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Abstract. South-East Asia is home to one of the world’s largest stores of tropical peatland, and accounts for roughly 10% of 

the global land-to-sea dissolved organic carbon (DOC) flux. We present the first-ever seasonally-resolved measurements of 

DOC concentration and chromophoric dissolved organic matter (CDOM) spectra for six peatland-draining rivers and coastal 

waters in Sarawak, north-western Borneo. The rivers differed substantially in DOC concentration, ranging from 120–250 

µmol L-1 (Rajang river) to 3,100–4,400 µmol L-1 (Maludam river). All rivers carried high CDOM concentrations, with a350 in 5 

the four blackwater rivers between 70–210 m-1, and 4–12 m-1 in the other two rivers. DOC and CDOM showed conservative 

mixing with seawater except in the largest river (the Rajang), where DOC concentrations in the estuary were elevated, most 

likely due to inputs from the extensive peatlands within the Rajang delta. Seasonal variation was moderate and inconsistent 

between rivers. However, during the rainier north-east monsoon, all marine stations in the western part of our study area had 

higher DOC concentrations and lower CDOM spectral slopes, indicating a greater proportion of terrigenous DOM in coastal 10 

waters. Photo-degradation experiments revealed that riverine DOC and CDOM in Sarawak are photo-labile: up to 25% of 

riverine DOC was lost within five days of exposure to natural sunlight, and the spectral slopes of photo-bleached CDOM 

resembled those of our marine samples. We conclude that coastal waters of Sarawak receive large inputs of terrigenous DOC 

that is only minimally altered during estuarine transport, and that any biogeochemical processing must therefore occur 

mostly at sea. It is likely that photo-degradation plays an important role in the degradation of terrigenous DOC in these 15 

waters. 
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1 Introduction 

The annual flux of terrigenous dissolved organic carbon (tDOC) from rivers into the sea is an important part of the global 

carbon cycle, estimated as around 0.2 Pg C y-1 (Dai et al., 2012). South-East Asian rivers contribute roughly 10% of this flux 

(Baum et al., 2007; Huang et al., 2017; Moore et al., 2011), chiefly owing to the extensive peat deposits along the coasts of 

Borneo and Sumatra (Dommain et al., 2014; Page et al., 2011). The rivers draining these peatlands typically carry milli-5 

molar concentrations of DOC, and are often called “blackwater” rivers (Alkhatib et al., 2007; Baum et al., 2007; Cook et al., 

2017; Moore et al., 2011; Rixen et al., 2008). 

However, our understanding of the fate of tDOC in rivers, estuaries, and in the ocean, is still limited. Most tDOC is derived 

from soils, from which it is leached by rainwater, and it is thus rich in lignin and humic substances. Classically, these high-

molecular weight, highly aromatic molecules have been assumed to be inherently refractory to degradation (Bianchi, 2011), 10 

which would imply that they should accumulate in the ocean. However, dissolved organic matter (DOM) in the open ocean 

does not show clear chemical signatures of terrigenous origin, which indicates that terrigenous DOM (tDOM) must be partly 

remineralised and chemically altered before reaching the open ocean (Bianchi, 2011; Cai, 2011). Although it is now 

established that tDOM is indeed partly labile to both photo-oxidation (Helms et al., 2014; Miller and Zepp, 1995; Moran et 

al., 2000; Spencer et al., 2009; White et al., 2010) and to microbial degradation (Fasching et al., 2014; Leff and Meyer, 1991; 15 

Moran and Hodson, 1990; Obernosterer and Benner, 2004; Stutter and Cains, 2016; Ward et al., 2013), we are still far from 

having a quantitative understanding of tDOM processing in estuaries and shelf seas globally. For example, some studies 

have reported major losses of tDOM, with 40–50% of the tDOC flux being remineralised on the Louisiana Shelf and in the 

Eurasian Arctic shelf sea (Fichot and Benner, 2014; Kaiser et al., 2017). Yet in contrast, recent analysis of carbon isotopes in 

different molecular weight fractions in the open ocean suggests that a larger proportion of oceanic DOM may have a 20 

terrigenous origin than currently thought (Zigah et al., 2017). High-resolution mass spectrometry has also identified new 

terrigenous biomarkers and shown that they are widely distributed throughout the oceans (Medeiros et al., 2016). Moreover, 

experimental work has clearly shown that some tDOM fractions are resistant to photo-degradation (Stubbins et al., 2017). 

Clearly, more work is needed to trace tDOM fluxes through estuaries, and to determine where, how, and to what degree 

tDOM is biogeochemically processed. 25 

Because tDOM is rich in chromophoric dissolved organic matter (CDOM), optical measurements are commonly used as 

proxies to trace tDOM fluxes into the ocean (Chen et al., 2015; Fichot and Benner, 2012; Fichot et al., 2016; Kowalczuk et 

al., 2003; Osburn et al., 2016; Yamashita et al., 2011). The last decade in particular has seen significant advances in our 

understanding of how CDOM spectral characteristics vary between tDOM and marine DOM, and how they are affected by 

different biogeochemical processes (Hansen et al., 2016; Helms et al., 2008; Helms et al., 2013; Helms et al., 2014; Shank et 30 

al., 2005). As a result, CDOM spectral slope coefficients in the ultraviolet (UV) part of the spectrum have emerged as a 

robust way to trace tDOM fluxes across salinity gradients and to infer biogeochemical transformations of tDOM (Chen et al., 

2015; Fichot et al., 2014; Fichot et al., 2016; Helms et al., 2008; Osburn et al., 2016; Stedmon and Markager, 2003). 
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So far, however, most studies of tDOM fluxes to the sea have focused on North America (Chen et al., 2015; Durako et al., 

2010; Fichot and Benner, 2014; Fichot et al., 2014; Leech et al., 2016; Medeiros et al., 2017), Europe (Painter et al., 2018; 

Rathgeb et al., 2017; Stedmon et al., 2000; Yamashita et al., 2011), and the Arctic (Benner et al., 2005; Dittmar, 2004; 

Kaiser et al., 2017; Semiletov et al., 2016). Much less work has been conducted in South-East Asia, despite the 

disproportionately large fluxes of tDOC through South-East Asia’s peatland-draining rivers. Most research in South-East 5 

Asia has focused on the peatlands themselves to quantify their extent, carbon stocks, and biogeochemistry (Cobb et al., 2017; 

Dommain et al., 2014; Gandois et al., 2013; Gandois et al., 2014; Gastaldo, 2010; Page et al., 2011), or has examined just 

rivers and estuaries, but not traced tDOM further beyond the coast (Alkhatib et al., 2007; Baum et al., 2007; Cook et al., 

2017; Harun et al., 2016; Müller et al., 2015; Rixen et al., 2008; Wit et al., 2015). Moreover, most studies of rivers focused 

either on the total DOC concentration (Alkhatib et al., 2007; Baum et al., 2007; Cook et al., 2017; Rixen et al., 2008) or on 10 

water–air CO2 fluxes (Müller et al., 2015; Müller et al., 2016; Müller-Dum et al., 2018; Wit et al., 2015). These studies have 

shown clearly that peatland-draining rivers in Sumatra and Borneo have amongst the highest-reported DOC concentrations 

from any rivers globally (up to 3,000–5,500 µmol L-1, or 36–66 mg C L-1). Yet surprisingly, the CO2 fluxes out of these 

rivers were found to be quite low relative to the extremely high DOC concentrations, implying that most of the tDOC they 

carry is delivered to the sea (Wit et al., 2015). To understand the biogeochemical processing of South-East Asian tDOC, 15 

more work clearly needs to be done in coastal waters. This need is particularly urgent because most peatlands in South-East 

Asia have been converted to agricultural use over the past two decades (Miettinen et al., 2016), and such conversion appears 

to enhance riverine tDOC fluxes by destabilising the peatland C pool (Moore et al., 2013). 

