

Reviewer #1

The manuscript has been greatly improved. All the methodological concerns that I had have been clarified. Some work is still needed, however, before the manuscript can be published.

Some general comments:

- The text is too long and should be reduced by 20-30%. The results and the discussion in particular should be cleaned of all the textbook comments and context generalities and be focused on the data.
- The data interpretation is not satisfying. It is generally very confusing and some important issues are not discussed.
- The climate interpretation takes shortcuts more based on widely repeated scenarios than their data.
- *The differences between the two cores are described. However, the authors do not acknowledge or discuss the fact that these differences, which underline the importance of local processes, greatly limit the geographical extent of the interpretations that can be made from those records. The authors draw large conclusions from the opal and diatom records in one core, which are precisely the proxies without equivalent in the other core.*

The extension of the manuscript was reduced substantially. The introduction began with a review of the most important climatic and oceanographic agents in the region and how they are affected by the decadal-inter-decadal, inter-annual and seasonal variations. Then, the main oceanographic characteristics of the area are explained; for example the upwelling and minimum oxygen zone, followed by an explanation of how the variability of the key parameters accounts for their functioning: i.e. primary productivity and oxygen content can be observed in sedimentary records. We also explain the objectives of the study and then focus on the local characteristics of the study area, for which we propose a work hypothesis based on its special features. In the section on method, only the principle of each method was considered and superfluous details that can be found in the cited papers were avoided. The results were reduced to main findings avoiding superfluous descriptions. The discussion was based on the most important aspects that describe the geochemistry of the area, their functioning, and how the sedimentary records show the most important changes in terms of primary productivity, oxygenation of the bottoms and the relationship of these parameters to climatic changes that have already been described for the region. In this sense, we have tried to better clarify the objectives of this work. However, our results are not aimed at establishing a climate model and rather show important aspects of the variability of this region's main oceanographic features in the past 8,000 years. Take for example the case of minimum oxygen variability –as it has been affected over time– which has implications for the climate change scenario as past climate changes

impacted the content of oxygen in bottom waters thereby changing the dynamics of biogeochemical processes in an area under the influence of one of the most important upwelling centers in north-central Chile. This is a partially permanent upwelling system developed in an area known for its climatic transition (30°S), between the northern super-arid zones and more humid climates heading south. .

Notably, there is no information about oxygen condition variability at bottoms in the Chilean margin, which is closely related to the oxygen minimum zone strength, except for some previous work off Concepción (36°S) covering the past 2000 years. Our cores are showing the variability of oxygenation in bottoms for the past 8000 years in a shelf area highly influenced by oceanic circulation due to a very narrow continental shelf.

The regional representativeness of our results lies in the fact that we are working in a zone with semi-permanent upwelling which has an impact on a larger area of Chile's north-central area, which in turn is impacted by the proximity of the oxygen minimum zone extending along the continental margin. The entrance of oxygen deficient water is relatively variable, causing periods of significant anoxia within the bays. The way in which this process is triggered is still a matter of study. Therefore, oceanographic processes observed in relatively shallow waters are representative of processes at a regional scale and their sediments may well account for regional oceanographic and climatic changes.

The difference observed between cores is not contradictory; represent different aspects of the area, which as a whole explain climatic and oceanographic changes, thus making the sedimentary records of both cores complementary. These differences are justified by the higher amount of continental material received by core BTGC8 in comparison with core BGGC5. Circulation within the bays facilitates the deposition of organic matter derived from primary productivity at Guanaqueros Bay. This is due to bay circulation which seems to involve a large area of a "bay system", from Lengua de Vaca Point to the south, towards Punta Choros to the north. Water circulation in the southern part of Tongoy Bay, close to core BTGC8, facilitates the movement of particles outside the bay, which could return from the north reaching the southern part of Ganaqueros Bay, close to the position of core BGGC5. However, the extension of the clockwise circulation has not been defined yet and studies to support this assumption are still pending. This was underlined in the study area section and addressed in the first section of the discussion. Furthermore, the effect of terrigenous material in the Tongoy area due to the discharge of several creeks during major flooding events has been previously observed in sediment cores retrieved close to our sampling site, showing evidence of increasing El Niño events from cal BP 3500 (Ortega et al., 2019.) The continental material is diluting other organic and inorganic proxy records reducing the concentrations,

i.e. diatoms valves and nutrient-type elements. Even with this effect, the trace metal records in core BTGC8 show trends similar to those observed in core BGGC5. Therefore, although core BTGC8 was inappropriate for diatom records, it helped to better understand the continental input. Therefore, both cores were used in the interpretations.

The geographical extent of our interpretations is based on the similarities found in the climatic trends found by Maldonado et al. (2006) in coastal areas of southern sites, close to our sampling area (31°S). In addition, we cited the works of Ortega et al. (2012, 2019) and others that suggest an increase in the wet conditions from the mid-Holocene (6000 BP) to recent eras. Such work do not mention a weakened ENSO during 6000-4000 BP reported for south Peru, suggesting dry periods for the SE Pacific. This was probably caused by the intensification of fog in the Coquimbo Region during La Niña events (~30-31°S), which sustain relevant vegetation along the coast. Otherwise and at an inter-annual scale, the increasing variability of El Niño in the last 100-200 years is also observed in our cores, evidenced in increased grain size, high magnetic susceptibility, and higher Fe and Pb concentrations that point to growing continental runoff. This is also observed at a millennial scale; wet conditions can be deduced by the regular rise of such metals, and higher K/Ca ratios and pollen moisture index, all of which help to establish more humid conditions towards the present.

Concomitantly, oxygen conditions at bottoms changed dramatically in the past 2000 years, most probably due to an increase in ENSO variability, reducing the suboxic conditions of bottoms. This hypothesis is based on the observed changes in the benthic communities during El Niño events during the past 20 years, mostly reported in northern and central Chile, and Peru. The OMZ extension and its impact on the bays in northern Chile is still a matter of study. Some observations are reported by Gallardo et al. (2017), but they fail to explain the main variability of the presence of oxygen deficient water over the shelf. Observations suggest that low oxygen conditions were preceded by a period of southerly winds which were favorable to coastal upwelling and the rise of subsurface waters. In a longer time scale, we assume that the winds are still the main drivers for the intrusion of oxygen deficient waters into the bays.

- The records of productivity and oxygenation are expected be related as it is observed in sediment cores from Peru (Gutierrez et al., 2009; Salvatecci et al., 2014). However, the opal flux curve shows a sharp decrease at 6500 BP that is not reproduced in U, Re or Mo records. In the recent period (last ~200years), oxygenation seems to increase as well as productivity, which seems contradictory.

Low oxygen conditions are not only related to the onsite regeneration of organic matter. Such low oxygen condition at the bottom occurs during the intrusion of oxygen depleted waters belonging to OMZ into our margin, mostly associated with ESSW. Therefore, the variability in primary productivity and their remineralization has a seasonality effect on local oxygen bottom water that has not been reported at a millennial time scale. In this case, our records are showing the variability of this oceanographic feature, revealing two relevant changes at cal BP 6700 and 2000.

The authors should discuss the relationship between oxygen and productivity proxies in their dataset and discuss why productivity and oxygenation which are both related to the upwelling intensity show here different behaviors.

- The discussion about the upwelling intensity is only based on the productivity proxy while oxygenation proxies are left aside.

Upwelling intensity is more related to wind stress, while oxygen content depends on onsite consumption and the presence of water belonging to the OMZ; the first one operates at a local scale while the second at regional scale. Therefore, better indicators of upwelling are diatoms and opal; we later analyze both parameters in terms of their records in sediment cores. We attempted to discuss all the parameters from their geochemical point of view to better explain how the interpretations of the proxies can help define environmental conditions (points 5.1, 5.2, 5.3) and concluded with an overall picture of the environmental conditions in the past 8000 years in our region, using all proxies. We based our assumptions in the previous descriptions of environmental variability for the Holocene in the region, based on marine and coastal lagoon sedimentary records (see references cited).

- The logic of the discussion does not respect the time line of events in the literature nor in their own records. A supposed increase in ENSO is mentioned to explain both the drop in productivity at 6500BP and the increased oxygenation at 2000 BP. And the increasing humidity through the Holocene. Finally, ENSO is invoked to explain everything without citing the articles which properly reconstruct ENSO using monthly resolved marine records.

We rewrote the discussion, more specifically point 5.4 (climatic interpretations). Here we included new references, and we focused our discussion on local studies with a time scale relatively similar to ours, based on the studies by Maldonado and Villagran 2006, Maldonado and Rozas 2008; Jenny et al. 2003; and Ortega 2012; 2019, among others. The environmental variability in part of the Holocene was based on the analyses carried out by Lamy et al., 2014; Kaiser et al., 2008; Hebbeln et al., 2002, who interpret the climatic variability in

the region according to the movement of SW winds, which is consistent with observations of current seasonal variability as indicated by Montecinos and Aceituno, 2003 and Quintana and Aceituno, 2012, among other prior works that I have not cited. However, the latter summarize very well the current climatology of the area. These studies suggest that the main modeler for climate variability is El Niño-La Niña (ENSO). This inter-annual (El Niño) and inter-decadal (ENSO) changes shape the area's climate. We have tried to explain the variations of our sedimentary records based on this climatic variability, highlighting aspects such as changes in the oxygenation of the bottoms and changes in primary productivity.

Detailed comments:

Abstract:

L37: ENSO corresponds to inter-annual variability. Interdecadal variability would be related to the PDO.

L49: a “period” does not have a maximum. I think I understand what the authors mean but it needs to be rephrased.

L51: I suppose “moisture levels” refers to the climate on land, but it should be clarified.

L52: what is being stronger? Please clarify

L53: “associated with greater El Niño frequencies”. See comments about the discussion.

What about the 2 other high productivity periods?

L124-126: please mention the time period recorded by the sediment cores.

L245: Add “ 14C” before “ age value”.

Introduction:

Half of the introduction is dedicated to ENSO but the bibliography about paleo-ENSO is incomplete and does not reflect correctly the current knowledge.

L99 – L108: “Paleo-ENSO reconstructions indicate attenuated ENSO events before the mid-Holocene (last 5000 years) and increasing from this period towards the present (Marchant et al., 1999; Koutavas et al., 2006; Vargas et al., 2006), consistent with paleoceanographic and paleoclimate interpretations (Rodbell et al., 1999; Rein et 102 al., 2005).”

This part incorrectly reflects the literature. The onset of ENSO 5000 years ago is an old hypothesis that had support from low resolution continental rainfall-derived indicators, but that has been contradicted by high resolution marine proxies adapted to ENSO reconstruction. Marchant et al., 1999, show an increased variability at 3ka, not 5ka. Koutavas et al., 2012 showed a minimum in ENSO activity from 6-3 ka. This was confirmed by mollusk shells (Carré et al., 2014), corals across the Pacific (Emile-Geay et al., 2016) and sediments off Peru (Rein, 2007).

The Lake Pallcacocha record (Rodbell et al., 1999; Moy et al., 2002) has been shown to reflect glacier activity related to température and the south American monsoon (hence the precession signal) instead of ENSO (Rodbell et al., 2008).

We took into account all the detailed comments and changes were made in the text in agreement with such comments.

We changed the introduction and added more information about climatic patterns at SEP and their evolution over time, as well as interpretations by several authors. These references indicate that ENSO is the main oscillation that affects climatic variability while others suggest probable causes for intense and weak El Niño events, including an orbital forcing that impacts the thermal gradient by means of changes in the insolation. All authors agree on the changes that take place at different times scales due to the ITCZ displacement (contraction/expansion), as well as on the changes in the intensity of the winds that impact upwelling strength by atmospheric variability (PDO, SAM). The area's main oceanographic features are impacted by atmospheric variables that operate at different time scales. Some authors conclude that the intense upwelling and high productivity during the early Holocene (>7000 cal BP) were similar to those that take place during La Niña conditions, which is consistent with our findings. Different results for subsequently periods were found, however. After 7000 cal BP, we observed an increase in humid conditions, which points to high ENSO variability. We were unable to identify dry periods between 6000 and 4000 cal. BP, nor weak events at about 3000 cal BP as proposed by several authors. However, there is general agreement in an overall ENSO variability increase towards the present. Our results are mostly in agreement with these interpretations and we show a major oxygenation of the bottoms in the past 2000 years –which was not previously reported. We are establishing a link between such oxygenation and an intensification or high frequency of equatorial waves that are introducing oxygen into central Chile's margin, as observed today. This has important implications for the development of the OMZ and its function as a source of nutrients for the photic zone.

Our motivation was to establish the main environmental conditions during the time scale supported by our cores. The interpretations were based mainly on geochemical proxies observed in sedimentary records. The changes observed were related to the general climatic patterns reported for the SEP, which have implications for the area's oceanographic features. We focused the discussion on the environmental changes due to climatic and atmospheric fluctuations based on scenarios described for the area. We have described how the main oceanographic features have changed in the past 8000 years suggesting the environmental characteristics that must prevail for the observed oceanographic

conditions to develop. Such findings are supported by pollen records with which we were able to identify the area's climatic variability.

We believe that our findings deserve to be published. We corrected the main errors found by the referees concerning dates and periods established in the literature for ENSO variability and other minor grammar-related indications. We improve figures 2 (we add st14), 5, 6 and 9 according referees' suggestion.

5.3. Anoxia is mentioned when metal concentrations show more reducing conditions. Anoxia corresponds to the complete absence of oxygen. Since the authors cannot reconstruct oxygen levels quantitatively, they should not use the term "anoxia" and describe changes in terms of more or less oxygenation.

Re and Mo enrichment can identify anoxia (sulfate reducing conditions) during sedimentation. Therefore, an explanation was added to help visualize this concept. A specific value of oxygen cannot be determined, but when Re and U exhibit an enrichment they establish sub-oxic conditions (>0.2 – 2 mL/L). When Mo enrichment is high, sulfidic conditions are possible.

5.4. In the first version, the pollen record was barely mentioned. In the revised version, it represents the largest part of the climate discussion.

In this regard, in the second version we tried to elaborate on the climatic interpretations and establish their relationship with oceanographic proxies. We think this was relevant to understand the global scenario and how climate conditions favor or disfavor upwelling and primary productivity, as well as the impact on the OMZ. Therefore, this chapter was re-written in this version, and we added other comments to provide an overview of the significance of our results.

L824: How an increase in ENSO would explain lower productivity without producing higher oxygenation? In addition, ENSO has been shown to be decreasing at 6700 BP, to enter its minimum activity between 6000 and 3000 BP (Koutavas et al., 2012; Carré et al., 2014).

As explained before, this version includes more accurate explanations about our findings, but our data shows no evidence about a reduced variability between cal BP 6000-4000, as accurately reported by Koutavas and Carré. However, these studies were carried out in Peru and most probably, this ENSO variability has different impacts on the Chileanmargin. Our data matches other studies in the area.

Summary

The revised version of the Manuscript “Reconstructing past variations in environmental conditions and paleoproductivity over the last ~8000 years off Central Chile (30° S) presents an improvement introducing and discussing their data in context of ocean-atmosphere interactions and more importantly comparison with and reference to previous data from the region. However, I still have two major points of criticism, (1) the introduction is still not well written enough and is missing information about proxies being applied to support previous observations and conclusions and more essentially the motivation of the Authors to select the study sites and the proxies ultimately utilized, (2) Although a paleodiscussion was now added, the discussion is still mainly discusses each result point by point, appears unfocused and needs re-structuring. Overall there is still a main question or motivation missing throughout the manuscript, there need to be some sentences added why the authors selected the study area and what they hope to improve in the paleoceanographic knowledge about the SE Pacific. I am not convinced by the paragraph (line 120-126) where the Authors introduce their work, there is little connection to what was written in the introduction before. The Authors improved the introduction by adding more detailed information about the ocean-atmosphere dynamics relevant in the study area. Unfortunately, references to previous work is still too vague, for example just referring to “sedimentary records of several proxies”. I think the authors deleted important information on how changes in the ocean-atmosphere dynamics are reflected within sediment records from the previous version. And thus, an introduction about what proxies are feasible to use for the authors research question is basically completely missing. Following on that, there is no information provided on what the others selection of proxies applied was based. Suggestions from my side how to improve the structure of the introduction can be found under the line-to line comments.

Furthermore, the structure is still a bit strange with specific information about the area, then explaining general observations from the SE Pacific. This should be reversed, going from the big picture to the study area. The Discussion of the new data presented by the Authors based on climatic changes and the comparison with previous studies significantly improved in section 5.4 climatic interpretations. However, I think the structure of the discussion needs still improvement. At the moment the different proxies are discussed successively, but this structure results sometimes in non-chronological description of the significant periods highlighted in the manuscript. I suggest to re-structure the discussion in first the modern conditions and afterwards the 3 time intervals (> 6 kyr, 2.1 to 4.6 kyr and recent to 260 yrs BP) and finish with section 5.4 climatic interpretations presented in the current manuscript. As the definition of these time intervals is also one of the major findings of the study, this structure would improve their significance to the reader.

The introduction was rewritten; we included the missing information about the proxies that was in the first version. This certainly helps to understand why we used them as indicators of the main oceanographic parameters. The relevance of the main oceanographic features of the study area was highlighted. The focus of our work was to establish the main oceanographic changes observed in the past 8000 years related to the main climatic variability reported for the zone during this time period. Based on the characteristic of the study area and its relevance in the northern Chilean margin, our records reveal the past variability of the main oceanographic and climatic conditions in the region. We changed the structure of the introduction starting with the main climatic drivers in the area and continuing with the main oceanographic features and detailed observations of several aspects in the study area.

The discussion was also rewritten, specifically point 5.4. The remaining sections were partly modified in an attempt to establish the validness of the proxies used and establish better relationships with the information provided by the indicators. First, we established the relevance of terrigenous inputs in the area, following with the variability of the organic and oxygenation records and concluding with climatic interpretations based on the changes observed in sedimentary records.

