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Sections 1 and 2 contain the original comments from referee 1 and referee 2, respectively. Sections 3 and 4 present our

responses. Section 5 is a change-log, documenting the changes made to the main paper. At the end of this document, the

revised version of the paper is reproduced with the changes indicated.

1 Referee report number 1

Below are the comments from the first referee.5

1.1 Comment 1

First, this study comes after almost a decade-long research (Knorr (2009), Gloor et al. (2010), and Ballantyne et al. (2015))

on the detection of the changes in AF or sink efficiency and does not provide new findings (e.g., results are in the line of

Raupach 2014). Yet this work merits to be acknowledged because it is the first to my knowledge to investigate this long debate

on the stationarity of the AF or SF variations. Here the authors confirm that there is no non-stationnarity in AF and SF using10

GCP2018 data (from 1959 to 2017). Therefore, I am wondering if it is not the real outcomes of the study ? I mean once the

stationarity of the variance is proved, the state space system loses some interest. The potential caveats as suggested by Gloor

et al 2010 are removed and thus a simple linear model can be used to estimate trends in AF and SF. Standard statistics can be

then used to detect if the signal (the trends) is larger than the noise (the variability).

1.2 Comment 215

The second major comment concerns the attribution of the decreasing sink to the land carbon sink. Regarding the shape of the

land C sink, we may be interested to test since how many years the land sink has started to decrease. To further this comment,
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I think that several test of the length of the data and the influence of the sampling are missing in the manuscript. We need to

see how far this approach is robust when using, for example, 5-year average data (removing ENSO and volcanoes influence).

1.3 Comment 3

My last major comment relates to the use of the “balanced” C budget whereas Le Quere et al. 2018 provides the Bim terms

that could be used as a third entry in you model. I mean does the variance of Bim is steady in time or does it vary ? How far5

this terms correlates with AF and SF ? Do you fin a trends in Bim that could explain why the sink rate declines whereas the AF

does ? I think all these discussions might consolidate the study.

1.4 Specific comment: 1

P1 L4 what do you mean by “balanced carbon budget” ?

1.5 Specific comment: 210

P1 L4 please clarify this sentence. It is unclear to me what object are you talking about

1.6 Specific comment: 3

P1 L6 please explain a bit further because a decrease in the sink should end up ultimately by a change in the AF

1.7 Specific comment: 4

P1 L13 please add the reference period over which this % are estimated + the reference publication15

1.8 Specific comment: 5

P1 L18 you could acknowledge more recent studies here

1.9 Specific comment: 6

P2 L5 anthropic = anthropogenic

1.10 Specific comment: 720

P2 L7 you can remove “which we argue is well designed for the problem at hand”

1.11 Specific comment: 8

P3 L12-16 I think paragraph should be move above and better explain why you are working on the “balanced” hypothesis.

The Bim remains small compared to the other terms for example ?
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1.12 Specific comment: 9

P4 L2 could you further explain the meaning of “Using a simplifying linear specification ?

1.13 Specific comment: 10

P6 L12-15 what about for a lower confidence threshold e.g., 90% do you get a better agreement ? why such a different in Beta

estimates (one order of magnitude) ?5

1.14 Specific comment: 11

1.14.1 Referee comment

P7 L14 please give the estimate of TtA ? besides I think there is a error in Eq 13 with the random noise epsilon. I read it as

independent of time.

1.15 Specific comment: 1210

P10 L9-10 the last sentence requires further explanations.

1.16 Specific comment: 13

Figure 3 I don’t know what these two panels show. They show the two metrics, correct ? Why giving the confidence interval for

1 sigma whereas most of the statistical test were conducted with a 95% confidence threshold ?

1.17 Specific comment: 1415

P12 L15 this looks like trivial. I guess that a simple correlation between the SF and LF should lead to the same conclusion. . .
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2 Referee report number 2

Below are the comments from the second referee.

2.1 Comment 1

Firstly in the introduction the authors state: “ a key question is whether the airborne fraction is increasing ” but they do not

say why. It would be good if they would add why this is so.5

2.2 Comment 2

Sentence just above - 24% and 31% - I would add a reference here - and possibly uncertainties - just for completeness.

2.3 Comment 3

When applying the Kalman filter the authors will need to initialize it. I may have missed it but if not it would be good if the

authors would add this in the main text.10

2.4 Comment 4

Finally my comment - while all the results are sound - what the paper does not explain is the true reason for the decrease in

sink rates - and thus it is not clear whether a decreasing sink rate is alarming or not. It would be nice if the authors could

comment on that - but it is not a necessary condition.

Some earlier papers actually give a clue what the real reason may be.15
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3 Response to referee report number 1

3.1 Response to Comment 1 (Section 1.1)

Thank you for raising these important points. In our approach, stationarity or non-stationarity is a finding rather than an

assumption. We agree with the referee that stationarity of the AF and negative linear trending in the sink rate are the main

results, ex post. However, a priori, we have formulated a statistical dynamic model that allows for both, non-stationary and5

stationary processes for yt and for linear as well as stochastic trending behavior. In the paper, below equation (7), we show

that the solution to the difference equation (7) leads to a deterministic time trend when the iid Gaussian random variable ⌘t

is zero (effectively when its variance is zero, that is �2
⌘
= 0). In this case, the time series is trend-stationary and the dynamic

process for yt does not exhibit a unit-root (which is the case for a difference-stationary time series). Since �2
⌘

is estimated

using the observations for yt, we can only conclude ex post that the time series is trend-stationary. Without the estimation of10

our state-space model, we could not have arrived at this conclusion.

Our main findings can be summarized as follows. (a) We find no statistical evidence of an increasing airborne fraction, while

we do find statistical evidence for a decreasing sink rate. (b) While the findings (a) have also been reported elsewhere, most

notably in Raupach et al. (2014), our statistical model does not make any a priori assumptions regarding the stationarity or

non-stationary of the series and regarding deterministic or stochastic behaviour of the trends. These findings are thus results,15

as opposed to assumptions, of our approach. Furthermore, we find that we need to estimate our model on all the data from the

global carbon budget jointly to reach the findings (a).

In the joint estimation, we take all data into account, that is the time series for AF and SR as defined on page 3 of the

paper, but also the additional data obtained by assuming that the carbon budget is balanced, which we explain on page 4 of

the paper. (Note that we follow the sink rate definition of Raupach (2013) and Raupach et al. (2014), with concentrations in20

the denominator, not emissions. The sink rate (SR) in our paper is thus not the complement of the airborne fraction.) More

specifically, when analyzing the sink fraction, for example, we can opt for either one or both of the two time series:

k(1)
S

=
SO
t
+SL

t

Ct

,

k(2)
S

=
Et �Gt

Ct

,

where we exploit the carbon budget equation to obtain k(2)
S

:25

Et =Gt +SO

t
+SL

t
+BIM

t
.

The budget imbalance BIM
t

is a zero-mean noise sequence that represents the measurement errors in the other variables of the

carbon budget (Le Quéré et al., 2018). In Table 3 of the main paper we report the results when we estimate our state-space

model on k(1)
S

and k(2)
S

separately. In Table 4 and Figure 2 of the main paper we report the results when we estimate the

state-space model on k(1)
S

and k(2)
S

jointly. It is a feature of the state-space model that it allows for alternative measurements30

for the same object of interest.
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In the Supplemental Material file, we have included Figure 1 that presents the extracted the latent trends, Tt in equation

(7), from the separate analysis, and Figure 2 that presents the extracted comment trend Tt from the joint analysis. (This is a

replication of Figure 2 in the main paper.) The extraction method is based on the filtering and smoothing approach as discussed

in the main paper. The various extracted trends illustrate our points as argued above: in the separate analysis, we obtain (slightly)

time-varying stochastic trends, whereas in the joint analysis, we obtain a deterministic linear trend with a significantly negative5

slope (compare Panel B of Table 4 in the main paper). We have found similar results for the AF series, which we include in the

Supplemental Material file.

Figure 1. Univariate estimation of time-varying trend for sink rate, kS .
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3.1.1 Changes made to the paper in response

We have re-written the explanations of the AF and SR definitions in Sect. 2 to show the contribution of the state-space model

in the context more crisply.10

We have included Figure 1 and the corresponding results for the AF in a Supplementary Material file.

3.2 Response to Comment 2 (Section 1.2)

The referee raises two interesting questions; we treat them one-by-one.

(i) With respect to the land sink rate, we are treating it as a fraction: the ratio of flux in land sink over CO2 concentration

in the atmosphere. The land sink flux itself, SL
t

, is increasing over time but the land sink rate, kL,t = SL
t
/Ct, shows evidence15

of a decreasing trend. Our paper shows (Figure 2 in this reply) that if we sum up ocean and land sink and use both time series

for this object, k(1)
S

and k(2)
S

, jointly, we obtain a significantly negatively sloping deterministic trend. We can of course also
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Figure 2. Multivariate estimation of time-varying trend for sink rate, kS .
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consider k(1)
S

and k(2)
S

separately. The result is shown in Figure 1 of this reply. From the left panel of this figure, one might

argue that the negative trend started in the mid 1970s. The right panel, which shows k(2)
S

, however, does not display such a

kink. Finally, we can consider the land sink rate, kL, individually. The result is shown in Figure 3 of this reply. We obtain a

deterministic trend with an insignificant negative slope, cf. Table 5 of the main paper.

(ii) We have estimated the state-space model on 5-year average data in order to reduce the impact of effects such as ENSO,5

volcanic eruptions, and the like. The state-space model estimated on annual data is also capable of accounting for these effects,

since it treats them as additive noise in the measurement equation. Repeating the analysis based on 5-year average data,

however, provides a way to verify our estimation results and conclusions. (We also considered 2-, 3-, and 4-year averages, with

similar results.)

We calculate 5-year non-overlapping averages in order to avoid introducing serial correlation into the time series. Running10

(i.e., overlapping) averages would necessitate specifying a model to capture this serial correlation, and we think this is a

relatively bigger disadvantage than the reduction in the sample size that we incur from non-overlapping averages. Since we

have 58 years of data, we calculate an average of the first three years followed by 5-year averages, resulting in 12 observations.

The findings from estimating the state-space model on these time series of averages confirm those reported in the main paper:

In the joint estimation, we find no statistical evidence of a trend in the airborne fraction (with a p-value of 0.32138), and we do15

find statistical evidence of a decreasing trend in the sink rate (with a p-value of 0.00064). Of course, the residual diagnostics

for these short time series are not as convincing as those presented in the main paper. The extracted trends from these joint

analyses are presented in Figures 4 (airborne fraction) and 5 (sink rate) in this reply. Incidentally, some analyses in earlier

studies were based on running averages; we discuss these briefly in the Discussion section of the main paper (P13 L10).
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We emphasize two points in this context: (1) The state-space model is advantageous in this exercise, since it allows to

incorporate the alternative time series for both, AF and SR, which is particularly useful when the sample period is short. (2)

The main finding from annual data prevails: In the separate analyses, the trends are estimated as stochastic. Only in the joint

analysis do we obtain a deterministic trend and statistical significance for the sink rate.

Figure 3. Univariate estimation of time-varying trend for land sink rate, kL.
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Figure 4. Multivariate estimation of time-varying trend for AF. Data: 5-year averages (no overlap)
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Figure 5. Multivariate estimation of time-varying trend for sink rate, kS . Data: 5-year averages (no overlap)
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3.2.1 Changes made to the paper in response

– (i) We include the separate analysis of the land sink rate (kL) in the Supplementary Material. For completeness, we also

submit the ocean sink rate (kO) to the same analysis in the Supplementary Material.

– (ii) We include the estimation results based on 5-year averages in the Supplementary Material and briefly discuss these

findings in the main paper as well, with a reference to the Supplementary Material for further details (cf. the Discussion5

Sect.). We emphasize that the findings of the paper are robust to averaging of the data.

3.3 Response to Comment 3 (Section 1.3)

Thank you for raising this point. By assuming that the carbon budget is balanced, we already include the BIM
t

data in the

analysis. Specifically, the data on the budget imbalance enters as follows. For the case of the sink rate, the two time series

employed are:10

k(1)
S

=
SO
t
+SL

t

Ct

,

k(2)
S

=
Et �Gt

Ct

.

Given the carbon budget equation, the latter expression can be written as

k(2)
S

=
Et �Gt

Ct

=
SO
t
+SL

t
+BIM

t

Ct

= k(1)
S

+ ⇠t,
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where

⇠t =
BIM

t

Ct

,

can be regarded as an error term. This is the motivation for using the two time series k(1)
S

and k(2)
S

as data for the same

underlying quantity, that is, the sink rate.

