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Abstract

The aim of this project was to establish past variations in the main oceanographic and
climatic features of a transitional semi-arid ecosystem in the north-central Chilean coast.
We analyzed recent sedimentary records retrieved from two bays, Guanaqueros and
Tongoy (30° S), for geochemical and biological analyses, including the following:
sensitive redox trace elements, biogenic opal, total organic carbon (TOC), diatoms, and
stable isotopes of organic carbon and nitrogen. Three remarkable periods were
established with different environmental conditions and productivities: (1) > cal BP
6600, (2) cal BP 4500-1800, and (3) cal BP 140 to the present (CE 2015). The first
period was characterized by a remarkably higher productivity (higher diatom
abundances and opal) in which large fluxes of organic compounds were also inferred
from the accumulation of elements, such as Ba, Ca, Ni, Cd, and P in the sediments.
Meanwhile, significantly reduced conditions at the bottom of the bays were suggested
based on the large accumulation of Mo, Re, and U, showing a peak at cal BP 6600 when
sulfidic conditions could have been present. According to the pollen moisture index,
this was also identified as the driest interval. These conditions should be associated with
an intensification of the Southern Pacific Subtropical Anticyclone and stronger
southerly western winds, emulating the La Nifia-like conditions, as has been described
for the SE Pacific during the early Holocene and part of the mid-Holocene. During most
of the second period, lower productivity was observed; however, a small increase was
identified between Cal BP 3400 and 4000, although lower amounts of diatom (valves g°
1) and nutrient-type metal accumulations were evident. Anoxic conditions at the bottom
of the bays changed to an almost stable sub-oxic condition during this time interval. The
third period was marked by intense oxygenation after cal BP 1800, as observed by a
drastic change in the accumulation of U, Mo, and Re. This was followed by a return to
more reduced conditions over the past two centuries, characterized by a small
productivity rise after cal BP ~140, as suggested by the opal accumulations. Overall,
lower primary productivity, lower reduced conditions at the bottom, and higher
humidity conditions were established after cal BP 6600 to the present. We suggest that
the oxygenation might be associated with a weak effect from the oxygen minimum zone
over the shelf and intensified EI Nifio activity, introducing oxygenated waters to the

coastal zones through the propagation of equatorial waves and establishment of



68
69
70
71
72

73
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%
97
98
99

100

101

conditions that reduced the primary productivity from the mid-Holocene toward the
beginning of the modern era.

Keywords: paleoproductivity, paleoredox, trace metals, diatoms, opal, organic carbon,
Coquimbo, SE Pacific

1. Introduction

The mean climatic conditions in the SE Pacific are modulated by the dynamics of the
Southern Pacific Subtropical Anticyclone (SPSA) and Humboldt Current System. The
coastal wind pattern produced alongshore varies along the SE Pacific, showing lower
seasonality between 18°—30° S and producing semi-permanent upwelling (Pizarro et al.,
1994; Figueroa and Moffat, 2000). This system is highly affected by the inter-annual
variability imposed by the El Nifio Southern Oscillation (ENSO), impacting the wind
intensity and, therefore, the productivity (Ruttland and Fuenzalida, 1991; Blanco et al.,
2002). Other climate patterns demonstrate impacts at longer timescales (inter-annual,
decadal, inter-decadal), such as the Pacific Decadal Oscillation (PDO) and the Southern
Annular Mode (SAM). These patterns modify the strength and position of the southerly
western winds (SWW), producing cold/warm periods that affect mainly winter
precipitation during the positive/negative trends of the SAM and lead to intense/weak
upwelling (Quintana and Aceituno, 2012; Ancapichin and Garcés-Vargas, 2015). In
addition, the orbitally induced variations in the austral insolation influences the extent
of the Antarctic sea ice and the Hadley cell, which act as important forces in the
latitudinal displacement of the Inter-tropical Convergence Zone (ITCZ; Kaiser et al.,
2008, and references therein). These fluctuations produce humid and arid conditions
along the SE Pacific where the intensity of the wind remains the key factor in the
upwelling strength and, therefore, the supply of nutrients to the photic zone, all of which
are required for the development of the primary productivity.

Off Coquimbo (30° S), there is normally semi-permanent and intense upwelling forced
by local winds, strongly influenced by topographic features (Figueroa and Moffat,
2000) and ENSO variability (Schaffer et al., 1997; Escribano et al., 2004). During El
Nifio, the intensities of the mean winds alongshore are reduced (conversely, during La
Nifia) (Rahn and Garreaud, 2013), impacting the upper circulation of the ocean and
affecting the oxygenation of the water column and strength of the upwelling. The high
productivity that takes place close to the coast during normal periods (Escribano et al.,
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2004 and references therein) maintains a zone of low dissolved oxygen content,
reinforcing the oxygen minimum zone (OMZ; Helly and Levin, 2004, Ulloa et al.,
2012); however, the opposite occurs during EIl Nifio, in which oxygenated waters enter
the coastal zone provided by the narrow continental shelf (Helly and Levin, 2004). This
changes the normal suboxic conditions at the bottom, normal composition of
macrofauna, and related geochemical characteristics of the sediments, with implications
that persist for several years after the event (Gutiérrez et al., 2006; Sellanes et al., 2007).
These changes in primary productivity and oxygenation at the bottom can be observed
in the sedimentary records that respond to the amount of organic carbon that has settled
on the surface sediments under different oceanographic and climatic conditions. The
diagenetic reactions during organic matter remineralization produce the enrichment or
depletion of trace elements, which reflects the amount of settled organic matter but also
reinforces the low oxygen conditions imposed by the OMZ, all of which promotes the
enrichment or depletion of trace elements (Tribovillard, 2006). Their variability in
sedimentary records has been extensively used to establish temporary changes in
primary productivity and changes in the oxygenation at the bottom (Nameroff et al.,
2002; Zheng et al., 2002; McManus et al., 2006; Siebert et al., 2003).

North-central Chile is a semi-arid zone that does not receive large fluvial contributions,
except during abnormal periods such as in EI Nifio years, during which higher runoff
has been recorded in austral winter (Valle-204; Levinson et al., 2000; Montecinos and
Aceituno, 2003; Garreaud et al., 2009). Under this scenario, marine sediments are often
highly influenced by primary production in the water column and terrestrial runoff;
therefore, sedimentary records can reveal the past variability in primary production and
oceanographic conditions over the shelf, which ultimately respond to the major
atmospheric patterns in the region. We considered that redox trace elements off
Coquimbo (30° S) respond to changes in the local hypoxia (U, Mo, and Re); in addition,
the nutrient-type elements are assumed to have followed the organic flux variability of
the sediments (Ba, Ni Cu), according to the interannual and interdecadal variability
described for the climatic and oceanographic settings in the region. Similarly, we
measured Ca, K, and Pb to assess the terrigenous inputs from runoff and aeolian
transportation, which is also impacted by Fe and Mn (Calvert and Pedersen, 2007). Ca
accumulation depends, in turn, on carbonate productivity and dissolution, and has also
been used as a paleoproductivity proxy (Paytan, 2008; Govin et al., 2012). We

determined the enrichment/depletion of elements to establish the primary prevailing
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environmental conditions during the sedimentation of particulate matter (Béning et al.,
2009). In addition, we considered the diatom assemblages with biogenic opal as a
measurement of siliceous export production, total organic carbon (TOC), and stable
isotopes to identify variations in the organic fluxes to the bottom. Moreover, pollen
grains were used to identify environmental conditions based on the climate relationship
of the main vegetation formations in north-central Chile. Based on our records we were
able to identify wet/dry intervals, periods with high/low organic fluxes to the sediments,
which are related to changes in primary production, and changes in the redox conditions
at the bottom, which in turn, have been associated with the main climatic conditions

described for the Holocene in this region.

2. Study area

The Coquimbo area (2930 °S), in the southern limit of the north-central Chilean
continental margin, constitutes a border area between the most arid zones of northern
Chile (Atacama Desert) and the more mesic Mediterranean climate in central Chile
(Montecinos et al., 2016). Here, the shelf is narrow, and several small bays trace the
coast line.