Here, we present what is to our knowledge the first analysis of DOC concentrations and CDOM spectral properties in six 

rivers and the surrounding coastal sea in the western part of Sarawak, Malaysian Borneo. Samples were collected at three 20 

different times of the year to constrain seasonal variability, and photo-degradation experiments were conducted to determine 

tDOM photo-lability. 

 

2 Materials and Methods 

2.1 Study region and sample collection 25 

Three field expeditions to Sarawak were undertaken in March, June, and September 2017. Six rivers were sampled in March 

and September: the Rajang (~550 km length), the Maludam (~33 km length), the Sebuyau (~58 km length), the Simunjan 

(~54 km length), the Sematan (~15 km length), and the Samunsam (~34 km length) (Fig. 1). The June expedition sampled 

only the Rajang river. On all expeditions, the river estuaries and open coastal waters were sampled (Fig. 1). In September, 

one sample was also taken in the estuary of a seventh river, the Lundu river (94 km length). All station locations, sampling 30 

dates, and measured data are shown in Supplementary Table 1. Four of the rivers (Maludam, Simunjan, Sebuyau, and 

Samunsam) are blackwater rivers that drain catchments with high peatland coverage, while the Sematan and Lundu rivers 
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drain catchments with limited peatland cover. The Rajang river drains mineral soils until the town of Sibu, from where it 

branches into multiple distributary channels (Fig. 1). The distributaries each have unique names; the main ones (Rajang, 

Serendeng, and Igan) are identified in Fig. 1. These distributaries are surrounded by extensive peatlands that drain directly 

into the distributary channels (Staub et al., 2000). Mangroves grow along the estuaries of all of the rivers. All river samples 

are distinguished below by river name, while marine samples are distinguished by whether they were collected in the region 5 

east of Kuching (“Eastern Region”, influenced strongly by the Rajang river outflow), or in the region west of Kuching 

(“Western Region”, influenced by the Samunsam and Sematan rivers). The Talang Islands in the Western Region (Fig. 1) are 

surrounded by coral reefs. 

The three sampling periods corresponded to the end of the north-east monsoon (March, end of the wettest season of the 

year), the south-west monsoon (June, lower precipitation), and shortly before the beginning of the north-east monsoon 10 

(September, end of the drier season). Monthly precipitation across Sarawak can vary several-fold across the year, but is 

mostly ≥100 mm per month (Sa’adi et al., 2017). Precipitation data were obtained from weather stations in Sibu, Maludam, 

and Sematan. Monthly averages were calculated for the period 1999–2017, omitting the few months for Maludam and 

Sematan for which there were days with missing data (there were no missing data in 2017). Precipitation in 2017 was mostly 

within 1 standard deviation of the 1999–2017 means (Fig. 1e). It should be noted that precipitation in this region is strongly 15 

driven by small-scale convective systems; however, 2017 was overall not an unusual year in terms of precipitation. Water 

temperatures in Sarawak show essentially no seasonal variation (average water temperatures during all expeditions fell 

within 28.5–29.5º C). 

To collect samples in the Rajang river and the Eastern Region, a liveaboard fishing boat was chartered for 4–7 day cruises, 

and all samples were filtered and preserved upon collection. All other stations were sampled from small outboard-powered 20 

boats, in which case samples were stored dark at ambient temperature in insulated boxes on board, and filtered back on land 

each afternoon/evening. All samples were collected within the upper 1 m using either a bucket or a hand-held jug; sampling 

devices were rinsed thoroughly with sample water before sampling. Sample water was decanted into either amber 

borosilicate glass bottles (DOC and CDOM) or HDPE bottles (chlorophyll and total suspended solids). 

DOC and CDOM samples were filtered through 0.2-µm pore-size Anodisc filters (47-mm diameter) using an all-glass 25 

filtration system that was rinsed with 1 M HCl and ultrapure deionised water (18.2 MW cm-1, referred to as “DI water” 

below) in between each sample. Each Anodisc filter was rinsed by filtering 100–150 mL of DI water and then 50–100 mL of 

sample water, before a further 100–150 mL of sample water were filtered and taken as the sample. DOC samples (30 mL) 

were immediately acidified with 100 µL of either 25% H3PO4 (March expedition) or 50% H2SO4 (all other samples) to pH 

<2.0. CDOM samples (30 mL) were preserved with 150 µL of 10 g L-1 NaN3, following Tilstone et al. (2001). DOC and 30 

CDOM samples were stored in amber borosilicate vials with PTFE-lined septa at +4° C until analysis (within 1.5 months of 

collection), although some river samples in September froze for 1-2 days due to a refrigerator malfunction in the field. 

However, freezing did not appear to affect the DOC or CDOM results, as seen from comparing DOC and CDOM data for 

samples from adjacent stations in the Maludam river that did and did not freeze. 
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Samples (50–1000 mL) for chlorophyll-a were filtered onto pre-ashed (450º C, 4 h) 25-mm diameter Whatman GF/F filters, 

wrapped in aluminium foil, and immediately frozen in a liquid nitrogen dry shipper. They were stored in the dry shipper until 

analysis within 6 months of collection. 

Samples for total suspended solids (TSS, 50–1000 mL) were filtered onto pre-ashed (450º C, 4 h), pre-rinsed, pre-weighed 

25-mm diameter Whatman GF/F filters. Filters were rinsed three times with DI water and stored at -20º C in Petri dishes. 5 

Procedural blanks for all parameters were prepared in the field using DI water. 

2.2 Chemical analyses 

2.2.1 Dissolved organic carbon analysis 

Dissolved organic carbon was analysed as non-purgeable organic carbon on a Shimadzu TOC-L system with a high-salt 

combustion kit after a 5-min sparge, using potassium hydrogen phthalate for calibration. Instrument performance was 10 

monitored using certified Deep-Sea Water from the Hansell Laboratory, University of Miami (42–45 µmol L-1). Our 

analyses consistently yielded slightly higher values for the reference water, with a long-term mean ± 1 SD of 47 ± 2.0 µmol 

L-1 (n = 51). Procedural blanks prepared in the field almost all contained <10 µmol L-1, except for those prepared in between 

blackwater river samples, which contained 13–27 µmol L-1; a correction for these procedural blanks was not applied. 

2.2.2 Chromophoric dissolved organic matter analysis 15 

CDOM samples were warmed to room temperature and their absorbance measured from 230–900 nm against a DI water 

reference, using a Thermo Evolution 300 dual-beam spectrophotometer. Samples from March were measured in either a 10-

cm or a 1-cm pathlength quartz cuvette, or in a 1-cm quartz cuvette after 10-fold dilution with DI water (for blackwaters). 

Samples from June and September were measured undiluted in either 10-cm, 1-cm, or 0.2-cm pathlength cuvettes. 

Instrument performance was checked according to Mitchell et al. (2000). Reagent blanks of NaN3 in DI water were 20 

measured and subtracted from all samples. NaN3 was found to absorb significantly from 230–265 nm, with decadic 

absorption coefficients of ~26 m-1 at 230 nm, ~4 m-1 at 254 nm, but ≤0.1 m-1 at wavelengths ≥275 nm (Supplementary Fig. 