Figure 6 plots the time series of ⇠t (left plot) and BIM
t

(right plot). Both have a mean that is not significantly different from5

zero and follow stationary dynamics, albeit with some serial correlation.

In the joint state-space model, both k(1)
S

and k(2)
S

enter the measurement equation with an error term, and the residual

diagnostics reported in the paper show that these error terms are well-behaved to such a degree that the statistical inference

reported in the paper is valid.

Figure 6. “Error” time series data
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3.3.1 Changes made to the paper in response10

We include a discussion that relates the alternative measurements of the sink rate and AF to the budget imbalance, as ex-

plained above. When discussing residual diagnostics, we point out the connection with the time series properties of the budget

imbalance.

3.4 Response to Specific Comment 1 (Section 1.4)

We mean that the sources of CO2 should equal the sinks of CO2, i.e., that the budget equation Et =Gt+SL
t
+SO

t
should hold15

(be “balanced”) at all times and that any departures from this equation are due to measurement errors in the data. Departures
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from the equation are captured by the budget imbalance term, BIM
t

. Hence, what we mean is that this term is, on average, zero.

(This has indeed been the case historically, see Le Quéré et al., 2018).

3.4.1 Changes made to the paper in response

We have rephrased the sentence in the paper to better capture our intended meaning.

3.5 Response to Specific Comment 2 (Section 1.5)5

We are specifically referring to the airborne fraction and the sink rate. Also notice that we give an example in parentheses at

the end of the sentence: “(for example, the airborne fraction)”.

3.5.1 Changes made to the paper in response

We have rephrased the sentence in the paper to clearly identify the object we are referring to.

3.6 Response to Specific Comment 3 (Section 1.6)10

As explained in Section 8 of Gloor et al. (2010), it is not necessarily the case that a decrease in the sink rate implies an increase

in the airborne fraction. We touch briefly on this in the Discussion section of the initial submission (P13 L 15). See also

Raupach (2013).

The main point is that the airborne fraction is defined as AFt =Gt/Et, while the sink rate is defined as kS,t = St/Ct. In

other words, the normalizations of these time series are different, and they are not complements. Raupach et al. (2014) argue15

that the latter quantity is more appropriate as an object of study. However, due to the interest in the literature in both the sink

rate as well as the airborne fraction, we have analyzed both quantities in the main paper. In the Discussion section we give

some further arguments as to why the sink rate may be an easier object to analyze statistically than the airborne fraction (P13

L18).

3.6.1 Changes made to the paper in response20

We have rewritten much of Sect. 2 of the paper to make things more clear.

3.7 Response to Specific Comment 4 (Section 1.7)

Thank you. We have done this in the revised version of the paper.

3.8 Response to Specific Comment 5 (Section 1.8)

Thanks for pointing this out, we have done so in the revised version of the paper.25
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3.9 Response to Specific Comment 6 (Section 1.9)

Thank you. Corrected.

3.10 Response to Specific Comment 7 (Section 1.10)

Thank you. Removed.

3.11 Response to Specific Comment 8 (Section 1.11)5

Thanks for pointing this out. We have clarified this in the revised version of the paper.

3.12 Response to Specific Comment 9 (Section 1.12)

In Section 3 of Gloor et al. (2010), the variable kS,t is interpreted as a “sink efficiency”. To see why this is, note that we can

write (cf. Equation (3) in the main paper)

SO

t
+SL

t
= kS,t ·Ct.10

In other words, kS,t is the amount of CO2 transferred into the sinks, for every unit of CO2 in the atmosphere above pre-

industrial levels (Ct). In this way, kSt gives an indication of the efficiency with which the carbon system transfers CO2 to the

sinks. See also Raupach (2013) Section 3.1 for a discussion of this “efficiency” interpretation.

3.12.1 Changes made to the paper in response

We have changed the paper to better reflect the above discussion and make our statement clearer.15

3.13 Response to Specific Comment 10 (Section 1.13)

In Table 1 of the main paper, we indeed get two different estimates of �, namely 0.00109 and 0.00049. However, we notice that

the standard deviations of the estimates are given by 0.00179 and 0.00203, respectively. It indicates that although the estimates

are very different (by an order of magnitude, as pointed out by the referee), this difference is not statistically significant. The

p-values are 0.5423 and 0.8084 respectively.20

The p-values also give an answer to the second question: the estimates are not significant at a 90% level.

3.13.1 Changes made to the paper in response

We have added the p-values to the main paper.

3.14 Response to Specific Comment 11 (Section 1.14)

The estimate of TA
t

is shown in Figure 1 in the main paper (page 8, initial version). The estimates of the accompanying25

parameters are given in Table 2 (page 7 in the initial version of the main paper).
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We have indeed missed the subscript in Equation (13). Thank you for pointing this out.

3.14.1 Changes made to the paper in response

Subscript “t”s have been added in the equations where they were missing.

3.15 Response to Specific Comment 12 (Section 1.15)

Agreed. The forecasts we provide are implied by the model and can be computed within our state space approach. The forecasts5

for the next 25 years are displayed in Fig. 3 of the main paper and the downward trend is the result of a negative estimate of �

as reported in Table 4. Under the current conditions, our forecast implies that it takes more than 25 years before the sink rate is

below the value of 0.02.

3.15.1 Changes made to the paper in response

We have added some additional comments on the forecasting exercise.10

3.16 Response to Specific Comment 13 (Section 1.16)

Correct and agreed. We now explain this more carefully. We have also given 95% thresholds instead of 68% thresholds.

3.17 Response to Specific Comment 14 (Section 1.17)

The wording of the sentence in the paper is somewhat unclear. What we meant to say is that the variation in the combined sink

rate is mostly driven by the variation in the land sink rate. We have rephrased the paragraph to make the point clear.15
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4 Response to referee report number 2

4.1 Response to Comment 1 (Section 2.1)

We have added some text in the paper explaining the importance and added some references to the literature (e.g., Gloor et al.

(2010), Raupach et al. (2014), Bacastow and Keeling (1979)).

4.2 Response to Comment 2 (Section 2.2)5

We calculated these numbers from the GCB data. We have included this information, along with a reference where similar

numbers can be found.

4.3 Response to Comment 3 (Section 2.3)

We use a diffuse initialisation of the Kalman Filter as outlined in Chapter 5 of Durbin and Koopman (2012). We added a

comment on this in the main paper.10

4.4 Response to Comment 4 (Section 2.4)

Thank you for pointing this out. Raupach (2013) argue that a necessary condition for a constant sink rate is that emissions (Et)

grow exponentially. Hence, a decreasing sink rate could be the result of less-than-exponential growth in emissions.

Another explanation can be fertilisation/saturation of the sinks. To illustrate this, we focus on the land sink rate, since we

find some evidence in the paper for a decreasing land sink rate. Recall that (Equation (5) in the main paper)15

SL

t
= kL,t ·Ct,

where kL,t is the land sink rate, SL
t

the land sink CO2 flux, and Ct the amount of CO2 in the atmosphere above pre-industrial

levels. If the flux of CO2 to the land sink was linear in Ct, then kL,t would be constant. Conversely, a decreasing kL,t implies

that the efficiency with which the land sink absorbs CO2 is decreasing. That is, the flux of CO2 to the land sink is non-linear

in Ct and this non-linearity is such that the efficiency is decreasing. This is in line with simulation results from climate cycle20

models (Friedlingstein et al., 2006).

We can illustrate how such non-linearities can arise. The precise relationship between SL
t

and Ct still alludes us but Bacastow

and Keeling (1973) (p. 94) suggest that (in our notation):

SL

t
⇡ � log(1+Ct/C0),

wherre C0 = 591.30 GtC is the amount of CO2 in the atmosphere in pre-industrial times. Using this, we can deduce25

SL

t
⇡ � log(1+Ct/C0)

⇡ �
Ct

C0
� 1

2
�

✓
Ct

C0

◆2

.
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Now, if C0 is large as compared to Ct, this shows how a linear specification between SL
t

and Ct might be reasonable. However,

once Ct becomes large as compared to C0, this shows how the the estimated sink rate can be found to be decreasing. To see

this, use the above to write

SL

t
⇡ kL,tCt,

where5

kL,t =
�

C0
� 1

2

�

C0

Ct

C0

is decreasing in Ct. For example, we have C1959 ⇡ 80 GtC and C2016 ⇡ 267 GtC, resulting in C1959/C0 ⇡ 14% and C2016/C0 ⇡
45%.

4.4.1 Changes made to the paper in response

We have changed the paper in several places to better explore these important questions (cf. the change-log below). In particular,10

we have added the mathematical derivations above to Appendix A.
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5 Change-log

Below we list the changes made in the revised version of the paper. This version is reproduced at the end of this document

with changes indicated by colour; red for deletions and blue for additions. All page and line numbers refer to this new version

reproduced below.

5.1 Changes5

The following reported changes are organized in the order of the questions posed by the referees, reproduced above. Each

change is given a number, which we refer to as a “Point”. For instance, if we want to refer back to the first change described,

we would refer to “Point 1”.

Points 1–3 report changes of a general nature; Point 4 is in response to a comment from the Associate Editor; Points 5–21

are in response to the comments from referee 1; and Points 22–25 are in response to the comments from referee 2.10

1. We have included a Supplementary Material containing additional statistical analyses. We reference this in the Introduc-

tion (P2, L34) and the Discussion Sect. 7 (P17, L16).

2. We have added p-values for the different hypothesis tests conducted, see P8, L1 for an example.

3. We have corrected the wording and typos in several places, as highlighted by the tracked changes.

4. We provide a more in-depth discussion of why the topic of this article is an important area of study (P1, first paragraph15

of introduction). We have also sought to contextualise the paper better: We emphasize more that our approach addresses

the methodological criticism of earlier studies (P2, L22-28); we work out better that our findings of deterministic trends

are results, as opposed to being a priori assumptions as in earlier studies (P15, L13-15); we have developed further

our investigation of the apparent decreasing land sink and proposed possible explanations for this (P2, L27; P16, L29;

Appendix A, P19). This latter point connects to a large literature on the behavior of the terrestrial land sink. (P17, L1;20

P18, L10-13; P19, L3-4, P19, L11) This is in response to comments from the Associate Editor.

5. P3-P5: We have cleared up the definitions of the airborne fraction and the sink rate in Sect. 2. This is in response to the

comment in Section 1.1.

6. P17, L3: In the Discussion section, we present the results from the analysis using 5-year average data and reference the

Supplementary Material, where the details of this analysis can be found. This is in response to the comment in Section25

1.2.

7. In response to the comment in Section 1.3, we have changed the following:

(a) P7, L10, Eq. (8): We have changed the notation slightly, when introducing the two different data series for the AF.

(b) P10, L14, Eq. (13): We have changed the notation slightly, when introducing the two different data series for the

SR.30
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(c) P8, L13-15: We briefly discuss the statistical properties of the error term ⇠t =BIM
t

/EANT
t

which are implied by

the diagnostics in Table 1.

(d) P11, L5-7: We briefly discuss the statistical properties of the error term ⇠t =BIM
t

/Ct which are implied by the

diagnostics in Table 1.

8. P1, L4: We changed “balanced carbon budget” to capture our intended meaning. This is in response to the comment in5

Section 1.4.

9. P1, L5: We re-phrased this part to make things more clear. This is in response to the comment in Section 1.5.

10. P5, L4: We comment on the differences between the airborne fraction and the sink rate. This is in response to the

comment in Section 1.6.

11. P1. L15: We added the period over which the numbers were calculated as well as references. For some formatting reason,10

this addition can not be read in the version which tracks the changes (it reads fine in the revised version of the paper).

The sentence reads: “These percentages are calculated over the period 1959 to 2016 using the data described below, see

e.g. Raupach et al. (2014) for similar estimates.”. This is in response to the comment in Section 1.7.

12. P2, L6: We added the reference “Rayner et al. (2015)”. This is in response to the comment in Section 1.8.

13. P2, L13: anthropic ! anthropogenic (although this discussion has been changed). In response to the comment in Section15

1.9.

14. P2, L16: Removed “which we argue is well designed for the problem at hand”. In response to the comment in Section

1.10.

15. P3, L15-17: We discuss the budget imbalance term BIM
t

a bit more in-depth, motivating it’s later role as part of an error

term. The justification for this is strengthened by the diagnostics coming from the state-space analysis, cf. the changes20

discussed above in points 7c and 7d. This is in response to the comment in Section 1.11.

