified in10
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the inversions for ocean fluxes are typically smaller than those for land, and fossil emissions are fixed, this implies for a given

ocean and FF flux combination, the models are adjusting the land fluxes while matching CO2 observations. While combining

land and fossil fluxes together reduces the random scatter, it does not reduce the range of the continental fluxes, illustrating the

fact that models do not simply compensate for biases in fossil priors with land fluxes, but rather that ocean fluxes are affected

too (Saeki and Patra, 2017). Conversely, we plot the sum of ocean and land fluxes against FF emissions in Fig. 4C. This figure5

shows that the ocean + land total sink is largely controlled by the prescribed FF emissions. In general, the models use smaller

fossil fuel sources than reported in GCP2016.

Fig. 4D compares the opposite of FF emissions versus the total flux, again defined by subtraction of the land and ocean fluxes

from FF. The spread in models is not parallel to the line defined by the GCP2016 budget closure. We hypothesize that models

that overestimate fossil emissions prioritize matching the spatial distribution of CO2 and thus estimate overcompensating sinks.10

The spatial patterns of the different FF priors must also play a role, as well as the strength of the atmospheric constraint on

annual time scales imposed by the inversion systems.

Taking the 2 extreme models the ACTM-CDIAC and TM5-4DVar estimates provide very different distributions of fluxes.

ACTM-CDIAC suggests stronger land sinks, both over the NET and the T+SET regions, and a lower ocean sink while TM5-

4DVar suggests the opposite. This leads to a range of around 2 PgC yr−1 on the model ocean sink. Because of an intentionally15

different FF source, but with the same inversion system, the ACTM-CDIAC and ACTM-IEA retrieved land fluxes differ by

slightly less than 1 PgC yr−1 and ocean fluxes differ by half a PgC yr−1. Overall, this analysis suggests that errors in FF priors

are larger than the uncertainty prescribed to them, or more specifically, the range of FF estimates used by leading inversions

exceeds the uncertainty that GCP2016 places on the CDIAC estimates. This implies that uncertainties in FF emissions do not

adequately consider potential regional biases (Peylin et al., 2011; Thompson et al., 2016; Saeki and Patra, 2017). The large20

spread of model results along the mass balance line in 4C highlights the need to reduce uncertainty in estimates of FF emissions,

and to develop modelling systems that relax rigid FF prior constraints and observational systems that can support optimizing

FF emission estimates. For the period 1980-2015, the total flux estimates from GCP2016 are estimated by the MBL AGR of

Dlugokencky and Tans (2018). Only background sites that are located in the MBL are used in this calculation. Ballantyne et al.

(2012) calculated a sampling error of 0.38 PgC yr−1 (2 σ) among the 40 sites, and GCP2017 estimate uncertainty of ± 0.1925

PgC yr−1 (1 σ) for the period 1980-2015 with respect to the total flux. We show the model retrieved WAGR (equal to total flux)

for each individual year on Fig. 5 along with the GCP2016 estimate and error bars. The total spread in the total flux from the

inverse models over the three years 2009-2011 equates to 1.38 PgC as shown in Fig. 5b. This is well outside of the uncertainty

range estimated for the extrapolation of MBL measurements, implying several inversions are not rigidly constrained to match

observed MBL AGR, even over periods of 3 years. Because CO2 is variably mixed in different years and by different models30

in the troposphere and between the troposphere and the stratosphere, some inconsistency between the MBL-defined AGR and

the total flux of CO2 in the models might be expected. However, using CT2017 as a test case, the annual difference between

the model total surface flux and the observed MBL growth rate over 2000-2016 has a standard deviation of 0.29 PgC yr−1,

and for three-year averages within this period a standard deviation of only 0.10 PgC yr−1, much smaller than the discrepancies

shown in Fig. 5. Buchwitz et al. (2018) made a similar AGR comparison using CAMS output of total column and surface data35
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and also found good agreement with differences of only ± 0.2 PgC yr−1 (1 σ) on an annual basis. Another potential challenge

to inversions having a consistent total flux during this time may be due to large interannual variability in natural fluxes, with

rapid changes resulting from different climatic conditions from the moderate El Niño of 2009 to the strong La Niña of 2011

(Bastos et al., 2013; Poulter et al., 2014). This period has also been marked by rapid changes in emissions, related to lower

emissions in 2009 during the financial crisis and rapid increase in 2010 (Peters et al., 2011). However, Fig. 5 does not indicate5

that the model total flux estimates for the years 2009-2011 are more divergent than other years. Further work investigating

these differences is needed but beyond the scope of this study. In particular, the length of assimilation window may have an

impact. It may also be possible to force the inverse systems to agree, at least within the MBL, with the observationally defined

AGR, and this may help to reduce model spread elsewhere.