1). Blank absorbances at wavelengths ≥275 nm were nearly always <10% of sample absorbances, and mostly around 1% or 

less. CDOM spectra were baseline-corrected (Green and Blough, 1994), and converted to Napierian absorption coefficients 

following Eq. (1): 25 

𝑎" = 2.303 × )*
+

 ,           (1) 

where al and Al are, respectively, the absorption coefficient and the absorbance at wavelength l, and l is the cuvette 

pathlength in m. These calculations were performed using the R package hyperSpec (Beleites and Sergo, 2018). Our raw 

CDOM spectra (as decadic absorption coefficients) are shown in Supplementary Table 1, and representative spectra are 

shown in Supplementary Fig. 2. CDOM spectral slope coefficients were calculated for the intervals 275–295 nm and 350–30 
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400 nm using linear regression of log-transformed data as in Helms et al. (2008). Specific UV Absorbance at 254 nm 

(SUVA254) was calculated from the decadic absorption coefficient at 254 nm and DOC concentration in mg L-1. Dissolved 

inorganic constituents such as bromide, sulphide, nitrate, iodide, and molecular oxygen have negligible absorbance at 

wavelengths ≥250 nm compared to CDOM (Fally et al., 2000; Guenther et al., 2001). 

2.2.3 Conservative mixing models for DOC and CDOM 5 

Two-endmember mixing models for DOC and CDOM were calculated for the Rajang, Samunsam, and Sematan rivers, and 

in September also for the Maludam river. For the other rivers/seasons, there was either insufficient variation in salinity 

(Maludam and Simunjan), or the salinity was influenced strongly by adjacent rivers that were not sampled (Sebuyau, which 

drains into the Lupar river estuary). Linear mixing models were calculated from the end-member DOC concentrations and 

CDOM spectra at salinity intervals of 1.0 from salinity 0 (river water) to the salinity of the marine end-member station (29–10 

32.5). For CDOM, we calculated the full absorption spectrum at each interval and then re-calculated the spectral slopes and 

SUVA254 values, following Stedmon and Markager (2003). It should be noted that conservative mixing of CDOM results in 

non-linear changes in spectral slopes and SUVA with salinity. Appropriate end-member stations were identified from 

salinity, DOC, and geographical location (Supplementary Table 1). In March, rough seas prevented us from sampling fully 

marine waters in the Eastern Region, so the marine end-member station from the June expedition was used instead. 15 

2.2.4 Chlorophyll-a and total suspended solids analysis 

Chlorophyll samples were extracted in 10 mL 90% acetone at -20º C in the dark for 24 h, and fluorescence measured at 

excitation 436 nm / emission 680 nm (both with 5 nm bandpass) on a Horiba Fluoromax 4 spectrofluorometer 

(Welschmeyer, 1994). The fluorescence signal was normalised to the excitation lamp reference intensity and calibrated 

against a chlorophyll-a standard from spinach (Sigma-Aldrich, C5753). The limit of detection (3 SD of the blank) was <2 ng 20 

chlorophyll per filter. 

TSS samples were dried at 75º C for 24 h before re-weighing. In March and September, they were then ashed at 450º C for 1 

hour to remove organic matter and weighed again to determine inorganic weight. All weighing was performed on a Mettler-

Toledo microbalance with ±1 µg accuracy. 

2.3 Photo-degradation experiments 25 

Four short-term photo-degradation experiments were conducted in the field (one in June, three in September). For each, 1 L 

of sample water was filtered as for DOC and CDOM samples (using multiple Anodiscs if necessary), and filled into 150 mL 

acid-washed quartz bottles with ground quartz stoppers, leaving a headspace to prevent O2 limitation. Dark bottles were 

wrapped in aluminium foil and black plastic sheets. One dark and one light control bottle were filled with DI water and 

treated the same way as sample bottles to check for any systematic contamination (which was not found). All bottles were 30 

secured inside a clear, open, plastic food-storage container and exposed to natural sunlight on the roof of the boat (Rajang 
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and seawater experiments) or in an open clearing on land (Samunsam experiment; incubations were completely unaffected 

by shade between at least the hours of 08:00 to 16:00). To moderate the temperature during sun exposure, the container was 

filled with clear seawater to the same level as the samples in the bottles. 

Experiments were run for 3–6 days. Solar radiation was monitored at varying intervals throughout each day with the 

reference irradiance sensor of a Trios RAMSES hyperspectral radiometer (318–800 nm at 2-nm resolution). We integrated 5 

the measured irradiance from 318–450 nm (i.e. the portion of the spectrum with highest CDOM absorption), and then 

integrated this irradiance over time for each day, using exponential averaging to interpolate across measurement gaps, to 

estimate the cumulative irradiance from 318–450 nm, in J m-2, that samples were exposed to throughout each experiment. 

This allowed us to account for differences in light intensity between days and between experiments by plotting the observed 

changes in DOM against actual irradiance, instead of just as a function of time. However, owing to the large diameter and 10 

complex geometry of our quartz bottles, the diurnal change in sunlight angle, and the presence of the plastic container, we 

could not estimate absorbed light doses reliably enough to calculate apparent quantum yields of DOM photo-degradation. 

We therefore used the estimated irradiances to help us understand qualitatively how CDOM and DOC changed during 

sunlight exposure. 

During the first three experiments, the radiometer was installed adjacent to the exposed samples and run throughout the 15 

experiments. During the experiment with Samunsam river water, the radiometer was in use on board the sampling boat while 

the samples were being exposed on land; however, there was only little cloud cover during those days, and this was evenly 

distributed across land and sea. The Samunsam photo-degradation experiment was then continued for an additional three 

days, during which no radiometer measurements could be taken. To estimate the approximate irradiances for these days, the 

amount of cloud cover on each day was noted, and radiometer measurements were taken from previous days that 20 

approximately matched the cloud conditions. The integrated irradiance for the Samunsam experiment is therefore less well 

constrained than for the other experiments, but since we are not attempting to quantitatively relate DOC degradation to 

absorbed photon dose, these uncertainties do not compromise our conclusions about the photo-lability of tDOM in Sarawak. 

 

3 Results 25 

3.1 Concentrations of DOC 

Concentrations of DOC differed significantly between rivers, with highest freshwater concentrations (salinity = 0) in the 

Maludam (3,100–4,400 µmol L-1), and lowest concentrations in the Rajang (120–250 µmol L-1) (Fig. 2a–e). Seasonal 

differences were clearly apparent in the river samples, but did not show a consistent direction: the Sematan and Samunsam 

rivers carried ≥50% higher DOC concentrations in September than in March, the Sebuyau river had marginally higher 30 

concentrations in September than in March, while the Maludam and Simunjan rivers had 20%–40% lower DOC 
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concentrations in September than in March. Seasonality in the Rajang river is not apparent in Fig. 2a, possibly because of 

variability between distributary channels. 

In March, DOC concentrations at freshwater stations in the Maludam and Sebuyau increased with distance downstream, but 

decreased slightly in the Simunjan (Fig. 3a–c). In September, DOC concentrations varied little with distance downstream in 

these three blackwater rivers (Fig. 3a–c). In the Rajang river, DOC concentrations at salinity 0 in each individual channel 5 

were somewhat higher in March than in September (Fig. 3g–i; June data are not shown because only one station had salinity 

0 in June). Notably, DOC concentrations in the Rajang delta increased substantially with distance downstream in each of the 

distributary channels (Fig. 3g–i), with concentrations doubling to around 240 µmol L-1 during passage through the northern-

most distributary, the Igan. 