16. P5, L8: We have deleted the part starting with “Using a simplifying linear specification...”. Indeed, the whole of Sect. has

been re-worked to make our intended meaning more clear, cf. also point 10 above. This is in response to the comment in

Section 1.12.

17. As mentioned above in point 2, we have added p-values to the estimates of the slope parameters. This is partly in response25

to the comment in Section 1.13.

18. A subscript t has been added in Eq. (13) (which is now Eq. (12) on P9) and others where it was missing. This is response

to the comment in Section 1.14.

19. p. 12, L10: We elaborate on the forecasting exercise. This is in response to the comment in Section 1.15.
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20. P13, Figure 3. We explained this figure more in-depth in the text, cf. the comment in Point 19. We also substituted the

68% confidence bands for 95% confidence bands in Figure 3 in the main paper. This is in response to the comment in

Section 1.16.

21. P14, L20: The wording of last sentence in the last paragraph of Sect. 6 has been changed slightly. This is in response to

the comment in Section 1.17.5

22. P1 (first paragraph of introduction): We elaborate on why the topic of this paper is important, cf. also Point 4 above. This

is in response to the comment in Section 2.1. Cf. also Point 4.

23. P1, L15: We added a comment on how we arrived at those numbers (45%,24%,31%) plus a reference. For some format-

ting reason, this addition can not be read in the version which tracks the changes (it reads fine in the revised version of

the paper). The sentence reads: “These percentages are calculated over the period 1959 to 2016 using the data described10

below, see e.g. Raupach et al. (2014) for similar estimates.”. This is in response to the comment in Section 2.2. Cf. also

Point 11.

24. P6, L7-8: We have added a comment on the initialization of the Kalman filter. This is in response to the comment in

Section 2.3.

25. P16, L29: We have added a paragraph in the Discussion section, where we offer possible explanations for the finding of15

the decreasing sink rate, see also Appendix A (P19). Similarly, we now briefly comment on this in the Conclusion (P18,

L10-13). This is in response to the comment in Section 2.4.
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Abstract. Is the fraction of anthropogenically released CO2 that remains in the atmosphere
::::
(the

:::::::
airborne

:::::::
fraction)

:
increasing?

Is the rate at which the ocean and land sinks take up CO2 from the atmosphere decreasing? We analyze these questions by

means of a statistical dynamic multivariate model
:
, from which we estimate the unobserved trend processes together with the

parameters that govern them. By assuming a balanced
:::
We

:::::
show

:::
how

::::
the

::::::
concept

:::
of

:
a
:
global carbon budget , we obtain more

than one data series to measure the same object (for example,
:::
can

:::
be

::::
used

::
to

::::::
obtain

:::
two

:::::::
separate

::::
data

::::::
series

:::::::::
measuring

:::
the5

::::
same

:::::::
physical

:::::
object

:::
of

::::::
interest,

::::
such

::
as

:
the airborne fraction). Incorporating these additional data into the dynamic multivariate

model in effect increases the number of available observations, thus improving the reliability of
::::
trend

::::
and parameter estimates.

We find no statistical evidence of an increasing airborne fraction but we do find statistical evidence of a decreasing sink rate.

We infer that the efficiency of the sinks to absorb
::
in

::::::::
absorbing

:
CO2 from the atmosphere is decreasing at approximately 0.54%

per year.10

Copyright statement. TEXT

1 Introduction

A part of the anthropogenically released CO2 emitted to the atmosphere flows to the oceans (the ocean sink) and the terrestrial

biosphere (the land sink). Approximately 45% of released CO2 stays in the atmosphere (the airborne fraction), while the two

sinks take up approximately 24% and 31% of the CO2, respectively.
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(These percentages are calculated over the period 1959 to 2016 using the data described below, see e.g. Raupach et al., 2014, for similar estimates.)15

A key question is whether the airborne fraction is increasing or if it remains constant at around 45%.
:::
An

::::::::
increasing

::::::::
airborne

::::::
fraction

:::::::
implies

::::
that

:::
the

:::::
share

::
of

:::::::::::::::
anthropogenically

:::::::
released

:::::
CO2 :::

that
:::::::::

ultimately
:::::::
remains

:::
in

:::
the

::::::::::
atmosphere

::::::::
increases,

::::
and

:::::::::
projections

::
of

::::::
future

::::::::::
atmospheric

::::
CO2::::::

levels
::::
need

::
to

::::
take

::::
this

:::
into

:::::::
account

::::::::::::::::
(Gloor et al., 2010)

:
. Closely related is the ques-

tion whether the sinks will continue taking up CO2 at the same rate (the sink rate) or if this rate is decreasing.
::
A

:::::::::
decreasing

:::
sink

::::
rate

::::::
implies

::::
that

:::
the

:::::::::
efficiency

::::
with

:::::
which

::::::
ocean

:::
and

::::
land

:::::
sinks

:::
are

::::::::
absorbing

:::::
CO2 ::::

from
:::
the

::::::::::
atmosphere

::
is

::::::::::
decreasing.20

1



:::::
Thus,

::::::::
analyzing

:::
the

:::::::
behavior

:::
of

:::
the

::::
sink

:::
rate

::::
can

::::
help

::::::
predict

:::
the

:::::
future

::::::
uptake

::
of

:::::
CO2 ::::::

through
:::

the
::::::

ocean
:::
and

:::
the

::::
land

:::::
sink.

The answers to these questions
::
the

::::::::
questions

:::::
posed

::::::
above are important for our understanding of the global carbon cycle and

consequently
::
are

:::::::
relevant

:
for policy makers and the public in general.

A series of papers argue that the airborne fraction of anthropogenically released CO2 (mainly through fossil fuel emissions,

cement production, and land-use change) is increasing (Canadell et al., 2007a; Le Quéré et al., 2009; Raupach et al., 2008)5

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Canadell et al., 2007a; Le Quéré et al., 2009; Raupach et al., 2008; Rayner et al., 2015). Similarly, in Raupach et al. (2014) it

is argued that, although the statistical evidence of an increasing airborne fraction is relatively weak, the evidence of a decreas-

ing CO2 sink rate is clearer. However, the methods in these studies have been criticized in, for example, Knorr (2009), Gloor

et al. (2010), and Ballantyne et al. (2015). Indeed, by considering a longer data set and incorporating uncertainties into the

data, Knorr (2009) found that the conclusion of an increasing airborne fraction was not warranted. Similarly, Ballantyne et al.10

(2015) argues that errors in the data can lead to erroneous conclusions regarding possible trends in the airborne fraction and in

the sink rate.

In this paper, we conduct a statistical analysis of the dynamics and interactions of anthropic emissions of CO2 and its uptake

in the atmosphere, the oceans, and the terrestrial biosphere. We study both the airborne fraction and the CO2 sink rate. The

statistical problem is cast in a
::::::
address

:::::
these

::::::::
statistical

::::::
issues

:::::
within

:::
the

:::::::::
framework

:::
of

:
a
:
state space

:::::::::
state-space

:
system, which15

we argue is well designed for the problem at hand. The state space framework .
::
It
:
allows us to conduct statistical inference

by taking explicit account of stochastic and deterministic trends in the data, transient shocks to the data (coming from, e.g.,

volcanic eruptions or strong El Niño events), and (potential) measurement errors. The state space system
::
It

:::
also

:
allows for the

simultaneous incorporation of multiple data sets for the same object, which can improve estimation
::
the

:::::::::
estimation

::
of

::::::
trends

and increase reliability of parameter estimates. By assuming a balanced carbon budget (Le Quéré et al., 2018), we obtain more20

than one data series of the same physical object of interest (e.g., the airborne fraction or the CO2 sink rate). This seems

particularly important in the context of the global carbon budget data considered here, which goes back only to 1959.
:::
We

:::
find

::::::
strong

:::::::
evidence

:::
for

::::::
purely

:::::::::::
deterministic

:::::
trends

:::::
when

:::
we

:::::::::
incorporate

::::::::
multiple

::::::::::::
measurements

::
for

:::
the

::::::::
airborne

::::::
fraction

::::
and

::
the

::::
sink

:::::
rate.

:::::
These

:::::::::::
deterministic

::::::
trends

::::
have

::
a
::::::::::
statistically

::::::::::
significantly

::::::::
negative

:::::
slope

::
in

:::
the

::::
case

:::
of

:::
the

::::
sink

::::
rate

:::
and

:::
an

::::::::::
insignificant

:::::
slope

::
in

:::
the

::::
case

::
of

:::
the

:::::::
airborne

::::::::
fraction.

:::::
These

:::::::
findings

::::::::::
corroborate

::::::
earlier

:::::::
findings

::
in

:::
the

::::::::
literature,

:::::::::
especially25

:::::::::::::::::
Raupach et al. (2014)

:
,
:::
but

::::::
address

:::
the

:::::::::
statistical

:::::::
concerns

::::::
raised

::
by

::::::::::::
Knorr (2009)

:::
and

:::::::::::::::::::
Ballantyne et al. (2015)

:
,
::::::
among

::::::
others.

::::::
Finally,

:::
by

::::::::
analyzing

:::
the

:::::
ocean

::::
and

::::
land

::::
sink

::::
rates

:::::::::
separately,

:::
we

::::
find

::
no

::::::::
evidence

::
of

:
a
:::::::::
decreasing

::::::
ocean

::::
sink

:::
rate

:::
but

:::
we

:::
do

:::
find

::::::::
evidence

:::
that

:::
the

::::
land

::::
sink

:::
rate

::
is
::::::::::
decreasing.

The paper is organized as follows. In Sect. 2 we state the fundamental equations of the global carbon budget, the
:::::::::
definitions

::
of

:::
the airborne fraction of anthropogenically released CO2, and the CO2 sink rate, which will motivate the specification of the30

state space model
:::::::::
state-space

::::::
system. Sect. 3 introduces the state space models

:::::::::
state-space

::::::
system

:
used in the paper. In Sect.

4 we conduct a trend analysis of the airborne fraction
:::::
within

:::
the

::::::::
proposed

:::::::::
statistical

:::::::::
framework. In Sect. 5 we carry out the

corresponding analysis of the CO2 sink rate,
:
and in Sect. 6 of the land and ocean sink rates separately. Sect. 7 discusses the

results and Sect. 8 concludes.
:
A
:::::::::::::
Supplementary

:::::::
Material

:::
file

::
is
::::::::
available

::::::
online.
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2 The global carbon budget

The so-called
:::::
global

:
carbon budget is defined as

EANT

t
=Gt +SO

t
+SL

t
, (1)

where EANT
t

is anthropogenically released CO2 into the atmosphere, Gt is growth of atmospheric CO2 concentration, SO
t

is the flux of CO2 from the atmosphere to the oceans (the ocean sink), and SL
t

is the flux of CO2 from the atmosphere to5

the terrestrial biosphere (the land sink).
::
In

::::::
words,

:::
Eq.

:
(1)

::::
states

::::
that

::::::::
emissions

:::
of

::::
CO2::::::

should
:::::
equal

:::
the

:::::
fluxes

::
of

:::::
CO2 ::

to
:::
the

::::::::::
atmosphere,

:::
the

:::::
ocean

::::
sink,

::::
and

:::
the

::::
land

:::::
sink. We use the data set provided by The Global Carbon Project (Le Quéré et al.,

2018).1
::
All

::::
data

:::
are

::::::::
measured

:::
in

:::::::::
gigatonnes

::
of

::::::
carbon

::::::
(GtC)

:::
and

:::
are

::::::::
recorded

::
at

:
a
::::::
yearly

:::::::::
frequency,

::::::::
beginning

:::
in

::::
1959

::::
and

:::::
ending

:::
in
::::::
2016,

:::::::
resulting

:::
in

:::
58

::::::::::
observations

:::
for

::::
each

:::::::
quantity

::
in

:
(1)

:
.

:::::
While

:::
the

::::::
carbon

::::::
budget

::
is

::
in

::::::::
principle

::::::
always

:::::::
balanced

:::
for

:::
the

::::::::
physical

::::::::
quantities,

:::
in

:::
the

::::
sense

::::
that

:::
Eq.

:
(1)

:::::
always

::::::
holds,10

:::
this

:::::
might

:::
not

:::
be

:::
the

::::
case

:::::
when

:::::::
inserting

::::::
actual

:::
data

:::
for

:::::::::
emissions

:::
and

:::::
sinks,

::::
due

::
to

:::::::::::
measurement

:::::
errors

:::
in

:::
the

::::
data.

:::
For

::::
this

::::::
reason,

:::::::::::::::::::
Le Quéré et al. (2018)

:::::::
introduce

::
a
:::::::
residual

::::
term

::::
into

:::
the

::::::
budget

::::
Eq. (1)

::
to

::::::
capture

::::::::::::
measurement

:::::
error.