Figure 5. Modelled total flux (lines), equal to whole-atmosphere growth rate, that is the difference between the global FF emissions and the

land and ocean fluxes. Atmospheric growth rate from GCP2016, derived from atmospheric CO2 measurements made in the marine boundary

layer by the NOAA/ESRL flask network (Masarie and Tans, 1995; Dlugokencky and Tans, 2018) and GCP2016 assigned uncertainty (pink

bands). Panel B shows the sum of the total flux for the three years (2009 to 2011).

4 Summary and future work10

Atmospheric transport has long been a major contributor to top-down atmospheric inverse model flux uncertainty. We applied

the technique of Stephens et al. (2007) to a suite of state-of-the-art inversion systems assimilating primarily surface observa-

tions to take advantage of the unique HIPPO global airborne data set for independent validation in assessing fluxes. We also

compared the models to each other and to the GCP2016 carbon budget synthesis. The major findings of these comparisons can

be summarized as follows:15
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1. Model estimates of the latitudinal distribution of land fluxes are remarkably consistent across models and this represents

a convergence over the past 15 years of inverse model development. The standard deviation across our 10 simulations

of the difference between northern extratropical land and tropical land fluxes is 0.4 PgC yr−1 for the period 2009-2011

and 0.43 PgC yr−1 for the period 2004-2014 across 5 models. These are considerable reductions from 2.1 PgC yr−1

for 12 simulations in T3L2 (differing only in transport modelling) for the period 1992-1996 and 1.28 PgC yr−1 for 115

simulations in RECCAP study for the period 2001-2004.

2. Our suite of 10 inversions gives a NET land uptake of -2.22 ± 0.27 PgC yr−1 (1 σ) and a net T+SET uptake of -0.37 ±
0.31 PgC yr−1 for 2009-2011 (-0.2 ± 0.3 PgC yr−1 for the tropics only). For 2004-2014, a subset of 6 models gives NE

land uptake of -2.17 ± 0.36 PgC yr−1, T+SET uptake of -0.06 ± 0.11 PgC yr−1, and T of 0.0 ± 0.12 PgC yr−1, thus

allowing for deforestation implying a strong uptake in intact tropical forests, in line with forest inventories (Pan et al.,10

2011).

3. The group of RECCAP models that primarily assimilated discrete rather than monthly mean observations agree with

estimates from our subset of 5 newer models regarding the lack of strong net emissions from tropical land. This is not

too surprising because most of our models, with the exception of LSCEa, are the updated versions of the same models

in the RECCAP Group 1 (Peylin et al., 2013). Those 5 models estimated a net NET land sink of -1.85 ± 0.25 PgC yr−115

and our subset of 4 models covering the RECCAP period estimate -1.71 ± 0.5 PgC yr−1. Regarding T+SET, the newer

model estimate is a source of 0.34 ± 0.27 PgC yr−1, while it is 0.34 ± 0.27 PgC yr−1 in RECCAP’s Group 1.

4. For the 1992-1996 period, we define an update to the Stephens et al. (2007) result, using the intercept of the model output

linear regression with the observed annual mean vertical gradient of 0.7 ppm, leading to a NE land uptake of -1.7 ± 0.57

PgC yr−1 and a T+SET flux of 0.12 ± 0.62 PgC yr−1 for 1992-1996. Our results for the more recent decadal period, the20

11 years from 2004 to 2014 indicate a somewhat larger NET sink of 2.21 ± 0.34 PgC yr−1 and a neutral tropical land

flux of 0.04 ± 0.13 PgC yr−1, in line with a trend of a larger land sink (Sarmiento et al., 2010; Keenan et al., 2016) if

shared across both latitudinal bands.

5. We present our best estimates of the latitudinal land flux partitioning for the 4 periods 1992-1996, 2001-2004, 2009-

2011, and 2004-2014 in Table 2. We present in Fig. 6 the time series of the NET and T+SET land fluxes from 1979 to25

2016, using all simulations available in this study. This figure shows a decrease of the T+SET land flux by 0.71 PgC

yr−1, from +0.56 PgC yr−1 to -0.15 PgC yr−1 between the decades 1994-2004 and 2004-2014, respectively. The land-

use change flux estimated by GCP2017 was nearly identical for these two time periods (+1.31 and +1.29 PgC yr−1,

respectively), and assuming these numbers primarily reflect tropical land-use change emissions this implies an increase

in the intact tropical forest sink on decadal timescales. Our re-evaluations of the T3L2 and RECCAP study results (Table30

2) confirms that the sum of the tropics and southern extratropics have been near neutral for several decades, despite large

scale tropical deforestation, and in accordance with the recent literature on the tropical land carbon budget (Hansen et al.,

2013; Keenan et al., 2016; Mitchard, 2018).
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6. At global scale, we find in agreement with earlier studies that our model results are strongly dependent on the pre-

scribed FF emissions. While the total of global land and ocean uptake adjusts to match differences in FF emissions, this

compensation is not perfect.