We decided not to follow the suggested structure of separating the discussion in time periods because the data shows a continuous increment in wet conditions over time. Only oxygen shows major changes in specific periods of times, and productivity follows a similar behavior, except at around ~1700-4500 cal BP which does not, however, point to inconsistencies. The slight increase in productivity during this period took place during suboxic conditions which remained until 2000 cal BP, as explained in the text. In addition, we further explained that oxygen conditions depend mainly on water circulation.

Productivity has a lower impact on oxygen consumption, even today, increasing the relevance of the intrusion of water with low oxygen content. On this regard, we see no inconsistencies with regional interpretations as was suggested by the referees according to the studies performed in the Peruvian margin.

The text needs still a lot of improvement. Paragraphs are often not properly connected to guide the reader and several grammatical errors are distributed throughout the whole text. Furthermore, the use of “decrease” and “increase” is often inappropriate, as there are no values given for comparison, for example the authors conclude in line 858 that nutrient-type elements are reduced at present and higher at cal BP 6500. On the whole manuscript is too long and especially methods descriptions are too detailed. When applying commonly used methods it is sufficient too shortly describe the procedure and refer to the original publication. Detailed explanations are only needed if analysis vary from normal procedures. I suggested some superfluous information under the detailed comments to shorten the manuscript.

The figures were all improved following previous reviewer’s suggestions, however Figure 9 presenting the Pollen record is still the only figure were age is given on the x-axis instead of the y-axis. The Authors didn’t give a reason for not changing this, it would help comparing the data.

The new manuscript version is shorter. We reduced the methods and result sections by half, and we focused our attention on the discussion. Grammar was polished and we modified Fig 9 according to the reviewer’s suggestion. Finally, we modified all lines that had detailed comments by the reviewer.

Line by line comments:

Line 34: change “in” to “at” and I don’t the commas are needed here.

Line 46-47: rephrase “The first period was conspicuously high...” it is not the period that is high but the productivity during this period, change to something like “The productivity during the first period was conspicuously high...”

Line 49: rephrase “this period reached a maximum at ...” what maximum was reached, needs to be spelled out

Line 52: again rephrase “, being remarkably stronger in the last 2000 years” are you referring to oxygen levels?

Line 64: change “are developed” to “develops”

Line 69: rephrase, second sentence in a row starting with “this high productivity...”

Line 71: Is “where their intensity, ...” supposed to refer to the OMZ? Then please use the singular i.e. “where it’s ...”

Line 91: change to “have also been linked”

Line 92: change to “influences”

Line 93: change “this latter an important forcing” to “which acts as an important forcing”

Line 94 onwards: this connection is confusing, you refer to “this variability” producing humid and arid conditions, you seem to refer to changes in the processes (i.e. sea ice extent, Hadley cell and latitudinal position of the ITCZ. However, you only mention fluctuations in upwelling in the previous sentence. I suggest changing the beginning of the sentence into “Changes/Variability in the austral insolation and the related processes/mechanisms produce...”

Line 96: change “on top of all this” into “An additional important driver...”.

Line 120 to 126: This is a summary of what you did, I rather expect here a paragraph about why you selected your core positions on the basis of the introduction you give

Line 176 to 179: delete, these are common procedures and you are not referring to this information in the following.

Line 184 to 211: remove text. All this information is repeated in the following sections, or if not can be added to the appropriate section for each proxy.

Line 241: remove “ages were calculated using 5568 (yrs) as the half-life of radiocarbon” superfluous.

Line 260: I think you can shorten 3.4 Trace Metal analysis. I am not familiar with the method myself but the descriptions appear extremely detailed and could be shorten, as it is commonly applied.

Line 293: section 3.5 TOC and stable isotopes can be significantly shortened, it is sufficient to explain how much material was weighed into tin and silver capsules respectively and where in what machine analysis have been performed, and of course the external reproducibility of measurements must be given. It is not needed to explain the entire procedure of the measurements. In short rephrase the sentence in line 296 to 298 and remove the text until line 306.

Line 482: add “are” behind Trace metals

Line 511: “This is the result of the wind” please elaborate a bit more in what way this is caused by the winds

Line 532 and 533: change “more negative” to “lighter”

Line 539 and thereafter: change NO3 to NO3- or use “nitrate”

Line 630: not sure what the Authors are referring to as “it”

Line 716: remove “notorious”

Line 777: change “trend” to “trends”

Line 840: Change “Our result indicates” to “our results indicate”

Line 843: change to “we interpret this difference as...”

Line. 848: add how these redox conditions have been reconstructed.

Line 856: change “where” to “were”

Line 857: get rid of “the presence of”

1 **Reconstructing past variations in environmental conditions and paleoproductivity**
2 **over the last ~8000 years off north-central Chile (30° S)**

3

4 Práxedes Muñoz^{1,2}, Lorena Rebolledo^{3,4}, Laurent Dezileau⁵, Antonio Maldonado^{2,6},
5 Christoph Mayr^{7,8}, Paola Cárdenas^{5,9}, Carina B. Lange^{4,10,11}, Katherine Lalanguí¹⁰,
6 Gloria Sanchez¹², Marco Salamanca¹⁰, Karen Araya^{1,13}, Ignacio Jara², Gabriel Vargas¹⁴,
7 Marcel Ramos^{1,2}.

8

9 ¹Departamento de Biología Marina, Universidad Católica del Norte, Larrondo 1281,
10 Coquimbo, Chile.

11 ²Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo-La Serena,
12 Chile.

13 ³Departamento Científico, Instituto Antártico Chileno, Punta Arenas, Chile

14 ⁴Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas
15 Latitudes (IDEAL), Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile.

16 ⁵Normandie University, UNICAEN, UNIROUEN, CNRS, M2C, 14000 Caen, France.

17 ⁶Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de
18 La Serena, La Serena, Chile.

19 ⁷Institut für Geographie, FAU Erlangen-Nürnberg, 91058 Erlangen, Germany.

20 ⁸Department of Earth and Environmental Sciences & GeoBio-Center, LMU Munich,
21 80333 Munich.

22 ⁹Programa Magíster en Oceanografía, Universidad de Concepción, casilla 160C,
23 Concepción, Chile.

24 ¹⁰Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas,
25 Universidad de Concepción, Casilla 160C, Concepción, Chile.

26 ¹¹Centro de Investigación Oceanográfica COPAS Sur-Austral, Universidad de
27 Concepción, Casilla 160C, Concepción, Chile.

28 ¹²Universidad de Magallanes, Punta Arenas, Chile.

29 ¹³Laboratoire Géosciences Montpellier (GM), Université de Montpellier, 34095
30 Montpellier Cedex 05, France.

31 ¹⁴Departamento de Geología, Universidad de Chile, Santiago, Chile.

32

33 *Correspondence to:* Práxedes Muñoz (praxedes@ucn.cl)

34

Comentario [P1]: We add these new
filiations therefore after this line all
number address filiations change

35 **Abstract**

36

37 The Coquimbo (30°S) Region –located in the north-Central Chilean Coast– is
38 characterized by relative dry summers and a short rainfall period during winter months.
39 The wet-winter climate results from the interactions between the Southern Westerly
40 Winds and the South Pacific Subtropical Anticyclone (SPSA). Inter-annual climate
41 trends are mostly associated with El Niño-Southern Oscillation (ENSO), which
42 produces high variability in precipitation. With the aim of establishing past variations of
43 the main oceanographic and climatic features in the north-central Chilean coast, we
44 analyzed recent sedimentary records of a transitional semi-arid ecosystem susceptible to
45 environmental forcing conditions. Sediment cores were retrieved from two bays,
46 Guanaqueros and Tongoy (29–30°S), for geochemical and biological analyses
47 including: sensitive redox trace elements, biogenic opal, total organic carbon (TOC),
48 diatoms, stable isotopes of organic carbon and nitrogen. Three remarkable periods were
49 established, with different environmental conditions and productivities: (1) > cal BP
50 6500, (2) cal BP 6500 – cal BP 1700 and (3) cal BP 1700 towards the present (CE
51 2015). The first period was characterized by a remarkably higher productivity (higher
52 diatom abundances and opal) when a large fluxes of organic compounds was also
53 inferred from the accumulation of elements such as Ba, Ca, Ni, Cd and P in the
54 sediments. At the same time, suboxic-anoxic conditions at the bottoms were suggested
55 by the large accumulation of Mo, Re and U, showing a peak at cal BP 6500 when
56 sulfidic conditions could have been established. This was also identified as the driest
57 interval according to the pollen moisture index, although it could be extended until cal
58 BP 5500. These conditions should be associated to an intensification of the SPSA and a
59 stronger SWW, emulating La Niña-like conditions as has been described for the SE
60 Pacific during the early Holocene, which in this case extends until the mid-Holocene.
61 During most of the second period, lower productivity was observed. However, a small
62 increment was identified between Cal BP 4500 and 1700 although low amounts of
63 diatom (valves g⁻¹) and nutrient-type metal accumulations were observed, contrasting
64 with the first period when high opal accumulations and diatom abundances were
65 synchronized. Oxygen conditions at the bottoms change to an almost stable sub-oxic
66 condition during this time interval. The third period is marked by an intense
67 oxygenation after cal BP 1700, as observed by a change in the accumulation of U, Mo
68 and Re. In Addition, a small productivity rise after cal BP ~130 towards recent times

69 was observed, as suggested by opal accumulations but no increment in diatom
70 abundance. Overall, lower primary productivity, higher oxygenation at bottoms and
71 higher humidity conditions were established after cal BP 6500 and towards the present.
72 We suggest that the oxygenation might be associated with intensified El Niño activity or
73 similar conditions that introduce oxygenated waters to coastal zones by the propagation
74 of waves of equatorial origin. This oxygenation is changing the original extent of the
75 accumulation of elements sensitive to redox changes in sediments, even under the
76 prevalence of high productivity and sub-oxic conditions.

77

78 Keywords: paleoproduction, paleoredox, trace metals, diatoms, opal, organic carbon,
79 Coquimbo, SE-Pacific

80

81 **1. Introduction**

82

83 Mean climatic conditions at the SE Pacific are modulated by the dynamic of the
84 Southern Pacific Subtropical Anticyclone (SPSA) and the Humboldt Current System.
85 The SPSA has seasonal, decadal and inter-decadal variability modulating the strength of
86 the southern westerly winds (SWW) and hence the main oceanographic feature of the
87 Eastern boundary margin, the upwelling, influencing the biogeochemical processes
88 related to the inputs of nutrient and biological productivity. Seasonal variations produce
89 periods of intense upwelling when the SPSA is stronger, while the opposite is true when
90 it is weak (Croquette et al, 2007). The coastal wind pattern produced alongshore varies
91 along the SE Pacific showing lower seasonality between 18°–30°S, and producing a
92 semi-permanent upwelling (Pizarro et al., 1994; Figueroa and Moffat, 2000). This
93 system is highly affected by the inter-annual variability imposed by El Niño Southern
94 Oscillation (ENSO), with impacts on the wind intensity. The upwelling brings nutrient-
95 poor waters during the warm phase, while the opposite happens during the cold phase
96 (Rutland and Fuenzalida, 1991; Blanco et al., 2002). Other climate patterns—namely the
97 Pacific Decadal Oscillation (PDO) and the Southern Annular Mode (SAM)—operate on
98 a much longer time scale (inter-annual, decadal, inter-decadal) modifying the strength
99 and the position of the SWW, and thereby producing cold/warm periods and
100 intense/weak upwelling (Ancapichún and Garcés-Vargas, 2015). In addition, the austral
101 insolation influences the extent of the Antarctic sea ice and the Hadley cell, which act as
102 important forces to the latitudinal displacement of the ITCZ (Inter-tropical Convergence
103 Zone; Kaiser et al., 2008, and reference there in). These fluctuations produce humid and
104 arid conditions along the SE Pacific where the wind's intensity remains the key factor
105 for the upwelling's strength and, therefore, for the supply of nutrients to the photic zone,
106 all of which are required for development of primary productivity.

107 Off Coquimbo (30°S), there is normally a semi-permanent and intense upwelling forced
108 by local winds, strongly influenced by topographic features (Figueroa and Moffat,
109 2000) and ENSO variability (Escribano et al., 2004). During El Niño, mean winds
110 alongshore reduce their intensity and the South East Pacific anticyclone weakens.
111 Conversely, during La Niña mean winds alongshore increase their intensity and the
112 anticyclone is reinforced (Rahn and Garreaud, 2013). This has an impact on the upper
113 circulation of the ocean affecting oxygenation and the strength of upwelling. The high
114 productivity that takes place close to the coast during normal periods (Escribano et al.,

2004 and references therein) maintains a zone of low dissolved oxygen content along the margin reinforcing the oxygen minimum zone (OMZ). This zone develops along the North and South Pacific Ocean and its intensity, thickness, and temporal stability vary as a function of latitude (Helly and Levin, 2004, Ulloa et al., 2012). To the north (e.g. 21°S) and off Peru, the OMZ occurs permanently, and can extend into the euphotic zone. In the case of northern Chile and southern Peru, there is no significant interface with the benthic environment due to the presence of a narrow continental shelf (Helly and Levin, 2004). The OMZ dynamic off Coquimbo has not been studied in detail, but a seasonal intrusion of low oxygen waters to the coast has been observed (Gallardo et al., 2017). During the 97-98 El Niño event, the oxygenation of bottoms was clearly detected in north (23°S) and south-central Chile (36°S) (Ulloa et al., 2001; Sellanes et al., 2007; Gutiérrez et al., 2006), changing the normal suboxic conditions at the bottom, the normal composition of macrofauna and related geochemical characteristics of the sediments that have implications that persist for many years after the event (Sellanes et al., 2007; Gutiérrez et al., 2006).

These changes in primary productivity and oxygenation at the bottom can be observed in sedimentary records which respond to the amount of organic carbon that has settled on the bottom and to the diagenetic reactions during organic matter remineralization.

Trace elements are commonly used as indicators of these processes, observed as element enrichment or depletion. It is driven by organic matter fluxes and redox conditions that modify the original extension of metal enrichment, which depend on the oxygen content during early diagenesis in the upper sediment layers and overlying water (Nameroff et al., 2002; Zheng et al., 2002; McManus et al., 2006; Siebert et al., 2003). Therefore they are a useful tool to establish temporal changes in primary productivity and also to establish changes in the oxygenation at the bottom on sedimentary records.

Our work focuses on the past variations of the environmental conditions deduced from marine sedimentary records of inorganic and organic proxies over the last ~8000 years BP, obtained from a transitional semi-arid ecosystem off central Chilean coast (30°S), close to Lengua de Vaca point, the most relevant upwelling area of Chile's northern margin (Shaffer et al., 1999; Thiel et al., 2007). We considered redox trace element measurements that respond to local hypoxia (U, Mo and Re) as well as nutrient-type elements, which follow the organic fluxes to the sediments (Ba, Ni Cu, P) (Tribouillard, 2006). Additionally, we measured Fe and Mn which play a key role in adsorption-

149 desorption and scavenging processes of dissolved elements in bottom waters and
150 sediments, and we measured Ca, K and Pb used to assess terrigenous inputs by coastal
151 erosion, weathering and eolian transport, which is also true for Fe and Mn (Calvert and
152 Pedersen, 2007). Ca accumulation depends, in turn, on carbonate productivity and
153 dissolution, which has been used as a paleoproductivity proxy (Paytan, 2008; Govin et
154 al., 2012). We determined the enrichment/depletion of elements to establish the main
155 environmental conditions prevailing during the sedimentation of the particulated
156 material (Böning et al., 2009). In addition, we considered the diatoms assemblages with
157 biogenic opal as a measurement of siliceous export production, TOC and stable isotopes
158 to identify variations in the organic fluxes to the bottoms. Moreover, pollen grains were
159 used to identify environmental conditions based on the climate relationship of the main
160 vegetation formations in North-Central Chile. Based on our records we were able to
161 identify wet/dry intervals, periods with high/low organic fluxes to the sediments related
162 to changes in primary production, and changes in the redox conditions at the bottoms.

163

164 **2. Study area**

165 The Coquimbo area (29–30°S),— in the southern limit of the northern-central Chilean
166 continental margin—constitutes a border area between the most arid zones of northern
167 Chile (Atacama Desert) and the more mesic Mediterranean climate in central Chile
168 (Montecinos et al., 2016). Here, the shelf is narrow and several small bays trace the
169 coast line.

170 The Tongoy and Guanaqueros bays are located in the southern edge of a broad
171 embayment between small islands to the north (29°S; Choros, Damas and Chañaral) and
172 Lengua de Vaca Point to the south (30°S) (Fig. 1), protected from predominant
173 southerly winds. Tongoy Bay is a narrow marine basin (10 km at its maximum width)
174 with a maximum depth of ~100 m. To the northeast lies Guanaqueros Bay, a smaller
175 and shallower basin. High wind events evenly distributed throughout the year promote
176 an important upwelling center at Lengua de Vaca Point, developing high biomass along
177 a narrow coastal area (Moraga-Opazo et al., 2011; Rahn and Garreaud, 2013), and
178 reaching maximum concentrations of ~20 mg m⁻³ (Torres and Ampuero, 2009). In the
179 shallow waters of Tongoy Bay, the high primary productivity results in high TOC in the
180 water column allowing for the deposition of fine material to the bottom; TOC rises
181 concurrently with the periods of low oxygen conditions (Fig. 3; Muñoz et al.,
182 unpublished data). Recent oceanographic studies indicate that low dissolved oxygen

183 water intrusions from the shelf (Fig. 2) seem to be related to lower sea levels resulting
184 from local wind annual cycles at a regional meso-scale (Gallardo et al., 2017). The
185 spatial and temporal variability of these processes is still under study.
186 Sedimentological studies are scarce in Chile's northern-central shelf. A few technical
187 reports indicate that sediments between 27°S and 30°S are composed of very fine sand
188 and silt with relatively low organic carbon content (<3 and ~5%), except in very limited
189 coastal areas where organic material accounts for approximately ~16% (Muñoz,
190 unpublished data; FIP2005-61 Report, www.fip.cl). Coastal weathering is the main
191 source of continental input due to scarce river flows and little rainfall in the zone (0.5 to
192 ~80 mm yr⁻¹; Montecinos et al., 2016, Fig. 1). Freshwater discharges are represented by
193 creeks, which receive the drainage of the coastal range forming wetland areas in the
194 coast and even small estuaries, such as Pachingo, located south of Tongoy (Fig. 1).
195 These basins cover ~300 and 487 km², respectively. The water volume in the estuaries
196 is maintained by the influx of seawater mixed with groundwater supply. No surface flux
197 to the sea is observed. Therefore, freshwater discharge occurs only during high rainfall
198 periods in the coastal zone (DGA, 2011), which normally takes place during El Niño
199 years when higher runoff has been recorded in the area during the austral winter (Valle-
200 Levinson et al., 2000; Garreaud et al., 2009). Under this scenario, marine sediments are
201 often highly influenced by primary production in the water column, and therefore, sedimentary
202 records can reveal past variability in primary production and in the
203 oceanographic conditions over the shelf, which ultimately respond to major atmospheric
204 patterns.