::
It

::
is

:::::::
denoted

::::
BIM

t :::
for

::::::
budget

:::::::::
imbalance.

:::::::::
Therefore,

:::::
when

::::::::::
considering

:::::
actual

::::
data,

:::
the

::::::
carbon

::::::
budget

::
is

::::::
defined

:::
as

EANT

t
=Gt +SO

t
+SL

t
+BIM

t
.

::::::::::::::::::::::::::
(2)

:::
The

::::::
sample

:::::
mean

:::
of

:::
the

::::::
budget

:::::::::
imbalance

::::
over

:::
the

::::::::::
observation

:::::
period

::
is
:::
not

:::::::::::
significantly

:::::::
different

:::::
from

::::
zero

::::
and

:::::
shows

:::
no15

:::
sign

::
of
::
a
::::
trend

:::::::::::::::::::
(Le Quéré et al., 2018)

:
.
:::::
These

::::
facts

:::
are

::::::::
important

::
in
:::
the

::::::::::::
developments

::::::
below,

::::
since

::::
they

:::::::
motivate

:::::::
treating

:::::
BIM

t

::
as

:::
part

::
of

:::
an

::::
error

:::::
term.

The growth rate in atmospheric CO2 data, Gt, is thus from Dlugokencky and Tans (2018), while the sink data, SO
t

and SL
t

,

are averages over several independent model-based estimates, constructed as explained in Le Quéré et al. (2018). All data are

given in gigatonnes of carbon (GtC) and are recorded at a yearly frequency, beginning in 1959 and ending in 2016, resulting in20

58 observations for each quantity in .

The anthropogenic emissions of CO2 are defined as
:::
can

::
be

::::::::::
decomposed

::
in
::::
two

:::::
parts:

EANT

t
= EFF

t
+ELUC

t
,

based where EFF
t

is
::
are

:
emissions from fossil fuel burning, cement production, and gas flaring, while ELUC

t
is

::
are

:
emissions

from land-use change. The former data
:::::
Fossil

::::
fuel

::::::::
emissions, EFF

t
, are from Boden et al. (2018), while the latter data

:::::::
land-use25

::::::
change

::::::::
emissions, ELUC

t
, are averages over the model-based estimates of Hansis et al. (2015) and Houghton and Nassikas

(2017), updated as in Le Quéré et al. (2018). The time series of concentrations (above preindustrial levels) of CO2 in the

atmosphere is constructed as

Ct = 2.127 · ([CO2]1959 � [CO2]1750)+
tX

⌧=1

G⌧ ,

1The data are available at http://www.globalcarbonproject.org/ and were downloaded on June 1st, 2018.
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where [CO2]1750 = 279 ppmv (parts per million volume) and [CO2]1959 = 315.39 ppmv are the concentrations of CO2 in the

atmosphere in 1750 and 1959, respectively; see Raupach et al. (2014). The number 2.127 is the conversion factor from ppmv

to GtC.

In words, Eq. states that emissions of CO
:::
the

::::::::::
atmospheric

:::::::::::
concentration

:::
Ct:::::

above
:::::::::::
pre-industrial

:::::
levels

::
is
:::::
given

:::
by

:::
the

:::::
initial

::::
value

::
in
:::::
1959

::::
plus

:::
the

:::::::::
cumulative

::::
sum

:::
of

:::
the

::::::
growth

::
in

::::::::::
atmospheric

::::
CO2 should equal the fluxes of CO2 to the atmosphere,5

the ocean sink, and the land sink. The term Gt is a growth rate per unit time, and sometimes it is written in the continuous time

version as

Gt =
dCt

dt
.

While the carbon budget is in principle always balanced, in the sense that Eq.
::::::::::::
concentrations

:::
Gt, :::::

which
:::::
result

::::
from

:::
the

::::::
budget

:::::::
equation (1)always holds, this might not be the case when inserting actual data for emissions and sinks, due to measurement10

errors in the data. The residual term is referred to as the budget imbalance by Le Quéré et al. (2018) and is denoted by BIM
t

.

Therefore, when considering actual data, the carbon budget is defined as

EANT

t
=Gt +SO

t
+SL

t
+BIM

t
.

:
.

We follow
:::::::::::::
Raupach (2013)

:::
and

:
Raupach et al. (2014) and define the airborne fraction

:
as
:

15

AFt =
Gt

EANT
t

and the sink fraction

SFt =
SO
t
+SL

t

EANT
t

= 1�AFt,

where the second equality assumes that BIM
t

is equal to zero. These fractions are for the anthropogenically released CO
:2::::

sink

:::
rate

::
as

:
20

kS,t =
SO
t
+SL

t

Ct

,
::::::::::::::

(3)

:::::
which

::
is

:::
the

::::
flux

::
of

::::
CO2 that stays in the atmosphere (AFt) and in the combined sink of

::::
from

:::
the

::::::::::
atmosphere

::
to

:::
the

:::::
sinks

:
(ocean plus land(SFt) . One

:
),
::::::::::
normalized

:::
by

:::
the

::::::
amount

:::
of

::::
CO2::::::

(above
:::::::::::
preindustrial

::::::
levels)

::::::::
currently

::
in

:::
the

:::::::::::
atmosphere.

:::
We can also consider the ocean and land sinks separately and define the

::::::::
individual

:::::::::::
components

::
of

:::
the

::::
sink

:::
rate

:::
for

:
ocean and

landfractions as25

OFt =
SO
t

EANT
t

, LFt =
SL
t

EANT
t

,

:
,
:::::
which

:::
are

:::::
given

::
by

:

kO,t =
SO
t

Ct

, kL,t =
SL
t

Ct

,
:::::::::::::::::::::::

(4)
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respectively, with SFt =OFt +LFt:::::::::::::::
kS,t = kO,t + kL,t.

Following Raupach (2013) and Raupach et al. (2014), we further consider the CO2 sink rate which is defined at time t by

kS,t =
SO
t
+SL

t

Ct

,

which is
:::
The

:::::::
airborne

:::::::
fraction

:::
and the flux of

:::
sink

:::
rate

:::
are

::::::::::::
fundamentally

:::::::
different

:::::::::
quantities.

::::
The

:::::::
airborne

::::::
fraction

:::::::::::::::
AFt =Gt/EANT

t

:
is
:::
the

:::::
ratio

::
of

:::
the

::::::
growth

::
of

::::::::::
atmospheric

:::::
CO2 ::

in
:::::
period

:
t
:::

to
:::
the

::::::
amount

::
of

::::
CO2:::::::

emitted
::
in

::::::
period

:
t.
::

It
::
is

::::
thus

:
a
::::::::
measure

::
of

:::
the5

::::::
fraction

::
of

:::::::
emitted

:
CO2 from the atmosphereinto the sinks (ocean plus land), normalized by the

:::
that

::::
stays

::
in
:::

the
:::::::::::

atmosphere.

::
In

:::::::
contrast,

:::
the

::::
sink

:::
rate

:::::::::::::::::::
kS,t = (SO

t
+SL

t
)/Ct ::

is
:::
the

::::
ratio

::
of

:::
the

::::
CO2::::

flux
::
in

:::
the

:::::
sinks

::
in

:::::
period

::
t
::
to

:::
the

::::
total amount of CO2

(above preindustrial levels)currently in the atmosphere. Using a simplifying linear specification, Gloor et al. (2010) interprets

the variable kS,t as a “sink efficiency”
::
in

:::
the

::::::::::
atmosphere

::::::
(above

:::::::::::
pre-industrial

::::::
levels).

From the global carbon budget , it follows that the sink efficiency
:::
By

::::::
writing

::::::::::::::::
SO
t
+SL

t
= kS,tCt,:::

we
::::
can

:::::::
interpret

:::
the

::::
sink10

:::
rate kS,t can alternatively be written as

kS,t =
EANT

t
�Gt

Ct

.

We can also consider the individual components of
:
as

:::
the

:::::::::::
“efficiency”,

::::
with

:::::
which

::::
CO2:::::

flows
::::
from

:::
the

::::::::::
atmosphere

::
to

:::
the

:::::
sinks,

::
i.e.

:::
as the sink rate for ocean and land which are given by

kO,t =
SO
t

Ct

, kL,t =
SL
t

Ct

,15

respectively, with kS,t = kO,t + kL,t. ::::::
amount

::
of

::::
CO2:::::

going
::::
into

:::
the

:::::
sinks

:::
for

::
an

:::::
extra

::::
unit

::
of

::::
CO2::::::

added
::
to

:::
the

::::::::::
atmosphere

::::::::::::::::::::::::::::
(Gloor et al., 2010; Raupach, 2013)

:
.
:::
We

::::::
discuss

:::
the

::::::::::
relationship

:::::::
between

:::
the

:::::::
airborne

:::::::
fraction

:::
and

:::
the

::::
sink

:::
rate

::::::
further

::
in

:::::
Sect.

::
7.

3 Trend model specification

In this section, we consider several models for the data generating process behind observations of the objects of interest defined20

in Sect. 2. Common to all models is that they can be cast in a state space
:::::::::
state-space

:
system of the form:

yt = Axt + ⇠t,

xt+1 = Bxt +t,
t= 1, . . . ,n, (5)

where yt is a vector of observations at time t= 1, . . . ,n with time series length n,
:::
and the system matrices A and B have appro-

priate dimensions, the
:
.
:::
The

:
vector xt is usually referred to as the state vector

:
, which can include deterministic and stochastic

trends, and the error terms ⇠t and t are both independent and identically distributed (iid) random vectors of appropriate di-25

mension and with mean zero. For example, when we need to model the airborne fraction alone, we have yt =AFt and the state

space
:::::::::
state-space system represents a univariate dynamic model for the airborne fraction. When modelling the ocean and land

5



fractions
:::
sink

::::
rates

:
jointly, we have yt = (OFt , LFt)0 and the state space system is for

:::::::::::::::
yt = (kO,t , kL,t)0,:::

and
:::
the

::::::::::
state-space

::::::
system

::
is a bivariate dynamic model. For given matrices A and B, and under the assumption of mutually and serially un-

correlated Gaussian errors ⇠t and t (with their respective variance matrices ⌃⇠ and ⌃), the state space
:::::::::
state-space system

is a linear Gaussian model. In such regular cases, an analytic formulation for the likelihood function is avaiable
:::::::
available

and relies on the prediction error decomposition. Hence the parameters (variances and possibly covariances in ⌃⇠ and ⌃)5

can be estimated by the maximum likelihood method. It requires the numerical optimization of the log-likelihood function

that is evaluated via the Kalman filter. The
:::::::
resulting

:::::::::
algorithm

::
is

::::::::
initialized

:::::
with

::::::
specific

:::::::
starting

::::::
values;

::::
we

:::
use

::
a

::::::
diffuse

::::::::::
initialization

::
as

:::::::
outlined

::
in
:::::::
Chapter

::
5

::
of

::::::::::::::::::::::::
Durbin and Koopman (2012).

::::
The smooth estimate of the state process xt can also be

obtained by means of the Kalman filter together with a smoothing algorithm. The extracted state is effectively the conditional

mean E(xt|y1, . . . ,yn;A,B,⌃⇠,⌃), for t= 1, . . . ,n. Details of the state space approach to time series modeling, including the10

statistical treatment of the initial state x1,
:::::::::
state-space

::::::::
approach are given by Durbin and Koopman (2012)

:
, where both signal

extraction and maximum likelihood estimation are discussed.

Our baseline model is the local linear trend (LLT) modelwith a fixed and unknown growth (or slope) coefficient. 2
:
. For a

univariate time series yt, we treat the underlying trend Tt as a stochastic process given by

Tt+1 = Tt +�+ ⌘t, (6)15

where � 2 R is a fixed and unknown coefficient and ⌘t is an iid Gaussian random variable with mean zero and variance �2
⌘
.

The solution to the difference equation (6) is given as

Tt+1 = T1 + t�+
t�1X

i=0

⌘t�i, t= 1,2, . . . ,n� 1,

where T1 can be treated as a fixed unknown coefficient (intercept or constant) or as a random variable. It
:::
The

:::::::
solution

:
shows

that the trend component is made up of the starting value T1, a deterministic linear term with slope �, and the
:
a
:
random20

walk component
P

t�1
i=0 ⌘t�i. In this way

::::
Thus, Tt can be interpreted as a long-term trend in the time series and � as the slope

of the deterministic part of the trend.
::
We

::::
also

:::::::::
considered

::
a
:::::::::::
time-varying

::::::
slope,

:::
�t, :::

but
:::::
found

:::
no

::::::::
evidence

:::::::::
supporting

::::
this

:::::::::::
generalization

::
in
:::::
either

:::
the

::::::::
airborne

::::::
fraction

::
or

:::
the

::::
sink

::::
rate.