DOC concentrations decreased with increasing salinity in all river estuaries (Fig. 2a–e). In the Samunsam, Sematan, and 10 

Maludam rivers this decrease closely followed the predictions from a two-end-member mixing model, with the single sample 

from the Lundu river plotting very close to the Sematan mixing model. For the Sebuyau river, a conservative mixing model 

could not be constructed, because it discharges into the estuary of the larger Lupar river (Fig. 1), for which the freshwater 

end-member DOC concentration was not measured. For the Simunjan river, and for the Maludam river in March, too few 

data from brackish waters were available to construct a reliable mixing model. 15 

In contrast, the DOC concentrations in the Rajang delta do not fit the conservative mixing models well: most of the March 

and June data from brackish stations have higher DOC concentrations than expected, and in fact are closer to predictions 

from the September mixing model (Fig. 2a). The September mixing model was calculated using the DOC concentration of 

the two northern-most stations in the Igan distributary as the freshwater end-member, which had the highest DOC 

concentrations of any of the Rajang river stations. 20 

Some seasonality in DOC concentration was seen at the stations furthest off-shore, which had the highest salinities (29.0–

32.5). This was most evident in the Western Region: in March, the stations with highest salinities (28.9 and 29.0) contained 

93 and 87 µmol L-1 DOC, while in September the same stations had 76 and 78 µmol L-1 DOC, and salinities >32.0. In the 

Eastern Region, the highest off-shore salinities in June were 30.2–32.1 with DOC concentrations of 81–99 µmol L-1, while in 

September the DOC concentrations were lower at 76–83 µmol L-1 with salinities of 29.7–31.6 (except for one station with 88 25 

µmol L-1 DOC). 

3.2 Spectral characteristics of CDOM 

3.2.1 CDOM absorption coefficient 

CDOM concentrations, quantified as a350, were high throughout our study region. Nearly all samples in the blackwater rivers 

had a350 values >50 m-1, with samples from the Maludam reaching 210 m-1 (Fig. 2f–j). Lower values were found in the 30 

Rajang and Sematan rivers, between 3–11 m-1. The lowest a350 value (0.23 m-1) was found in the furthest off-shore station in 

the Western region in September. The mixing behaviour of a350 closely mirrored that of DOC in each of the rivers (Fig. 2). 
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3.2.1 Spectral slopes 

The CDOM spectral slope from 275–295 nm (S275–295) was low in all freshwater samples, ranging from 0.0102–0.0144, and 

increased with salinity to a maximum of 0.0254 (Fig. 4a–e). S275–295 was somewhat lower in most of the blackwater samples 

(Samunsam, Maludam, Sebuyau, and Simunjan) than in the Rajang and Sematan. Seasonal differences were clearly seen in 

the marine samples in the Western Region, with S275–295 in March always below 0.0200, but up to 0.0254 in September (Fig. 5 

4b). In the Rajang distributaries, S275-295 was lower in March than in September (Fig. 3j–l), but no clear seasonality was seen 

in the Eastern Region marine samples (Fig. 4a), although we were unable to collect many marine samples in March due to 

rough seas. 

In the Samunsam and Maludam rivers, S275–295 closely followed the conservative mixing models, but this was not the case in 

the Rajang and the Sematan rivers (Fig. 4a–c). In the Rajang, samples at salinities 3–20 typically had higher S275–295 than 10 

predicted by the mixing models (except in June), while many samples at salinities >20 had S275–295 values that were lower 

than predicted by the mixing models. Similarly, in the Sematan river in March, samples in brackish water up to salinity 20 

showed higher S275–295 than expected from conservative mixing. In September, we were unable to sample fully freshwater in 

the Sematan river owing to the timing of the tides, so the freshest sample still had a salinity of 3.4, and may therefore have 

already been affected by any non-conservative processes in the estuary. However, all samples in the Western Region with 15 

salinities >25 fell very closely between the conservative mixing lines for the Sematan and Samunsam rivers. 

The spectral slope from 350–400 nm (S350–400) showed more complex trends: freshwater samples had values mostly between 

0.014 and 0.018, while brackish and fully marine waters spanned a greater range of 0.0076–0.0206 (Fig. 4f–j). The marine 

end-member stations in the Eastern and Western Regions both had lower S350–400 than the river end-members in September, 

but had higher values (Western Region) or nearly identical values (Eastern Region) in March and June. In the Rajang and 20 

Sematan rivers, S350–400 showed conservative mixing up to salinities of 20–25, but was lower than predicted by conservative 

mixing in the blackwater Samunsam and Maludam rivers (Fig. 4f–h). At salinities >20–25, many samples clearly depart 

from the conservative mixing models, except for samples in March in both regions. 

However, the spectral slope ratio, SR (the ratio of S275–295 to S350–400), showed trends very similar to S275–295, i.e. low values in 

river waters (0.601–0.867) and higher values in marine waters with salinity >25 (0.786–2.33, Fig. 4k–o). In brackish waters, 25 

SR was typically slightly greater than predicted by the conservative mixing models, especially in March in the Rajang, 

Sematan, and Samunsam rivers, and in September in the Rajang, Samunsam, and Maludam rivers (Fig. 4k–m). 

 3.2.2 Specific UV absorbance 

The specific UV absorbance at 254 nm (SUVA254) was higher in river samples (3.08–6.89 at salinity 0) than in marine 

samples (0.81–5.00 at salinity >25), and decreased with salinity for all rivers and seasons (Fig. 4p–t). SUVA254 was 30 

somewhat higher in the Rajang and in the Simunjan in March than in June or September, but otherwise seasonal differences 

in the rivers were not pronounced. However, as for the other CDOM parameters, there was a clear difference between March 
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and September in the marine samples from the Western Region (Fig. 4q). The data from the Maludam, Sematan, and 

Samunsam rivers closely followed the conservative mixing lines, while in the Rajang, the majority of brackish samples with 

salinity >20 showed somewhat greater SUVA254 than expected from conservative mixing (Fig. 4p–r). Because sodium azide 

contributes a relatively high blank absorbance at 254 nm but not beyond 270 nm, we compared our SUVA254 values to the 

specific UV absorbance at 280 nm, SUVA280, for each sample. We found a very strong, linear relationship between SUVA280 5 

and SUVA254 for the entire dataset across rivers and seasons, with SUVA280 = 0.792 ´ SUVA254 – 0.0141 (r2 = 0.990, p 

<0.001, n = 154), suggesting that our SUVA254 measurements were not compromised by the NaN3 blank (NaN3 has no 

absorbance at 280 nm, Supplementary Fig. 1). 

3.2.3 Relationships between DOC and CDOM 

The CDOM concentration, as a350, was closely related to the DOC concentration for the entire dataset (Fig. 5a). S275-295 was 10 

also strongly related to DOC, though with somewhat greater scatter at DOC concentrations greater than about 150 µmol L-1 

(Fig. 5b). Consequently, there was also a strong relationship between S275-295 and a350, although also with more scatter 

wherever a350 >10 m-1 (Fig. 5c). The increased scatter in Figs. 5b,c at high DOC and CDOM concentrations is due to the fact 

that the rivers differed somewhat in S275–295: in particular, the Rajang, Sematan, and Simunjan had higher S275–295 for a given 

DOC or CDOM concentration than the Samunsam and Maludam. There was no seasonal variation in any of these 15 

relationships, inasmuch as the datasets from all three seasons plot along a single trajectory in all three plots, rather than 

segregating into parallel trajectories by season. 