205

206 3. Materials and methods

207 3.1. Sampling

208 Sediment cores were retrieved from two bays in the Coquimbo region: Bahía
209 Guanaqueros (core BGGC5; 30°09' S, 71°26' W; 89 m water depth) and Bahía Tongoy
210 (core BTGC8; 30°14' S, 71°36' W; 85 m water depth) (Fig. 1.), using a gravity corer
211 (KC-Denmark) during May 2015, on board the L/C Stella Maris II owned by the
212 Universidad Católica del Norte. The length of the cores was 126 cm for BGGC5 and 98
213 cm for BTGC8.

214 Subsequently, the cores were sliced into 1-cm sections and subsamples were separated
215 for grain size measurements, magnetic susceptibility, trace elements, biogenic opal, C

Comentario [P2]: Two lines were cutted after this line

216 and N stable isotope signatures ($\delta^{13}\text{C}$, $\delta^{15}\text{N}$), and TOC analyses. The samples were first
217 kept frozen (-20°C) and then freeze-dried before laboratory analyses.

Comentario [P3]: After this line 3
paragraph were eliminated

218

219 **3.2. Geochronology (^{210}Pb and ^{14}C)**

220 Geochronology was established combining ages estimated from $^{210}\text{Pb}_{\text{xs}}$ activities
221 suitable for the last 200 years and radiocarbon measurements at selected depths for
222 older ages. ^{210}Pb activities were quantified through alpha spectrometry of its daughter
223 ^{210}Po following the procedure of Flynn (1968). $^{210}\text{Pb}_{\text{xs}}$ (unsupported) activities were
224 determined as the difference between ^{210}Pb and ^{226}Ra activities measured in some
225 intervals of the sediment column. ^{226}Ra was measured by gamma spectrometry at the
226 Laboratoire Géosciences of the Université de Montpellier (France). Standard deviations
227 (SD) of the ^{210}Pb inventories were estimated propagating counting uncertainties
228 (Bevington and Robinson, 1992) (Table S1, supplementary data). The ages were based
229 on the Constant Rate of Supply Model (CRS, Appleby and Oldfield, 1978).

Comentario [P4]: After this point,
several lines were eliminated

230 Radiocarbon measurements were performed on a mix of planktonic foraminifera species
231 in core BGGC5 whereas the benthic foraminifera species *Bolivina plicata* was selected
232 for core BTGC8 (Table 1). The samples were submitted to the National Ocean Sciences
233 AMS Facility (NOSAMS) of the Woods Hole Oceanographic Institution (WHOI). The
234 time scale was obtained according to the best fit of ages obtained from $^{210}\text{Pb}_{\text{xs}}$ and ^{14}C
235 (Fig. 4), using the CLAM 2.2 software and using the Marine curve 13C (Reimer et al.,
236 2013). A reservoir deviation from the global mean reservoir age (DR) of 441 ± 35 years
237 was considered, established according Sabatier et al. (2010). This was estimated
238 subtracting the ^{14}C age value corresponding at the historical dates 1828 AD and 1908
239 AD (499 ± 24 and 448 ± 23 ^{14}C yr, respectively, Reimer et al., 2013) from the apparent
240 ^{14}C age of foraminifers measured at depths of 5 and 10 cm for cores BTGC8 and
241 BGGC5, respectively (Sabatier et al., 2010; Table 2).

Comentario [P5]: After this point two
sentences were eliminated

Comentario [P6]: After this point two
sentences were eliminated

242

243 **3.3. Geophysical characterization**

244 Magnetic susceptibility ($\text{SI} \times 10^{-8}$) was measured with a Bartington Susceptibility Meter
245 MS2E surface scanning sensor in the Sedimentology Laboratory at Centro Eula,
246 Universidad de Concepción. Mean values from three measurements were calculated for
247 each sample.

248 Grain size was determined using a Mastersizer 2000 laser particle analyzer, coupled to a
249 Hydro 2000-G Malvern in the Sedimentology Laboratory of Universidad de Chile.

250 Skewness, sorting and kurtosis were evaluated using the GRADISTAT statistical
251 software (Blott and Pye, 2001), which includes all particle size spectra.

252

253 **3.4. Chemical analysis**

254 Trace element analyses were performed by ICP-MS (Inductively Coupled Plasma-Mass
255 Spectrometry) using an Agilent 7700x at Université de Montpellier (OSU
256 OREME/AETE regional facilities). Sediment samples and geochemical reference
257 materials (UBN, BEN and MAG1) were dissolved using a concentrated mix of acids
258 (HF-HNO₃-HClO₄) in Savillex screw-top Teflon beakers at 120°C. Final solution
259 considered the addition of a known weight of internal standard solution consisting of 1
260 ppb of In and Bi. Internal standardization used ultra-pure solution enriched in In and Bi,
261 both elements whose natural abundances in geological samples do not contribute
262 significantly to the added internal standard. This is used to deconvolve mass-dependent
263 sensitivity variations of both matrix and instrumental origin, occurring during the course
264 of an analytical session.

Comentario [P7]: After this point a sentence was eliminated

265 Mean metal concentrations for the analyzed samples were determined by external
266 calibrations prepared daily from multi- and mono-elemental solutions, with
267 concentrations in the range of 0.05–10 ppb for trace elements and of 1–10 ppm for
268 major elements (Ca, K). Polyatomic interferences were controlled by running the
269 machine at an oxide production level <1%. The analytical precisions attained by this
270 technique were between 1% and 3% and accuracy better than ±5%.

Comentario [P10]: After this point one paragraph was eliminated

271 TOC and stable isotope ($\delta^{15}\text{N}$ and $\delta^{13}\text{C}$) analyses were performed at the Institut für
272 Geographie, Friedrich Alexander Universität (FAU) Erlangen-Nürnberg, Germany
273 using a Carlo Erba elemental analyzer NC2500 and an isotope-ratio-mass spectrometer
274 (Delta Plus, Thermo-Finnigan) for isotopic analysis. Carbon and nitrogen contents were
275 determined from the peak-area-versus-sample-weight ratio of each individual sample
276 and calibrated with the elemental standards cyclohexanone-2,4-dinitrophenylhydrazone
277 ($\text{C}_{12}\text{H}_{14}\text{N}_4\text{O}_4$) and atropine ($\text{C}_{17}\text{H}_{23}\text{NO}_3$) (Thermo Quest). A laboratory-internal organic
278 standard (Peptone) with known isotopic composition was used for final isotopic
279 calibrations. Stable isotope ratios are reported in the δ notation as the deviation relative
280 to international standards (Vienna Pee Dee Belemnite for $\delta^{13}\text{C}$ and atmospheric N_2 for
281 $\delta^{15}\text{N}$), so $\delta^{13}\text{C}$ or $\delta^{15}\text{N} = [(\text{R sample}/\text{R standard}) - 1] \times 10^3$, where R is $^{13}\text{C}/^{12}\text{C}$ or
282 $^{15}\text{N}/^{14}\text{N}$, respectively. Typical precision of the analyses was ±0.1‰ for $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$.

Comentario [P11]: Was rewritten eliminating one line

Comentario [P12]: Here was eliminated the title of the 3.5 sub sección in order to reduce sub-divisions.

Comentario [P13]: Here were eliminated 8 lines before connect with the last sentence

Comentario [P14]: After this point a title of the 3.6 subdivisión was eliminated

283

284 Biogenic opal was estimated following the procedure described by Mortlock and
285 Froelich (1989). The analysis was done by molybdate-blue spectrophotometry (Hansen
286 and Koroleff, 1999) conducted at the laboratories of Marine Organic Geochemistry and
287 Paleoceanography, University of Concepción, Chile. Values are expressed as biogenic
288 opal by multiplying the Si (%) by 2.4 (Mortlock and Froelich, 1989). Analytical
289 precision was $\pm 0.5\%$. Accumulation rates were determined based on sediment mass
290 accumulation rates and amount of opal at each core section in %.

291

292 **3.5. Microfossils analyses**

293 Qualitative abundances of siliceous microfossils were carried out every centimeter
294 following the Ocean Drilling Program (ODP) protocol described by Mazzullo et al.
295 (1988), with this information were selected some sections every ~4, 8 and 12 cm for
296 BGGC5 and at ~6 cm for BTGC8 for quantitative abundances of microfossils (diatoms,
297 silicoflagellates, sponge spicules, crysophyts and phytoliths). Briefly ~ 0.5 g of freeze-
298 dried sediment was treated according to Schrader and Gersonde (1978) for siliceous
299 microfossils. Siliceous microfossils were identified and counted under an Olympus
300 CX31 microscope with phase contrast. 1/5 of the slides were counted at 400X for
301 siliceous microfossils and one transect at 1000x was counted for *Chaetoceros* resting
302 spores (*Ch. resting spores*). Two slides per sample were counted; the estimated counting
303 error was 15%. Total diatom abundances are given in valves g⁻¹ of dry sediments.

304 Pollen analysis was conducted following the standard methodology for sediment
305 samples (Faegri and Iversen, 1989). The samples were mounted with liquid glycerol and
306 sealed permanently with paraffin wax. Pollen identification was conducted under a
307 stereomicroscope at 400 fold magnification with the assistance of the Heusser (1973)
308 pollen catalogue. A total of 100-250 terrestrial pollen grains were counted on each
309 sample depending on their abundance. Pollen percentage for each taxon was calculated
310 from the total sum of terrestrial pollen. The percentage of aquatic pollen and fern spores
311 was calculated based on the total terrestrial sum plus their respective group. Pollen
312 percentage diagrams were generated using the Tilia software (E. Grimm, Illinois State
313 Museum, Springfield, IL. USA). The diagram was divided into “zones” based on the
314 identification of the most important changes in pollen percentage and assisted by a
315 cluster ordination (CONISS) performed by the same software.

Comentario [P15]: Two lines were eliminated after this point.

Comentario [P16]: We modified the title and number of this subtitle

Comentario [P17]: 3 lines were eliminated

Comentario [P18]: Here was eliminated the title of the 3.8 subdivision

Comentario [P19]: 3 lines were eliminated

316 We further summarize pollen-based precipitation trends by calculating a Pollen
317 Moisture Index (PMI), which is defined as the normalized ratio between Euphorbiaceae
318 (wet coastal scrubland) and Chenopodiaceae (arid scrubland). Thus, positive (negative)
319 values of this index indicate the relative expansion (reduction) of coastal scrubland
320 under relatively wetter (drier) conditions.

321

322 **4. Results**

323 **4.1. Geochronology**

324 $^{210}\text{Pb}_{\text{xs}}$ (unsupported activity) was obtained from the surface **at a depth of 8 cm** in the
325 two cores, with an age of \sim AD 1860 at 8 cm in both (Table S1). Greater surface
326 activities were obtained for core BGGC5 ($13.48 \pm 0.41 \text{ dpm g}^{-1}$) compared to core
327 BTGC8 ($5.80 \pm 0.19 \text{ dpm g}^{-1}$), showing an exponential decay with depth (Fig. 4). A
328 recent sedimentation rate of $0.11 \pm 0.01 \text{ cm yr}^{-1}$ was estimated.

329 The age model provided a maximum age of cal BP 8210 for core BGGC5, and cal
330 BP 7941 for core BTGC8 (Fig. 4). A mean sedimentation rate of 0.02 cm yr^{-1} was
331 estimated for core BGGC5, with a period of relative low values (0.01 cm yr^{-1}) between
332 cal BP \sim 4000 and 6000. For BTGC8, sedimentation rates were less variable and around
333 0.013 cm yr^{-1} in the entire core. An age **reservoir** estimation following the **method by**
334 Sabatier et al. (2010) **resulted in** 441 ± 35 and 442 ± 27 years for BGGC5 and BTGC8
335 cores, respectively (Table 2). These values were close **to the** global marine reservoir and
336 higher than other estimations along **the** Chilean margin at shallower depths (146 ± 25
337 years at < 30 water depth; Carré et al., 2016; Merino-Campos et al., 2018). Our **coring**
338 sites are deeper (~ 90 m water depth) **and influenced by** upwelled water from Lengua de
339 Vaca Point, which could explain such differences. However, **moderate** differences were
340 observed between models using **both** reservoir values. Thus, our estimations were based
341 on two pre-bomb values established with ^{210}Pb measured in sediments and ^{14}C in
342 foraminifers, used for the age modeling.

343

344 **4.2. Geophysical characterization**

345 **Sediments** retrieved from the bays showed fine grains **within** the range of very fine sand
346 and silt in the southern areas. There, **grain** size distribution was mainly unimodal, very
347 leptokurtic, better sorted and skewed to fine grain when compared to sediments from
348 the northern areas. Sediment cores obtained from the northern areas were sandy (coarse
349 sand and gravel), with abundant calcareous debris. Longer cores of soft sediment were

350 retrieved at the **southernmost** areas (BGGC5 and BTGC8), where the silty component
351 varied between 40 % and 60 % (Fig. 1 and 5a,b). The clay component was very low at
352 both cores (<2%). The sediment's color ranged from very dark grayish brown to dark
353 olive brown (2.5Y 3/3–3/2) **in Guanaqueros** Bay (BGGC5) and from dark olive gray to
354 olive gray (5Y 3/2–4/2) **in Tongoy** Bay (BTGC8). Visible macro-remains (snails and
355 fish vertebrae) were found, **as well as** weak **laminations at both cores**. The magnetic
356 susceptibility showed higher values close to the surface, up to $127 \text{ SI} \times 10^{-8}$ at BGGC5,
357 and relative lower values ($85 \text{ SI} \times 10^{-8}$) at BTGC8. At greater depths, however, the
358 values were very constant, around $5\text{--}8 \times 10^{-8} \text{ SI}$ at BGGC5 core and around $12\text{--}20 \times 10^{-8}$
359 SI at BTGC8 core. In both cores, susceptibility **rises** substantially in the last century
360 (Figs. 5a, 5b). Lower bulk densities were estimated **at core** BGGC5 ($0.7\text{--}0.9 \text{ g cm}^{-3}$),
361 **compared with** core BTGC8 ($>1 \text{ g cm}^{-3}$) (Fig. 5a, 5b). **In line with this**, mean grain size
362 amounted to $60\text{--}80 \mu\text{m}$ **in Guanaqueros** Bay (BTGC8), compared to $50\text{--}60 \mu\text{m}$ **in**
363 Tongoy Bay (BGGC5). Both cores were negatively skewed, with values of -1 to -1.2 at
364 BGGC5, and -1 to -2.5 at BTGC8. Minor increases towards coarser grain size were
365 observed in the last ~ 1000 years, especially **in** Tongoy Bay (BTGC8). In both cases,
366 grain size distributions were strongly leptokurtic. Ca/Fe ratio also **reduced** in time,
367 except at core BTGC8 where it was only observed during the last ~ 2000 years.
368

369 **4.3. Biogenic components**

370 **4.3.1. Siliceous microfossils and biogenic opal**

371 Total diatom abundance fluctuated between 5.52×10^5 and 4.48×10^7 valves g^{-1} **at core**
372 BGGC5. Total diatom abundance showed a good correlation with biogenic opal content
373 at BGGC5 ($R^2 = 0.52$, $P < 0.5$), with values **raising** from 72 cm to the bottom of the core,
374 corresponding to cal BP 5330, **and reaching their** highest values before cal BP 6500. **On**
375 **the contrary**, diatom abundance and biogenic opal were much lower at core BTGC8 (< 2
376 $\times 10^5$ valves g^{-1} and $< 3\%$, respectively). Here, the siliceous assemblage was almost
377 completely conformed by *Chaetoceros* resting spores (RS) (Fig. 6).

378 A total of 135 and 8 diatom taxa were identified in cores BGGC5 and BTGC8
379 respectively, **where core** BTGC8 registered very low **diatom** abundances. In general,
380 diatoms were the most important assemblage of siliceous microfossils (96 %), followed
381 by sponge spicules (3 %). The contribution of phytoliths and chrysophyte cysts was less
382 than 2 % **at core** BGGC5. *Chaetoceros* (RS) dominated diatom assemblage (~90 %; Fig.
383 6), and included the species *C. radicans*, *C. cinctus*, *C. constrictus*, *C. vanheurckii*, *C.*

384 *coronatus*, *C. diadema*, and *C. debilis*. Other upwelling group species recorded (mainly
385 at core BGGC5) were: *Skeletonema japonicum*, and *Thalassionema nitzschioides* var.
386 *nitzschioides* (Table S2). Freshwater diatoms (*Diploneis papula*, *Cymbella tumida*,
387 *Fragilaria capucina*, *Diatoma elongatum*) and non-planktonic diatoms (*Cocconeis*
388 *scutellum*, *C. costata* and *Gramatophora angulosa*) accounted for ~0.1–5 %; while the
389 group of coastal planktonic diatoms accounted for ~0.3–6 % of the total assemblage.
390 The main planktonic diatoms were (*Rhizosolenia imbricata*, and *Thalassiosira*
391 *eccentrica*). Oceanic-warm diatoms (*Roperia tessellata*, *Th. nitzschioides* var *inflatula*)
392 and the tycoplanktonic diatom group were rare, with less than 1 %.