The Tongoy and Guanaqueros bays are located in the southern edge of a broad
embayment between small islands to the north (29 °S; Choros, Damas, and Chafaral)
and Lengua de Vaca Point to the south (30 °S) (Fig. 1), protected from southerly winds
that are predominant in the region. Tongoy Bay is a narrow marine basin (10 km at its
maximum width) with a maximum depth of approximately 100 m. To the northeast lies
Guanaqueros Bay, a smaller and shallower basin. High wind events are evenly
distributed throughout the year and promote an important upwelling center at Lengua de
Vaca Point, resulting in the accumulation of high biomass along a narrow coastal area
(Moraga-Opazo et al., 2011; Rahn and Garreaud, 2013) that reach concentrations of
approximately 20 mg m™ (Torres and Ampuero, 2009). In the shallow waters of Tongoy
Bay, the high primary productivity results in high TOC in the water column, allowing
for the deposition of fine material to the bottom; TOC rises concurrently with periods of
low oxygen (Fig. 2; Mufioz et al., unpublished data). Recent oceanographic studies
indicate that low dissolved oxygen water intrusions from the shelf (Fig. 3) seem to be
related to lower sea levels, resulting from annual local wind cycles at a regional meso-
scale (Gallardo et al., 2017). Oceanographic time series indicate that transition times

develop in short periods due to changes in the direction and intensity of the winds along
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the coast, with strong seasonality (http://www.cdom.cl/boyas-oceanograficas/boya-
tongoy). The spatial and temporal variability of these processes is still under study. In
addition, oceanic variability along the western coast of South America is influenced by
equatorial Kelvin waves on a variety of timescales, from intra-seasonal (Shaffer et al.,
1997) and seasonal (Pizarro et al., 2002; Ramos et al., 2006), to inter-annual (Pizarro et
al., 2002; Ramos et al., 2008).

Sedimentological studies are scarce with regard to the north-central shelf of Chile. A
few technical reports indicate that sediments between 27° S and 30° S are composed of
very fine sand and silt with relatively low organic carbon content (< 3 and ~5%), except
in very limited coastal areas where organic material accounts for approximately 16% of
the total material (Mufioz, unpublished data; FIP2005-61 Report, www.fip.cl). Coastal
weathering is the main source of continental input owing to scarce river flows and little
rainfall in the zone (0.5-80 mm y™; Montecinos et al., 2016, Fig. 1). Freshwater
discharges are represented by creeks, which receive the drainage of the coastal range
forming wetland areas in the coast and even small estuaries, such as Pachingo, located
south of Tongoy (Fig. 1). These basins cover ~300 and 487 km?, respectively. The water
volume in the estuaries is maintained by the influx of seawater mixed with the
groundwater supply. Normally, a surface flux to the sea is observed. Freshwater
discharges only occur through dry creeks that drain water during high rainfall periods in

the coastal zone (Direccion General de Aguas, 2011).

3. Materials and methods

3.1. Sampling

Sediment cores were retrieved from two bays in the Coquimbo region: Bahia
Guanaqueros (core BGGC5; 30° 09' S, 71° 26" W; 89 m water depth) and Bahia Tongoy
(core BTGCS; 30° 14' S, 71° 36' W; 85 m water depth) (Fig. 1), using a gravity corer
(KC-Denmark) during May 2015, onboard the L/C Stella Maris Il owned by the
Universidad Catolica del Norte. The length of the cores was 126 cm for BGGC5 and 98
cm for BTGCS.

Subsequently, the cores were sliced into 1 cm sections, and subsamples were separated
for grain size measurements and determination of magnetic susceptibility, trace element
and biogenic opal concentrations, C and N stable isotope signatures (5**C, 5'°N), and
TOC content. The samples first were kept frozen (—20° C) and then freeze-dried before

laboratory analyses.
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3.2. Geochronology (**°Pb and **C)

A geochronology was established combining ages estimated from 2*°Phs activities
suitable for the last 200 years and radiocarbon measurements at selected depths for
older ages. The quantification of °Pb activities was performed through the alpha
spectrometry of its daughter °Po following the procedure of Flynn (1968). The
(unsupported) activities of #°Pbys were determined as the difference between the %°Pb
and °Ra activities measured in some intervals of the sediment column. Meanwhile,
“2°Ra was measured by gamma spectrometry at the Laboratoire Géosciences of the
Université de Montpellier (France). Standard deviations (SD) of the ?°Pb inventories
were estimated by propagation of the counting uncertainties (Bevington and Robinson,
1992) (Table S1, supplementary data). The ages were based on the Constant Rate of
Supply Model (CRS, Appleby and Oldfield, 1978).

Radiocarbon measurements were performed on a mix of planktonic foraminifer species
in core BGGCS, whereas the benthic foraminifer species Bolivina plicata was selected
for core BTGCS8 (Table 1). The samples were submitted to the National Ocean Sciences
AMS Facility (NOSAMS) of the Woods Hole Oceanographic Institution (WHOI). The
timescale was obtained from #°Pb, and **C measurements and from Bacon age—depth
modeling open source software (Blaauw and Christen, 2011), considering the Marine
curve °C (Reimer et al., 2013) (Fig. 4) and a reservoir deviation from the global mean
reservoir age of 441 + 35 y. This was estimated subtracting the '“C age value
corresponding at the historical dates 1828 AD and 1908 AD (499 + 24 and 448 + 23 1C
y, respectively, Reimer et al., 2013) from the apparent **C age of the foraminifers
measured at depths of 5 and 10 cm for cores BTGC8 and BGGCS5, respectively
(Sabatier et al., 2010; Table 2).

3.3. Geophysical characterization

The magnetic susceptibility (SI x 10®) was measured with a Bartington Susceptibility
Meter MS2E surface scanning sensor at the Sedimentology Laboratory at Centro Eula,
Universidad de Concepcién. Mean values from three measurements were calculated for
each sample.

The grain size was determined using a Mastersizer 2000 laser particle analyzer (Hydro

2000—G, Malvern) in the Sedimentology Laboratory at Universidad de Chile. Skewness,
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sorting, and kurtosis were evaluated using the GRADISTAT statistical software (Blott
and Pye, 2001), which includes all particle size spectra.

3.4. Chemical analysis

Trace element analyses were performed via inductively coupled plasma-mass
spectrometry (ICP-MS) using an Agilent 7700x at Université de Montpellier (OSU
OREME/AETE regional facilities). The analysis considered reference materials (UBN,
BEN, and MAG1) that had an accuracy higher than +5%; the analytical precisions were
between 1% and 3%. Internal standardizations with In and Bi were used to deconvolve
the mass-dependent sensitivity variations of both matrix and instrumental origin
occurring during the course of an analytical session. The analytical precisions attained
were between 1% and 3%.

The element concentrations were normalized using Al due to its conservative behavior
that allows assessing the relative enrichment/depletion of elements and evaluating the
crustal contribution for each element (Calvert and Pedersen, 2007). The authigenic
enrichment factor (EF) was estimated as: EF = (Me/Al)sample / (Me/Al)getritat, Where
(Me/Al)sampie is the bulk sample metal (Me) concentration normalized to the Al content,
and the denomination “detrital” indicates a lithogenic background (Boning et al., 2009).
Detrital ([Me€]getritar and [Al]eetritar) CONCeNtrations were established considering the local
metal abundance, which is more accurate than using mean Earth crust values (Van der
Weijden, 2002). We used average element concentrations on surface sediments (0—3
cm) of the Pachingo wetland (Table 3).

TOC and stable isotope (6*°N and ¢'°C) analyses were performed at the Institut fiir
Geographie, Friedrich Alexander Universitait (FAU) Erlangen-Nurnberg, Germany
using a Carlo Erba elemental analyzer NC2500 and an isotope—ratio—mass spectrometer
(Delta Plus, Thermo-Finnigan) for isotopic analysis. Stable isotope ratios were reported
in the & notation as the deviation relative to international standards (Vienna Pee Dee
Belemnite for 5*3C and atmospheric N for §°N); thus, 8**C or 8°N = [(R sample/R
standard) — 1] x 10%, where R is *C/*2C or **N/*N, respectively. The typical precision
of the analyses was £0.1%o for 8N and &%C.

Biogenic opal was estimated following the procedure described by Mortlock and
Froelich (1989). The analysis was performed by molybdate-blue spectrophotometry
(Hansen and Koroleff, 1999), conducted at the laboratories of Marine Organic

Comentario [A1]: This paragraph was
moved from the result section (4.4. Trace
elements distribution, line 440) to methods
section, according reviewer suggestion.
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Geochemistry and Paleoceanography, University of Concepcion, Chile. Values for
biogenic opal were expressed by multiplying the Si (%) by 2.4 (Mortlock and Froelich,
1989). The analytical precision was * 0.5%. Accumulation rates were determined based

on the sediment mass accumulation rates and amount of opal for each core section in %.

3.5. Microfossils analyses

Qualitative abundances of siliceous microfossils were determined for every 1 cm
following the Ocean Drilling Program (ODP) protocol, described by Mazzullo and
Graham (1988). This information was used to select sections every 4, 8, and 12 cm for
BGGC5 and every 6 cm for BTGCS8, to determine quantitative abundances of
microfossils (diatoms, silicoflagellates, sponge spicules, crysophyts, and phytoliths).
Roughly 0.5 g of freeze-dried sediment was treated according to Schrader and Gersonde
(2978) for siliceous microfossils. They were identified and counted under an Olympus
CX31 microscope with phase contrast, in which 1/5 of the slides were counted at 400X
for siliceous microfossils and one transect at 1000X was counted for Chaetoceros
resting spores (Ch. RS). Two slides per sample were counted with an estimated
counting error of 15%. Total diatom abundances are given in valves g* of dry
sediments.