3.3 Photo-degradation of DOC and CDOM 

DOM from the Rajang and Samunsam rivers was photo-labile, with DOC and CDOM decreasing after sunlight exposure. In 

contrast, marine water collected in the Eastern Region only showed some changes in CDOM, but no decrease in DOC (Fig. 20 

6, Table 1). Daily irradiances, integrated from 318–450 nm, ranged from 0.92 to 3.00 MJ m-2, with cumulative irradiances 

for each experiment ranging from 5–11 MJ m-2. Irradiance data for each day are shown in Supplementary Fig. 3. In practice, 

plotting our data against estimated cumulative irradiance showed the same trends as plotting simply against time of exposure 

(Supplementary Fig. 4), although we estimate that the Samunsam water received a slightly higher irradiance over five days 

than the marine water over six days, and that the two Rajang experiments differed by about 20% in irradiance despite both 25 

lasting three days. 

 The Rajang water in June lost 16.1 ± 0.5 µmol L-1 DOC by the end of the experiment (mean ± 1 SD, representing 8.8%–

9.4% of the starting DOC), with a350 decreasing as well. S275–295 and SR both increased, while S350–400 remained essentially 

unchanged, and SUVA254 decreased slightly (Fig. 6). In September, we found very similar changes in the Rajang water after 

sunlight exposure: 18.9 ± 6.1 µmol L-1 DOC were lost (mean ± 1 SD, representing 5.6%–10.7% of starting DOC), a350 30 

decreased, and S275–295 and SR increased by amounts similar to June. Although S350–400 decreased slightly relative to the initial 

sample, there was no difference between light and dark bottles in this parameter. SUVA254 decreased slightly in the light 



12 
 

bottles, and actually increased somewhat in the dark bottles. Marine water showed no change in DOC upon light exposure, 

although light bottles had very slightly higher DOC concentrations than dark bottles at the end of the experiment (by 4.5–6.1 

µmol L-1). However, light bottles had lower a350 than dark bottles at the end of the experiment, and S275–295 increased strongly 

due to light exposure, reaching values higher than seen in any of our environmental samples (>0.030). S350–400 increased both 

in light and dark bottles relative to the initial sample, and SR consequently dropped in the dark bottles but remained relatively 5 

constant in the light bottles. SUVA254 decreased slightly after light exposure. The greatest effects of photo-degradation were 

seen in the Samunsam river blackwater, with a decrease in DOC by 432 ± 42 µmol L-1 (mean ± 1 SD, representing 21%–

26% of initial DOC) and a large reduction in a350. S275–295 and SR both increased, S350–400 decreased, but SUVA254 remained 

essentially unchanged (Fig. 6). Notably, DOC and a350 showed a linear decrease with cumulative irradiance in all three river 

water experiments, suggesting that more DOC could have been mineralised (and more CDOM lost) if sunlight exposure had 10 

continued. 

3.4 Distributions of chlorophyll-a and suspended sediments 

Chlorophyll-a concentrations were mostly <3 µg L-1 throughout the region, and never exceeded 5.5 µg L-1, indicating quite 

oligotrophic conditions (Fig. 7a–e). Concentrations in the rivers at salinity 0 were always <1 µg L-1 except in the Simunjan 

(up to 3.8 µg L-1), and higher values were generally found in the estuaries at salinities between 10 and 25. 15 

Total suspended solids in the Rajang reached values up to nearly 400 mg L-1, with values in the brackish waters of the 

Rajang delta varying mostly between 10–70 mg L-1 (Fig. 7f–i). More than 90% by weight of this material was inorganic. The 

other rivers, and the most distant marine samples, all contained far lower TSS concentrations, but the estuaries always had 

>10 mg L-1. 

 20 

4 Discussion 

4.1 Distribution of DOM within and between rivers 

Rivers in Sarawak clearly differ substantially in their DOM concentrations. All of the blackwater rivers had DOC 

concentrations above 1,200 µmol L-1, with highest values in the Maludam river. These results are consistent with previous 

measurements in the Maludam (Müller et al., 2015), and in other blackwater rivers in South-East Asia (Alkhatib et al., 2007; 25 

Cook et al., 2017; Harun et al., 2016; Moore et al., 2011; Rixen et al., 2008; Wit et al., 2015), but they are high compared to 

DOC measurements in blackwaters from other continents, which are typically below 2,000 µmol L-1 (Lawrenz et al., 2010; 

Leech et al., 2016). The Maludam, Sebuyau, and Simunjan river drain peatlands along most of their catchments (Müller et 

al., 2016), while the Samunsam river drains an extensive area of peatland in its upper reaches. The lower DOC 

concentrations in the Rajang, Sematan, and Lundu rivers are closer to concentrations reported from the Lupar and Saribas 30 

(mostly <500 µmol L-1), the two larger rivers that flank the Maludam peat dome (Fig. 1) (Müller et al., 2016). The Rajang 
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river drains mineral soils along most of its catchment, and peatlands (up to several metres thick) are only found in the delta 

surrounding the distributaries (Gastaldo, 2010; Staub et al., 2000). The Sematan and Lundu river catchments also have at 

most limited peat deposits. The pronounced increase in DOC concentration with distance downstream in the three main 

Rajang distributary channels clearly shows that there are large organic matter inputs into the distributaries. Chlorophyll-a 

concentrations in the Rajang were very low, and no traces of aquatic macrophytes were seen in any of the rivers; given the 5 

very low light penetration due to suspended sediments and CDOM (see Section 4.3.2), benthic primary production is likely 

to be at most minimal. We therefore rule out a significant autochthonous DOC source. Bacterial solubilisation of particulate 

organic carbon (POC) is a possible in-situ source of DOC, but our CDOM data did not indicate a substantial bacterial DOM 

source (see Section 4.4). Photochemical POC solubilisation could also produce DOC in situ (Kieber et al., 2006; Mayer et 

al., 2006). However, estimated rates of photochemical POC solubilisation under realistic conditions of light penetration are 10 

only around 4–6 mmol m-2 d-1 (Kieber et al., 2006; Riggsbee et al., 2008), which is too low to explain the DOC increase we 

observed, given the likely short transit time of water through the Rajang delta (see Section 4.3.2). Instead, the DOC input 

most likely originates from the peatlands in the delta. Peatlands are found throughout the delta, but are most extensive and 

deep along the Igan distributary (Gastaldo, 2010; Staub et al., 2000), and the Igan also showed the greatest increase in DOC 

with distance downstream of all the Rajang distributaries, consistent with our hypothesis of a peatland DOM source to the 15 

Rajang delta. However, future work should explicitly address the possibility of POM solubilisation to DOM in South-East 

Asian rivers. 