393

394 **4.3.2. TOC and stable isotopes distribution**

395 Consistent with opal and diatoms, core BGGC5 showed higher values of TOC
396 (between 2 % and 5 %) compared with less than ~1.5 % at core BTGC8 (Fig. 5a,b).
397 Furthermore, $\delta^{13}\text{C}$ was slightly higher at core BTGC8 (-20 ‰ to -21 ‰) compared
398 with core BGGC5 (-21 ‰ to -22 ‰), the former is also showing slightly higher values
399 of $\delta^{15}\text{N}$ from the deeper sections to the surface of the core (<7 ‰ to >10 ‰). This
400 increase was less evident at core BGGC5, with values of ~9 ‰ at depths to >10 ‰ on
401 the surface (Fig. 5a,b). The reduced TOC content was related to slightly higher $\delta^{13}\text{C}$
402 values (~ -20 ‰) in both cores.

403

404 **4.3.3. Pollen record**

405 Initial surveys at core BTGC8 (Tongoy Bay) revealed extremely low pollen
406 abundances which hampered further palynology work. A comprehensive pollen
407 analysis was only conducted for core BGGC5 (Guanaqueros Bay). The pollen record
408 of core BGGC5 consisted of 29 samples shown in Figure 7. The record was divided
409 into five general zones following visual observations of changes in the main pollen
410 types and also assisted by CONISS cluster analysis.

411 Zone BG-1 (cal BP 8200 – 7600): This zone is dominated by the herbaceous taxa
412 Chenopodiaceae, *Leucheria*-type, Asteraceae subfamily (subf.) Asteroideae, Apiaceae
413 with overall high values for the wetland genus *Typha* spp.

414 Zone BG-2 (cal BP 7600 – 6500): This zone is also dominated by Chenopodiaceae,
415 *Leucheria*-type and Asteraceae subf. Asteroideae. In addition, other non-arboreal
416 elements such as *Ambrosia*-type, Poaceae, Brassicaceae and *Chorizanthe* spp. expand

417 considerably.

418 Zone BG-3 (cal BP 6500 –3400): This zone is marked by a steady decline in

419 Chenopodiaceae and *Leucheria*-types, and by the expansion of several other

420 herbaceous elements, such as Euphorbiaceae, *Baccharis*-type and Brassicaceae.

421 Zone BG-4 (cal BP 3400 – 120): This zone is mostly dominated by Ast. subf.

422 Asteroideae, and marked by the decline of Chenopodiaceae and *Leucheria*-type. Other

423 coastal taxa –such as Euphorbiaceae, *Baccharis*-types, Asteraceae subf.

424 Chichorioideae, *Quillaja saponaria*, Brassicaceae and *Salix* spp.– also expand in this

425 zone.

426 Zone BG-5 (cal BP 120 – -60): The upper portion of the record is dominated by

427 Asteraceae subf. Asteroideae and Poaceae, and marked by higher amounts of

428 Geraniaceae, Asteraceae subf. Mutisieae, Myrtaceae and *Q. saponaria*. Additionally,

429 this zone includes introduced pollen types such as *Rumex* spp. and *Pinus* spp. The

430 latter is not shown in the diagram of Figure 8 because its abundance was minimal.

431 Overall, the most distinctive trend revealed by core BGGC-5 is a long-term reduction

432 in Chenopodiaceae and higher amounts of Euphorbiaceae and Asteraceae subf.

433 Asteroideae. Along with these changes, a further expansion of several other pollen

434 representative of the coastal shrub land vegetation began at about cal BP 6500.

435

436 **4.4. Trace element distributions**

437 Trace element distributions are shown in figures 8a and 8b for Guanaqueros (BGGC5)

438 and Tongoy Bays (BTGC8), respectively. We use Al as a normalizing parameter for

439 enrichment/depletion of elements due to its conservative behavior. The elements are

440 presented as metal/Al ratios. Trace metals are sensitive to the presence of oxygen (U,

441 Re, Mo) showing an increasing metal/Al ratio from the base of core BGGC5 (cal BP

442 ~8210) up to cal BP 6500. After this peak, ratios showed a slight increase towards cal

443 BP 1700, close to the beginning of the recent era, followed by a sharp reduction until

444 present. Similarly, metal ratios at core BTGC8 increase over time, yet the peak was

445 observed at cal BP ~1000. The exception to this trend was Mo, which reached a

446 maximum value up to cal BC 6500 and then reduced steadily into the present.

447 Additionally, metal/Al values were higher at core BGGC5. Iron revealed a clear

448 upward trend around cal BP 3300 – 3500 at core BGGC5, which was not clearly

449 observed at the Tongoy core. Instead, core BTGC8 showed peak Fe values around cal

450 BP 6500 – 7800; in both cores Fe increased in the past 130 years. No clear trend could
451 be established for Mn.

452 A second group of elements (metal/Al ratios), including Cd, Ni and P (related to
453 primary productivity and organic fluxes), showed a pattern similar to that of Mo/Al
454 towards the bottom of core BGGC5, i.e. increasing values from cal BP ~8000 reaching
455 highest values around cal BP 6500; after that the values followed constant reductions
456 towards the present. A third group, consisting of Ba, P and Ca, exhibited a less clear
457 pattern. Cd/Al and Ni/Al ratios at core BTGC8 showed only slightly decreasing
458 values, and very low peak values compared to core BGGC5. The same pattern is
459 observed for other elements. Metal/Al ratios for Ba, Ca and P were lower and
460 presented a long-term reduction pattern towards the present.

461 An exception to the previously described patterns was Cu/Al, which reach a maximum
462 value at cal BP ~3600 –3700 and showed a conspicuous upward trend in the past ~130
463 years. This was also observed at core BTGC8, but with lower concentrations than at
464 core BGGC5.

465 The authigenic enrichment factor of elements was estimated according to: $EF =$
466 $(Me/Al)_{sample} / (Me/Al)_{detrital}$; where $(Me/Al)_{sample}$ is the bulk sample metal (Me)
467 concentration normalized to Al content and the denomination “detrital” indicates a
468 lithogenic background (Böning et al., 2009). Detrital $([Me]_{detrital}$ and $[Al]_{detrital}$)
469 concentrations were established considering local TM abundance, which is more
470 accurate than using mean Earth crust values (Van der Weijden, 2002). We used average
471 element concentrations on surface sediments (0–3 cm) of the Pachingo wetland (Table
472 3). The values suggest a large enrichment of nutrient-type elements in a period prior to
473 Cal BP 6500, following the trend of the Me/Al ratios, except for Ba and Fe which did
474 not show authigenic enrichment. EFs showed a sharp enrichment reduction at recent
475 time after Cal BP 130 (Table 4).

Comentario [P20]: This paragraph was added.

477 5. Discussion

478 5.1. Sedimentary composition of the cores: terrestrial *versus* biogenic inputs

479 The sediments in the southern zones of the bays are a sink of fine particles transported
480 from the north and the shelf (Fig. 5a, 5b), and respond to water circulation in the
481 Guanaqueros and Coquimbo Bays (Fig. 1). Both have been described as bipolar, i.e.
482 two counter-rotating gyres moving counterclockwise to the north and clockwise to the
483 south (Valle-Levinson and Moraga, 2006). This is the result of the wind's

484 predominant direction and a coastline shape delimited by two prominent points to the
485 north and south. Circulation in Tongoy Bay (the southernmost bay of the system)
486 shows a different pattern due to its northern direction compared to Guanaqueros Bay,
487 which opens to the west. The cyclonic recirculation in Tongoy Bay seems to be part of
488 a gyre larger than the Bay's circulation (Moraga-Opazo et al., 2011) (Fig. 1). This
489 could explain the differences in the distribution and composition of sediment particles
490 between both Bays. In Tongoy Bay, there is less organic carbon accumulation (< 3 g
491 m⁻² yr⁻¹), siliceous microfossils and pollen (Figs. 5b, 6 and 7). Similarly, in
492 Guanaqueros Bay TOC contents are only slightly higher (> 2 %), especially between
493 cal BP 3700 and 4000 and before cal BP 6500 (~ 4 %), but with greater accumulation
494 rates of about 7 and 16 g m⁻² yr⁻¹, respectively (Fig. 5a). However, these sediments
495 contain enough microfossils to establish differences in primary productivity periods
496 and also provide a pollen record evidencing prevailing environmental conditions.

497 Stable isotopes measured in the study area were in the range of marine sedimentary
498 particles for southern oceans at low and mid-latitudes ($\delta^{13}\text{C}$; -20 ‰ – -24 ‰;
499 Williams 1970; Rau et al., 1989; Ogrinc et. al. 2005), and slightly lower than the TOC
500 composition in the water column (-18 ‰, Fig. 3). This suggests that the organic
501 particles that settle on the bottom are a more refractory material (C/N: 9–11),
502 remineralized during particle transportation and sedimentation. This results in lighter
503 isotopic compositions, especially at core BTGC8. Furthermore, $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ in
504 settled particles have higher negative values in surface sediments due to a preferential
505 decomposition of molecules rich in ^{13}C and ^{15}N , resulting in lighter isotope values and
506 higher C/N ratios in sediments than in suspended particles (Fig. 3, 5a, 5b). However,
507 this is also due to the stronger diagenetic reactions observed near the bottom layer
508 (Nakanishi and Minagawa, 2003). Thus, these sediments are composed by winnowed
509 particles transported by water circulating over the shelf, and the isotopic variations
510 should not clearly establish the contribution of terrestrial inputs.

511 Otherwise, the isotopic composition of upwelled NO_3^- (De Pol-Holz et al., 2007) could
512 influence the variability of $\delta^{15}\text{N}$. Values for $\delta^{15}\text{N}$ in northern and central Chile are in
513 the range of those measured at the BGGC5 core (~11 ‰; Hebbeln et al., 2000, De Pol-
514 Holz et al., 2007), resulting from the isotopic fractionation of NO_3^- during nitrate
515 reduction within OMZ, leaving a remnant NO_3^- enriched in ^{15}N (Sigman et al., 2009;
516 Ganeshram et al., 2000 and references therein). In this case, BGGC5 core sediments

517 represent the effect of the upwelling's nutrient supply and the influence of OMZ on
518 the shelf, resulting in $\delta^{15}\text{N}$ of 9 – 10 ‰. At sediment core BTGC8, lower values
519 (< 8 ‰) measured at greater depths within the core should account for the mix with
520 isotopically lighter terrestrial organic matter (Sweeney and Kaplan, 1980) due to its
521 vicinity to a small permanent wetland in the southern side of Tongoy Bay. The
522 material collected at Pachingo wetland showed $\delta^{15}\text{N}$ of 1 – 8 ‰ (Muñoz et al., data
523 will be published elsewhere) in the range of sedimentary environments influenced by
524 terrestrial runoff (Sigman et al., 2009). Likewise, in most cases lower TOC is
525 consistent with lighter isotope $\delta^{15}\text{N}$ values, and also with higher C/N ratios, suggesting
526 a combination with continental material (Fig. 5b).

527 MS measurements revealed lower values in both cores (BGGC5: 5 – 8 $\times 10^{-8}$ SI;
528 BTGC8: 12 – 20 $\times 10^{-8}$ SI), except during the last ~200 years (CE 1800), when it
529 reaches higher values substantially similar to those observed in the Pachingo wetland
530 (40 – ~200 $\times 10^{-8}$ SI; unpublished data), in the southern area of Tongoy Bay, pointing
531 to an increase in flooding events in the last 200 years. Magnetite has a strong
532 response to magnetic fields and its concentration is considered proportional to
533 magnetic susceptibility (Dearing, 1999), but suffers post-depositional
534 transformations (alteration of magnetite minerals) and can be diluted by biogenic
535 components (carbonates, silicates), altering the MS intensity in areas with high
536 organic accumulation rates (Hatfield and Stoner, 2013). This, however, is not the
537 case of our cores where low sedimentation rates were estimated ($0.01 – 0.02 \text{ cm yr}^{-1}$)
538 and the MS should be mainly accounting for the particles' source. The higher MS
539 measurements on surface sediments would indicate a greater contribution of
540 terrestrial material. The area is surrounded by several creeks that are only active
541 during major flooding events, with greater impacts on Tongoy compared to
542 Guanaqueros Bay. There has been a considerable increment in the contribution of
543 terrigenous material in Tongoy Bay, in recent times (Ortega et al., 2019), which is
544 diluting organic proxy records and increasing the grain size. Our records indicate a
545 slight increase in mean grain size in both bays, supported also by a slight reduction in
546 the Ca/Fe ratio pointing to a higher Fe input from continental erosion (Fig. 5a, 5b).
547 Furthermore, lower concentrations of Ca in the deepest part of both cores to the
548 surface was interpreted as a declining primary productivity (Keshav and Achyuthan,
549 2015; Sun et al., 2016); however, higher concentrations were measured in core

Comentario [P21]: 3 lines were eliminated before this point.

550 BGGC5 compared with core BTGC8, where more **terrigenous** influence is being
551 suggested. The slight **rise** of K/Ca ratio in time –from **the** bottom to the surface–
552 should also be interpreted as a slight **growth of the** continental input, since K is
553 related to siliciclastic material from coastal erosion, **and from** fluvial and
554 groundwater inputs. However, the variation of Ca was larger (Fig.6a, 6b), resulting in
555 higher K/Ca ratios on the surface. This **suggests** that the continental input has not
556 changed much in time –at a **millennial scale**– but rather **that** primary productivity has
557 **declined** (Fig. 5a, 5b).

558 Thus, cores BGGC5 and BTGC8 in Guanaqueros and Tongoy Bays are recording the
559 variability of oceanographic conditions, but in the Tongoy core, the concentration of
560 oceanographic proxies dilute due to the input of terrigenous material. This helps to
561 decipher the climatic variability considering that the main input of clastic material to
562 the area takes place during major flooding events. Additionally, the main circulation
563 of the bay system leads to favorable conditions for sedimentation and the preservation
564 of organic marine proxies in the Guanaqueros Bay, hence making the sedimentary
565 records of these sites **complementary**.

566

567 **5.2. Temporal variability of proxies for primary productivity**

568 Several elements that **take part** in phytoplankton growth are useful to interpret **the**
569 variations in primary productivity **with** time, as they are preserved in the sediments
570 under suboxic-anoxic conditions. This produces enrichment over crustal abundance
571 which distinguishes them from continental inputs. The presence of free dissolved
572 sulfides produced by sulfate reduction reactions in the diagenesis of organic matter
573 allows for the precipitation of metals **into pore waters** (Calvert and Pedersen, 1993;
574 Morse and Luther, 1999). At the same time, organic matter remineralization releases
575 ions into pore waters where they could form organic complexes and insoluble metal
576 sulfides. Conversely, they could be incorporated into pyrite as Cd, Ni and Cu, showing
577 different degrees of trace metal pyritization (Huerta-Diaz and Morse, 1992). Ca, Sr,
578 Cd and Ni profiles suggest a lower **share** of organic **deposition over** time (Fig. 8a, 8b),
579 consistent with the slight reduction of TOC content observed in the sediments (Figs.
580 5a, 5b), and concomitantly with other elements related to organic fluxes to the bottom
581 and primary productivity. In the case of Ba, it is actively incorporated into
582 phytoplankton biomass or adsorbed onto Fe oxyhydroxides, increasing the Ba flux
583 towards the sediments, where it is also released during organic matter diagenesis. Ba is

Comentario [P22]: This paragraph was added

584 precipitating in microenvironments where Ba-sulfate reaches supersaturation
585 (Tribovillard et al., 2006 and references therein), but it is dissolved in suboxic-anoxic
586 environments or where sulfate is significantly depleted (Torres et al., 1996; Dymond
587 et al., 1992). Therefore, it is better preserved in less anoxic environments with
588 moderate productivity, expected to be the case of our study site (Gross Primary
589 Productivity =0.35 to 2.9 g C m⁻¹d⁻¹; Daneri et al., 2000). Hence, the slight **rise** of Ba
590 from cal BP 4000 to the present (Fig. 8a) **is more of a** response to a less anoxic
591 environment than to an increase in primary productivity, and results in a low negative
592 correlation with TOC (-0.59; Table 5) due to Ba remobilization in anoxic conditions
593 before cal BP 6500. After this age, the reduction in TOC and other nutrient-type
594 elements (Ni, Sr, Ca, Cd) **into** the present is consistent with the **rise** in oxygen **in**
595 bottoms. On the other hand, P distribution showed a trend similar to that of TOC and
596 other elements related to organic fluxes **into** the bottom (Ni, Cd), although with a
597 lower correlation (~0.6). The accumulation of P depends on the deposition rate of
598 organic P (dead plankton, bones and fish scales) **on** the bottom, **and is actively**
599 **remineralized during aerobic or anaerobic bacterial activity.** P and TOC showed a
600 **declining** trend towards the present, suggesting reducing flux of organic matter over
601 time, which was also observed for Ni and Cd distributions. Alternatively, **reducing**
602 **fluxes of organic proxies** could be explained by **the higher** remineralization **of organic**
603 material settled on the bottom **due to higher oxygen availability** (Figs. 8a, 8b).