:
The observation equation for yt is given by

yt = Tt + ✏t, (7)

where Tt is given by (6) and ✏t captures deviations of the observed time series from the unobserved trend component. The25

deviations ✏t can be viewed as (i) actual (transient) disturbances of the physical systems arising from, for example, volcanic

eruptions and El Niño events, and/or (ii) measurement errors arising from the way the data are collected. 2 The random variable

✏t is assumed to be iid Gaussian with mean zero and variance �2
✏
.

2We also considered a time-varying slope but found no evidence supporting this generalization in either the airborne fraction or the sink rate.
2See Ballantyne et al. (2015) for the importance of accounting for measurement errors in the data.
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The local linear trend model can be cast in the state space
::::::::
state-space

:
system (5) where vectors and matrices are defined as

xt =

0

@ Tt

�

1

A , A=
h
1 0

i
, B =

2

4 1 1

0 1

3

5 , ⇠t = ✏t, t =

0

@ ⌘t

0

1

A ,

for t= 1, . . . ,n. The state vector xt consists of the two variables of interest: stochastic trend variable Tt and deterministic slope

variable �. The state space
:::::::::
state-space methods as discussed above can treat such mixed compositions of the state vector. We

have illustrated how the state space
:::::::::
state-space

:
system can be used for a univariate time series. In the next sections, we also5

consider trend analyes
:::::::
analyses

:
based on multivariate time series models.

4 Trend analysis of the airborne fraction

When we assume that the carbon budget is balanced, see the discussion in Sect. 2, for all time periods t= 1, . . . ,n,
:
It
:::::::
follows

::::::::::
immediately

::::
from

::::
Eq. (2)

:::
that we can measure the airborne fraction AFt in two alternative ways:

AF (1)
t

=
GATM

t

EANT
t

, AF (2)
t

= 1�SFt

EANT
t

�SO
t
�SL

t

EANT
t

=AF (1)
t

+ ⇠t,
:::::::::::::::::::::::::::

1� SO
t
+SL

t

EANT
t

. (8)10

:::::
where

::::::::::::::::
⇠t =BIM

t
/EANT

t
,
::::
since

::::::::::::::::::::::::::::
EANT

t
�SO

t
�SL

t
=Gt +BIM

t
.
::::::::
Although

:::
the

:::
two

::::::::
quantities

::
in
:
(8) measure the same under-

lying object (the airborne fraction AFt), they may differ when we consider the actual data; see also Eq..
::::
differ

::
in

::::::::
practice,

::::::
because

:::
of

:
a
::::::::
non-zero

::::::
budget

:::::::::
imbalance,

:::
i.e.

::::::
⇠t 6= 0.

::::
Our

::::::::
statistical

:::::::
analysis

:::::::
implies

:::
that

::
⇠t::

is
::

a
:::::::::::
well-behaved

:::::::::
zero-mean

::::
and

:::::::::
covariance

::::::::
stationary

::::
error

:::::::
process.

:

We consider our baseline local linear trend model of Sect. 3 for each of the objects, that is,
:

15

yt =AF (i)
t

= T (i)
t

+ ✏(i)
t
,

for i= 1,2, where the trend T (i)
t

is specified in (6) and with error ✏(i)
t

. Table 1 reports the output of the estimation, using the

state space
:::::::::
state-space

:
system and the Kalman filter. The first part of Table 1 presents estimates of the standard deviations of

the error terms ✏ and ⌘
:::::::::
observation

:::::
error

::::
term

:::
✏(i)
t :::

and
:::
the

:::::
trend

::::
error

::::
term

::::
⌘(i)
t

, as well as the estimate of the slope parameter �,

including the estimated standard deviation
::::
error

::::
(s.e.)

:
of �̂ and the resulting t-statistic, t-stat = �̂

s.d.(�̂):::::::::::::::
t-stat = �̂ /s.e.(�̂). Based20

on these estimation results, we can formally test hypotheses of the type

H0 : � = 0 against H1 : � 6= 0, (9)

or, more relevantly,

H0 : � = 0 against H1 : � > 0. (10)

By using the normal approximation to the t-distribution and for a 95% confidence level, the critical value for the test (9) is25

1.96, and for (10) it is 1.645. In case of the airborne fraction, we are interested in testing (10). It is evident from Table 1 that

7



we cannot reject H0 in this case
:::::::
(p-values

::::::
0.2711

:::
and

:::::::
0.4042,

:::::::::::
respectively). In other words, although the estimate b� is positive,

we cannot conclude, statistically at 95% confidence, that the airborne fraction is increasing over time.

Table 1 also contains diagnostic statistics for the standardized prediction residual ut based on yt �E(yt|y1, . . . ,yt�1;A,B,⌃⇠,⌃),

yt �E(yt|y1, . . . ,yt�1;A,B,⌃⇠,⌃),
::::::::::::::::::::::::::::::

for t= 1, . . . ,n, and where ⌃⇠ and ⌃ are replaced by their respective maximum likelihood estimates. Under the assump-

tion that the local linear trend model is correctly specified for the time series yt, the residuals ut are Gaussian iid; see

(Durbin and Koopman, 2012, p.38).
:::::::::::::::::::::::
Durbin and Koopman (2012)

:
,
::
p.

:::
38.

:
To verify these properties of ut empirically, we con-5

sider two residual diagnostic statistics: the normality test statistic N of Jarque and Bera (1987) and the serial correlation test

statistic DW of Durbin and Watson (1971). As a goodness-of-fit statistic, we consider the R2
d

which is a relative measure of

model fit against a random walk model. The statistic is defined in a similar way as the standard regression fit measure R2, we

have

R2
d
= 1�

P
n

t=2u
2
tP

n

t=2[(yt � yt�1)�m]2
, m= (n� 1)�1

nX

t=2

(yt � yt�1).10

The reported diagnostic statistics and goodness-of-fit in Table 1 are satisfactory for the time series AF (1)
t

and AF (2)
t

. We may

conclude from these results that the local linear trend model (6)-(7) provides an adequate description of the dynamic features

in the time series.
::::
Since

:::
the

::::::
AF (2)

t ::
is

::::::::::::
well-described

:::::
within

::::
our

:::::::::
state-space

::::::::::
framework,

:::
the

::::
extra

::::
error

:::::
term

:::::::::::::::
⇠t =BIM

t
/EANT

t

::
in

::::::
AF (2)

t
,
::
as

::::::::::
introduced

::
by

::::
the

::::::
budget

:::::::::
imbalance

::::
term

::
in
::::

Eq.
:
(8),

:::
is

:::::::::::
well-behaved.

::::::
Hence

::::
the

::::::::::
assumptions

::::::::::
underlying

:::
the

:::::::::
state-space

::::::
system

::::::
appear

::
to

::
be

:::::
valid.

:
15

Table 1. Univariate analysis of the airborne fraction

Parameter estimates Diagnostics

b�✏ b�⌘
b� s.e.(b�) t-stat(b�) N R2

d
DW

AF
(1)
t

0.1357 0.0101 0.00109 0.00179 0.60934 0.274 0.442 1.829

AF
(2)
t

0.1353 0.0122 0.00049 0.00203 0.24246 2.324 0.489 1.9905
:::

1.991

We report parameter estimates for the standard deviations �✏ and �⌘ , and slope coefficient � together with its standard error (s.e.) and t-statistic (t-stat). We

further report the normality (N ) test, the goodness-of-fit statistic R2
D

and the Durbin-Watson (DW ) test statistic for serial correlation; all computed for the

standardized prediction errors ut which are obtained from the Kalman filter. The normality test N is the �2 distributed, with 2 degrees of freedom, statistic

of Jarque and Bera (1987) with its 95% critical value of 5.99; the statistic relies on the sample estimates of skewness and kurtosis of ut. The goodness-of-fit

statistic R2
d

is defined as 1�ESS/DSS where ESS =
P

n

t=2u
2
t

and DSS =
P

n

t=2[(yt � yt�1)�m]2 with m= (n� 2)�1Pn

t=2(yt � yt�1). The

Durbin-Watson DW test statistic is developed by Durbin and Watson (1971), where also its critical values are tabulated. If DW = 2 the sequence ut is

serially uncorrelated; if DW < 2 there is evidence that the errors ut are positively autocorrelated; if DW > 2 there is evidence that the errors ut are

negatively autocorrelated.
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The state space
:::::::::
state-space

:
system allows both measures for the airborne fraction, AF (1)

t
and AF (2)

t
, to be included in a

single model with the purpose to improve the quality of the trend estimation and inference. We begin with an “uninformed”

system using two different trend components, T (1)
t

and T (2)
t

, both specified as (6), for the two time series, we have
:
.
:::
We

::::
have

yt =

2

4AF
(1)
t

AF (2)
t

3

5=

2

4 GATM
t

/EANT
t

1� (SOCEAN
t

+SLAND
t

)/EANT
t

3

5=

2

4T
(1)
t

T (2)
t

3

5+

2

4✏
(1)
t

✏(2)
t

3

5 , (11)

where the error terms ✏(i)
t

, for i= 1,2, are correlated and its
::::
their correlation coefficient can be estimated by the method of5

maximum likelihood together with the other parameters. The estimation results for this model are presented in Panel A of

Table 2. The main difference to Table 1 is the inclusion of the estimated correlation matrix for (✏(1)
t

,✏(2)
t

). The diagnostic test

statistics are reasonable. In comparison with the univariate analysis, the goodness-of-fit values for R2
d

are slightly higher for

the multivariate model. Hence we trust the model to be a good representation of the data. Furthermore, the slope is estimated to

be positive in both cases (that is �̂ > 0), indicating an increasing airborne fraction. However, when testing the null hypothesis10

given in (10), we cannot reject the hypothesis that the slopes are zero
:::::::
(p-values

::::::
0.3753

::::
and

::::::
0.4895,

:::::::::::
respectively).

Table 2. Multivariate analysis of the airborne fraction

Parameter estimates Correlation matrix (✏) Diagnostics

Panel A: Two individual trends as in Eq. (11).

b�✏ b�⌘
b� s.e.(b�) t-stat(b�) AF (1) AF (2) N R2

d
DW

AF (1) 0.1268 0.0333 0.00146 0.00459 0.31797 1.0000 0.7612 0.603 0.484 2.0152

AF (2) 0.1307 0.0274 0.00010 0.00383 0.02629 0.7612 1.0000 1.469 0.525 2.0853

Panel B: One common trend as in Eq. (12).

b�✏ b�⌘
b� s.e.(b�) t-stat(b�) AF (1) AF (2) N R2

d
DW

AF (1) 0.1370 7.2e-09 0.00073 0.00095 0.77258 1.0000 0.5518 0.245 0.470 1.8722

AF (2) 0.1375 – – – – 0.5518 1.0000 2.573 0.516 1.9820

We report parameter estimates for the standard deviations �(i)
✏ and �

(i)
⌘ , for i= 1,2, correlation matrix for ✏t, and slope coefficient � together with its

standard error (s.e.) and t-statistic (t-stat). We further report the normality (N ) test, the goodness-of-fit statistic R2
D

and the Durbin-Watson (DW ) test

statistic for serial correlation; for details see Table 1. In Panel B, the trend cofficients (�⌘ and �) for AF (2) are the same as for AF (1) given the construction

of model (12).

Since the two quantities in (8) are measuring the same object, the airborne fraction, we now force the state space
:::::::::
state-space

system to recognize that these data are driven by the same underlying common trend, TA
t

say, but with possibly different error

terms ✏(1)
t

and ✏(2)
t

. In other words, we consider15

yt =

2

4AF
(1)
t

AF (2)
t

3

5=

2

4 GATM
t

/EANT
t

1� (SOCEAN
t

+SLAND
t

)/EANT
t

3

5=

2

4T
A
t

TA
t

3

5+

2

4✏
(1)
t

✏(2)
t

3

5 . (12)
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The output of the estimation of this system is shown in Panel B of Table 2; the estimated common trend and the data are

plotted in Fig. 1. A slight deterioration of the diagnostic statistics is to be expected when introducing a common trend into the

system, but the diagnostic statistics are still such that we can accept (12) as a plausible model. For the estimate of the slope b�,

we find a larger t-statistic in absolute value than in the uninformed model, indicating
:::
that the restriction to the common trend

increases the precision of the estimates. An explanation of this finding is that the informed system in effect has used twice as5

many observations for estimating the trend , when compared to the uninformed system. The hypothesis test (10) reveals that

the estimate of the slope parameter, although again positive, is still not statistically different from zero
:::::::
(p-value

::::::
0.2199).