Pollen analysis was conducted following the standard pollen extraction methodology
(Faegri and lversen, 1989). The identification was conducted under a stereomicroscope,
with the assistance of the Heusser (1973) pollen catalog. A total of 100-250 terrestrial
pollen grains were counted in each sample. The pollen percentage for each taxon was
calculated from the total sum of terrestrial pollen (excluding aquatic taxa and fern
spores). Pollen percentage diagrams and zonation were generated using the Tilia
software (Grimm, 1987).

We further summarize pollen-based precipitation trends by calculating a pollen moisture
index (PMI), which is defined as the normalized ratio between Euphorbiaceae (wet
coastal scrubland) and Chenopodiaceae (arid scrubland). Thus, a positive (negative)

value for this index point corresponds to relatively wetter (drier) conditions.

4. Results
4.1. Geochronology
The activity of #°Ph,s (unsupported) was obtained from the surface to a depth of 8 cm

in the two cores, with an age of ~AD 1860 at 8 cm in both (Table S1). Greater surface
9
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activities were obtained for core BGGC5 (13.48 + 0.41 dpm g™*) than core BTGC8 (5.80
+ 0.19 dpm g?), showing an exponential decay with depth (Fig. 4). A recent
sedimentation rate of 0.11 + 0.01 cm y™ was estimated.

The age—depth model provided a maximum age of cal BP 7990 for core BGGC5 and cal
BP 8012 for core BTGC8 (Fig. 4). A mean sedimentation rate of 0.026 + 0.012 cm y™
was estimated for core BGGC5, with a period of relatively low values (< 0.01 cm y?)
between cal BP 240 and 1500 and between cal BP ~5000 and 6400. This variation in the
accumulation rates occurred over a few centimeters (5 and 7 cm, respectively); thus, this
rapid decrease was considered as a hiatus in the age-depth modeling. The model
estimates the accumulation rates before and after the hiatus not auto-correlated,
obtaining variable sedimentation rates which are more accurate to the sedimentation
process. We could not resolve the length and time of hiatuses; we assumed an elapsed-
time of 1400 years based on the difference between the radiocarbon ages before and
after the hiatus and a mid-depth corresponding to those gaps. Although we did not have
stratigraphic evidence of these discontinuities in the sediment core, we believe that the
assumptions considered allowed the development of reasonable age—depth models.
Nevertheless, the interpretations of the proxy records were taken with caution in these
age ranges. For BTGC8, mean sedimentation rates were less variable in the entire core
at 0.013 + 0.006 cm y™. The local reservoir deviation values were close to the global
marine reservoir (Table 2) and higher than other estimations along the Chilean margin
at shallower depths (146 + 25 years at < 30 m water depth; Carré et al., 2016; Merino-
Campos et al., 2018). Our coring sites are deeper (~90 m water depth) and influenced by
upwelling water from Lengua de Vaca Point, which could explain such differences.
However, moderate differences were observed between the models using both reservoir
values. Thus, our estimations were based on two pre-bomb values established with °Pb

measured in sediments and **C in foraminifers, used for the age modeling.

4.2. Geophysical characterization

Sediments retrieved from the bays showed fine grains within the range of very fine sand
to silt in the southern areas. There, grain size distribution was mainly unimodal, very
leptokurtic, more sorted, and skewed to fine grain when compared with sediments from
the northern areas. Sediment cores obtained from the northern areas were sandy (coarse
sand and gravel) with abundant calcareous debris. Longer cores of soft sediment were
retrieved at the southernmost areas (BGGC5 and BTGCS, Fig. 1), where the silty

10
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component varied between 40% and 60% (Figs. 5a, 5b). The clay component was very
low at both cores (< 2%). The sediment’s color ranged from very dark grayish brown to
dark olive brown (2.5Y 3/3-3/2) in Guanaqueros Bay (BGGCS5) and from dark olive
gray to olive gray (5Y 3/2—4/2) in Tongoy Bay (BTGCS8). Visible macro-remains (snails
and fish vertebrae) were found, as well as weak laminations at both cores. The magnetic
susceptibility showed higher values close to the surface, up to 127 x 10® SI at BGGCS5,
and lower values (85 x 10°® SI) at BTGC8. At greater depths, however, the values were
very constant, at 5—8 x 10® SI at BGGC5 core and 12-20 x 10® SI at BTGCS core. In
both cores, susceptibility rose substantially in the last century (Figs. 5a, 5b). Lower bulk
densities were estimated at core BGGC5 (0.7-0.9 g cm™®), compared with core BTGC8
(> 1 g cm™®) (Figs. 5a, 5h). Consistent with this, the mean grain size amounted to 60—80
um in Guanaqueros Bay (BTGCS8), compared with 50—-60 um in Tongoy Bay
(BGGC5). Both cores were negatively skewed, with values of -1 to —1.2 at BGGCS5,
and -1 to —2.5 at BTGC8. Minor increases toward coarser grain size were observed over
the past ~1000 years, especially in Tongoy Bay (BTGCS8). In both cases, grain size
distributions were strongly leptokurtic. The Ca/Fe ratio also reduced with time, except

at core BTGC8 where it was only observed during the last ~2000 years.

4.3. Biogenic components

4.3.1. Siliceous microfossils and biogenic opal

The total diatom abundance fluctuated between 5.52 x 10° and 4.48 x 10’ valves g™ at
core BGGCS5. This abundance showed good correlation with biogenic opal content at
BGGC5 (R? = 0.52, P < 0.5), with values increasing from 72 cm to the bottom of the
core, corresponding to cal BP 4900, and reaching their highest values before cal BP
6600. The opal percentage exhibited a maximum before cal BP 4900 (mode = 15.8%).
In contrast, the diatom abundance and biogenic opal were much lower at core BTGC8
(< 2 x 10° valves g™ and < 3%, respectively). Here, the siliceous assemblage was almost
completely conformed by Ch. RS (Fig. 6).

A total of 135 and 8 diatom taxa were identified in cores BGGC5 and BTGCS,
respectively, whereby core BTGCS registered very low diatom abundances. In general,
diatoms were the most important assemblage of siliceous microfossils (96%), followed
by sponge spicules (3%). The contributions of phytoliths and chrysophyte cysts was less
than 2% at core BGGC5. Ch RS was dominant in the diatom assemblage (~90%; Fig. 6)

and included the species C. radicans, C. cinctus, C. constrictus, C. vanheurckii, C.
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coronatus, C. diadema, and C. debilis. Other recorded upwelling group species (mainly
at core BGGC5) were Skeletonema japonicum and Thalassionema nitzschioides var.
nitzschioides (Table S2). Other species range from 0.3% to 6% of the total assemblage.

4.3.2. TOC and stable isotope distribution

Consistent with opal and diatoms, core BGGC5 showed higher values of TOC
(between 2% and 5%) compared with less than ~1.5% at core BTGC8 (Figs. 5a, 5b).
Furthermore, 8"*C was slightly higher at core BTGC8 (-20%o to -21%.) compared with
core BGGC5 (—21%o to —22%o). The former also shows slightly higher values of §*°N
from the deeper sections to the surface of the core (< 7%o to > 10%o). This increase
was less evident at core BGGCS5, with values of ~9%o. at depth to > 10%o at the surface
(Figs. 5a, 5b). The reduced TOC content was related to the slightly higher 5*3C values

(approximately —20%o) in both cores.

4.3.3. Pollen record

Initial surveys at core BTGC8 (Tongoy Bay) revealed extremely low pollen
abundances, which hampered further palynology work. A comprehensive pollen
analysis was conducted only for core BGGC5 (Guanaqueros Bay). The pollen record
of core BGGCS5 consisted of 29 samples shown in Fig. 7. The record was divided into
five general zones following visual observations of changes in the main pollen types
and was also assisted by CONISS cluster analysis.

Zone BG-1 (cal BP 7990-7600): This zone is dominated by the herbaceous taxa
Chenopodiaceae, Leucheria-type, Asteraceae subfamily (subf.) Asteroideae, and
Apiaceae with overall high values for the wetland genus Typha spp.

Zone BG-2 (cal BP 7600-6700): This zone is also dominated by Chenopodiaceae,
Leucheria-type, and Asteraceae subf. Asteroideae. In addition, other non-arboreal
elements, such as Ambrosia-type, Poaceae, Brassicaceae, and Chorizanthe spp.,
increase considerably.

Zone BG-3 (cal BP 6700-3500): This zone is marked by a steady decline in
Chenopodiaceae and Leucheria-type and by the increase in several other herbaceous
elements, such as Euphorbiaceae, Baccharis-type, and Brassicaceae.