604 Productivity reconstructions were based on **qualitative** diatom **and** sponge spicules
605 relative abundances, **quantitative** diatom counts (valves g⁻¹) and biogenic opal content
606 only in core BGGC5, since core BTGC8 registered **low** valve counts (< 1 % in relative
607 diatom abundance). However, **in** both cores diatom assemblages were represented
608 mainly by **Ch.** resting spores, which are used as upwelling indicators, showing higher
609 concentrations during periods of high productivity and upwelling (Abrantes 1988,
610 Vargas et al., 2004). In addition, **Ch.** resting spores are highly silicified and well
611 preserved in coastal sediments (Blasco et al., 1981). The downcore siliceous
612 productivity based on opal distribution (Fig. 6) distinguished three main time **intervals**
613 **of higher** productivity: (1) > cal BP 6500, (2) cal BP 1700 – cal BP 4500 and (3)
614 recent **times** (CE 2015) – cal BP ~130. The opal **accumulation** **rate** in the first interval
615 was **remarkably high**, amounting to $\sim 27 \pm 13 \text{ g m}^{-2} \text{ yr}^{-1}$ (range: 9 – 53 g m⁻²yr⁻¹, Table
616 4), when **Chaetoceros** spores were predominant, indicating **an** upwelling
617 intensification; during the second interval, it decreased to $\sim 11 \pm 4 \text{ g m}^{-2} \text{ yr}^{-1}$ (range: 2 –

Comentario [P23]: From this point 10 lines were eliminated and the next paragraph was changed

Comentario [P24]: 2 lines were changed

618 21 g m⁻²yr⁻¹, Table 4). This is partially consistent with nutrient-type element
619 distributions (Fig. 8a). The third interval accounts for the last ~200 years, when high
620 opal accumulations and high Cd/U ratios could also be observed increasing towards
621 the present (mean opal value of 29 ± 14 g m⁻² yr⁻¹, range: 3 – 40 g m⁻² yr⁻¹). However,
622 low diatom abundances were observed (range: 0.5 – 4.9 x10⁶ valves g⁻¹), probably
623 because recent sedimentation rates were higher, altering the estimations of opal flux.
624 Additionally, few sections of the core surface were analyzed for diatoms leading to a
625 low resolution of this measurement in the most recent period. Cu and Fe also increased
626 during this period (Fig. 8a), contributing to fertilize the environment and promoting
627 primary productivity. In this sense, higher productivity in the last 200 years could be
628 suggested but further investigations are needed. The second time interval with a higher
629 productivity was not clearly identified in terms of metals, except for Fe, which clearly
630 shows higher values during this period (Fig. 8a). During the first period, all metal
631 proxies showed primary productivity increases before cal BP 6500, as indicated by
632 opal accumulation within the sediments. Here, Cd and U accumulations in the
633 sediments resulted in high Cd/U ratios, even at core BTGC8 (> 2; Fig. 6), indicating
634 very low oxygen conditions (Cd/U ratios could vary between 0.2 and 2 from suboxic
635 to anoxic environment; Nameroff et al., 2002). Lower ratios (< 1; Fig. 6) were
636 estimated when the opal accumulation was low during the second time interval,
637 indicating higher variations in primary productivity over time with moderate changes
638 in oxygen conditions in the bottoms. Furthermore, opal showed good correlations with
639 Ni and Cd (~0.70; Table 5; Fig. 8a), all of which suggests the relevance of bottom
640 organic fluxes for the buildup of elements within the sediments, and establishes a clear
641 period of higher primary productivity around cal BP 6500, when the lowest oxygen
642 conditions prevailed (Fig. 6).

Comentario [P25]: 2 lines were changed

643 5.3. Temporal variability of proxies for bottom water oxygenation

644 The distributions of U, Re and Mo at core BGGC5 indicate that anoxic or suboxic
645 conditions were developed from cal BP 8200 to ~ cal BP 1700 (Fig. 8a, 8b). After this
646 period and into the present, however, a remarkable reduction in their concentration
647 suggests a more oxygenated bottom environment, concurrent with lower organic
648 fluxes to the sediments. The Re profile shows the influence of suboxic waters not
649 necessarily associated with higher organic matter fluxes to the bottom. Since this
650 element is not scavenged by organic particles, its variability is directly related to

Comentario [P26]: 4 lines were eliminated and the paragraph changed

652 oxygen changes (Calvert and Pedersen, 2007, and references therein). Additionally, it
653 is strongly enriched above crustal abundance under suboxic conditions (Colodner et
654 al., 1993; Crusius et al 1996), being >10 times at core BGGC5 (Table 4) before cal BP
655 1700. Similarly, U shows a similar pattern and while organic deposition has an impact
656 on its distribution (Zheng et al., 2002), it is also related to changes in bottom oxygen
657 conditions. This is because its shift from a soluble conservative behavior to a non-
658 conservative and insoluble behavior depends solely on redox potential changes that
659 occur near the Fe(III) reduction zone (Klinkhammer and Palmer, 1991.).
660 Molybdenum, which showed higher values at cal BP 6500, also indicates the presence
661 of sulfidic conditions, as shown by a Re distribution highly enriched under anoxic
662 environments (Colodner et al., 1993), and by the reduction of Re(VII) to Re(IV),
663 forming ReO_2 or ReS (Calvert and Pedersen, 2007). The enrichment of Rhenium, U
664 and Mo is used to decipher the redox condition within the sediments, even in places
665 with high lithogenic inputs that could obscure the authigenic enrichment of other
666 elements under similar conditions (Crusius et al., 1996). In both places, the
667 concentrations of these elements showed values above the crustal abundance,
668 especially in core BGGC5 (Table 4), with Re and Mo enriching by ~19 and U by ~5,
669 except in the past ~1700 years when they reduced by half. This suggests that the
670 presence of anoxic conditions was stronger before cal BP 1700 (based on mean EFs
671 and Me/Al ratios distribution), with a peak around cal BP 6500 (based on EF_{Cd}) and
672 followed by a less anoxic condition after cal BP ~1700 (Fig. 8a, Table 4). The most
673 important enrichment was observed for Cd (> 30) that was higher before cal BP 6500
674 (~140), in agreement with higher opal accumulation and diatom abundance (Fig. 6,
675 Table 4). The most important enrichment could similarly indicate the sulfidic
676 condition within the sediments that allows for Cd precipitation. It is also supported by
677 Mo enrichment (mean $\text{EF}_{\text{Mo}}=16.9$), since its buildup within the sediments is highly
678 controlled by sulfide concentrations (Chaillou et al., 2002; Nameroff et al., 2002;
679 Sundby et al., 2004).
680 Something similar occurs in Tongoy Bay (core BTGC8), but trace metal
681 concentrations are lower for all elements and also for TOC, suggesting a limited
682 influence on metal accumulation within the sediments.
683 Thus, these elements suggest anoxic or even sulfidic conditions within the sediments
684 in both places at around cal BP 6500 – 7200 (Fig. 8a, 8b). After this period, a second
685 peak but less intense low oxygen condition is observed at the beginning of the recent

686 era (cal BP 1700), continuing with conspicuous oxygenation until present times. This
687 interpretation –based on the distribution of U, Re and Mo– complements the
688 observations of nutrient-type elements pointing both to oxygenation changes and to
689 changes in organic fluxes throughout the sediments. A less prominent accumulation of
690 nutrient-type elements (Ni, Cd, Ba, Ca and P) would point to lower organic matter
691 deposition into the sediments but still promoting low oxygen conditions within the
692 sediments and lower sulfide content over time, which are nevertheless high enough to
693 sustain Mo accumulation until cal BP 1700. After that, lower Re, U and Mo
694 accumulation and EFs were observed, suggesting the relevance of bottom oxygenation
695 (Table 4). This could also explain the conspicuous upward trend of Cu/Al and Fe/Al in
696 recent times due to the presence of oxides (Fig. 8a, 8b). Apparently, a low level of
697 dissolved Cu is maintained by the complexation with organic compounds produced by
698 phytoplankton and Cu adsorption on Fe oxides (Peacock and Sherman, 2004; Vance et
699 al., 2008; Little et al., 2014), with both processes augmenting Cu in the particulate
700 phase over surface sediments ($EF_{Cu}=4.6\pm0.5$, Table 4). In our study sites, Fe and Cu
701 concentrations were higher in surface sediments, probably related to a higher
702 availability of Fe and Cu in the environment (Fig. 8a, 8b). In turn, this could be
703 associated with mining activities carried out in the area since the beginning of
704 cal BP 14 (AD 1936).

705 At present, the suboxic conditions inside the Bays result from the influence of adjacent
706 water masses with low oxygen contents related to the oxygen minimum zone (OMZ)
707 (Fig. 2). These suboxic conditions are centered at ~250 m outside the Bays and keep
708 low oxygen concentrations below 40 m within the Bays. Oceanographic time series
709 indicate that transition times develop in short periods due to changes in the directions
710 and intensities of the winds along the coast, which favors upwelling and thus the entry
711 of water with low oxygen content to the Bays with a strong seasonality
712 (http://www.ceazamet.cl/index.php?pag=mod_estacion&e_cod=BTG). Additionally,
713 oceanic variability along the western coast of South America is influenced by
714 equatorial Kelvin waves on a variety of timescales, from intra-seasonal (Shaffer et
715 al., 1997) and seasonal (Pizarro et al., 2002; Ramos et al., 2006) to inter-annual
716 (Pizarro et al., 2002; Ramos et al., 2008). Coastal-trapped Kelvin waves originating
717 from the equator can propagate along the coast, modifying the stability of the regional
718 current system and the pycnocline, and triggering extra-tropical Rossby waves
719 (Pizarro et al., 2002; Ramos et al., 2006; 2008). This oceanographic feature will

Comentario [P27]: Here the lines were changed

720 changes the oxygen content within the bays with major impacts on redox-sensitive
721 elements in surface sediments; thus, the increased frequency and intensity of this
722 variability would result in a mean effect which is observed as a gradual change in
723 metal contents over time.

724

725 **5.4. Climatic interpretations**

726 The present-day climate of the semi-arid region of Chile is largely influenced by the
727 position of the Southeast Pacific Subtropical Anticyclone (SPSA) and latitudinal
728 displacements of the Southern Westerly Winds (SWW). The dynamic of these large-
729 scale atmospheric systems, from seasonal to decadal timescales, controls the amount of
730 precipitation that reaches this region. Because the semi-arid region of Chile represents
731 the northernmost area under the influence of the SWW, precipitation is relatively scarce
732 and restricted to the austral winter months when SPSA and SWW shift northwards,
733 bringing precipitation fronts to the semiarid coast and inland (Montecinos and Aceituno,
734 2003; Quintana and Aceituno, 2012).

735 According to modern climatology, paleoenvironmental records from the semiarid region
736 have mostly been interpreted to reflect past variability in the intensity and latitudinal
737 position of the SWW (Veit et al., 1996; Hebbeln et al., 2002; Lamy et al., 1999;
738 Maldonado and Villagrán, 2002), controlled by the temperature gradient of the ocean's
739 surface (Lamy et al., 2010), sun variability and orbital forcing (Varma et al., 2012;
740 Koffman et al., 2014). Thus, at mid-latitudes of the southern hemisphere, early
741 Holocene has been described as a warm period with summer-like conditions, due to
742 reduced westerlies in the northern margin associated with a reduced sea surface
743 temperature gradient between the tropical and subtropical Pacific (Lamy et al., 2010);
744 period that can be extended until cal BP ~8600–5000 (Kaiser et al., 2008; Ortega et al.,
745 2012, Maldonado et al., 2016). In particular, pollen records from the southern coastal
746 areas of Coquimbo (32°S) point to prevailing wet conditions before cal BP 8700, which
747 brought the expansion of swamp forests areas along the coast followed by a lengthy arid
748 phase until Cal BP 6200 (Maldonado and Rozas, 2008; Maldonado and Villagrán,
749 2006). This scenario occurred concomitantly with reduced rainfalls and intense coastal
750 humidity associated to coastal fogs that frequently occur during the spring by a
751 strengthening of the SE Pacific Subtropical Anticline (Vargas et al., 2006; Garreaud
752 et al 2008; Ortega et al., 2012). This matches the driest conditions along the entire
753 record, detected in the first portion of our pollen reconstruction from core BGGC5 in

Comentario [P28]: Here 2 lines were eliminated

Comentario [P29]: This paragraph was modified

Comentario [P30]: 2 lines were eliminated

754 the Guanaqueros Bay (cal BP 8200 – 7600), still suggesting drier but less intense
755 conditions until cal BP ~5500. This is represented by relatively low values of the Pollen
756 Moisture Index (Fig. 9). The enhancement of regional precipitation has been observed
757 after this date in pollen records in the northern margin of SWW (Jenny et al., 2003;
758 Maldonado and Villagrán, 2006). These findings are also consistent with our Al and Pb
759 records, elements that are usually considered to be indicators of continental particles
760 that enter marine waters by fluvial or aerial means (Calvert and Pedersen, 2007; Govin
761 et al., 2012; Ohnemus and Lam, 2015; Saito et al., 1992; Xu et al., 2015). The trends are
762 similar to the pollen record, i.e., a gradual rise over time, more clearly from
763 cal BP ~5000, suggesting enhanced humid conditions during recent periods (Fig. 9).
764 This is also supported by grain size and K/Ca and Fe ratios, known to be indicators of
765 the changes in terrigenous inputs off the coasts in northern-central Chile (Kaiser et al.,
766 2008). Such increments over the last ~5000 years point to higher continental inputs
767 most probably caused by frequent or heavier rainfall events over time, which at present
768 are an important source of sands and K in the northern Chilean margin. K/Ca and Fe
769 distributions point to a mean trend towards more humid conditions, consistent with
770 pollen records at a regional scale (Maldonado & Villagrán 2006); these suggest more
771 humid conditions from cal BP 5000 with the highest values since cal BP 1700.
772 Furthermore, a trend towards increasing precipitations is also consistent with the
773 occurrence of alluvial episodes since cal BP 8600 (Ortega et al., 2012), which following
774 an increasing trend from the mid-Holocene toward recent times (Ortega et al., 2019).
775 The synchronicity of our records between highest productivity and dry conditions that
776 peak prior to ~cal BP 6500 highlights the role of the SPSA as an important driver of
777 paleoproduction changes in the coast of semi-arid Chile which prevailed during the
778 early portion of the Holocene to the mid-Holocene (considered as cal BP ~6000). The
779 prevalence of ENSO cold periods between 6700 – 7500 years ago (Carré et al., 2014) or
780 El Niño weak periods between ~4500 and 8000 ka (Rein et al., 2005) are described for
781 the Peru margin, which is consistent with our records and points to more favorable
782 conditions for upwelling strengthening. After this period, a consistent pattern of
783 increasing humidity and continental discharge over the last ~6000 – 5000 years is
784 suggested by our pollen and trace element records. The driver of this long-term paleo-
785 climatic trend seems to be associated with a weak SPSA and a northern position of the
786 SWW, leading El Niño-like conditions. However, lower ENSO variability has been
787 reported at cal BP 4000 – 6000 (Koutavas and Joanides, 2012). Others point to cal BP

Comentario [P31]: This paragraph was modified

Comentario [P32]: This paragraph was added

Comentario [P33]: This paragraph was modified

Comentario [P34]: before this point 20 lines were eliminated. From this point to line 802 is new text added

4500 (Carré et al., 2014), which does not match our records. The conditions reported by these authors resemble cold periods similar to La Niña-like conditions favorable for upwelling and productivity enhancement, and drier conditions than those recorded during former periods. Therefore, the subsequent weakening in paleo-productivity proxies in our records after cal BP 6500 is not consistent with this scenario. By contrast, a small rise in diatom abundance and opal between cal BP 4500 and 1700, along with the buildup of Ni, Cd and Ca concentrations (Fig. 8), and small increments in organic carbon flux and Cd/U (Fig. 5, 6) suggest higher organic flux and productivity but lower than what was previously observed during cal BP 6500. The slight rise in productivity indicates a weak upwelling that could be explained by a higher frequency of warm events when the modern ENSO regime was established between cal BP ~3000 – 4000 (Carré et al., 2014). In this case, Fe increments could play a role in nutrient inputs for phytoplankton. This has been documented to provide a boost in the primary productivity discussed in the sedimentary records of the northern Chilean margin (Dezileau et al., 2004). In our cores, a short-term rise in Fe concentrations is observed between cal BP ~4000 – 3300 at the Guanaqueros core, whereas persistent high values are recorded in the Tongoy core between cal BP 6500 – 7800. Both of these rises match periods with relatively high primary productivity based on diatoms and opal distributions (Figs. 6, 8b), which supports the role of Fe as a driver of coastal productivity in the past. Additionally, it indicates that an enhanced productivity not only depends on the upwelling's strength but on the availability of nutrients, since this area shows permanent upwelling. In this sense, in periods before cal BP 6500 productivity seems to be controlled mostly by upwelling in more stable climatic conditions, after which local nutrient inputs play a very important role in the development of primary productivity. In sum, our records show a regular rise in humid conditions concurrently with a declining productivity trend over time after Cal BP 6500. Relevant changes in oceanographic conditions were observed after cal BP 1700, when oxygenation conditions changed drastically at the bottoms, but no such intense change in productivity was observed. Studies of coastal upwelling on the central Peruvian and south central Chilean coasts (12 – 36 °S) reveal that present-day wet/dry variability associated with El Niño Southern Oscillation have a strong impact on bottom ocean oxygenation (Escribano et al., 2004; Gutiérrez et al., 2008; Sellanes et al., 2007). In this regard, OMZs are expected to be less intense during warm El Niño phases and vice versa. This connection has been observed by recent studies, as warm events in the

Comentario [P35]: before this point 10 lines were eliminated. The next lines till line 816 is new text added.