Figure 1. Estimated trend TA

t of the airborne fraction from Model (12).
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5 Trend analysis of the CO2 sink rate

In this section, we analyse the CO2 sink rate in the same way as the airborne fraction above. The definition
::::::::::
Analogously

:::
we

:::
can

:::::
define

::::
two

:::::::::
alternative

:::::::
versions

:
of the sink rateis given in Eq. . The assumption of a balanced carbon budget provides the10

alternative definition . As a result we can now define two alternative versions of the sink rate:

k(1)
S,t

=
SO
t
+SL

t

Ct

, k(2)
S,t

=
EANT

t
�Gt

Ct

.

Our

k(1)
S,t

=
SO
t
+SL

t

Ct

, k(2)
S,t

=
EANT

t
�Gt

Ct

= k(1)
S,t

+ ⇠t,
::::::::::::::::::::::::::::::::::::::::::::

(13)

:::::
where

::::
now

::::::::::::
⇠t =BIM

t
/Ct :::

and
::::::
where

::
we

:::::
have

::::
used

:::
Eq.

:
(2)

:
.
::
As

::::
was

:::
the

::::
case

:::
for

:::
the

:::::::
airborne

:::::::
fraction,

:::::
these

:::
two

:::::::::
quantities

:::
are15

::::::::
measuring

:::
the

:::::
same

:::::::::
underlying

::::::
object

:::
(the

::::
sink

::::
rate,

:::::
kS,t):::

but
:::::
differ

::
in

:::::::
practice

:::::::
because

::
of

::
a
:::::::
non-zero

::::::
budget

::::::::::
imbalance,

:::
i.e.

::::::
⇠t 6= 0.

10



:::
The

:
basic (univariate) local linear trend model for each of these objects is then given by

yt = k(i)
S,t

= T (i)
t

+ ✏(i)
t
,

for i= 1,2, where T (i)
t

is specified as in (6). When the model is cast in the state space
:::::::::
state-space system, the parameters can

be estimated for each of the data series individually. The estimation results are presented in Table 3. The diagnostic statistics

are again satisfactory. Although we do have negative
::::::::::
satisfactory,

:::
and

:::
we

::::::::
conclude

:::::
again

:::
that

:::
the

:::::
error

::::
term

::::::::::::
⇠t =BIM

t
/Ct::

is5

:::::::::::
well-behaved,

::
in
:::
the

:::::
sense

::::
that

:::
the

::::::::::
assumptions

::::::::::
underlying

:::
the

:::::::::
state-space

::::::
system

::::::
appear

::
to
:::

be
:::::
valid,

::::
also

:::
for

:::
the

:::::::::
alternative

:::
sink

::::
rate

::::
data,

::::
k(2)
S,t

.
:::::
Even

::::::
though

::
the

:
estimates of the slopes

:::
are

:::::::
negative, we cannot reject the null hypothesis of � = 0

::::::::
(p-values

::::::
0.2233

:::
and

:::::::
0.0761,

:::::::::::
respectively). We still consider a one-sided test as in (10) but now the relevant alternative hypothesis is

H1 : � < 0.

Table 3. Univariate analysis of the CO2 sink rate

Parameter estimates Diagnostics

b�✏ b�⌘
b� s.e.(b�) t-stat(b�) N R2

d
DW

k
(1)
S

0.0066 8.8077e-04 -0.00010 0.00013 -0.76117 4.880 0.464 1.968

k
(2)
S

0.0063 6.3982e-04 -0.00015 0.00010 -1.43179 0.967 0.442 1.875

We report parameter estimates for the standard deviations �✏ and �⌘ , and slope coefficient � together with its standard error (s.e.) and t-statistic (t-stat). We

further report the normality (N ) test, the goodness-of-fit statistic R2
D

and the Durbin-Watson (DW ) test statistic for serial correlation; all computed for the

standardized prediction errors ut which are obtained from the Kalman filter; for details see Table 1.

10

Similar
:::::::::::
Analogously to the airborne fraction above, these data can be put in a joint “uninformed” system with two different

trend components, and we have

yt =

2

4k
(1)
S,t

k(2)
S,t

3

5=

2

4 (SO
t
+SL

t
)/Ct

(EANT
t

�Gt)/Ct

3

5=

2

4T
(1)
t

T (2)
t

3

5+

2

4✏
(1)
t

✏(2)
t

3

5 , (14)

which can be compared with model (11). The estimation results for this model are reported in Panel A of Table 4. Although

the slope estimates are negative, they are not significantly negative
::::::::
significant

::::::::
(p-values

::::::
0.3106

::::
and

::::::
0.1947,

:::::::::::
respectively).15

Finally, we consider the state space
::::::::
state-space

:
system that imposes a common trend for both time series, TS

t
say, that is

yt =

2

4k
(1)
S,t

k(2)
S,t

3

5=

2

4 (SO
t
+SL

t
)/Ct

(EANT
t

�Gt)/Ct

3

5=

2

4T
S
t

TS
t

3

5+

2

4✏
(1)
t

✏(2)
t

3

5 , (15)

which can be compared with model (12). The estimation results are presented in Panel B of Table 4. Similar to our
:::
the analysis

of the airborne fraction in the previous section, the diagnostic statistics are somewhat worse for our
::
the

:
less flexible system20

11



Table 4. Multivariate analysis of the CO2 sink rate

Parameter estimates Correlation matrix (✏) Diagnostics

Panel A: Two individual trends as in Eq. (14).

b�✏ b�⌘
b� s.e.(b�) t-stat(b�) AF (1) AF (2) N R2

d
DW

k
(1)
S

0.0064 0.0015 -0.00010 0.00020 -0.49406 1.0000 0.7733 3.348 0.511 2.0233

k
(2)
S

0.0060 0.0014 -0.00017 0.00020 -0.86071 0.7733 1.0000 1.365 0.488 2.0185

Panel B: One common trend as in Eq. (15).

b�✏ b�⌘
b� s.d

:
e.(b�) t-stat(b�) k

(1)
S

k
(2)
S

N R2
d

DW

k
(1)
S

0.0068 4.1762e-09 -0.00014 0.00005 -2.99145 1.0000 0.5621 4.012 0.499 2.0276

k
(2)
S

0.0065 – – – – 0.5621 1.0000 0.090 0.474 1.7967

We report parameter estimates for the standard deviations �(i)
✏ and �

(i)
⌘ , for i= 1,2, correlation matrix for ✏t, and slope coefficient � together with its

standard error (s.e.) and t-statistic (t-stat). We further report the normality (N ) test, the goodness-of-fit statistic R2
D

and the Durbin-Watson (DW ) test

statistic for serial correlation; for details see Table 1. In Panel B, the trend cofficients (�⌘ and �) for k(2)
S

are the same as for k(1)
S

given the construction of

model (15).

with a common trend. However, the diagnostics are still satisfactory while the goodness-of-fit statistics have improved overall.

Our
:::
The estimate of the slope is

b� =�0.00014,

and this estimate is statistically significant: we reject the hypothesis H0 : � = 0 in favor of H1 : � < 0 at a 95% confidence

level
:::::::
(p-value

:::::::
0.0014). The mean of the sink rate (calculated using either data set k(1)

S
or k(2)

S
) is 0.0258. It follows that we5

estimate the sink rate to be decreasing with approximately 0.00014/0.0258 = 0.54% every year. The estimated trend and the

data are plotted in Fig. 2.

The state space
:::::::::
state-space system is also well-suited for forecasting; see Durbin and Koopman (2012). The output of the

forecasting exercise for the sink rate is presented in Fig. 3 where
:::::
Using

:::::
model

:
(15),

:
we forecast the sink rate 25 years ahead in

time. The decreasing nature of
:::::
output

::
is
::::::::
presented

:::
in

:::
Fig.

::
3.
::::
The

:::::::::
downward

:::::
trend

::
in the forecasts is clearly visible.

:::
the

:::::
result10

::
of

:::
the

:::::::
negative

:::::::
estimate

::
of

:::
�.

:::::
Under

::::::
current

::::::::::
conditions,

:::
the

:::::::
forecast

::::::
implies

::::
that

::
in

::::::::::::
approximately

::
15

::::::
years,

:::
the

::::
sink

:::
rate

::::
will

::::
have

:::::::
declined

::
to

:::::
below

::::
2%.

:

6 Trend analysis of the ocean and land sink rates

We may conclude from the analysis in the previous section that the combined (land plus ocean) sink rate appears to be de-

creasing. To verify
::::::::
investigate

:
this finding in more detail, we can

:::::
study

:::
two

:::::::::
alternative

:::::::
models,

::::::
which consider the two sink15

variables separately. The analysis can be done simultaneously based on the model
:::
first

:::::
model

::::::::
specifies

::::
local

:::::
linear

::::::
trends

:::
for

12



Figure 2. Estimated trend TS

t of the CO2 sink rate from Model (15).
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Figure 3. Forecasting the CO2 sink rate based on Model (15).
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Figure 3. The blue solid line represents the data, while the red solid line represents the point forecasts from the Kalman filter with the

unknown parameters estimated by maximum likelihood. The dashed red lines are 95% confidence bands (±1 standard deviation) for the

forecasts.
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:::::
ocean

:::
and

::::
land

::::
sink

:::::
rates,

:::
i.e.,

:

yt =

2

4kO,t

kL,t

3

5=

2

4S
O
t
/Ct

SL
t
/Ct

3

5=

2

4T
O
t

TL
t

3

5+

2

4✏
(1)
t

✏(2)
t

3

5 , (16)

where the time series kO,t and kL,t are defined in (4) while the trend variables TO
t

and TL
t

are specified as in (6). To inform

the state space
:::::::::
state-space system of the structure of the carbon budget, we

:::
also

:
consider the model equations

yt =

2

664

kO,t

kL,t

kS,t

3

775=

2

664

SO
t
/Ct

SL
t
/Ct

(EANT
t

�Gt)/Ct

3

775=

2

664

TO
t

TL
t

TO
t
+TL

t

3

775+

2

664

✏(1)
t

✏(2)
t

✏(3)
t

3

775 . (17)5

Also this
:::
This

:
trivariate model equation can be cast in the state space

:::::::::
state-space

:
system (5)

:
as

::::
well. The model specification

has two independent trend processes of the form (6) for land and ocean sinks. The kS,t time series
::::
Since

::::::::::::::::
kS,t = kO,t + kL,t,:::

the

::::
time

:::::
series

:::
kS,t:of combined ocean and land sinks must therefore feature the sum of the two trend processes for the individual

sinks as its trend process.

The estimation results for these two model specifications are presented in Table 5. The residual diagnostic statistics N and10

DW are satisfactory, but we are particularly interested in the estimates of the slope parameters. It seems that most of the

decrease in the sink rate can be attributed to the land sink. The slope estimates of the trend driving the ocean sink rate are

very close to zero and not statistically different from zero
:::::::::
significant

::::::::
(p-values

::::::
0.5227

:::
and

:::::::
0.5168,

:::::::::::
respectively). On the other

hand, the slope estimates of the trend driving the land sink rate are negative for both specifications. In the first model (16),

we can reject the hypothesis that the slope of the trend driving the land sink rate is zero, in favor of the one-sided alternative15

H1 : � < 0 at a 95% confidence level
:::::::
(p-value

::
of
:::::::
0.0420). For the more informed model specification (17), the estimation

results are reported in Panel B of Table 5. We learn from this analysis
::::
Here

:::
we

:::
can

:::::
reject

:::
H0::

at
:
a
::::
90%

:::::::::
confidence

:::::
level

:::::::
(p-value

::
of

:::::::
0.0882).

:::::::
Further,

:::
the

::::::
results

:::::
show that the estimate of the slope parameter from the land sink rate is equal to the estimate

of the slope parameter from the combined sink rate as we have found it in Sect. 5, that is,
:
�̂ =�0.00014. In other words, it

appears that the slope in the land sink rate explains all of the slope in the
:::::::
decrease

::
in

:::
the

:
combined sink rate studied in the20

previous section .