None of the river catchments consist of genuinely pristine peat swamps: much of the peatland surrounding the Simunjan, 

Sebuyau, and Rajang rivers has been converted to oil palm plantations, and even the less impacted Maludam and Samunsam 

catchments have been disturbed to some degree by logging. Human disturbance has been shown to increase the loss of DOC 20 

from peatlands at field sites in central Borneo (Moore et al., 2013), and depending on water table height, peatland oil palm 

plantations in Sarawak can also export old DOC (Cook et al., 2018). Differences in DOM quality between agricultural and 

natural peatland sites on Borneo have also been noted (Harun et al., 2016; Materić et al., 2017). While it is thus clear that 

land-use can impact DOC export from South-East Asian peatlands, our study was not designed specifically to determine the 

effect of land-use on DOM concentrations or quality in the rivers; more field work would be needed to do so.  25 

Our CDOM data show that all rivers were characterised by high levels of tDOM, with the blackwater rivers in particular 

having extremely high absorption coefficients, very low S275–295, and high SUVA254. S275-295 is now well established as an 

optical tracer for tDOC in estuarine and marine waters (Fichot and Benner, 2011, 2012; Helms et al., 2008), and is inversely 

related to the mean molecular weight of DOM in a sample (Helms et al., 2008). SUVA254 is positively related to the 

aromaticity of DOM (Traina et al., 1990; Weishaar et al., 2003). Our values for S275-295 and SUVA254 in the rivers are, 30 

respectively, on the low and the high end of values reported from other freshwaters, especially in our blackwater rivers 

(Fichot and Benner, 2014; Helms et al., 2008; Leech et al., 2016; Massicotte et al., 2017). These river systems in Sarawak 

are therefore characterised by DOM with high average molecular weight and high aromaticity, consistent with a terrigenous 
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rather than aquatic source. Moreover, even the clearest marine waters that we sampled had S275–295 no greater than about 

0.025, which is consistent with some of the DOM in these waters having a terrigenous origin. 

Riverine DOC concentrations do not always show a simple relationship with precipitation and river discharge, especially in 

peatland-draining rivers (Clark et al., 2007). Previous DOC measurements in the Saribas and Lupar rivers in Sarawak did not 

show a consistent seasonality (Müller et al., 2016). Our data indicate that DOC concentrations at the end of the wettest 5 

season (March) were higher than at the end of the drier season (September) in the Rajang, Maludam, and Simunjan rivers, 

but by different amounts. In contrast, the Samunsam, Sematan, and Sebuyau showed lower concentrations in March than in 

September, but again by different amounts between the rivers. These differences between rivers probably reflect differences 

in catchment hydrology rather than variation in weather conditions, given that precipitation in 2017 was mostly close to the 

18-year mean. However, the Maludam experienced unusually high precipitation in September, with nearly all of the excess 10 

precipitation relative to the mean falling during two consecutive days and less than one week before our sampling. It is 

possible that this high precipitation could have had a dilution effect (Clark et al., 2007) and contributed to the lower 

September DOC concentrations in this river. Because the Maludam is a very small river, the precipitation record from 

Maludam village is likely to reflect rainfall across the Maludam catchment. This is unlikely to be the case for the Rajang 

river; therefore, the elevated February precipitation in Sibu would probably not have affected our March data for the Rajang. 15 

Overall, our data clearly show that there is inconsistent seasonality in riverine DOC concentrations across Sarawak, while 

precipitation is relatively high year-round. Sarawak is thus clearly characterised by high tDOC fluxes to sea in all seasons, as 

reflected by the low S275-295 values at all of our marine stations. Nevertheless, we found a stronger terrigenous signal during 

the north-east monsoon in the Western region marine samples, although we cannot say whether this reflects a seasonal 

change in the magnitude of the tDOC flux to sea, or perhaps a seasonal difference in the degradation rate of tDOC at sea. For 20 

example, rougher, more turbid seas and greater cloud cover during the north-east monsoon might reduce the solar irradiance 

underwater and thus reduce the rate of photo-degradation. 

Despite the fact that there are large differences in CDOM concentration and some differences in CDOM spectral properties 

between rivers, we found very strong relationships between DOC concentration, a350, and S275–295 across our entire dataset. 

Unlike, for example, in the northern Gulf of Mexico (Fichot and Benner, 2011), there was no seasonal variability in these 25 

relationships. This suggests that there are no strong seasonal changes in tDOM composition within our study region, despite 

the seasonal concentration differences discussed above. 

4.2 Photo-lability of riverine DOM 

Our experiments clearly showed that DOM in Sarawak rivers is photo-labile, with both DOC mineralisation and substantial 

changes to the CDOM absorption spectrum occurring within days of sunlight exposure. The linearity of DOC loss with 30 

cumulative irradiation in our river samples suggests that our experiments were too short for all photo-labile DOC to be lost; 

our results are therefore an under-estimate of the total proportion of tDOC in Sarawak rivers that can potentially be photo-

mineralised (of course, it must be noted that the rate of tDOC photo-oxidation in our incubations was likely much higher 
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than the true in-situ rate of photo-oxidation, at least in the highly light absorbent rivers). Only the marine sample did not lose 

DOC upon exposure to sunlight, although this sample did show a significant increase in S275–295 to higher values than found 

at any of our stations. This increase in spectral slope for marine CDOM further suggests that there was a terrigenous fraction 

of DOM even at those stations farthest off-shore. 

High photo-lability of tDOM has been shown in many cases, with freshwater samples from North America (Gao and Zepp, 5 

1998; Helms et al., 2008; Helms et al., 2014; Miller and Zepp, 1995; White et al., 2010), Africa (Spencer et al., 2009), and 

the Arctic (Stubbins et al., 2017) showing loss of DOC and changes in absorption spectra upon solar irradiation. In some 

cases, however, riverine tDOC was found to be resistant to photo-degradation, possibly because the photo-labile fraction had 

already degraded upstream of the sampling site (Chupakova et al., 2018). Phytoplankton-produced DOC and marine surface-

water DOC are typically not photo-mineralised (Obernosterer and Benner, 2004; Ziegler and Benner, 2000), although DOC 10 

from aphotic deep-sea samples has been shown to be photo-labile (Helms et al., 2013). The changes that we observed in all 

our samples in S275-295 (pronounced increase) and in S350-400 (decrease or no change relative to dark bottles) upon sunlight 

exposure, and the resulting increases in SR, are also consistent with photo-degradation studies of tDOM in other regions 

(Helms et al., 2013; Spencer et al., 2009). Our data thus validate these optical measures as indicators of photo-degradation 

also in South-East Asia. Interestingly, the Samunsam blackwater sample did not show a change in SUVA254 upon solar 15 

irradiation. Given the very high SUVA254 of this sample, it is possible that the contribution of aromatic molecules to the total 

DOC was so high that the degradation of aromatic moieties was proportional to the overall loss of DOC during photo-

exposure. 

Our experimental results thus indicate that tDOM in rivers in Sarawak contains a significant photo-labile fraction that is 

partly photo-modified and partly photo-mineralised. Because South-East Asian peatlands are predominantly found in coastal 20 

lowlands (Dommain et al., 2014), peatland-derived DOM probably has too short a residence time in rivers for significant 

photo-degradation to occur in the rivers before it reaches the sea, unlike in some Arctic rivers (Chupakova et al., 2018). We 

therefore suggest that most photo-chemical transformations of tDOC in Sarawak likely take place after tDOC reaches the 

sea, rather than inside the rivers and estuaries. 