822 Tropical Pacific tend to be associated with low productivity and weak OMZ in the
823 Peruvian coast (Salvatteci et al., 2014)

Comentario [P36]: After this point 3 lines were eliminated

824 In this case, warm events in the **Eastern** Pacific could have reduced the ocean's
825 productivity and **the** organic fluxes **resulting** from primary productivity, **leading to a**
826 **reduction in** oxygen consumption during **the diagenesis of** organic matter. In the light of
827 these mechanisms, our results suggest more El Niño-like conditions during the latter
828 part of the **Holocene** –as has been documented for the SE Pacific (Koutavas et al., 2006,
829 Carré et al., 2014)– in agreement with pollen moisture index records and metals
830 described above. According to our records, low oxygen conditions are revealed by
831 higher Mo, Re and U buildup –and sulfidic conditions when Cd is also higher. On the
832 contrary, higher oxygenation should reduce their accumulation in sediments. Thus,
833 more frequent El Niño events during the latter part of the Holocene should be consistent
834 with a long-term increase in precipitations revealed by the pollen and trace elements
835 data. This is consistent with productivity records which showed a small enhancement in
836 the last 200 years observed from organic carbon flux, TOC (%), and opal
837 reconstruction; furthermore, slight rises in Pb and Fe were observed, suggesting higher
838 continental inputs during this period. This is also consistent with an increase in human
839 activities in the area, particularly intense mining activities and changes in land use that
840 have promoted soil erosion. However, our evidence is still weak to sustain centennial
841 time scale records since our observations are based on few data from surface sediments.
842 This is also less consistent with diatom abundance which was low due to the few
843 records analyzed, in part explaining the inconsistencies between the rise in organic flux
844 and low diatom abundance. Otherwise, this could be explained by the fact that during
845 the El Niño conditions, the normal dominance of diatoms is replaced by smaller size
846 phytoplankton, resulting in a relevant contribution to overall primary production (Iriarte
847 et al., 2000; Rutlland and Montecino, 2002; Escribano et al., 2004). Other observations
848 for northern Chile suggest the intensification of coastal southerly winds as the enhanced
849 solar heat over the land results in the strengthening of upwelling during warmer ENSO
850 periods. Moreover, this results in a net increase in primary production (Vargas et al.,
851 2007). If coming along with Fe inputs to the bay system, this could explain productivity
852 records during present times. In addition, it provides an important clue to the current
853 climate scenario in which our records seem to be matching.

Comentario [P37]: After this point 7 lines were eliminated

854 6. Conclusions

Comentario [P38]: This paragraph is new text added

855 Our results suggest that ocean circulation in our study sites seems to impact both
856 places differently, leaving more variable grain compositions and higher TOC contents
857 in the Guanaqueros Bay (core BGGC5) than in the Tongoy Bay (core BTGC8), with
858 the latter increasingly impacted by terrigenous inputs due to the flow of several creeks
859 during major flooding events. Both core records sustain a reduction of organic flux to
860 the bottoms after cal BP ~6500 and into present times. This is probably due to more
861 humid conditions over time, also sustained by ascending ratios of K/Ca, which can be
862 assumed as a result of higher ENSO variability over time. Some Fe concentrations
863 increments at cal BP >6500, around cal BP 3000 – 4000, and in the past 200 years are
864 consistent with increments in primary productivity proxies suggesting their relevance
865 as nutrient element. However, it also point to inputs by eolian and fluvial transport that
866 seem to become relevant after cal BP 6500 to boost phytoplankton during less intense
867 upwelling periods. The last assumption considers that more humid conditions were
868 favored by a less intense SPSA. Thus, the record of continental proxies suggests a
869 long-term increase in precipitation, consistent with previous reconstructions in central
870 Chile. The most distinctive changes were observed after cal BP 6500, when an overall
871 expansion of the coastal vegetation occurred as a result of a progressive increase in
872 precipitation and river runoffs, expanding the grain size of the sediments and the
873 higher concentrations of elements with an important continental source (Al, Fe, K and
874 Pb).

Comentario [P39]: After this point 21 lines were eliminated and replaced by new text.

875 Differences in redox conditions in our records are consistent with less intense upwelling
876 and more frequent oxygenations of the bottoms occurring during the El Niño-like
877 conditions. This could be reconstructed from EFs variations and sensitive redox metal
878 accumulation in the sediments. A clear decreasing trend in Me/Al ratios was apparent,
879 suggesting less oxygen at the bottoms before the beginning of recent times (cal BP
880 ~1700), followed by a rapid change to a more oxygenated environment. Oxygen content
881 in bottom waters was the most relevant factor in sediment metal enrichment above
882 crustal abundance (highest EFs of U, Mo and Re), since the accumulation of organic
883 carbon and estimated sedimentation rates were low in the area. Therefore, organic
884 carbon burial rate is less relevant than oxygen content for the accumulation of metals
885 within the sediments.

Comentario [P40]: New text added

886 Our results suggest that maximum suboxia-anoxia occurred at cal BP ~6500, when
887 peak U, Mo and Re were recorded, probably in a sulfidic environment.

Comentario [P41]: A line was eliminated

888 The nutrient-type elements follow a similar trend: lower values at present and higher
889 ratios around cal BP 6500 (Ca, Ni, P and Cd). Their distribution is consistent with
890 diatom and opal distributions, showing their dependence on primary productivity and
891 organic carbon burial rates. If the kinetics reaction is working at low rates for these
892 elements, they should be highly influenced during oxygenation periods, something that
893 seems to have been operating at higher frequencies suggesting more frequent El Niño-
894 like conditions.

895 Increased regional precipitations have been commonly interpreted by a northward shift
896 of the Southern Westerly Winds belts, yet the higher frequency of El Niño events
897 more likely introduced a high variability of humidity after cal BP 5000. Thus, the
898 apparent rise of oxygen conditions at bottoms could have been the result of this
899 oceanographic feature, which introduced a more oxygenated water mass to the shelf
900 and bays, temporarily changing the redox conditions in surface sediments and
901 affecting the sensitive elements to potential redox changes in the environment.
902 Additionally, this also impacted the accumulation of organic matter due to an
903 intensification of its remineralization, showing a decreasing trend in the buildup of
904 nutrient type elements and organic carbon burial rates towards the present.
905 Finally, our results suggest that the geochemistry and sedimentary properties of
906 coastal shelf environments in north-central Chile have changed considerably during
907 the Holocene period, suggesting two relevant changes in redox conditions at
908 cal BP 6500, pointing to a change to a less reducing environment which becomes very
909 strong after cal BP 2000. In particular, decreasing trends in primary productivity after
910 cal BP 6500 and increasing trends in oxygenation highlight the sensitivity of these
911 environments to regional climate changes at different timescales. Future changes are
912 therefore likely to be expected in the ongoing scenario of environmental changes at
913 unprecedented rates.

914

915 7. References

916 Abrantes, F.: Diatom assemblages as upwelling indicators in surface sediments off
917 Portugal, Mar. Geol., 85(1), 15–39, doi:10.1016/0025-3227(88)90082-5, 1988.
918
919 Ancapichún, S., Garcés-Vargas, J.: Variability of the Southeast Pacific Subtropical
920 Anticyclone and its impact on sea surface temperature off north-central Chile
921 Variabilidad del Anticiclón Subtropical del Pacífico Sudeste y su impacto sobre

Comentario [P42]: These aparagraph is new text added

922 la temperatura superficial del mar frente a la costa centro-norte de Chile, Cienc. Mar.,
923 41(1), 1–20, DOI:10.7773/cm.v41i1.2338, 2015.

924

925 Appleby, P. G. and Oldfield, F.: The calculation of lead-210 dates assuming a constant
926 rate of supply of unsupported ^{210}Pb to the sediment, *Catena*, 5(1), 1–8,
927 doi:10.1016/S0341-8162(78)80002-2, 1978.

928

929 Bevington, P. and Robinson, K. (Eds.): Error analysis. In: *Data Reduction and Error*
930 *Analysis for the Physical Sciences*, WCB/McGraw-Hill, USA, 38–52, 1992

931

932 Blasco, D., Estrada, M. and Jones, B. H.: Short time variability of phytoplankton
933 populations in upwelling regions—the example of Northwest Africa. In: *Coastal*
934 *upwelling*, F. A. Richards (Ed.), AGU Washington DC, 339 – 347, 1981

935

936 Blott, S. J. and Pye, K.: Gradistat: A Grain Size Distribution and Statistics Package for
937 the Analysis of Unconsolidated Sediments, *Earth Surf. Process. Landforms*, 26, 1237–
938 1248, doi:10.1002/esp.261, 2001.

939

940 Böning, P., Brumsack, H.-J., Schnetger, B., Grunwald, M.: Trace element
941 signatures of Chilean upwelling sediments at 36°S. *Mar. Geol.*, 259, 112–
942 121, 2009.

943

944 Calvert, S. E. and Pedersen, T. F.: Geochemistry of Recent oxic and anoxic marine
945 sediments: Implications for the geological record, *Mar. Geol.*, 113(1–2), 67–88,
946 doi:10.1016/0025-3227(93)90150-T, 1993.

947

948 Calvert, S. E. and Pedersen, T. F.: Chapter Fourteen Elemental Proxies for
949 Palaeoclimatic and Palaeoceanographic Variability in Marine Sediments: Interpretation
950 and Application, *Dev. Mar. Geol.*, 1(7), 567–644, doi:10.1016/S1572-5480(07)01019-6,
951 2007.

952

953 Carré, M., Sachs, J.P., Purca, S., Schauer, A.J., Braconnot, P., Falcón, R.A., Julien, M.,
954 Lavallée, D.: Holocene history of ENSO variance and asymmetry in the eastern tropical
955 Pacific, *Science* 345, 1045–1048. 2014. DOI: 10.1126/science.1255768

Comentario [P43]: Next reference was eliminated (Behrenfeld et al)

Comentario [P44]: Reference added

Comentario [P45]: Reference added

956

957 Carré, M., Jackson, D., Maldonado, A., Chase, B.M., Sachs, J.P.: Variability of ^{14}C
958 reservoir age and air-sea flux of CO_2 in the Peru-Chile upwelling region during the
959 past 12,000 years, *Quat. Res.*, 85, 87–93, 2016.

960

961 Chaillou, G., Anschutz, P., Lavaux, G., Schäfer, J. and Blanc, G.: The distribution of
962 Mo, U, and Cd in relation to major redox species in muddy sediments of the Bay of
963 Biscay, *Mar. Chem.*, 80(1), 41–59, doi:10.1016/S0304-4203(02)00097-X, 2002.

964

965 Colodner, D., Sachs, J., Ravizza, G., Turekian, K. K. and Boyle, E.: The geochemical
966 cycle of Re: a reconnaissance, *Earth Planet. Sci. Lett.*, 117, 205–221, doi:10.1016/0012-
967 821X(93)90127-U, 1993.

968

969 Croquette, M., Eldin, G., Grados, C., Tamayo, M.: 2007. On differences in satellite
970 winds product and their effects in estimating coastal upwelling processes in the South-
971 east Pacific, *Geophys. Res. Lett.*, 34 L11 608, doi: 10.1029/2006GL027538.

972

973 Crusius, J., Calvert, S., Pedersen, T. and Sage, D.: Rhenium and molybdenum
974 enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of
975 deposition, *Earth Planet. Sci. Lett.*, 145(1–4), 65–78, doi:10.1016/S0012-
976 821X(96)00204-X, 1996.

977

978 Daneri, G., Dellarossa, V., Quiñones, R., Jacob, B., Montero, P. and Ulloa, O.: Primary
979 production and community respiration in the Humboldt Current System off Chile and
980 associated oceanic areas, *Mar. Ecol. Prog. Ser.*, 197, 41–49, doi:10.3354/meps197041,
981 2000.

982

983 Dearing, J., Magnetic susceptibility. In: *Environmental Magnetism: A Practical Guide*.
984 Walden, J., Oldfield, F., and Smith, J. (Eds.), Quaternary Research Association
985 Technical Guide No. 6, London, 35–62, 1999.

986

987 De Pol-Holz, R., Ulloa, O., Lamy, F., Dezileau, L., Sabatier, P., and Hebbeln, D.: Late
988 Quaternary variability of sedimentary nitrogen isotopes in the eastern South Pacific
989 Ocean, *Paleoceanography*, 22, PA2207, doi: 10.1029/2006 PA001308, 2007.

Comentario [P46]: Reference eliminated (Cha et al)

Comentario [P47]: Reference eliminated (Chester 1990)

Comentario [P48]: Reference eliminated Conroy et al

Comentario [P49]: Reference added

990

991 Dezileau, L., Ulloa, O., Hebbeln, D., Lamy, F., Reyss, J. L. and Fontugne, M.: Iron

992 control of past productivity in the coastal upwelling system off the Atacama Desert,

993 Chile, *Paleoceanography*, 19(3), doi:10.1029/2004PA001006, 2004.

994

995 Dymond, J., Suess, E. and Lyle, M.: Barium in deep-sea sediment: A geochemical

996 proxy for paleoproductivity, *Paleoceanography*, 7(2), 163–181, 1992.

997

998 Escribano, R., Daneri, G., Fariñas, L., Gallardo, V. A., González, H. E., Gutiérrez, D.,

999 Lange, C. B., Morales, C. E., Pizarro, O., Ulloa, O. and Braun, M.: Biological and

1000 chemical consequences of the 1997-1998 El Niño in the Chilean coastal upwelling

1001 system: A synthesis, *Deep. Res. Part II Top. Stud. Oceanogr.*, 51(20–21), 2389–2411,

1002 doi:10.1016/j.dsr2.2004.08.011, 2004.

1003

1004 Faegri, K. and Iversen, J.: *Textbook of pollen analysis*, IV. The Blackburn Press, New

1005 Jersey, 328 pp., 1989.

1006

1007 Figueroa, D. and Moffat, D.: On the influence of topography in the induction of coastal

1008 upwelling along the Chilean coast *Geophys. Res. Lett.* 27, 3905–3908, 2000.

1009

1010 Flynn, W. W.: The determination of low levels of polonium-210 in environmental

1011 materials, *Anal. Chim. Acta*, 43, 221–227, 1968.

1012

1013 Gallardo, M.A., González, A., Ramos, M., Mujica, A., Muñoz, P., Sellanes, J.,

1014 Yannicelli, B.: Reproductive patterns in demersal crustaceans from the upper boundary

1015 of the OMZ off north-central Chile, *Cont. Shelf. Res.* 141, 26–37, 2017.

1016

1017 Ganeshram, R.S., Pedersen, T. F., Calvert, S.G., McNeill, G., Fontugne, M.: Glacial-

1018 interglacial variability in denitrification in the world's oceans: Causes and

1019 consequences. *Paleoceanography*, 15(4), 361–376, 2000.

1020

1021 Garreaud, R. and Rutllant, J.: Análisis meteorológico de los aluviones de Antofagasta y

1022 Santiago de Chile en el período 1991–1993, *Atmósfera*, 9, 251–271, 1996.

1023

Comentario [P50]: Reference added

Comentario [P51]: Reference eliminated Frugone et al

1024 Garreaud, R., Barichivich, J., Christie, D., Maldonado, A.: Interannual variability of the
1025 coastal fog at Fray Jorge relict forest in semiarid Chile. *Journal of Geophysical*
1026 *Research*. Vol 113. G04011, 2008. doi:10.1029/2008JG000709.

Comentario [P52]: Reference modified

1027
1028 Garreaud, R., Vuille, M., Compagnuccio, R. and Marengo, J.: Present-day South
1029 American climate, *Palaeogeogr. Palaeocl.*, 281, 180-195, 2009
1030 doi:10.1016/j.palaeo.2007.10.032

Comentario [P53]: Reference
eliminated (Gonzalez et al 1998)

1031
1032 Govin, A., Holzwarth, U., Heslop, D., Ford Keeling, L., Zabel, M., Mulitza, S., Collins,
1033 J. A. and Chiessi, C. M.: Distribution of major elements in Atlantic surface sediments
1034 (36°N-49°S): Imprint of terrigenous input and continental weathering, *Geochemistry,*
1035 *Geophys. Geosystems*, 13(1), 1-23, doi:10.1029/2011GC003785, 2012.

Comentario [P54]: Reference
eliminated (Guieu et al 1998)

1036
1037 Gutiérrez, D., Sifedine, A., Reyss, J.L., Vargas, G., Velazco, F., Salvattci, R., Ferreira,
1038 V., Ortlib, L., Field, D., Baumgartner, T., Boussafir, M., Boucher, H., Valdés, J.,
1039 Marinovic, L., Soler, P., Tapia, P.: Anoxic sediments off Central Peru record
1040 interannual to multidecadal changes of climate and upwelling ecosystem during the last
1041 two centuries, *Adv. Geosci.* 6, 119-125, 2006.

1042
1043 Gutiérrez, D., Enríquez, E., Purca, S., Quipuzcoa, L., Marquina, R., Flores, G. and
1044 Graco, M.: Oxygenation episodes on the continental shelf of central Peru: Remote
1045 forcing and benthic ecosystem response. *Prog. Oceanogr.*, 79, 177-189, 2008.

Comentario [P55]: Reference
eliminated (Gutierrez et al 2009)

1046
1047 Hansen, H. P., Koroleff, F.: Determination of nutrients. In *Methods of Seawater*
1048 *Analysis*. Grasshoff, K., Kremling, K. and Ehrhardt, M. (Eds.), Wiley-VCH Verlag
1049 GmbH, Weinheim, Germany, 159-228, 1999.

1050
1051 Hatfield, R. G., Stoner, J. S.: Magnetic Proxies and Susceptibility. In: *The Encyclopedia*
1052 *of Quaternary Science*. Elias, S.A. (ed.) 2, 884-898, 2013.

1053
1054 Hebbeln, D., Marchant, M., Freudenthal, T., Wefer, G.: Surface distribution along the
1055 Chilean continental slope related to upwelling and productivity. *Marine*
1056 *Geology* 164, 119-137, 2000.

1057

1058 Hebbeln, D., Marchant, M. and Wefer, G.: Paleoproductivity in the southern Peru ^
1059 Chile Current through the last 33 000 yr, Mar. Geol., 186, 2002.

1060

1061 Helly, J. and Levin. L.: Global distribution of naturally occurring marine hypoxia on
1062 continental margin, Deep-Sea Res. Pt. I, 51, 1159-1168, 2004.