Zone BG-4 (cal BP 3500-50): This zone is mostly dominated by Ast. subf.
Asteroideae and is marked by a decline in Chenopodiaceae and Leucheria-type. Other
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coastal taxa, such as Euphorbiaceae, Baccharis-type, Asteraceae subf. Chichorioideae,
Quillaja saponaria, Brassicaceae, and Salix spp., also increase in this zone.

Zone BG-5 (cal BP 50-Present): The upper portion of the record is dominated by
Asteraceae subf. Asteroideae and Poaceae and is marked by higher amounts of
Geraniaceae, Asteraceae subf. Mutisieae, Myrtaceae, and Q. saponaria. Additionally,
this zone includes introduced pollen types such as Rumex spp. and Pinus spp. The
latter is not shown in Fig. 7 because its abundance was minimal.

Overall, the most distinctive trend revealed by core BGGC-5 is a long-term decline in
Chenopodiaceae and higher amounts of Euphorbiaceae and Asteraceae subf.
Asteroideae. Along with these changes, a further increase of several other types of
pollen, representative of the coastal shrub land vegetation, began at approximately cal
BP 6700.

4.4. Trace element distributions

Trace elements are presented as metal/Al ratios in Figs. 8a and 8b for ]Guanaqueros\
(BGGC5) and Tongoy Bays (BTGCS8), respectively. The metals that are sensitive to
changes in the oxygen concentration (U, Re, Mo), showed an increasing metal/Al ratio
from the base of core BGGCS5 (cal BP ~7990) up to cal BP 6600. After this peak, these
ratios increased slightly toward cal BP 1800, close to the beginning of the recent era,
followed by a sharp reduction until present. The exception to this trend was Mo, which
reached a maximum value up to cal BP 6600 and then reduced steadily to the present.
Similarly, metal ratios at core BTGC8 increase over time; however, the peak was
observed at cal BP ~1000 for U and Re and at cal BP 6000 for Mo, with a second
minor peak at cal BP 3400. Iron revealed a clear upward trend at cal BP 3500-3800
for core BGGCS5 and a second peak between cal BP 4500 and 6500, which was not
clearly observed at the Tongoy core (BTGCS8). Instead, core BTGC8 showed higher
values before cal BP 6400. In both cores, Fe increased over the past ~80 years,
whereas no clear trend could be established for Mn. In general, metal/Al values were
higher at core BGGCS5.

A second group of elements (metal/Al ratio), including Ca, Ni, Cd, and P (related to
primary productivity and organic fluxes), showed a pattern similar to that of Mo/Al of
core BGGCS5, i.e., increasing values from cal BP ~7990, reaching the highest values
near cal BP 6600—7000; afterwards, the values followed a constant reducing trend

toward the present. Otherwise, Cu/Al (a nutrient-type element) showed a different
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pattern, similar to the Fe/Al distribution, with a maximum value at cal BP 3500—-3800
and a conspicuous upward trend over the past ~80 years. A third group, consisting of
Ba and Sr, exhibited a similar pattern but smoother, showing the maximum values
before cal BP 6600. At BTGCS8 core, a less clear pattern was demonstrated. Ca, Ni,
Cd, and P ratios at core BTGC8 showed only slightly decreasing values and very low
peak values compared with core BGGC5; however, Ni/Al showed increasing
concentrations over the past 80 years, which was not observed at core BGGCS.
Metal/Al ratios of Ba and Sr showed no substantial variation in time. In general, all the
elemental concentrations were lower in core BTGC8 than in core BGGC5 and
presented similar long-term reduction patterns toward the present, except for Cu, Ni,
and Fe.

The authigenic enrichment expressed as EF values, suggest a large enrichment of
nutrient-type elements in a period prior to cal BP 6600, following the trend of the
Me/Al ratios, except for Ba and Fe, which did not show authigenic enrichment. The EFs

exhibited a sharp decrease in enrichment in recent times after cal BP 90 (Fig. 9).

5. Discussion

5.1. Sedimentary composition of the cores: terrestrial versus biogenic inputs

The sediments in the southern zones of the bays are a sink of fine particles transported
from the north and the shelf (Figs. 5a, 5b), and respond to water circulation in the
Guanaqueros and Coquimbo Bays (Fig. 1) with two counter-rotating gyres moving
counterclockwise to the north and clockwise to the south (Valle-Levinson and
Moraga, 2006) (Fig. 1). The differences established by the sediment composition of
the bays show that the sediments of Guanaqueros Bay better represent the organic
carbon flux to the bottom, with higher accumulation rates (mean value: 16 g m2y™)
and higher amounts of siliceous microfossils. Furthermore, is it a better zone than
Tongoy for pollen identification (Figs. 5a, 6 and 7). Both areas have sediments
composed by winnowed particles and relatively refractory material (C/N: 9-11),
which has a slightly lower isotopic composition than the TOC composition in the
column water (—18%o, Fig. 2) and is transported by water circulating over the shelf.

The isotopic variations in 8**C and 8"°N did not clearly establish differences between
the sediments of the two bays; however, minor differences in 8°N would indicate a

greater influence of the upwelling nutrient supply and OMZ on the shelf, resulting in a
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8N of 9-10%. in the Guanaqueros Bay, values which are slightly higher than that in
the Tongoy Bay sediments (Figs. 5a, 5b). This isotopic composition corresponds with
that of NOj3™ in the upwelling waters (De Pol-Holz et al., 2007) in the range of those
measured at north-central Chile (~11%o; Hebbeln et al., 2000, De Pol-Holz et al.,
2007, 2009). This is due to the isotopic fractionation of NO3™ during nitrate reduction
within the OMZ, which leaves remnant NO3 enriched in **N (Sigman et al., 2009;
Ganeshram et al., 2000 and references therein). This is particularly relevant because it
demonstrates the relevance of OMZ over the shelf sediments off Coquimbo at shallow
depths and the influence of the poleward undercurrent from the Perd OMZ (Mollier-
Vogel et al., 2012).

At sediment core BTGCS, lower values (< 8%o) measured at greater depths within the
core should account for a mix with isotopically lighter terrestrial organic matter
(Sweeney and Kaplan, 1980), owing to its proximity to a small permanent wetland in
the southern side of Tongoy Bay (Pachingo), the sediments of which have §°N of 2—
6%o (Mufoz et al., data will be published elsewhere). [This suggests that the Tongoy
sediments contain a greater proportion of continental material compared to

Guanaqueros Bay (Fig. 5b).

Thus, cores BGGC5 and BTGCS8 in the Guanaqueros and Tongoy Bays record the
variability in oceanographic conditions; however, in the Tongoy core, the
concentration of oceanographic proxies is diluted owing to the input of terrigenous
material. This helps to decipher the climatic variability, considering that the main
input of clastic material to the area takes place during major flooding events.
Additionally, the main circulation of the bay system leads to favorable conditions for
the sedimentation and preservation of organic marine proxies in Guanaqueros Bay,
making the sedimentary records of these sites complementary.

5.2. Temporal variability of primary productivity and the oxygenation of bottoms
Ca, Sr, Cd, and Ni profiles suggest a lower share of organic deposition over time
(Figs. 8a, 8h), consistent with the slight reduction in TOC content observed in the
sediments (Figs. 5a, 5b) and concomitant with the other elements related to organic
fluxes to the bottom and primary productivity. Similarly, the maximum Ba

concentrations indicate higher productivity before cal BP 6600. The same is true for
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Ca, Cd, and Ni, suggesting that the maximum productivity and organic fluxes to the
bottom occurred during this period. After this age, the reduction in TOC and other
nutrient-type elements (Ni, Sr, Ca, Cd) to the present is consistent with the increase in
oxygen at the bay bottom.

The slight rise in Ba in the last ~115 years (Fig. 8a) is a response to a less anoxic
environment, owing to better preservation within the sediments in less anoxic
environments with moderate productivity (Torres et al., 1996; Dymon et al., 1992) as
is the case with our study site (Gross Primary Productivity = 0.35 to 2.9 g C m™d™;
Daneri et al., 2000). This leads to a negative correlation with TOC (-0.59; Table 4),
owing to the remobilization of Ba under anoxic conditions before cal BP 6600.
Meanwhile, the P distribution showed a trend similar to that of TOC and the other
elements related to the organic fluxes to the bottom (Ni, Cd), although with a lower
correlation (~0.6). This is consistent with the distributions observed for U, Re, and Mo
at core BGGC5, which indicate that anoxic or suboxic conditions were developed
from cal BP 7990 to 1800 but were stronger before cal BP 6600 (Figs. 8a, 8b). After
this period and to the present, a remarkable reduction in their concentration suggests a
more oxygenated bottom environment, concurrent with lower organic fluxes to the
sediments. The Re profile shows the influence of suboxic waters not necessarily
associated with higher organic matter fluxes to the bottom. Since this element is not
scavenged by organic particles, its variability is directly related to oxygen changes
(Calvert and Pedersen, 2007, and references therein).