4.3 Mixing of riverine DOM with marine water 25 

4.3.1 Conservative mixing 

In the Maludam, Samunsam, and Sematan estuaries, DOC and most CDOM parameters showed conservative mixing 

between river water and seawater. Conservative behaviour of tDOM is often reported from estuaries elsewhere (Chen et al., 

2015; Kowalczuk et al., 2003; Rochelle-Newall and Fisher, 2002; Yamashita et al., 2011), including the few South-East 

Asian rivers that have been studied to date (Alkhatib et al., 2007; Baum et al., 2007; Rixen et al., 2008). Even though tDOM 30 

is now recognised as being less refractory than previously assumed (Bauer et al., 2013; Bianchi, 2011; Cai, 2011), as also 
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shown by our photo-degradation experiments, the removal time-scales of tDOM by photochemical, biological, and other 

processes are clearly longer than the transit times through these river systems. 

The marine waters in the Western Region showed a clear seasonal difference in CDOM spectral characteristics and salinity. 

The only significant rivers in this region are the Samunsam, Sematan, and Lundu. In spite of their small size, these rivers 

clearly deliver enough tDOM to measurably impact the optical characteristics of the DOM pool in coastal waters 10–20 km 5 

beyond the river mouths, including on the coral reefs surrounding the Talang Islands. Even our highest values of S275-295 are 

actually on the low end of values reported from marine samples (usually 0.020–0.050, Stedmon and Nelson (2015)), 

suggesting that tDOM contributes significantly to the total DOM pool in coastal waters in Sarawak. Beyond the immediate 

river plumes, these coastal waters have low concentrations of suspended sediments and of chlorophyll, which means that 

tDOM delivery might act as an important control over the underwater light availability in this region, and thus over coastal 10 

productivity (Cherukuru et al., 2014; Durako et al., 2010; Lawrenz et al., 2010). 

4.3.2 Possible non-conservative mixing in the Rajang 

In the Rajang delta, we found evidence of non-conservative mixing, with most of the brackish waters having higher DOC 

concentrations than expected. We attribute this to continued input of tDOC from the extensive peatlands surrounding all of 

the distributaries (Gastaldo, 2010; Staub et al., 2000), since we observed increasing DOC concentration with distance 15 

downstream in each distributary. Moreover, several of the Eastern Region marine samples, with salinities >30, had higher 

DOC concentrations than predicted by the mixing models, possibly indicating that DOC-rich run-off from peatlands also 

flows directly into the coastal sea (e.g. from peatlands on Pulau Bruit, Staub et al. (2000)). Higher DOC concentrations than 

predicted by conservative mixing have sometimes been noted, for example, in the Chesapeake Bay, and attributed to in situ 

production of DOC by phytoplankton (Rochelle-Newall and Fisher, 2002). However, chlorophyll-a concentrations in our 20 

study region very rarely exceeded 2.5 µg L-1, and were always below 1 µg L-1 in the Rajang river, which rules out 

phytoplankton production as a major source of riverine DOC. 

Given this large input of likely peat-derived DOC into the Rajang Delta, one would also expect non-conservative behaviour 

of CDOM. Surprisingly, however, the majority of brackish samples actually had higher S275-295 values than predicted, 

contrary to what one would expect from the addition of peatland-derived DOM (indeed, all other rivers had lower S275-295 25 

than our Rajang samples). These results suggest that there is selective removal of a high-molecular weight CDOM fraction 

within the Rajang delta, despite the continued input of tDOM in the distributaries. Our data from the Sematan river in March 

actually hint at a similar increase in S275–295 than expected from conservative mixing, although our dataset from this river is 

too limited to conclude this with confidence. 

Non-conservative removal of tDOM in estuaries can occur due to photo-degradation and microbial degradation, flocculation 30 

due to rising salinity, or adsorption to sediments. We hypothesise that adsorption of tDOM to suspended inorganic sediments 

is the most likely explanation for the non-conservative increase in S275–295. We measured extremely high suspended inorganic 

sediment in all of the Rajang distributaries on all expeditions (100–360 mg L-1), which is consistent with previous data 



17 
 

(Staub et al., 2000). Such concentrations of sediments have been shown to lower CDOM absorption coefficients and to 

increase the CDOM spectral slope of estuarine tDOM samples in laboratory incubations (Shank et al., 2005; Uher et al., 

2001). While flocculation of tDOM due to rising salinity can occur (Sholkovitz et al., 1978; Uher et al., 2001), we would 

also expect this process to affect all of the other, less sediment-rich, rivers similarly, but this was not the case (except, 

possibly, in the Sematan estuary). Photo-degradation is unlikely to account for CDOM removal in the Rajang delta, because 5 

the high sediment loads attenuate light very strongly; Secchi depths, measured on two of our expeditions in the Rajang, were 

typically in the range of 10–30 cm. Although bacterial degradation of tDOM almost certainly does take place in the Rajang, 

the transit time of river water through the distributaries is probably too short for biological degradation to account for the 

observed changes: the total distance through the distributaries to the coast is around 80–120 km, and current speeds on the 

order of 1-2 knots were typical, implying a total transit time to sea of just a few days. Sediment adsorption, however, has 10 

been shown to alter CDOM spectra within hours to days (Shank et al., 2005; Uher et al., 2001). Müller-Dum et al. (2018) 

reported relatively low concentrations of CO2 in the Rajang river and along the distributaries, with 13C content of dissolved 

inorganic carbon indicating little contribution of peatland DOC to the dissolved CO2 pool, which supports our interpretation 

of the DOC and CDOM data in this river. 

4.4 Biogeochemical processing of tDOM 15 

Both photo-degradation and microbial degradation typically cause increases in S275-295 (Helms et al., 2014; Lu et al., 2016; 

Spencer et al., 2009). However, photo-degradation concomitantly reduces S350-400, and thus increases SR (Helms et al., 2013; 

Helms et al., 2014; Spencer et al., 2009), as seen in all of our photodegradation experiments. In contrast, incubation 

experiments suggest that bacterial processing of tDOM either has limited impact on, or actually increases, S350-400 (Hansen et 

al., 2016; Lu et al., 2016). Similarly, Moran et al. (2000) found that CDOM spectral slopes over a larger wavelength range 20 

are increased by photo-degradation, but reduced by microbial degradation. The fact that SR showed a very clear increase with 

salinity in all rivers, with marine samples mostly showing values >1.0, suggests that photo-degradation plays an important 

role in processing tDOM in this region. However, the erratic variation seen in S350-400, with marine samples having either 

higher or lower values than river water, may be indicative of a role for microbial tDOM degradation as well. Typically, 

photo-degradation makes tDOM more labile to microbial remineralisation (Kieber et al., 1989; Miller and Moran, 1997; 25 

Obernosterer and Benner, 2004), which makes it hard to disentangle the importance of the two processes based only on 

CDOM measurements. While our CDOM data are consistent with an important role for photo-degradation, estimating the 

amount of tDOC that is actually photo-oxidised to inorganic carbon would require estimates of the water residence time, 

solar irradiation, and light attenuation coefficients, which are not available for Sarawak at the present time. Based on such a 

calculation, Fichot and Benner (2014) estimated that the majority of tDOC delivered by the Mississippi river to the Gulf of 30 

Mexico is actually remineralised by bacteria, even though the tDOC in their study region was found to be photo-labile in 

irradiation experiments. 
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Importantly, our data suggest that most of the tDOM that is lost from South-East Asia’s coastal peatlands is transferred to the 

seas on the Sunda Shelf, where it becomes part of the global ocean circulation via the different branches of the Indonesian 

Throughflow. However, owing to the large geographical extent of the Sunda Shelf, the residence time of peatland tDOM on 

the shelf is likely to be at least several months to a year. During this time, the tDOM always experiences temperatures of 25–

30ºC (promoting rapid microbial metabolism), and is also likely exposed to relatively high doses of solar irradiation, because 5 

these oligotrophic, tropical waters are relatively clear and shallow (mostly <100 m deep). The geographical extent and 

oceanography of the Sunda Shelf seas are therefore likely to strongly promote the remineralisation of tDOM before this 

material enters the open ocean. Remineralisation of tDOC would explain the high pCO2 over-saturation reported by 

Kartadikaria et al. (2015) across the Java Sea, which is thus consistent with our results. 