1063

1064 Heusser, C. J. and Moar, N. T.: Pollen and spores of chile: Modern types of the
1065 pteridophyta, gymnospermae, and angiospermae, New Zeal. J. Bot., 11(2), 389–391,
1066 doi:10.1080/0028825X.1973.10430287, 1973.

1067

1068 Huerta-Diaz, M. A. and Morse, J. W.: Pyritization of trace metals in anoxic marine
1069 sediments, Geochim. Cosmochim. Acta, 56(7), 2681–2702, doi:10.1016/0016-
1070 7037(92)90353-K, 1992.

1071

1072 Iriarte, J.L. and González, H.: Phytoplankton size structure during and after the
1073 1997/98 El Niño in a coastal upwelling area of the northern Humboldt Current System,
1074 Mar. Ecol. Prog. Ser., 269, 83 – 90, 2004.

1075

1076 Jenny, B., Wilhelm, D., Valero-Garcés, B.L.: The Southern Westerlies in Central Chile:
1077 Holocene precipitation estimates based on a water balance model for Laguna Aculeo
1078 (33°50'S), Clim. Dynam., 20, 269–280, DOI 10.1007/s00382-002-0267-3, 2003.

1079

1080 Kaiser, J., Schefuß, E., Lamy, F., Mohtadi, M., Hebbeln, D.:Glacial to Holocene
1081 changes in sea surface temperature and coastal vegetation in north central Chile: high
1082 versus low latitude forcing, Quat. Sci. Rev., 27, 2064–2075, 2008.

1083

1084 Keshav, N. and Achyuthan, H.: Late Holocene continental shelf sediments, off
1085 Cuddalore, East coast, Bay of Bengal, India: Geochemical implications for source-area
1086 weathering and provenance, Quat. Int., 371, 209–218, doi:10.1016/j.quaint.2015.03.002,
1087 2015.

1088

1089 Klinkhammer, G. P. and Palmer, M. R. Uranium in the oceans: Where it goes and why,
1090 Geochim. Cosmochim. Ac., 55(7), 1799–1806, doi: 10.1016/0016-037(91)90024-Y,
1091 1991.

1092
1093 Koutavas, A. and Joanides, S.: El Niño–Southern Oscillation extrema in the Holocene
1094 and Last Glacial Maximum, *Paleoceanography*, 27, PA4208, 2012.
1095 doi:10.1029/2012PA002378.

Comentario [P56]: Reference modified

1096
1097 Koutavas, A., deMenocal, P.B., Olive, G.C., Lynch-Stieglitz, J.: Mid-Holocene El
1098 Niño–Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in
1099 eastern tropical Pacific sediments, 34(12), 993–996, doi: 10.1130/G22810A, 2006.

1100
1101 Lambeck, K., Rouby, H., Purcella, A., Sunc, Y., Sambridge, M.: Sea level and global
1102 ice volumes from the Last Glacial Maximum to the Holocene, *PNAS*, 111(43), 15296-
1103 15303, 2014.

1104
1105 Lamy F., Hebbeln, D., Wefer, G.: High-Resolution Marine Record of Climatic Change
1106 in Mid-latitude Chile during the Last 28,000 Years Based on Terrigenous Sediment
1107 Parameters, *Quat. Res.*, 51, 83–93, 1999.

Comentario [P57]: Two reference
eliminated Lamy et al., 2001 and 2002

1108
1109 Lamy, F., Kilian, R., Arz, H.W., Francois J-P., Kaiser, J., Prange, M. and Steinke, T.:
1110 Holocene changes in the position and intensity of the southern westerly wind belt, *Nat.*
1111 *Geosci.*, 3, 695–699, 2010.

1112
1113 Little, S. H., Vance, D., Walker-Brown, C. and Landing, W. M.: The oceanic mass
1114 balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs
1115 to ferromanganese oxide sediments, *Geochim. Cosmochim. Acta*, 125, 673–693,
1116 doi:10.1016/j.gca.2013.07.046, 2014.

1117
1118 Maldonado, A., Villagrán, C.,: Paleoenvironmental changes in the semiarid coast of
1119 Chile (~32°S) during the last 6200 cal years inferred from a swamp-forest pollen
1120 record. *Quat. Res.*, 58, 130–138, 2002.

1121
1122 Maldonado, A. and Rozas, E.: Clima y Paleoambientes durante el Cuaternario Tardío en
1123 la Región de Atacama, in *Libro Rojo de la Flora Nativa y de los Sitios Prioritarios para*
1124 *su Conservación: Región de Atacama*, pp. 293–304., 2008.

1126 Maldonado, A. and Villagrán, C.: Climate variability over the last 9900 cal yr BP from
1127 a swamp forest pollen record along the semiarid coast of Chile, *Quat. Res.*, 66(2), 246–
1128 258, doi:10.1016/j.yqres.2006.04.003, 2006.

1129

1130 Maldonado, A., ME. de Porras, A. Zamora & AM. Abarzúa. *El escenario geográfico y*
1131 *paleoambiental de Chile. Capítulo I. Culturas de Chile. Prehistoria. Desde sus orígenes*
1132 *hasta los albores de la conquista.* F. Falabella & M. Uribe. Eds. Editorial Andrés Bello.
1133 2016.

Comentario [P58]: Reference added

1134

1135 Mazzullo, J., Gilbert, A., Rabinowitz, P., Meyer, A. and Garrison, L.: *Handbook for*
1136 *Shipboard Sedimentologists*, 67 pp., 1988.

1137

1138 McManus, J., Berelson, W. M., Severmann, S., Poulson, R. L., Hammond, D. E.,
1139 Klinkhammer, G. P., and Holm, C.: Molybdenum and uranium geochemistry in
1140 continental margin sediments: Paleoproxy potential, *Geochim. Cosmochim. Acta*, 70,
1141 4643–4662, 2006.

Comentario [P59]: Reference added

1142

1143 Merino-Campos, V., De Pol-Holz, R. Sounthor, J., Latorre, C., Collado-Fabbri, S.:
1144 Marine radiocarbon reservoir age along the Chilean continental margin, *Radiocarbon*,
1145 81, 1–16, doi:10.1017/RDC.2018.81, 2018.

1146

1147 Montecinos, A., and Aceituno, P.: Seasonality of the ENSO-Related Rainfall Variability
1148 in Central Chile and Associated Circulation Anomalies. *J. Climate.*, 16, 281–296, 2003.

1149

1150 Montecinos, S., Gutiérrez, J. R., López-Cortés, F. and López, D.: Climatic
1151 characteristics of the semi-arid Coquimbo Region in Chile, *J. Arid Environ.*, 126, 7–11,
1152 doi:10.1016/j.jaridenv.2015.09.018, 2016.

1153

1154 Moraga-Opazo, J., Valle-Levinson, A., Ramos, M. and Pizarro-Koch, M.: Upwelling-
1155 Triggered near-geostrophic recirculation in an equatorward facing embayment, *Cont.*
1156 *Shelf Res.*, 31, 1991–1999, 2011.

1157

1158 Mortlock, R. A. and Froelich, P. N.: A simple method for the rapid determination of
1159 biogenic opal in pelagic marine sediments, Deep Sea Res. Part A, Oceanogr. Res. Pap.,
1160 36(9), 1415–1426, doi:10.1016/0198-0149(89)90092-7, 1989.

1161

1162 Morse, J.W. and Luther, G.W.: Chemical influences on trace metal–sulfide interactions
1163 in anoxic sediments. Geochim Cosmochim Ac., 63, 3373–3378, 1999.

1164

1165 Nakanishi, T. and Minagawa, M.: Stable carbon and nitrogen isotopic compositions of
1166 sinking particles in the northeast Japan Sea, Geochem. J., 37(2), 261–275,
1167 doi:<https://doi.org/10.2343/geochemj.37.261>, 2003.

1168

1169 Nameroff, T., Balistrieri, L. and Murray, W.: Suboxic trace metals geochemistry in the
1170 eastern tropical North Pacific, Geochim Cosmochim Ac., 66(7), 1139–1158, 2002.

1171

1172 Ogrinc, N., Fontolan, G., Faganeli, J. and Covelli, S.: Carbon and nitrogen isotope
1173 compositions of organic matter in coastal marine sediments (the Gulf of Trieste, N
1174 Adriatic Sea): indicators of sources and preservation, Mar. Chem., 95, 163-181, 2005.

1175

1176 Ohnemus, D. C. and Lam, P. J.: Cycling of lithogenic marine particles in the US
1177 GEOTRACES North Atlantic transect, Deep. Res. Part II Top. Stud. Oceanogr., 116,
1178 283–302, doi:10.1016/j.dsr2.2014.11.019, 2015.

1179

1180 Ortega, C., Vargas, G., Rutllant, J.A., Jackson, D., Méndez, C.: Major hydrological
1181 regime change along the semiarid western coast of South America during the early
1182 Holocene, Quaternary Res., 78, 513-527, 2012.

1183

1184 Ortega, C., Vargas, G., Rojas, M., Rutllant, J.A., Muñoz, P., Lange, C.B., Pantoja, S.,
1185 Dezileau, L., Ortlieb, L.: Extreme ENSO-driven torrential rainfalls at the southern edge
1186 of the Atacama Desert during the late Holocene and their projection into the 21th
1187 century, GloPlaCha, 175, 226 – 237, 2019. <https://doi.org/10.1016/j.gloplacha.2019.02.011>

1188

1189

Comentario [P60]: Two references
were eliminated (Moy et al 2002, Muñoz et
al 2012)

Comentario [P61]: Reference added

1190 Paytan, A.: Ocean paleoproductivity, Encyclopedia of Paleoclimatology and Ancient
1191 Environments, Encyclopedia of Earth Science Series, Gornitz, V. (Ed.), Kluwer
1192 Academic Publishers. 2008.

1193

1194 Peacock, C.L. and Sherman, D.M.: Copper(II) sorption onto goethite, hematite and
1195 lepidocrocite: a surface complexation model based on ab initio molecular geometries
1196 and EXAFS spectroscopy. *Geochim. Cosmochim. Ac.*, 68, 2623–2637, 2004.

1197

1198 Pizarro, O., Hormazabal, S., Gonzalez, A. and Yañez, E.: Variabilidad
1199 del viento, nivel del mar y temperatura en la costa norte de Chile, *Invest.*
1200 Mar., 22, 85–101, 1994.

Comentario [P62]: Reference added

1201

1202 Pizarro, O., Shaffer, G., Dewitte, B. and Ramos, M.: Dynamics of seasonal and
1203 interannual variability of the Peru-Chile Undercurrent, *Geophys. Res. Lett.*, 29(12), 28–
1204 31, doi:10.1029/2002GL014790, 2002.

1205

1206 Quintana, J.M. and Aceituno, P.: Changes in the rainfall regime along the extratropical
1207 west coast of South America (Chile): 30–43° S, *Atmosfera*, 25(1), 1 – 22, 2012.

1208

1209 Ramos, M., Pizarro, O., Bravo, L. and Dewitte, B.: Seasonal variability of the permanent
1210 thermocline off northern Chile, *Geophys. Res. Lett.*, 33, L09608,
1211 doi:10.1029/2006GL025882, 2006.

1212

1213 Ramos, M., Dewitte, B., Pizarro, O. and Garric, G.: Vertical propagation of
1214 extratropical Rossby waves during the 1997–1998 El Niño off the west coast of South
1215 America in a medium-resolution OGCM simulation, *J. Geophys. Res.*, 113, C08041,
1216 doi:10.1029/2007JC004681, 2008.

1217

1218 Rau, H. G., Takahashi, T. and Des Marais, D. J.: Latitudinal variations in plankton
1219 $\delta^{13}\text{C}$: implications for CO₂ and productivity in past oceans, *Nature*, 341, 516–518,
1220 1989.

1221

1222 Rahn, D.A. and Garreaud, R.A.: A synoptic climatology of the near-surface wind along
1223 the west coast of South America. *Int. J. Climatol.*, 2013. DOI: 10.1002/joc.3724.

Comentario [P63]: Reference added

1224
1225 Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Buck,
1226 C. E., Cheng, H., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P.,
1227 Haflidason, H., Hajdas, I., Hatté, C., Heaton, T. J., Hoffmann, D. L., Hogg, A. G.,
1228 Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Niu, M., Reimer, R. W.,
1229 Richards, D. A., Scott, E. M., Southon, J. R., Staff, R. A., Turney, C. S. M. and van der
1230 Plicht, J.: IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years
1231 cal BP, *Radiocarbon*, 55(4), 1869–1887, doi:10.2458/azu_js_rc.55.16947, 2013.
1232
1233 Rein, B., Lückge, A., Reinhardt, L., Sirocko, F., Wolf, A., Dullo, W-C.: El Niño
1234 variability off Peru during the last 20,000 years, *Paleoceanogr.*, PA4003,
1235 doi:10.1029/2004PA001099, 2005

1236
1237 Ruttlund, J. and Fuenzalida, H.: Synoptic aspects of the central Chile Rainfall variability
1238 associated with the southern oscillation, *Int. J. Climatol.*, 11, 63 – 76, 1991.

1239
1240 Ruttlund, J. and Montecino, V.: Multiscale upwelling forcing cycles and biological
1241 response off northcentral Chile, *Rev. Chil. Hist. Nat.*, 7, 217-231, 2002

1242
1243 Sabatier, P., Dezileau, L., Blanchemanche, P., Siani, G., Condomines, M., Bentaleb, I.
1244 and Piquès, G.: Holocene variations of radiocarbon reservoir ages in a mediterranean
1245 lagoonal system, *Radiocarbon*, 52(1), 91–102, doi:10.1017/S0033822200045057, 2010.
1246
1247 Saito, C., Noriki, S. and Tsunogai, S.: Particulate flux of $\text{^{14}C}$, a component of land
1248 origin, in the western North Pacific, *Deep-Sea Res.*, 39, 1315–1327, 1992.
1249
1250 Salvatteci, R., Gutiérrez, D., Field, D., Sifeddine, A., Ortlieb, L., Bouloubassi, I.,
1251 Boussafir, M., Boucher, H. and Cetin, F.: The response of the Peruvian Upwelling
1252 Ecosystem to centennial-scale global change during the last two millennia, *Clim. Past*,
1253 10(2), 715–731, doi:10.5194/cp-10-715-2014, 2014.
1254
1255 Schrader H. J. and Gersonde, R.: Diatoms and silicoflagellates. *Utrecht Micropaleontol.*
1256 Bull. 17, 129–176, 1978.
1257

Comentario [P64]: Reference eliminated (Rodbell et al 1999)

Comentario [P65]: Reference added

Comentario [P66]: Reference added

Comentario [P67]: Reference eliminated (Saavedra et al 1991)

1258 Sellanes, J., Quiroga, E., Neira, C., Gutiérrez, D.: Changes of macrobenthos
1259 composition under different ENSO cycle conditions on the continental shelf off central
1260 Chile, *Cont. Shelf. Res.* 27, 1002 –1016, 2007.

1261

1262 Siebert, C., Nägler, T.F., von Blackenburg, F., Kramers, J.D.: Molybdenum
1263 isotope records as a potential new proxy for paleoceanography. *Earth Planet. Sci. Lett.*,
1264 6643, 1–13, 2003.

1265

1266 Shaffer, G., Pizarro, O. Djurfeldt, L., Salinas, S. and Rutllant, J.: Circulation and low-
1267 frequency variability near the Chilean coast: Remotely forced fluctuations during the
1268 1991– 92 El Niño, *J. Phys. Oceanogr.*, 27, 217– 235, 1997.

1269

1270 Sigman, D.M., Karsh, K.L., Casciotti, K.L.: Ocean process tracers: nitrogen isotopes in
1271 the ocean. *Encyclopedia of ocean science*, 2nd edn Elsevier, Amsterdam.

1272 Sims, P.A. 1996. An Atlas of British Diatoms. Biopress Ltd, Bristol United Kingdom
1273 601, 2009.

1274

1275 Sun, X., Higgins, J. and Turchyn, A. V.: Diffusive cation fluxes in deep-sea sediments
1276 and insight into the global geochemical cycles of calcium, magnesium, sodium and
1277 potassium, *Mar. Geol.*, 373, 64–77, doi:10.1016/j.margeo.2015.12.011, 2016.

1278

1279 Sundby, B., Martinez, P. and Gobeil, C.: Comparative geochemistry of cadmium,
1280 rhenium, uranium, and molybdenum in continental margin sediments, *Geochim.
1281 Cosmochim. Ac.*, 68, 2485–2493, 2004.

1282

1283 Sweeney, R. E., Kaplan I. R.: Natural abundances of ^{15}N as a source indicator of
1284 nearshore marine sedimentary and dissolved nitrogen, *Mar. Chem.*, 9, 81– 94, 1980.

1285

1286 Thiel, M., Macaya, E.C., Acuña, E., Artnz, W.F., Bastias, H., Brokordt, K., Camus,
1287 P.A., Castilla, J.C., Castro, L.R., Cortés, M., Dumont, C.P., Escribano, R., Fernandez,
1288 M., Gajardo, J.A., Gaymer, C.F., Gómez, I., González, A.E., González, H.E., Haye, P.,
1289 Illanes, J.E., Iriarte, J.L., Lancellotti, D.A., Luna-Jorquera, G., Luxoro, C., Manriquez,
1290 P.H., Marín, V., Muñoz, P., Navarrete, S.A., Pérez, E., Poulin, E., Sellanes, J.,
1291 Sepúlveda, H.H., Stotz, W., Tala, F., Thomas, A., Vargas, C.A., Vásquez, J.A., Vega,

Comentario [P68]: Reference added

1292 J.M.: The Humboldt Current system of Northern and Central Chile: Oceanographic
1293 processes, ecological interactions and socioeconomic feedback. *Oceanogr. Mar. Biol.*
1294 An Annual Review, 45, 195–344, 2007.

Comentario [P69]: Reference added

1295
1296 Torres, M. E., Brumsack, H. J., Bohrman, G. and Emeis, K. C.: Barite front in
1297 continental margin sediments: a new look at barium remobilization in the zone of
1298 sulfate reduction and formation of heavy barites in diagenetic fronts, *Chem. Geol.*, 127,
1299 125–139, 1996.