7. Our suite of 10 simulations also retrieve surprisingly different three-year whole atmospheric growth rates, as defined

by the total fluxes. The model range is 1.38 PgC over 3 years, compared to an estimated uncertainty of ± 0.10 PgC in5

CT2017 matching between MBL CO2 concentration trends and total flux over three years and a 0.2 PgC yr−1 uncertainty

assigned by GCP2017. The yearly ranges of up to 1 PgC yr−1 in the model total flux estimates imply 0.5 ppm disagree-

ments in whole-atmosphere CO2 concentrations, and the 1.4 PgC yr−1 range for the 3-year period implies disagreements

of 0.7 ppm in the whole-atmosphere CO2 concentration change over that time period.

Figure 6. Time series of annual land fluxes for the NET (top panel) and the T+SET (bottom panel). The black line represents the model

mean and standard deviation derived from available simulations, the number of simulations is shown by the numbers below the curve. The

standard deviation is shown only if there are more than 2 model simulations available. Estimates from the specific period (Table 2) are added

as multi-year average and standard deviation (shaded area).

Across 7 state-of-the-art systems running 10 inversions, there does not appear to be a correlation between posterior NET10

vertical gradients and the retrieved latitudinal distribution of land fluxes in winter and for the annual mean. This is suggest-

ing that northern hemisphere vertical mixing, albeit significant in summer, is not currently the major driver of tropical versus
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northern extratropical land flux spread. However, transport errors can still contribute significantly to the flux estimates.

Repeating the experiment in T3L2 where transport was the only thing that varied across models would be required to rule out

other factors masking a vertical mixing effect, but given the diversity of modern inversion systems this is not practical. Having

a common FF prior, eventually also optimized and with known uncertainties, would improve our ability to retrieve the natural

fluxes. Other components, such as other features of the transport models, the prior fluxes or the inversion method also drive5

the discrepancies in the global atmospheric budget. The ocean, land, and ocean-land partitioning appear to be a function of the

FF prior. This also results in large differences in retrieved total flux or WAGR. The increase of the absolute error in fossil fuel

emissions and the large sensitivity of the carbon uptake estimates to those errors (Ballantyne et al., 2015), suggests that despite

being thought to be the best-known term in the global carbon budget, systematic errors in fossil fuel emission estimates limit

our assessment of the natural fluxes and the ocean-land partitioning from this inversion ensemble.10

Our ability to isolate transport effects in this study is limited in comparison to T3L2 in that many other features of the inver-

sion systems also vary; however, this variability allows us to assess the state of the art FF inventories and their importance in

the retrieved flux estimates. Gurney et al. (2005), Peylin et al. (2011) and Saeki and Patra (2017) already demonstrated the

importance of FF emission uncertainties in inverse modelling studies, suggesting the importance of temporally defined emis-

sion inventory. However, Peylin et al. (2011) found that transport errors were still the main source of uncertainty in regional15

inversions. With the aim of quantifying CO2 fluxes at regional scales, it is more than ever necessary to assess systematic er-

rors of inverse modelling results with independent in-situ observations. FF emissions could be optimized with the addition of

additional species (e.g., Turnbull et al., 2011; Nathan et al., 2018), such as carbon monoxide (Liu et al., 2017; Bowman et al.,

2017), although it can be challenging at the most local and urban scales (Ammoura et al., 2016).

There is a significant correlation between NET vertical gradients and the T+SET retrieved fluxes in summer only. This study20

reaffirms that systematic evaluation of posterior concentrations against independent measurements is essential to assess the

biases and accuracy of inverse modelling systems. Future work will naturally involve comparison against CO2 observations

from the more recent NASA Atmospheric Tomography (ATom) project, which is similar to HIPPO, but is augmented with ad-

ditional flights over the Atlantic Ocean (see e.g. Prather et al. 2017) and an extensive atmospheric chemistry payload, and will

involve the inclusion of models assimilating satellite total column CO2 measurements. It is possible that the larger observation25

coverage from satellite observations, expanded 14CO2 measurements, and urban and power-plant scale observations will help

to narrow down the FF emissions, which in turn will allow us to better evaluate inverse model global and regional land and

ocean CO2 flux estimates.
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