Otherwise, the accumulation of P depends on the deposition rate of organic P (dead
plankton, bones, and fish scales) on the bottom and is actively remineralized during
aerobic or anaerobic bacterial activity. P and TOC showed a declining trend toward
the present, suggesting a reduction in flux of organic matter over time, which was also
observed for Ni and Cd distributions. Alternatively, the reducing fluxes of organic
proxies could be explained by the higher remineralization of organic material settled at
the bottom due to higher oxygen availability, as shown by U, Mo, and Re distributions
(Figs. 8a, 8b). However, the lower 8'°N, depending on the denitrification process, is
similar to that at deeper environments in the zone (De-Pol Holz et al., 2009),
suggesting that the influence of the reductive environment of OMZ over the shelf and

changes in U, Mo and Re records could depend mainly on the OMZ variability. Thus\,
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the influence of the primary productivity on oxygen consumption at the bottom over
time would be secondary in this system, which is considered to be moderated in
productivity compared with upwelling centers in north and south Chile.

Productivity reconstructions were based on the qualitative relative abundances of
diatom and sponge spicules, quantitative diatom counts (valves g™), and biogenic opal
content only in core BGGCS5, since core BTGCS registered low valve counts (< 1% in
relative diatom abundance). However, in both cores, diatom assemblages were
represented mainly by Ch. RS, which are used as upwelling indicators (Abrantes 1988,
Vargas et al., 2004). The downcore siliceous productivity based on opal distribution
(Figs. 6 and 9) distinguished three main time intervals of higher productivity, which
coincided with the ages highlighted by the distribution of the sedimentary proxies
noted previously: (1) > cal BP 6600, (2) cal BP 4500-1800, and (3) cal BP ~140 to
recent times (CE 2015). Other periods between cal BP 6600 and cal BP 4500 and
between cal BP 1800 and cal BP 140 did not experience higher productivities.

At first period (> cal BP 6600), the opal accumulation rate was remarkably high,
amounting to ~35 + 18 g m? y™ (range: 16-119 g m?y™, Fig. 9) when Chaetoceros
spores were predominant, indicating an intensification in upwelling. During this
period, all metal proxies suggest that primary productivity increases before cal BP
6600, owing to the high concentrations and major enrichment of Ni, Ca, and P that
occurred in this period, concomitant with higher opal accumulation within the
sediments (Fig. 6 and 9). From these elements, Ni is the best indicator of organic
sinking flux related with diatom productivity in organic-rich upwelling sediments
(Boning et al., 2015), which helps to sustain our statement. In addition, the authigenic
enrichments of Cd were very high (> 100, Fig. 9) resulting in high Cd/U ratios (> 2;
Fig. 9), indicative for anoxic conditions as this ratio could vary between 0.2 and 2,
from suboxic to anoxic environments (Nameroff et al., 2002). The Cd accumulation in
this period was higher than that reported for a highly productive zone off Concepcion
in periods of high organic carbon accumulation in the sediments (~5, Mufioz et al.,
2012). Additionally, the high enrichment of Mo (~20) indicates the prevalence of
anoxic conditions at the bottom in this period due to the control by sulfide
concentrations (Huerta-Diaz and Morse, 1992; Chaillou et al., 2002; Nameroff et al.,
2002; Sundby et al., 2004, Tribovillard et al., 2004). Our low U/Mo ratio (~0.3, Fig. 9)
corroborates this assumption, as similar to those values reported today at shallower
17
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anoxic zones off Per( interrupted by seasonal oxygenation (McManus et al., 2006;
Sholz et al., 2011, Salvatteci et al., 2016; Vergara et al., 2016). This is similar to our
shelf, notwithstanding the prevalence of very reduced conditions within the Lsediments\.

The enhanced reduced conditions, probably sulfidic, before cal BP 6600, favor the
accumulation of Mo and Cd over that of U, occurring in anoxic environments where
the chemocline is close to the water—sediment interface or above it, allowing the
formation of authigenic Mo that exceed the U uptake within the sediments (Algeo and
Tribovillard, 2009 and references therein). Re is enriched in less reduced conditions
than Mo, resulting in the lowest Re/Mo in this period (Fig. 9). This is congruent with
the environmental conditions at the bottom in zones of high productivity and intense
upwelling, where sulfidic conditions are developed owing to oxygen consumption in
the shallower zones and linked to the OMZ, as occur at northern Chilean regions,
where the main productivity is developed over the narrow shelf. Thus, the high
productivity before cal BP 6600 could result from a more intense upwelling that
generated permanent reduced conditions that became very anoxic at the bottom in this
period. Even so, the low oxygen conditions prevailed in the subsequent periods but

were less intense than before.

After cal BP 6400 until 4500 we obtained little information owing to a gap in the
sedimentary record, which made it difficult to visualize changes in the oxygenation
and productivity proxies in this interval. However, in the next period (cal BP 4500—
1800), we observe that the opal accumulation was lower than in the previous recorded
period, 12 + 4 g m® y™* (range: 6-20 g my™, peaking at cal BP 3400—4000; Fig. 9),
which is partially consistent with nutrient-type element distributions and element
enrichment (Fig. 8a, Fig. 9). Fe clearly shows higher values at approximately cal BP
3500 (Fig. 8a), which helped to boost primary productivity at this time, with a small
increase in diatom, measured as valves per gram and abundance (%) (Fig. 6). Other
elements showed less prominent accumulations (Ni, Cd, Ba, Ca, and P), pointing to a
lower organic matter deposition into the sediments during this period (Fig. 8a). Thus, a
decreasing trend in the primary productivity from cal BP 6600 is observed, which is
also consistent with observations off south-central Chile (36°S, Concepcidn shelf)
where lower accumulations of nutrient-type elements were also observed at cal BP
3600-4000 and cal BP 2600 than at cal BP 6200 (Mufioz et al., 2012).
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The low oxygen conditions within the sediments were maintained, despite the
downward trend in the primary productivity. This could be more related to the
manifestation of the OMZ close to the coast than the oxygen consumption during
organic matter remineralization, favoring Mo and Re accumulation until cal BP
17001800 (Fig. 8a). Lower Cd/U ratios (~1; Fig. 9) were estimated, suggesting higher
variations in the primary productivity but with moderate changes in the oxygen
conditions at the bottom. High Re/Mo and U/Mo ratios could indicate a shift toward
less reduced conditions but still anoxic, since U, Re, and Mo are highly enriched (6,
20, and 15, respectively; Fig. 9). U and Re accumulations occur in conditions that
exhibit less intense reduction but are not very favorable for Mo accumulation
(Morford et al., 2009). This could be caused by a lower C rain rate due to lower
productivity, producing low oxygen consumption and a less sulfidic environment
along the central-Chilean margin (30—36° S), which is in agreement with the lower

biogenic opal flux and diatom abundance after cal BP 6600 (Figs. 6, 9).

Slight increasing values of Re/Mo ratios until ~cal BP 3500 suggest a decreasing trend
in the reduced conditions, which became stronger after cal BP 1800. This time was
also highlighted in the sedimentary records off Concepcion shelf (36° S, Mufioz et al.,
2012) showing maximum enrichment of U and Cr near cal BP 1800, both indicating
less reduced conditions toward the present compared with previous periods. After this
age, no comparison could be made owing to a discontinuity in the sedimentary records
off Concepcion. Notwithstanding, the suboxic conditions have prevailed until today at
Central Chile, where the oxygenation seems has been stronger off Coquimbo. It could
be caused by eddies related to the instabilities of the Peru Undercurrent (Vergara et al.,
2016), which seem to start operating more frequently from cal BP 1800 to the present.
After this age to cal BP 140, higher productivities were not found, and a second
discontinuity (cal BP 1500—240) impeded environmental reconstructions, with the
very low estimated sedimentation rate hindering the realization of sufficient time
resolution for the proxies in this interval.

After cal BP ~140 to recent times (CE 2015) (third period mentioned before), the
productivity increased substantially, deduced from the rise in opal accumulations
toward the present (mean opal value of 29 + 17 g m? y, range: 10-69 g m* y; Fig.
9); however, this corresponded with lower diatom abundances, which were observed
from cal BP 1800 to the present (range: 0.5-4.9 x 10° valves g™ Fig. 6). This is likely
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caused by the fact that only a few sections of the core in this interval were analyzed
for diatoms, leading to a low resolution for this measurement in the most recent
period. Another possibility is that the opal flux was overestimated owing to the fact
that the flux calculations were based on recent sedimentation rates, an estimation that
tends to be higher than at longer timescales (Sadler et al., 1999). However, the slight
increase in the Cd/U ratio, Ba and P enrichment could suggest an increase in the
primary productivity and organic fluxes to the bottom in more recent times (Figs. 8,
9). In addition, the main trend established before and after the hiatus indicates an
increase in the marine productivity, which would not be as high as in the first period
(before cal BP 6600). After cal BP 1800, there is an evident change to a less reduced
environment toward the present, suggesting a more oxygenated bottom environment
concurrent with a reduction in primary productivity, except for the last 140 years,

when the productivity has been more variable with a slight increasing trend.