1300
1301 Torres, R., and Ampuero, P.: Strong CO₂ outgassing from high nutrient low chlorophyll
1302 coastal waters off central Chile (30°S): The role of dissolved iron, *Estuar. Coast. Shelf*
1303 *S.*, 83, 126–132, doi:10.1016/j.ecss.2009.02.030, 2009.

1304
1305 Tribouillard, N., Algeo, T. J., Lyons, T. and Riboulleau, A.: Trace metals as paleoredox
1306 and paleoproductivity proxies: an update. *Chem. Geol.*, 232, 12–32, 2006.

1307
1308 Vance, D., Archer, C., Bermin, J., Perkins, J., Statham, P. J., Lohan, M. C., Ellwood, M.
1309 J. and Mills, R. A.: The copper isotope geochemistry of rivers and the oceans, *Earth*
1310 *Planet. Sc. Lett.*, 274, 204–213, 2008.

1311
1312 Valle-Levinson, A., Moraga, J., Olivares, J. and Blanco, J. L.: Tidal and residual
1313 circulation in a semi-arid bay: Coquimbo Bay, Chile. *Cont. Shelf Res.*, 20, 2009–2018,
1314 2000.

1315
1316 Valle-Levinson, A. and Moraga-Opazo, J.: Observations of bipolar residual circulation
1317 in two equatorward-facing semiarid bays, *Cont. Shelf Res.*, 26(2), 179–193,
1318 doi:10.1016/j.csr.2005.10.002, 2006.

1319
1320 Van der Weijden, C.: Pitfalls of normalization of marine geochemical data using a
1321 common divisor, *Mar. Geol.*, 184, 167–187, 2002.

1322
1323 Vargas, G., Ortlieb, L., Pichon, J. J., Bertaux, J. and Pujos, M.: Sedimentary facies and
1324 high resolution primary production inferences from laminated diatomaceous sediments

1325 off northern Chile (23°S), *Mar. Geol.*, 211(1–2), 79–99,
1326 doi:10.1016/j.margeo.2004.05.032, 2004.

1327
1328 Vargas, G., Rutllant, J., Ortlieb, L.: ENSO tropical–extratropical climate
1329 teleconnections and mechanisms for Holocene debris flows along the hyperarid coast of
1330 western South America (17°–24°S), *Earth Planet. Sci. Lett.*, 249, 467–483, 2006.

1331
1332 Vargas, G., Pantoja, S., Rutllant, J., Lange, C. and Ortlieb, L.: Enhancement of coastal
1333 upwelling and interdecadal ENSO-like variability in the Peru-Chile Current since late
1334 19th century. *Geophys. Res. Lett.*, 34, L13607, 2007.

1335
1336 Ulloa, O., Escribano, R., Hormazabal, S., Quiñones, R.A., Gonzalez, R., Ramos, M.,:
1337 Evolution and biological effects of the 1997-98 E1 Niño in the upwelling ecosystem off
1338 northern Chile, *Geophys. Res. Lett.*, 28, 1591– 1594, 2001.

1339
1340 Ulloa, O., Canfield, D.E., DeLong, E.F., Letelier, R.L. and Stewart, F.J.: Microbial
1341 oceanography of anoxic oxygen minimum zones. *PNAS*, 109, 15996–16003, 2012.
1342 doi:10.1073/pnas.1205009109

1343
1344 Veit, H.: Southern Westerlies during the Holocene deduced from geomorphological and
1345 pedological studies in the Norte Chico, Northern Chile (27–33°S). *Palaeogeogr.,*
1346 *Palaeoclimatol., Palaeoecol.*, 123, 107–119, 1996.

1347
1348 Williams, P. M. and Gordon, L. I.: Carbon-13:carbon-12 ratios in dissolved and
1349 particulate organic matter in the sea. *Deep-Sea Res.*, 17, 19–27, 1970.

1350
1351 Xu, G., Liu, J., Pei, S., Kong, X., Hu, G. and Gao, M.: Source identification of
1352 aluminum in surface sediments of the Yellow Sea off the Shandong Peninsula, *Acta*
1353 *Oceanol. Sin.*, 34(12), 147–153, doi:10.1007/s13131-015-0766-9, 2015.

1354
1355 Zheng, Y., Anderson, R. F., van Geen, A. and Fleisheir, M.Q.: Preservation of non-
1356 lithogenic particulate uranium in marine sediments. *Geochim. Cosmochim. Ac.*, 66,
1357 3085–3092, 2002.

1358

Comentario [P70]: References added

1359 **Acknowledgments**

1360 We would like to thank the R/V Stella Maris II crew of Universidad Católica del Norte
1361 for their help and support during field work. We extend our acknowledgements to the
1362 laboratory assistants of the Paleoceanography Lab at Universidad de Concepción, for
1363 their aid in sample analyses. We also wish to thank Dr. Olivier Bruguier of CNRS and
1364 his lab personnel for their assistance during ICPMs analyses. We also express our
1365 gratitude to INNOVA 07CN13 IXM-150, **FONDECYT 1180413** and **FONDECYT**
1366 **1170408**. This manuscript was **mainly** funded by FONDECYT Project No. 1140851.
1367 Partial support from the COPAS Sur-Austral (CONICYT PIA PFB31) and FONDAP-
1368 IDEAL centers (No. 15150003) is also acknowledged.

1369

Tables

Comentario [P71]: The order of tables was changed

Table 1. Radiocarbon dates for BGGC5 and BTGC8 sediment cores collected from mixed planktonic foraminifera and monospecific benthic foraminifera (*Bolivina plicata*), respectively. The ^{14}C -AMS was performed at NOSAM-WHOI. The lab code and conventional ages collected from each core section is indicated. For error calculations see <http://www.whoi.edu/nosams/radiocarbon-data-calculations>.

Core identification	Material	Mass (mg)	Lab Code NOSAM	Modern fraction		Conventional Age BP	1σ error
				pMC	1σ error		
BGGC5							
10-11	mix	1.8	OS-122160	0.8895	0.0027	940	25
18-19	mix	1.1	OS-122141	0.7217	0.0024	2,620	25
31-32	mix	2.7	OS-122161	0.6590	0.0021	3,350	25
45-46	mix	2.0	OS-122162	0.6102	0.0017	3,970	25
55-56	mix	1.6	OS-122138	0.5864	0.0025	4,290	35
66-67	mix	2.8	OS-122304	0.5597	0.0018	4,660	25
76-77	mix	2.6	OS-122163	0.4520	0.0016	6,380	30
96-97	mix	1.1	OS-122139	0.4333	0.0033	6,720	60
115-116	mix	4.7	OS-122164	0.3843	0.0016	7,680	35
BTGC8							
5-6	Bolivina plicata	4.2	OS-130657	0.8953	0.0017	890	15
20-21	Bolivina plicata	7.7	OS-123670	0.7337	0.0021	2,490	25
30-31	Bolivina plicata	13.0	OS-123671	0.6771	0.0016	3,130	20
40-41	Bolivina plicata	11.0	OS-123672	0.6507	0.0019	3,450	25
50-51	Bolivina plicata	8.7	OS-123673	0.5877	0.0014	4,270	20
60-61	Bolivina plicata	13.0	OS-123674	0.5560	0.0018	4,720	25
71-72	Bolivina plicata	10.0	OS-123675	0.4930	0.0013	5,680	20
80-81	Bolivina plicata	7.3	OS-123676	0.4542	0.0012	6,340	20
90-91	Bolivina plicata	6.8	OS-123677	0.4259	0.0015	6,860	30
96-97	Bolivina plicata	6.8	OS-123678	0.3903	0.0013	7,560	25

Table 2. Reservoir age (DR) estimation considering the ^{210}Pb age determined with the CRS model (McCaffrey and Thomson, 1980) at a selected depth sections of the core, compared with ^{14}C ages (yr BP) from marine13.14 curve (Reimer et al., 2013), according to Sabatier et al. (2010).

Core	Depth (cm)	Age from CRS model (AD) ^a	Age years BP ^b	^{14}C age Marine 13.14	^{14}C age BP from foram.	DR
BGGC5	10.5	1828	122	499±24	940±25	441±35
BTCG8	5.5	1908	42	448±23	890±15	442±27

^aAnno Domini

^bBefore present=1950

Table 3. Concentration of elements in Pachingo wetland sediments, considered as lithogenic background for the study area. The values correspond to mean concentrations in surface sediments (0–3 cm).

Element	Metal/Al x 10 ³	s
Ca	686.5	139.3
Fe	591.3	84.5
P	8.6	0.7
Sr	5.7	0.6
Ba	5.6	0.1
Cu	0.258	0.019
Ni	0.174	0.005
U	0.020	0.003
Mo	0.020	0.003
Cd	0.0021	0.0003
Re	0.00004	0.00001

Table 4. Mean authigenic enrichment factor (EF) \pm SD of trace elements calculated for Guanaqueros Bay (BGGC5 core). Lithogenic background was estimated from surface sediments of Pachingo wetland cores (see text). Age ranges were based on the variability of diatoms abundance (valves g^{-1}).

Comentario [P72]: The table was changed

Age range (cal BP)	Diatoms ($\times 10^6$) (min-max)	Opal ($\text{g m}^{-2} \text{yr}^{-1}$) (min-max)	EF _U	EF _{Mo}	EF _{Re}	EF _{Fe}	EF _{Ba}	EF _{Cd}	EF _{Ni}	EF _{Cu}	EF _P
-65 – 130	0.5 – 4.9	3 – 40	2.6 ± 0.7	5.5 ± 1.3	10.5 ± 2.0	0.8 ± 0.1	0.8 ± 0.1	30.3 ± 6.3	1.4 ± 0.2	3.6 ^a ± 1.3	2.0 ± 0.4
130 – 1700	0.6 – 1.7	1 – 3	5.6 ± 1.4	14.5 ± 3.7	18.4 ± 3.8	0.9 ± 0.1	0.8 ± 0.1	40.6 ± 3.7	1.9 ± 0.1	3.0 ± 0.4	2.4 ± 0.4
1700 – 4500	1.9 – 5.4	2 – 21	5.5 ± 0.6	14.5 ± 1.5	19.8 ± 2.0	0.9 ± 0.1	0.8 ± 0.1	55.1 ± 12.2	2.3 ± 0.3	3.1 ± 0.5	2.2 ± 0.3
4500 – 6500	2.7 – 4.5	4 – 47	5.1 ± 0.8	16.9 ± 3.3	19.5 ± 3.0	0.9 ± 0.1	0.9 ± 0.1	140.1 ± 46.3	3.4 ± 0.5	3.1 ± 0.5	3.2 ± 0.5
6500 – 8400	15.7 – 41.0	9 – 53	4.5 ± 0.4	13.9 ± 2.6	17.9 ± 2.2	0.9 ± 0.1	0.9 ± 0.1	142.5 ± 24.2	3.4 ± 0.4	2.5 ± 0.3	3.9 ± 0.8

^aMean EF_{Cu} after AD 1936 was 4.6 \pm 0.5

Table 5. Spearman rank order correlations for geochemical data. Significant values >0.8 are indicated in bold.

BGGC5																
	Al	P	K	Ca	Mn	Fe	Ni	Cu	Mo	Cd	Re	Sr	U	Ba	Opal	TOC
Al	1.00	-0.62	0.49	-0.48	0.64	0.60	-0.75	0.56	-0.10	-0.73	-0.08	-0.33	0.08	0.49	-0.52	-0.44
P		1.00	-0.31	0.37	-0.45	-0.56	0.56	-0.57	0.01	0.61	-0.11	0.39	-0.12	-0.20	0.49	0.24
K			1.00	-0.24	0.90	0.83	-0.29	0.47	0.28	-0.42	0.33	-0.12	0.50	0.26	-0.25	-0.19
Ca				1.00	-0.47	-0.50	0.44	-0.64	0.23	0.59	0.39	0.92	0.30	-0.60	0.18	0.32
Mn					1.00	0.94	-0.51	0.68	-0.01	-0.68	0.07	-0.32	0.24	0.43	-0.39	-0.31
Fe						1.00	-0.49	0.81	0.03	-0.70	0.11	-0.40	0.23	0.36	-0.37	-0.21
Ni							1.00	-0.51	0.49	0.91	0.35	0.25	0.26	-0.70	0.72	0.64
Cu								1.00	-0.12	-0.71	-0.06	-0.61	0.00	0.31	-0.39	-0.07
Mo									1.00	0.50	0.88	0.10	0.91	-0.48	0.33	0.36
Cd										1.00	0.36	0.42	0.27	-0.67	0.70	0.54
Re											1.00	0.27	0.92	-0.50	0.16	0.38
Sr												1.00	0.24	-0.36	0.05	0.17
U													1.00	-0.39	0.10	0.29
Ba														1.00	-0.30	-0.59
Opal															1.00	0.35
TOC																1.00
BTGC8																
	Al	P	K	Ca	Mn	Fe	Ni	Cu	Mo	Cd	Re	Sr	U	Ba	Opal	TOC
Al	1.00	-0.19	-0.17	-0.37	-0.02	-0.03	-0.39	-0.04	-0.39	0.02	-0.13	-0.58	-0.19	0.07	-0.41	-0.29
P		1.00	0.23	0.00	0.43	0.28	0.58	0.23	0.37	0.13	-0.04	0.30	0.14	-0.14	0.56	0.13
K			1.00	-0.02	0.54	0.41	0.43	0.22	-0.11	0.05	-0.04	0.19	-0.28	0.28	0.26	0.20
Ca				1.00	-0.33	-0.27	0.00	-0.23	0.39	0.01	0.33	0.50	0.47	-0.34	0.20	0.34
Mn					1.00	0.21	0.64	0.01	0.05	0.33	0.15	0.32	-0.02	0.24	0.32	0.00
Fe						1.00	0.13	0.71	-0.40	-0.48	-0.67	-0.37	-0.62	0.13	0.14	0.10
Ni							1.00	0.24	0.56	0.20	0.25	0.64	0.19	-0.16	0.80	0.45
Cu								1.00	-0.25	-0.68	-0.56	-0.22	-0.61	-0.10	0.21	0.37
Mo									1.00	0.45	0.59	0.66	0.69	-0.41	0.58	0.30
Cd										1.00	0.56	0.39	0.52	0.11	0.10	-0.12
Re											1.00	0.53	0.83	-0.16	0.13	0.17
Sr												1.00	0.58	-0.13	0.52	0.23
U													1.00	-0.19	0.21	0.00
Ba														1.00	-0.28	-0.42
Opal															1.00	0.39
TOC																1.00

Figures

1370 Figure 1. Study area showing the position of sampling stations. Sediment cores were
 1371 retrieved from Guanaqueros Bay (BGGC5) and from Tongoy Bay (BTGC8) at water
 1372 depths of 89 and 85 m, respectively. Information of dissolved oxygen (DO) in the water
 1373 column at ST1 and ST16 and of suspended organic particles collected at ST14 sampling
 1374 sites was gathered in a previous project (INNOVA 07CN13 IXM-150). Monthly
 1375 precipitation in mm (bars) (means \pm SD; Montecinos et al., 2016). Schematic
 1376 representation of the bays circulation (white arrows) and wind direction is indicated
 1377 (blue arrow) obtained from Valle-Levinson and Moraga-Opazo (2006) and Moraga-
 1378 Opazo et al. (2011).

Figure 2. Dissolved Oxygen (DO) time series in the water column measured between October 2010 and January 2011, at stations St1, St14 and St16 off Tongoy Bay, Coquimbo (30°S).

Comentario [P73]: This figure was changed, st14 was added

Figure 3. Suspended particulate matter composition (TOC % and $\delta^{13}\text{C}_{\text{org}}$) measured in the water column between October 2010 and October 2011, at station St14, Tongoy Bay, Coquimbo (30°S).

Figure 4. Age model based on $^{14}\text{CAMS}$ and ^{210}Pb measurements. The time scale was obtained according to the best fit of curves of $^{210}\text{Pb}_{\text{xs}}$ and ^{14}C points using CLAM 2.2 software and Marine curve ^{13}C (Reimer et al., 2013).

a) BGGC5

b) BTGC8

Figure 5. Characterization of sediment cores retrieved from (a) Guanaqueros Bay (BGGC5) and (b) Tongoy Bay (BTGC8). Where is shown the huge (Munsell chart scale) in depth, dry bulk density, mean grain size, granulometry (% sand, silt and clay), statistical parameters (skewness, kurtosis), organic components (TOC, C/N ratio, stable isotopes $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$) and chemical composition (K/Ca, Ca/Fe).

Figure 6. Diatom and sponge spicules relative abundances, total diatom counts (valves g^{-1}) and opal (%), opal accumulation ($\text{g m}^{-2} \text{ yr}^{-1}$) and Cd/U ratio, and downcore variations in *Ch.* resting spores percentages as proxy of upwelling intensity in BGGC5 and BTGC8 cores (Guanaqueros and Tongoy Bay, respectively), the medium dash line represent the average of *Ch.* resting spore for the respective core. Whereas Cd/U distribution was included as a proxy for redox condition.

Comentario [P74]: The figures was modified, the legend for opal was added and the symbols for Cd/u was changed.

Figure 7. Pollen record in BGGC5 core.

a) BGGC5

b) BTGC8

Figure 8. Downcore trace element variations on: (a) Guanaqueros Bay (BGGC5) and (b) Tongoy Bay (BTGC8), off Coquimbo (30°S).

Figure 9. Pollen Moisture Index defined as the normalized ratio between Euphorbiaceae (wet coastal shrub land) and Chenopodiaceae (arid scrubland). Positive (negative) values for this index indicate the relative expansion (reduction) of coastal vegetation under wetter (drier) conditions. Pb and Al distribution at BGGC5 core, representatives of terrigenous input to the bay.

Comentario [P75]: Figure was modified according referees's suggestion