 10 

5 Conclusions 

We have undertaken the first seasonally-resolved study of DOC and CDOM for South-East Asia that includes peatland-

draining rivers, estuaries, and coastal waters. Most of the rivers we sampled carried very high concentrations of tDOC and 

CDOM that showed conservative mixing with seawater in the estuaries. Non-conservative mixing was only found in the 

Rajang river delta, where our data point towards increasing inputs of tDOM from peatlands along the delta, but also to the 15 

removal of a high-molecular weight fraction, probably due to adsorption to sediments. Seasonality in tDOM concentrations 

differed between rivers, but our CDOM data showed that tDOM concentrations were higher at all marine stations in the 

western part of our study region during the north-east monsoon. Overall, our CDOM spectral slope coefficients are 

consistent with a significant contribution by tDOM to the total DOM pool even at our marine end-member stations, but also 

suggest that photo-degradation plays an important role in the biogeochemical processing of tDOM in Sarawak’s coastal 20 

waters. This is also supported by our direct experimental evidence showing that tDOM from rivers in Sarawak is both 

remineralised and altered upon solar irradiation. Our results therefore suggest that much of the biogeochemical processing of 

peatland-derived tDOM in South-East Asia may take place in shelf seas rather than rivers.  
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Table 1: Summary of results from photo-degradation experiments for DOC, S275-295, and CDOM concentration (a350) . All 
values are mean ± SD for each treatment. Day 0 data are the values measured at the corresponding station from which water 
for each experiment was taken. All irradiance data are in Joules m-2, integrated from 318–450 nm. 
 

Rajang experiment June 

 

Cumulative 

irradiance DOC, µmol L-1 S275-295 a350 

Day 
 

Light Dark Light Dark Light Dark 

0 0 178 0.0132 5.89 

1 1.93´106 176 ± 0.31 178 ± 1.34 0.0155 ± 6.4´10-5 0.0131 ± 3.5´10-5 4.88 ± 0.06 6.03 ± 0.02 

3 6.53´106 162 ± 0.51 177 ± 0.07 0.0183 ± 1.6´10-4 0.0132 ± 6.3´10-6 3.79 ± 0.11 6.05 ± 0.02 

 
Rajang experiment September 

 

Cumulative 

irradiance DOC, µmol L-1 S275-295 a350 

Day 
 

Light Dark Light Dark Light Dark 

0 0 238 0.0130 7.91 

1 1.10´106 235 ± 1.4 246 ± 4.8 0.0138 ± 2.0´10-4 0.0128 ± 1.3´10-4 8.00 ± 0.08 8.89 ± 0.67 

3 4.72´106 219 ± 6.1 238 ± 4.6 0.0166 ± 3.7´10-4 0.0124 ± 5.8´10-4 6.04 ± 0.25 9.24 ± 0.64 

 
Marine experiment September 

 

Cumulative 

irradiance DOC, µmol L-1 S275-295 a350 

Day 
 

Light Dark Light Dark Light Dark 

0 0 83 0.0228 0.55 

4 6.08´106 85 ± 0.8 79 ± 1.6 0.0299 ± 5.2´10-4 0.0242 ± 9.1´10-4 0.261 ± 0.022 0.402 ± 0.045 

6 9.71´106 86 ± 1.2 81 ± 1.6 0.0306 ± 2.5´10-4 0.0245 ± 2.3´10-4 0.247 ± 0.006 0.385 ± 0.012 

 
Samunsam experiment September 

 

Cumulative 

irradiance DOC, µmol L-1 S275-295 a350 

Day 
 

Light Dark Light Dark Light Dark 

0 0 1799 0.0109 97.6 

1 2.99´106 1640 ± 50 1730 ± 11 0.0119 ± 1.3´10-4 0.0108 ± 3.2´10-5 85.0 ± 2.6 93.5 ± 1.5 

3 7.13´106 1535 ± 30 1781 ± 38 0.0126 ± 7.0´10-5 0.0112 ± 5.6´10-4 79.9 ± 2.3 89.2 ± 5.9 

5 11.2´106 1366 ± 42 1779 ± 17 0.0133 ± 1.2´10-4 0.0109 ± 7.1´10-5 70.0 ± 3.2 96.4 ± 1.2 

 5 
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Figure 1: (a) Map of the study region showing station locations for each of the three expeditions. Thick grey boxes with 

letters indicate the areas shown in panels (b–d). (e) Monthly mean precipitation for the towns of Sibu, Sematan, and 

Maludam (locations of the rain gauges are marked with arrows in panels b, c, and d; arrow colours correspond to the bar 

colours in panel e). Bars show mean ± 1 SD for 1999–2017, while points show values for 2017. Bars and points for the three 5 

locations in each month are separated horizontally for bett.er readability, but correspond to the same time periods.  
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Figure 2: Changes in (a–e) dissolved organic carbon concentration, and (f–j) a350 from rivers to coastal seawater. Coloured 

lines show conservative mixing models for the data from the corresponding season. In (b) and (c), solid versus dashed lines 

distinguish the mixing models for the Sematan and Samunsam rivers in the Western Region. Data are separated by sampling 

region in columns, indicated by the column titles. Colours of plotting symbols are used to distinguish sampling seasons in all 5 

panels as per the legend in panel (a).  
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Figure 3: Changes in (a–c and g–i) dissolved organic carbon concentration and (d–f and j–l) S275-295 with distance 

downstream for all stations with salinity of 0. Data in (a–f) are for the Maludam, Simunjan, and Sebuyau rivers, while (g–l) 

show data for the three main Rajang distributaries (named in Figure 1b): panels (h,k) show data for the Serendeng branch 

(includes the Lebaan and Paloh sections), while panels (i,l) show data for the Rajang branch (includes the Payang section).  5 
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Figure 4: Changes in (a–e) S275-295, (f–j) S350–400, (k–o) CDOM spectral slope ratio, and (p–t) SUVA254 from rivers to coastal 

seawater. Conservative mixing lines are shown as in Figure 2 (note that conservative mixing of CDOM properties is non-

linear). Data are shown separately for each sampling region as indicated by column titles.  
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Figure 5: Scatter plots of (a) CDOM absorption versus DOC concentration, (b) S275–295 versus DOC concentration, and (c) 

S275-295 versus CDOM absorption for the entire dataset. Strong relationships were found between these parameters, but 

without seasonal variation.  5 
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Figure 6: Results from photo-degradation experiments showing the decrease in DOC (top row), CDOM concentration 

(second row), S275-295 (third row), S350–400 (fourth row), CDOM spectral slope ratio (fifth row), and SUVA254 (bottom row) 

with cumulative irradiance from 318–450 nm wavelength. Each column corresponds to one degradation experiment, as 

indicated in the column titles. Black symbols indicate dark control bottles, yellow symbols indicate light-exposed bottles. 5 
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Figure 7: Distribution of (a–e) chlorophyll-a, and (f–i) total suspended solids from rivers to coastal seawater for each study 

region. TSS was not measured in the Simunjan. 
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