Contrary to other metals, there is a conspicuous upward trend for Cu/Al, Fe/Al, and
Mn/Al in recent times, which is consistent with the decreasing trend of EFs of Re, U,
and Mo (Fig. 8a, 8b, Fig. 9); these estimations would not be influenced by the
sedimentation rates but rather the presence of oxygen. Otherwise, the highest
enrichment of Cu could suggest the presence of particulate forms and oxide formation
(Peacock and Sherman, 2004; Vance et al., 2008; Little et al., 2014) occurring in the
presence of an oxygenated environment that results in a high metal enrichment of Cu
(EFey = 4.6 £ 0.5, Fig. 9); however, suboxic conditions have prevailed, indicated by
the U/Mo ratios in the range of the reduced sediments, which are less than in the
sediments of the Peru shelf (Scholz et al., 2011; Salvatteci et al., 2016). In addition,
the Cu enrichment coincides with the growing trend of industrialization in the area,
mainly the mining activity, which has been the main economic source for Coquimbo
region since 1890; therefore, the exposition of mineral ores and mine residues to the
environment by natural processes as intemperization and wind transportation deserve
attention.

NVe suggest that the slightly higher productivity in the last 140 years has occurred in a
more oxygenated environment, which seems contradictory. However, similar OMZ
weakening has been described off Central Peru from 1875 to 2004, caused by a
balance between the local productivity and the subsurface ventilation of the
intermediate circulation, operating at (multi)decadal to centennial scale, and hence
20
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related to IPO and ENSO (Cardich et al., 2019). Current studies have shown that
changes in both the Peru-Chile Undercurrent (PCUC) and mesoscale eddy field
contribute to modulate the vertical and offshore extension of the OMZ at intra-
seasonal and seasonal time scales off central Chile (e.g. Vergara et al., 2016; Frenger
et al., 2018; Pizarro-Koch et al., 2019) and possibly at lower frequencies, modulating
the influence of the OMZ over the coastal zones. In addition, ENSO has been
identified as an important mechanism of the OMZ ventilation in the Tropical South
Eastern Pacific through horizontal and vertical eddy fluxes; thus, during El Nifio, the
coastal trapped waves propagate poleward and the water column becomes oxygenated,
and contrarily deoxygenated during the La-Nifia like conditions (Espinoza-Morriberén
etal., 2019 and references therein).

Several observations made at central Peruvian and south-central Chilean coasts
(12°-36° S) reveal that the present-day wet/dry variability associated with ENSO has
a strong impact on the benthic communities. During El Nifio, the large increase in the
oxygen levels change the biogeochemical processes at the bottom and its effects can
be observed several months after the event (Ulloa et al., 2001; Escribano et al., 2004;
Gutiérrez et al., 2006; 2008; Sellanes et al., 2007). Thus, the increased frequency and
intensity of El Nifio at recent centuries would result in a mean effect, which is
observed as a gradual change in metal enrichment over time. This is explained by the
episodic oxygenation, which changes the original extent of the accumulation of
sensitive redox trace element through their remobilization to soluble forms (Morford
and Emerson, 1999; Morford et al., 2009).

The strong trend towards increasingly reduced conditions in the northern margin of the
SE Pacific (Peru and north of Chile) in the past decades has been explained by a
greater impact of local productivity on coastal hypoxia (Cardich et al., 2019; Diaz-
Ochoa et al., 2011), something that is not clearly observed in our records. Contrarily, a
gradual oxygenation in the north-central Chilean margin was observed, which may
rather respond to the deepening of the OMZ. The oxygenation/deoxygenation
mechanism can be the result of coastal-trapped waves, originating from the equator
and propagating along the coast, at different time scales and intensities. These modify
the stability of the regional current system and the pycnocline, and can trigger extra-

tropical Rosshy waves (Pizarro et al., 2002; Ramos et al., 2006; 2008), contributing to

21

Comentario [A12]: We modify this

paragraph, we are citing and discussing the
references suggested by the referee and we
add other papers to improve the discussion




699 the oxygen variability in coastal zones, with a major impacts on redox-sensitive

700  elements in the surface sediments. Comentario [A13]: We re-organize
these paragraph in agreement with the
previous paragraph.

701

702 5.3. Main climatic implications

703  According to paleoenvironmental records, the past climate and oceanographic
704  variability have been interpreted mainly based on the past variability in the intensity of
705  the SWW and latitudinal position of the ITCZ (Veit et al., 1996; Hebbeln et al., 2002;
706 Lamy et al., 1999; Maldonado and Villagran, 2002). The ITCZ movements from the
707  northernmost or southernmost latitudinal position depend on the different phases of
708  ENSO and PDO variability (YYang and Oh, 2020), as the main regulators of the climate
709  at the centennial and decadal scales. This has an impact over relevant oceanographic
710  characteristics, such as sea surface temperature (SST), upwelling, and accordingly,
711 productivity at the SE Pacific. We established marked differences in paleo-productivity
712 proxies and paleo-oxygenation in the last ~8000 years (Figs. 6, 8), indicating that high
713 marine productivity prevailed during our first period (cal BP 8000-6600), according to
714  what was established for central Chile between 10 and 5 ky owing to sustained mean La
715  Nifa-like conditions associated with the cold phase of the PDO (positive phase) (De
716  Pol-Holz et al., 2006; Kaiser et al., 2008; Lamy et al., 2010), concomitantly with
717  reduced ENSO variability and a northward ITCZ displacement, which implies more
718  permanent southeast tradewinds and, hence, the upwelling of rich-nutrient cold waters
719  lat eastern Pacific (Koutavas and Lynch-Stieglitz, 2004; Koutavas et al., 2006; Koutavas
720 etal., 2014).

721 Our high productivity records associated with low oxygen conditions at the bottom,\ {Comenta;ig [A14]: A separated point
was inserted here.

722 both reaching a maximum level at cal BP 6600, correspond to the highest productive
723 period and the most reductive environment at the bottoms over the past 8000 v. ]The
724  continental climate during this period has been described as being drier, with the
725  predominance of La Nifa-like conditions according to the northerly position of the
726  ITCZ, which promote strong upwelling due to persistent southeast trades (Koutavas et
727  al., 2005). This climatic condition has been described for the tropical Pacific and SE
728  Pacific (Lamy et al., 2001; Carré et al., 2012; Koutavas et al 2014; Salvatecci et al.,
729  2019), indicating that La Nifia-like conditions, developed at the mid-Holocene, resulted
730  of an intensification of the SPSA and the Walker circulation. These environmental
731 conditions are in agreement with the observations of our pollen records and productivity
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proxies (PMI, Fig. 9), establishing favorable conditions for upwelling and development
of primary productivity along the South-East Pacific margin.

For central Chile, the aridity conditions were limited until cal BP 5700 (Jenny et al
2002, Maldonado and Villagran, 2006) or cal BP 4200 (Maldonado and Rozas, 2008;
Maldonado and Villagran, 2002, 2006), characterized by reduced rainfall but intense
coastal humidity, which have been associated with coastal fogs that frequently occur
during the spring owing to a strengthening of the SPSA (Vargas et al., 2006; Garreaud
et al 2008; Ortega et al., 2012) and La Nifa-like conditions, which explains the main
variability of the SPSA (Ancapichin and Garcés-Vargas, 2015). Similarly, for southern
Chile (41°S; Lamy et al., 2001), less humid conditions were described for a period
between cal BP 7700 and cal BP 4000, being stronger between cal BP 6000 and cal BP
5300, by a poleward position of the Southern Westerlies. All of this points to drier
conditions during the mid-Holocene, which was closely related to SPSA intensification

and the southern position of the Southern Westerlies. |

Consistent with this, a reduced ENSO variance during the early and mid-Holocene has
been suggested (Rein et al., 2005), indicating a less frequent or less intense warm
anomaly related to a Central Pacific (CP)-mode ENSO, which produce a moderate El
Nifio events at the CP and strong La Nifia off Peru (Carré et al., 2014, Mollier-Vogel et
al., 2019). This was favorable for upwelling and primary productivity development
along the Chilean and Peruvian margin. In addition, Braconnot et al. (2012) indicated
that this lower ENSO was linked to fresh water melting that counteracted the insolation
regime, pointing a more limited cold—dry period between 6700-7500 years ago, which
matches our records of maximum productivity (Figs. 6, 9) concomitantly with the
lowest bottom oxygen conditions and indicates a greater influence of the OMZ over the

shelf at the central-Chilean margin.