In summary, the statistical evidence presented for the trivariate model is not as strong as we have presented for the model

of the combined sink rate in the previous section. For instance, if we would have conducted the two-sided test , as opposed to

the one-sided test in , on the basis of model specification , with the results presented in Panel A of Table 5, we could not have

rejected H0 : � = 0 in favor of H1 : � 6= 0. Nevertheless, the findings of this section provide some evidence that the
:
is

:::::::
entirely25

::::::::
explained

::
by

:::
the

:
decrease in the sink rate, as found in Sect. 5 above, is mainly driven by a decrease in the land sink rate.
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Table 5. Analysis of ocean and land sink rates

Panel A: Two trends, two observation series as in Eq. (16).

Parameter estimates Correlation matrix (✏) Diagnostics

b�✏ b�⌘
b� s.d

:
e.(b�) t-stat(b�) kO,t kL,t N R2

d
DW

kO,t 0.0001 0.00081 0.00001 0.00011 0.057 1.00 -1.00 4.839 0.0343 1.847

kL,t 0.0067 0.00015 -0.00010 0.00006 -1.728 -1.00 1.00 5.332 0.513 1.908

Panel B: Two trends, three observation series as in Eq. (17).

b�✏ b�⌘
b� s.d

:
e.(b�) t-stat(b�) kO,t kL,t kS,t N R2

d
DW

kO,t 0.0001 0.00081 0.00000 0.0001 0.0422 1.00 -0.122 -0.884 4.839 0.0343 1.916

kL,t 0.0068 0.00068 -0.00014 0.0001 -1.352 -0.122 1.00 0.572 4.054 0.494 1.989

kS,t 0.0065 - - - - -0.884 0.572 1.00 1.114 0.477 1.801

We report parameter estimates for standard deviations �(i)
✏ and �

(i)
⌘ , for i= 1,2,3, correlation matrix for ✏t, and slope coefficient � together with its

standard error (s.e.) and t-statistic (t-stat). We further report the normality (N ) test, the goodness-of-fit statistic R2
D

and the Durbin-Watson (DW ) test

statistic for serial correlation; for details see Table 1. In Panel B, we have two trends and two sets of trend cofficients (�⌘ and �) for kO,t and kL,t, the trend

for kS,t is a combination of the two, given the construction of model (17).

7 Discussion

Previous studies of the airborne fraction and the CO2 sink rate have focused on detecting a single linear and deterministic

trend in the data of the form a0 + a1t, where a0,a1 are constants (Canadell et al., 2007a; Le Quéré et al., 2009; Knorr, 2009;

Raupach et al., 2008, 2014). However, possible statistical difficulties in such analyses have been pointed out in Knorr (2009).

For instance, a linear regression analysis
::
of

:::
two

:::
or

::::
more

::::::::::::
non-stationary

::::::::
variables

:
can yield invalid inference if the data are5

non-stationary, e.g., if they contain trends (Granger and Newbold, 1974). The approach of this paper is to consider the data in a

state space
:::::::::
state-space system. In this way, non-stationary components are explicitly modelled as unobserved trend components

and inference is valid (e.g., Durbin and Koopman, 2012). Furthermore, the trend specification of the state space
:::::::::
state-space

system allows for both deterministic and stochastic trend components.

Further, several
::
In

::::
some

:::
of

:::
the

::::::::::::
“un-informed”

:::::::
models,

::
cf.

:::::
Table

::
1,

:::::
Panel

::
A

::
of

:::::
Table

::
2,

::::
and

:::::
Panel

::
A

::
of

:::::
Table

::
4,

:::
we

:::::::
estimate10

:::::::
�̂Slp > 0

::::
and,

:::::
thus,

::
in

:::::
these

:::::
cases,

:::
we

::::
find

::::::::
evidence

::
of

::::
the

::::
trend

::::::::::
component

:::::::
varying

::
in

:::::
time.

::::::::
However,

::
in
::::

our
::::::::::
“informed”

::::::
models

::::
with

:
a
::::::
single

::::
trend

::::::
object

:::
for

:::
two

:::::::::
alternative

::::
time

::::::
series,

:::
the

::::::::
extracted

:::::
trends

:::
are

:::::::::
practically

::::::::::::
deterministic,

:::
that

:::
is,

:::
the

:::::::
estimates

:::
of

::::
�Slp::

in
::::::

Panel
::
B

::
of

::::::
Tables

:
2
::::

and
::
4

:::
are

::::
near

:::::
zero,

::
cf.

::::
also

::::
Fig.

::
1
::::
and

::
2.

::
In

::::::::::
conclusion,

:::::
there

::
is

:::::::
evidence

::::
that

::
a

:::::
simple

:::::::::::
deterministic

:::::
trend

:::
fits

::::
both

:::
the

:::::::
airborne

:::::::
fraction

:::
and

:::
the

::::
sink

::::
rate

:::
data

:::::
well,

:::::::
although

::::
this

::::
only

::::::::
becomes

::::::
evident

:::::
when

:::::::::::
incorporating

:::
two

::::
data

::::
sets

::
for

:::::
each

::
of

::::
these

:::::::
objects.

:
15

::::::
Several

:
studies have highlighted the need for accounting for noise in measurements of climate-related data (Knorr, 2009;

Ballantyne et al., 2015). The state space
:::::::::
state-space approach explicitly incorporates such noise in the framework as well.

Ballantyne et al. (2015) argue that errors in EANT
t

might be autocorrelated. As shown in Tables 1 through 5, the diagnostic

statistics do not indicate that autocorrelated errors pose a serious problem
::
in

:::
our

::::::::::::
specifications. Nevertheless, the state space

:::::::::
state-space framework can incorporate autocorrelated errors in the measurement equation.20
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This paper considers data recorded at a yearly frequency, while many of the previous studies of the airborne fraction and the

sink rate use monthly data. The advantage of using monthly data is obvious: more observations. However, there are also some

downsides. For instance, while the CO2 concentration Ct (and therefore also the growth rate Gt) are recorded every month,

these data contain a strong seasonal component induced by the photosynthesis/respiration cycle of terrestrial vegetation. This

seasonality needs to be accounted for in some way; for instance, Raupach et al. (2014) smooth the data using a 15-month5

running mean. Conversely, some of the other data are recorded only yearly; for instance, the emissions data available to us,

EANT
t

, are reported at a yearly frequency. In this case Raupach et al. (2014) use linear interpolation to get monthly estimates

of emissions. Such transformations of the data, i.e., smoothing or interpolation, might introduce new and complicated errors

into the transformed data, possibly invalidating the analyses. For these reasons, we prefer to work with yearly data.

Why do we find statistical evidence of a decreasing CO2 sink rate but no evidence of an increasing airborne fraction when10

these two quantities are closely linked and the data going into
:::::::
entering the analyses are the same? It was noted in Gloor et al.

(2010) that the airborne fraction and the sink rate are actually not as closely linked as they
:::
may

:
seem prima facie. In particular,

an increasing airborne fraction does not necessarily imply a decreasing sink rate (Gloor et al., 2010, Section 8). Secondly, we

believe that the way the two quantities are defined makes the sink rate an easier object to study statistically. The idea
::
the

:::::::
concept

of an airborne fraction (and a sink fraction) appears to be a
:
is

:::
that

::
of

::
a long-term quantity: the airborne fraction should represent15

the amount of anthropogenically released CO2 that eventually stays in the atmosphere, after other fluxes have been taking
:::::
taken

into account. However, the ratio of the concurrent fluxes, i.e., Gt/EANT
t

, is likely a very noisy measurement of this object.

Also, as we saw above, it is reasonable to think that
:::::::
consider

:
sink fluxes, and therefore indirectly Gt, will depend

::
as

:::::::::
dependent

on the level of CO2 in the atmosphere (i.e., Ct =
P

Gt), which is not captured by the concurrent ratio Gt/EANT
t

. When study-

ing the airborne fraction, it would perhaps be more reasonable to study an object taking this cumulative nature into account, e.g.20
P

Gt/
P

EANT
t

= Ct/
P

EANT
t ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(in fact, such specifications were often considered in earlier parts of the literature, e.g. Keeling, 1973; Bacastow and Keeling, 1979; Oeschger and Heimann, 1983; Enting and Pearman, 1986)

. However, cumulative statistics of this type would present other difficulties. The dominance of the long-term history may mask

sudden changes, for example. These difficulties are even more pronounced when studying the sink fractions SF, OF, and LF:

observations such as SO
t
/EANT

t
are very noisy and since, as just discussed, St actually depends on Ct and generally not

directly on EANT
t

, this makes it difficult to interpret the results directly. In contrast, the sink rate St/Ct, as a flow-to-stock25

ratio, is immediately compatible with the underlying theory, at least as long as the linear approximation of Gloor et al. (2010)

::
the

::::::::::
relationship

::::::::
between

::
St:::

and
::::
Ct, ::::

such
::
as

:::
was

:::::
made

::
in

::::
e.g.

::::::::::::::::
Gloor et al. (2010)

::
and

:::::::::::::::::
Rayner et al. (2015),

:
is adequate.

In our “informed” models with a single trend object for two alternative time series, the extracted trends are practically

deterministic,
::::
What

:::
are

:::::::
possible

::::::::
physical

:::::::
reasons

:::
for

:::
the

:::::::
apparent

::::::::
decrease

::
in

:::
the

:::::
sink

::::
rate?

::::::::::::::
Raupach (2013)

:::::
argues

::::
that

::
a

::::::::
necessary

::::::::
condition

:::
for

:
a
:::::::
constant

::::
sink

::::
rate

::
is

:::
that

:::
the

::::::::
so-called

:::::::::
“LinExp”

:::::::::
assumption

::::::
holds,

:::
i.e.,

::::
that

:::
the

::::
sink

:::::
fluxes

:::
SO
t ::::

and30

:::
SL
t ::

are
::::::
linear

::
in

::::::::::::
concentrations

::
Ct:::::::

(“Lin”)
:::
and

::::
that

::::::::
emissions

:::::::
(EANT

t
)
:::::
grow

:::::::::::
exponentially

::::::::
(“Exp”).

::::::::
Constancy

:::
of

:::
the

:::::::
airborne

::::::
fraction

:::::
rests

::
on

::
a

::::::
similar

::::::::
“LinExp”

:::::::::
argument.

:::::
Since

:::
we

::::
find

::
no

::::::::
statistical

::::::::
evidence

::::
that

:::
the

:::::::
airborne

::::::::
fraction,

::::
AFt,::::

and
:::
the

:::::
ocean

::::
sink

::::
rate,

::::
kO,t,:::

are
:::::::::::
non-constant

::
in

::::
time,

::
it
::
is

:::::::
unlikely

:::
that

:::
the

::::::
“Exp”

::::::::::
assumption

:
is
:::::::
violated

::::
over

:::
the

::::::::::
observation

::::::
period

:::::::::
considered

::
in

:::
this

::::::
paper.

::
In

::::::::
contrast,

:
it
::::
was

:::::
found

::::::
above

:::
that

:::
the

:::::::::
efficiency

::
of

:::
the

::::
land

:::::
sink,

::::
kL,t,::

is
::::::::::
decreasing.

::
A

::::::::
plausible

:::::::::
explanation

::
of

:::::
these

:::::::
findings

::
is that is

::
the

:::::
“Lin”

::::::::::
assumption

::
no

::::::
longer

::::
holds

:::
for

:::
the

::::
land

::::
sink,

:::
for

:::::::
instance

:::::::
because

:::
the

::::::::
terrestrial35
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:::
sink

:::::
could

:::
be

::::::
slowly

::::::::
saturating

:::::::::::::::::::
(Canadell et al., 2007b)

:
.
::
In

::::::::
Appendix

::
A
:::
we

::::
give

::
a

::::::
formal

::::::::
argument

::
for

::::
how

::::
this

:::::
could

::::
lead

::
to

::
the

:::::::
findings

:::::::::::
documented

:::::
above.

:

:
It
::
is

:::::::
possible

::::
that

:::
the

:::::::
analyses

:::::::::
conducted

:::::
above

:::
are

:::::::::
influenced

::
by

:::::::
external

::::::
natural

::::::
events

::::
such

::
as

::::::
ENSO,

:::::::
volcanic

:::::::::
eruptions,

:::
and

:::
the

:::
like

:::::::::::::::::::
(Frölicher et al., 2013)

:
.
:::
The

::::::::::
state-space

::::::
system

::::
used

::
in

::::
this

:::::
paper

:::
can

::::::::
explicitly

:::::::
account

:::
for

::::
such

::::::
effects

:::::::
through

::
the

:::::::
additive

:::::
error

:::::
terms

::
✏t, the estimates of �Slp in Panel B of Tables 2 and 4 are near zero, cf. also Fig. 1 and 2. It is important5

to stress that our modeling framework for the trend component, as specified in , allows for the trend to vary stochastically

over time. However, we have not found strong evidence for a stochastic trend in our analyses. In contrast, in some of the

univariate models, cf. Table 1, Panel A of Table 2, and Panel A of Table 4, we estimate �̂Slp > 0 and, thus, in these cases
:::
Eq.