After the maximum productivity recorded, a decreasing trend occurred under warm and
humid climatic conditions, which would be because of an enhancement in regional
precipitation in the northern margin of SWW (Jenny et al., 2003; Maldonado and
Villagran, 2006), consistent with the southern movement of the ITCZ, leading to wetter
climatic conditions in the southern tropics regions (Koutavas and Lynch-Stieglitz,
2004). A gradual rise in K/Ca, Fe, Al, and Pb distributions was observed in our cores

(Figs. 5, 9), usually considered to be an indicator of continental input by fluvial or aerial
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transport (Calvert and Pedersen, 2007; Kaiser et al., 2008; Govin et al., 2012; Ohnemus
and Lam, 2015; Saito et al., 1992; Xu et al., 2015). This indicated that the precipitation
has been increasing through the mid- and late Holocene, except for a period of reduced
(or weak) ENSO activity reported between cal BP 6000 and 4000 (Koutavas and
Joanides, 2012; Carré et al., 2014). It is also consistent with the pollen records of central
Chile, which suggest an arid phase from cal BP 6200 until cal BP 4200 (Maldonado and
Villagran, 2006). The lack of records between these ages in our cores (hiatus) prevented
the search for evidence to account for this period; consequently, no sharply contrasting
dry/humid periods were identified after cal BP 6600. Mostly, a gradual increase in
humidity and a weakening in paleo-productivity proxies after cal BP 4500 (Figs. 8, 9)
were observed, which would be consistent with the beginning of higher ENSO
variability for central-Chile after cal BP 5700 (Jenny et al., 2002, Maldonado and
Villagrén, 2002, 2006).

]In general, the weakening of the SPSA results in a equatorward position of the Southern
Westerlies increasing the humidity conditions in Central Chile (Lamy et al., 2001), and
the \ENSO variability increased from cal BP 5700, and stronger El Nifio events would
begin after cal BP 4000—-4500; concomitant with the high variability of latitudinal
displacements of the ITCZ related to the seasonality of insolation described for the
region at the mid- and late Holecene (Haug et al., 2001; Toth et al., 2012; Carré et al.,
2014). This is consistent with the occurrence of alluvial episodes in the area caused by
more frequent or heavier rainfall events over time, related to intensified Westerlies and
increased EI Nifio events observed from Peru to south of Chile (Lamy et al., 2001;
Jenny et al., 2002; 2003; Rein et al., 2005; Sandweiss et al., 2007; Ortega et al., 2012;
Ortega et al., 2019). A consequence is greater continental inputs, as suggested by our
sedimentary records in agreement with the pollen moisture index that indicated more
humid conditions through the mid-Holocene to the present. This was concomitant with
greater oxygenation at the bottom and reduced primary productivity. Nonetheless,
between cal BP 4500 and 3000, a slight increase in diatom abundance and opal
concentrations was observed, along with a slight accumulation in nutrient elements (Ni,
Cd, Fe, and Ca concentrations; Fig. 8). Small increases in the organic carbon flux and
Cd/U ratios (Fig. 5, 9) suggest that the increase in primary productivity could be
boosted by continental nutrients (Dezileau et al., 2004; Kaiser et al., 2008). This period

has been documented for the tropical east Pacific as a peak of La Nifia activity (cal BP
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3000—4000; Toth et al., 2012). This would also explain the increase in the productivity

proxies.

Despite the dominance of warm events described from the mid- to late Holocene, they
were not strong enough to change the suboxic conditions at the bottom in the north-
central Chilean margin, which varied little until cal BP 1800 (Figs. 8, 9; see U, Mo, and
Re). Actually, the periodicity of El Nifio was similar between cal BP 5000 and cal BP
3000 and lower than modern times (Sandweiss et al., 2007), supporting the observation
of relatively low variability of the oxygen proxies in the sediments dependent on the
OMZ influence over the shelf. This implies that the upper limit location of the OMZ did
not drastically change during most of the mid- and late Holocene. Contrary to our
observations, the sediments at the Peruvian shelf were less reduced in the late-mid
Holocene than at present, which was due to a deepening in the OMZ by the increased
advection of waters enriched in oxygen from the Equatorial Undercurrent and the
shifting of the OMZ center toward the Chilean margin, leaving lower 8*°N values in
sedimentary records off Peru (Mollier-Vogel et al., [2019). Therefore, the enhanced
oxygenation of Peru and OMZ deepening translated into a decrease in the oxygen
conditions off north-central Chile. This period is followed by an increased EIl Nifio
frequency that has been consistent with the intensification and frequency of flooding
events recorded in Peru and central Chile in the last ~2000 years (Rein et al., 2005;
Sandweiss et al., 2007; Jenny et al., 2002; Toht et al., 2012), which is concomitant with
the drastic oxygenation at the bottom observed in our records after cal BP 1800. In this
regard, the oxygen variation at the bottom would be related to a less intense effect of the
OMZs over the shelf at the central Chilean margin during the warm EI Nifio-like phases,
owing to a deepening of the oxycline (and vice versa during La Nifia). These tend to be
associated with low productivity and, in turn, a reduction in the organic fluxes and

oxygen consumption during organic matter diagenesis.

After cal BP 1800, few records were obtained until cal BP 140, when we observed the
restoration of more reduced conditions, although lower than during previous periods.
This corresponds to the time of Peruvian upwelling shift due to the northward
displacement of the ITCZ to the modern position and the enhancement of the Walker
circulation (Gutiérrez et al., 2009), which establishes an intensification of the upwelling

in the eastern Pacific; consequently, an increase in the primary productivity, producing
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high demand for oxygen during organic matter remineralization, as observed today,
which leads to stronger oxygen consumption in the northern part of the eastern margin.
Notwithstanding, the reduced conditions off Coquimbo in recent decades, are not
comparable to the environmental conditions of Peruvian margin, where stronger

deoxygenation has been developed at the bottom.\

6. Conclusions

Our results suggest that the geochemistry and sedimentary properties of the coastal
shelf environments in north-central Chile have changed considerably during the
Holocene period, suggesting two relevant changes in the redox conditions and
productivity, which point to a more reducing environment and higher productivity
around cal BP 6600. Afterwards, a less reducing environment along with decreasing
trends in primary productivity and increased humid conditions occurs with time. The
oxygenation of the surface limit of the OMZ has been proposed as the main
mechanism that controls the reduced conditions over the shelf and slope sediments
during the mid-Holocene, which mainly affected the Peruvian margin closed to the
OMZ edge. This led to contrasting conditions in the central-Chilean margin where the
most reduced conditions were observed, which was maintained with low variability
until cal BP 1800. After this age, the OMZ expression over the shelf was weak,
returning to more reduced conditions in recent times (two last centuries), similar to the
Peruvian margin but weaker at north-central Chile.

The northward shifts of the SWW belt, in addition to an increased frequency in EIl Nifio
events, have been proposed as the main drivers for climatic conditions during this
period. These elements have introduced high variability in the primary productivity
during this time interval. This also impacted the accumulation of organic matter due to
an intensification of its remineralization, showing a decreasing trend in the buildup of
nutrient-type elements and organic carbon burial rates toward the present. Otherwise,
decreasing oxygen content at the bottom is highly influenced during EI Nifio events,
something that seems to have been operating at higher frequencies after cal BP 1800
and, especially after cal BP 140, when the most extreme events become more frequent.
Thus, the EI Nifio phenomenon and ITCZ latitudinal displacement have greatly
contributed to the climatic and oceanographic features in the eastern Pacific, linked to
the positive or negative phases of the PDO, which all has a relevant effect on the OMZ

position in the Chilean margin.] Otherwise, oxygenation/deoxygenation changes can
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result from coastal-trapped waves that can operate at different time scale and intensities,
and have strong effect on the stability of the regional current system and the pycnocline
position in the coastal zones,,

Finally, these changes highlight the sensitivity of these environments to climate
variability at different timescales, which is consistent with the description of past
regional climatic trends. Based on the dramatic changes observed in the past centuries,

future changes are expected in the context of global warming at unprecedented rates.
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1403
1404

1405  Tables

1406

1407  Table 1. Radiocarbon dates for BGGC5 and BTGC8 sediment cores collected from

1408  mixed planktonic foraminifera and monospecific benthic foraminifera (Bolivina
1409  plicata), respectively. The *C-AMS was performed at NOSAM-WHOI. The lab code

1410  and conventional ages collected from each core section are indicated. For error

1411  calculations see http://www.whoi.edu/nosams/radiocarbon-data-calculations.

Modern
Core Mass Lab Code fraction Conventional 1o
identification Material (mg) NOSAM pMC 1o error Age BP  error
Planktonic
BGGC5 foraminifera
10-11 Mix 1.8 0S-122160 0.8895 0.0027 940 25
18-19 Mix 1.1 0S-122141 0.7217 0.0024 2,620 25
31-32 Mix 2.7 0S-122161  0.6590 0.0021 3,350 25
45-46 Mix 2.0 0S-122162 0.6102 0.0017 3,970 25
55-56 mix 1.6 0S-122138 0.5864 0.0025 4,290 35
66-67 mix 2.8 0S-122304 0.5597 0.0018 4,660 25
76-77 mix 2.6 0S8-122163  0.4520 0.0016 6,380 30
96-97 mix 1.1 0S-122139 0.4333 0.0033 6,720 60
115-116 mix 4.7 0S-122164 0.3843 0.0016 7,680 35
Benthic
BTGCS8 foraminifera
5-6 Bolivina plicata 4.2 0S-130657 0.8953 0.0017 890 15
20-21 Bolivina plicata 7.7 0S-123670 0.7337 0.0021 2,490 25
30-31 Bolivina plicata  13.0 0S-123671 0.6771 0.0016 3,130 20
40-41 Bolivina plicata  11.0 0S-123672 0.6507 0.0019 3,450 25
50-51 Bolivinaplicata 8.7 0S-123673 0.5877 0.0014 4,270 20
60-61 Bolivina plicata 13.0 0S-123674 0.5560 0.0018 4,720 25
71-72 Bolivina plicata  10.0 0S-123675 0.4930 0.0013 5,680 20
80-81 Bolivina plicata 7.3 0S-123676  0.4542 0.0012 6,340 20
90-91 Bolivinaplicata 6.8 0S-123677 0.4259 0.0015 6,860 30
96-97 Bolivina plicata 6.8 0S-123678 0.3903 0.0013 7,560 25
1412
1413
1414
1415
1416
1417
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1418

1419

1420  Table 2. Reservoir age estimation considering the °Pb age determined with the CRS
1421 model (McCaffrey and Thomson, 1980) at selected depth sections of the core, as
1422 compared with **C ages (y BP) from the marine13.14 curve (Reimer et al., 2013),
1423  according to Sabatier et al. (2010).

Age T9C age 14
con o ppimcrs G ower o
BP 13.14 '
BGGC5 10.5 1828 122 499+24 940+25 441435
BTCG8 55 1908 42 448+23 890+15 442+27
#Anno Domini
bBefore present=1950
1424
1425

1426  Table 3. Concentration of elements in the Pachingo wetland sediments, considered as
1427  lithogenic background for the study area. The values correspond to mean concentrations

1428  in the surface sediments (0—3 cm).

Element Metal/Al x 10° s
Ca 686.5 139.3
Fe 591.3 84.5
P 8.6 0.7
Sr 5.7 0.6
Ba 5.6 0.1
Cu 0.258 0.019
Ni 0.174 0.005
U 0.020 0.003
Mo 0.020 0.003
Cd 0.0021 0.0003
Re 0.00004 0.00001
1429
1430
1431
1432
1433
1434
1435
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1436
1437
1438

Table 4. Spearman rank order correlations for geochemical data. Significant values
> 0.8 are indicated in bold.

BGGC5

Al P K Ca Mn Fe Ni Cu Mo Cd Re Sr U Ba Opal TOC
Al 1.00 -0.62 049 -048 064 060 -0.75 056 -0.10 -0.73 -0.08 -0.33 0.08 0.49 -052 -0.44
P 1.00 -0.31 037 -045 -056 056 -0.57 001 061 -0.11 039 -0.12 -020 049 0.24
K 1.00 -0.24 090 083 -0.29 047 028 -042 033 -0.12 050 0.26 -025 -0.19
Ca 1.00 -0.47 -050 044 -064 023 059 039 092 030 -060 018 0.32
Mn 100 094 -051 068 -0.01 -0.68 0.07 -032 024 043 -0.39 -0.31
Fe 100 -049 081 003 -0.70 0.11 -040 023 036 -037 -0.21
Ni 100 -051 049 091 035 025 026 -0.70 0.72 0.64
Cu 1.00 -0.12 -0.71 -0.06 -0.61 0.00 0.31 -0.39 -0.07
Mo 100 050 0.88 010 091 -048 0.33 0.36
Cd 100 036 042 027 -0.67 0.70 054
Re 100 0.27 092 -050 0.16 0.38
Sr 100 024 -036 0.05 0.17
U 1.00 -0.39 0.10 0.29
Ba 1.00 -0.30 -0.59
Opal 1.00 0.35
TOC 1.00
BTGC8

Al P K Ca Mn Fe Ni Cu Mo Cd Re Sr U Ba Opal TOC
Al 1.00 -0.19 -0.17 -0.37 -0.02 -0.03 -0.39 -0.04 -0.39 0.02 -0.13 -0.58 -0.19 0.07 -041 -0.29
P 1.00 023 000 043 028 058 023 037 013 -0.04 030 014 -014 056 0.13
K 1.00 -0.02 054 041 043 022 -011 0.05 -004 019 -028 0.28 0.26 0.20
Ca 1.00 -0.33 -0.27 0.00 -023 0.39 001 033 050 047 -034 020 0.34
Mn 1.00 021 064 001 005 033 015 032 -002 024 032 0.00
Fe 1.00 013 071 -040 -0.48 -0.67 -0.37 -062 0.13 0.14 0.10
Ni 1.00 024 056 020 025 064 019 -0.16 0.80 045
Cu 1.00 -0.25 -0.68 -0.56 -0.22 -0.61 -0.10 0.21 0.37
Mo 100 045 059 066 069 -041 058 0.30
Cd 1.00 056 039 052 011 010 -0.12
Re 100 053 083 -016 013 0.17
Sr 1.00 058 -013 052 0.23
U 1.00 -0.19 0.21 0.00
Ba 1.00 -0.28 -0.42
Opal 1.00 0.39
TOC 1.00
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1450
1451
1452

Figures

Figure 1. Study area showing the positions of sampling stations. Sediment cores were
retrieved from Guanaqueros Bay (BGGC5) and Tongoy Bay (BTGCS8) at water depths
of 89 and 85 m, respectively. Information of dissolved oxygen in the water column at
St1 and St16 and that of suspended organic particles collected at St14 sampling sites
was gathered in a previous project (INNOVA 07CN13 IXM-150). Monthly
precipitation in mm (bars) (mean = SD; Montecinos et al., 2016). Schematic
representation of the circulation in the bays (white arrows) and wind direction (blue
arrow) is indicated, as obtained from Valle-Levinson and Moraga-Opazo (2006) and
Moraga-Opazo et al. (2011).
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1457

1458
1459
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Figure 2. Suspended particulate matter composition (TOC% and 513Corg) measured in
the water column between October 2010 and October 2011, at station St14, Tongoy
60

Bay, Coquimbo (30° S).
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Figure 3. Dissolved oxygen time series in the water column measured between October
2010 and January 2011, at stations St1, St14, and St16 off Tongoy Bay, Coquimbo
(30° S).
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1484
1485

Figure 4. Age model based on *C-AMS and ?°Pb measurements. The timescale was

obtained according to the Bacon age—depth modeling open source software (Blaauw and

1486  Christen, 2011) considering the Marine curve *3C (Reimer et al., 2013).

1487
1488

1489
1490
1491
1492
1493
1494
1495
1496
1497
1498

Cal yr BP

Cal yr BP

4000

8000 0 2000 4000 6000 8000

6000

2000

0

BGGC5
4 ®
- 3
éb -
.-w::F,bns (dpm 9'1)
J o 4 8 12 16
v ¢
. £
s
¥ £
I3
¢ (=1
_‘J
0 20 40 60 80 100 120
BTGC8
- 21°Pb5 (dpm g™
’(
— ’
- o
5
/ ;E_:
3
o
-
—
0 20 40 60 80 100
Depth (cm)

49
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1512
1513

Figure 5. Characterization of sediment cores retrieved from (a) Guanaqueros Bay
(BGGC5) and (b) Tongoy Bay (BTGCS8), where the color (Munsell chart scale)
represents the depth, dry bulk density, mean grain size, granulometry (% sand, silt, and
clay), statistical parameters (skewness, kurtosis), organic components (TOC, C/N ratio,
stable isotopes 5*°N and 6™3C ) and chemical composition (K/Ca, Ca/Fe).
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1514
1515
1516
1517
1518
1519

1520
1521

Figure 6. Diatom and sponge spicule relative abundances, total diatom counts (valves g’

1) and opal (%), and downcore variations in Ch. RS percentages as proxies of upwelling

intensity in the BGGCS5 and BTGC8 cores (Guanaqueros and Tongoy Bay,

respectively). The medium dashed line represents the average of Ch. resting spores for

the respective core.
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1522 Figure 7. Pollen record in BGGCS5 core.
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Figure 8. Downcore trace element variations in: (a) Guanaqueros Bay (BGGC5) and (b)
Tongoy Bay (BTGCS8), off Coquimbo (30 °S).
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Figure 9. Opal accumulation and authigenic enrichment factor (EF) of trace elements

defined as the normalized ratio between Euphorbiaceae (wet coastal shrub land) and

Chenopodiaceae (arid scrubland). Positive (negative) values for this index indicate the

and Al distribution at BGGCS5 core, representatives of terrigenous input to the bay.
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