(5)
:
.
::
To

::::::
verify

:::
that

:::
the

::::::::
approach

::
is
::::::
indeed

::::::
robust

::
to

::::
such

:::::::
external

::::
and

::::::::
transitory

::::::
events,

:::
we

::::
have

::::
also

:::::::::
conducted

:::
our

::::::::
analyses

::::
using

::::::
5-year

:::::::
average

::::
data.

::::
The

:::::::
findings

::::
from

:::
the

::::::::
estimated

::::::::::
state-space

::::::
system

:::
for

::::
these

::::
time

::::::
series

::
of

:::::::
averages

:::::::
confirm

:::::
those10

:::::::
reported

:::::
above:

:::
In

:::
the

::::
joint

:::::::::
estimation, we find evidence

::
no

::::::::
statistical

::::::::
evidence

::
of

::
a

::::
trend

::
in

:::
the

::::::::
airborne

::::::
fraction

:::::::
(p-value

:
of

the trend component varying in time. This variability disappears, however, once we impose a common
:::::::
0.3214),

:::
and

:::
we

::
do

::::
find

::::::::
statistical

:::::::
evidence

::
of

::
a
:::::::::
decreasing trend in the models. In other words, there is evidence that a simple deterministic trend fits

the data well (both the
:::
sink

::::
rate

:::::::
(p-value

::
of

:::::::::
0.00064).

:::
We

::::::::
conclude

:::
that

:::
the

:::::::
findings

:::
of

:::
this

:::::
paper

:::
are

:::
not

:::::
likely

:::
to

::
be

::::::
driven

::
by

:::::::
external

::::::
natural

::::::
events

::::
such

::
as

::::::
ENSO

:::
and

::::::::
volcanic

::::::::
eruptions.

:::
We

::::
also

:::::::::
considered

:::
2-,

:::
3-,

:::
and

::::::
4-year

:::::::
averages

:::::
with

::::::
similar15

::::::
results.

:::
We

::::::
present

::::::
details

::
of

:::
this

:::::::
analysis

::
in
:::
the

:::::::::::::
Supplementary

:::::::
Material

::::
file.

::::
This

:::::
paper

::::::::
considers

::::
data

:::::::
recorded

::
at
::

a
::::::
yearly

:::::::::
frequency,

:::::
while

:::::
many

::
of

:::
the

::::::::
previous

::::::
studies

::
of

:::
the

:
airborne fraction and

the sink rate ), and therefore that allowing for time-variation in the trend is redundant.
:::
use

:::::::
monthly

:::::
data.

::::
The

:::::::::
advantage

::
of

:::::
using

:::::::
monthly

::::
data

::
is
::::::::
obvious:

:::::
more

:::::::::::
observations.

::::::::
However,

:::::
there

:::
are

::::
also

:::::
some

::::::::::::
disadvantages.

::::
For

:::::::
instance,

::::::
while

:::
the

::::
CO2 :::::::::::

concentration
:::
Ct::::

(and
::::::::
therefore

:::
also

:::
the

:::::::
growth

:::
rate

::::
Gt) :::

are
:::::::
recorded

:::::
every

::::::
month,

:::::
these

::::
data

::::::
contain

::
a
:::::
strong

::::::::
seasonal20

:::::::::
component

:::::::
induced

:::
by

:::
the

:::::::::::::::::::::
photosynthesis/respiration

:::::
cycle

::
of
:::::::::

terrestrial
:::::::::
vegetation.

::::
This

::::::::::
seasonality

:::::
needs

::
to
:::

be
:::::::::
accounted

::
for

::
in
:::::
some

::::
way;

:::
for

::::::::
instance,

::::::::::::::::::
Raupach et al. (2014)

::::::
smooth

:::
the

::::
data

:::::
using

:
a
::::::::
15-month

:::::::
running

:::::
mean.

:::
In

:::::::
contrast,

:::::
some

::
of

:::
the

::::
other

::::
data

:::
are

:::::::
recorded

::::
only

::::::
yearly;

:::
for

::::::::
instance,

::::::::
emissions

::::
data

::::::::
available

::
to

::
us,

:::::::
EANT

t
.
::
In

:::
this

:::::
case,

::::::::::::::::::
Raupach et al. (2014)

:::
use

:::::
linear

::::::::::
interpolation

:::
to

:::
get

:::::::
monthly

::::::::
estimates

::
of

:::::::::
emissions.

:::::
Such

:::::::::::::
transformations

::
of

:::
the

:::::
data,

:::
i.e.,

:::::::::
smoothing

::
or

::::::::::::
interpolation,

:::::
might

::::::::
introduce

::::
new

:::
and

:::::::::::
complicated

::::::
errors,

:::::::
possibly

::::::::::
invalidating

:::
the

::::::::
analyses.

::::
For

:::::
these

:::::::
reasons,

:::
we

:::::
prefer

:::
to

::::
work

:::::
with25

:::::
yearly

::::
data.

:

8 Conclusions

We have argued that the state space
:::::::::
state-space system can be a useful approach to analyze possible trends in the airborne

fraction of anthropogenically released CO2 and in the CO2 sink rate. We have shown that deterministic and stochastic trend

processes can be explicitly and jointly incorporated as unobserved components, allowing for a valid inference, even when the30

observed time series are non-stationary. The state space
:::::::::
state-space framework also allows for the incorporation of multiple

data sets for the same object, which can increase
::::::::
increases reliability of the resulting estimates.
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We estimate a positive, yet statistically insignificant, slope in the data for the airborne fraction. The sink rate exhibits

some evidence of a decreasing trend. Using two alternative time series as data
::
for

::::
the

::::
sink

:::
rate

:
and imposing a common

trendcomponent for both, we obtain a significantly negative deterministic trendslope in the sink rate.

:
. Our analyses support the conclusions as set out by Raupach et al. (2014): the rate at which the combined (ocean plus

land) sink takes up CO2 from the atmosphere seems to be decreasing. The best estimate resulting from our state space model5

:::::::::
state-space

::::::
system

:
is that the CO2 sink rate, and therefore the efficiency with which the combined land and ocean sink is

absorbing carbon from the atmosphere, is decreasing with
::
by

:
0.54% per year. We do not find evidence of this rate itself

changing over time.

Finally, there is tentative evidence that the decrease in the sink rate is mainly driven by a weakening uptake in the land sink.

::::
This

::::
could

:::
be

:::
the

::::
result

:::
of

:::::::::::
non-linearities

::
in
:::
the

::::::::
response

::
of

:::
the

::::::::
terrestrial

::::::
carbon

:::
sink

::
to

:::
the

::::
level

::
of

:::::::::::
atmospheric

::::::::::::
concentrations10

::
of

:::::
CO2.

::::
That

::
is,

::::::::
although

:::
the

::::
land

::::
sink

::
is
:::::
itself

:::::::::
increasing

:::
and

::::
thus

:::::::::
continuing

:::
to

::::
take

::
up

::
a
:::::
large

:::
part

:::
of

:::::::::::::::
anthropogenically

::::::
emitted

:::::
CO2,

::
as

::::
also

:::::
noted

:::::::
recently

:::
by

:::
e.g.

:::::::::::::::::
Rayner et al. (2015),

:::::::::::::::::
Keenan et al. (2016)

:
,
:::
and

:::::::::::::::::::::::::::
Fernández-Martínez et al. (2019)

:
,

::
the

::::
rate

::
of

:::
this

::::::
uptake

:::::::
appears

::
to

::
be

::::::::::
decreasing.

:
The statistical evidence for this is not strong, however, and we suggest that

additional research must be conducted to further investigate this question.
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Appendix A:
::::::
Linear

:::::::::::::
approximation

::
of

:::
the

:::::::
relation

::
of

:::::
land

::::
sink

:::
and

::::::::::::::
concentrations

::
In

:::
this

:::::::::
appendix,

:::
we

:::::
argue

::::
that

:::
the

:::::
levels

:::
of

::::::::::
atmospheric

::::::::::::
concentrations

:::
of

::::
CO2::::

may
:::::

have
::::
risen

:::
to

:
a
:::::

point
::::::
where

:
a
::::::

linear

::::::::
expansion

:::
of

:::
the

::::::::::
logarithmic

:::::::::::::::::::::::::
Bacastow and Keeling (1973)

:::::::
formula,

:::::::::
describing

:::
the

::::
flux

:::
of

::::
CO2::::

into
::::

the
::::
land

:::::
sink,

::
is

:::
no

:::::
longer

:::::::::
sufficient.

::::::::::::
Consequently,

:::
the

:::::
“Lin”

::::::::::
assumption

::
of

::::::::::::::
Raupach (2013)

:::::
might

::
be

:::::::
violated

:::
for

::::
the

::::
land

::::
sink,

::::::::
implying

::::
that

::::::::::
second-order

::::::
effects

::::
may

:::
be

::::::
driving

:::
the

:::::::
negative

:::::
slope

::
of

:::
the

::::
sink

:::
rate

::::
that

::
we

:::::::::
document

::
in

:::
this

::::::
paper.5

::::
From

::::
Eq. (4)

::
we

::::::
obtain

:::
the

::::::
relation

:

SL

t
= kL,t ·Ct,

::::::::::::

:::::
which

::::::
implies

::::
that

:::
the

:::
flux

::
of

:::::
CO2 ::

to
:::
the

:::
land

::::
sink

::
is

:::::
linear

::
in

:::
Ct,::::::

where
:::
kL,t::::::

would
::::
then

::
be

::::::
treated

::
as

::
a

:::::::
constant.

:::
On

:::
the

:::::
other

::::
hand,

::
a
:::::::::
decreasing

::::
kL,t:::::::

implies
:::
that

:::
the

:::::::::
efficiency

::::
with

:::::
which

::::
the

::::
land

::::
sink

::::::
absorbs

:::::
CO2 ::

is
:::::::::
decreasing,

::::
i.e.,

::::
that

:::
the

:::
flux

:::
of

::::
CO2 ::

to
:::
the

::::
land

::::
sink

::
is

:::::::::
non-linear

::
in

:::
Ct :::

and
:::
this

:::::::::::
non-linearity

::
is
:::::
such

:::
that

:::
the

:::::::::
efficiency

::
is

:::::::::
decreasing.

::::::
These

:::::::::
statements

:::
are10

::::::::
consistent

::::
with

:::::::::
simulation

::::::
results

:::::
from

::::::
climate

:::::
cycle

:::::::
models

::::::::::::::::::::::
(Friedlingstein et al., 2006)

:
.
::::
Here

:::
we

::::::::
illustrate

:::::::::::::
mathematically

:::
how

:::::
such

::::::::::::
non-linearities

:::
can

:::::
arise.

:::
The

::::::
precise

:::::::::::
relationship

:::::::
between

:::
SL
t ::::

and
::
Ct::::

still
::::::
alludes

:::
us

:::
but

::::::::::::::::::::::::
Bacastow and Keeling (1973)

:
,
::
p.

:::
94,

:::::::
suggest

::::
that

::
(in

::::
our

::::::::
notation):

SL

t
⇡ ↵ log(1+Ct/C0),

:::::::::::::::::::
15

:::::
where

::
↵

:
is
::
a

:::::::
constant

:::
and

:::::::::::
C0 = 591.30

:::
GtC

::
is

:::
the

::::::
amount

:::
of

::::
CO2 ::

in
::
the

::::::::::
atmosphere

::
in

:::::::::::
pre-industrial

::::::
times.

:::::
Using

:::
this

::::::::
function,

::
we

::::
can

::::
write

::
a

:::::::::::
second-order

:::::
Taylor

:::::::::
expansion

SL

t
⇡ ↵ log(1+Ct/C0)⇡ ↵

Ct

C0
� 1

2
↵

✓
Ct

C0

◆2

.
:::::::::::::::::::::::::::::::::::::

:::::
Thus,

:
if
:::
C0

::
is

::::
large

:::::::::
compared

::
to

:::
Ct,::::

this
::::::
implies

::::
that

:
a
:::::
linear

:::::::::::
specification

:::::::
between

:::
SL
t::::

and
:::
Ct ::

is
:::::::::
reasonable.

::::::::
However,

:::::
once

::
Ct::::::::

becomes
::::
large

:::::::::
compared

::
to

:::
C0,

:::
this

::::::
shows

:::
that

:::
the

:::::::::
estimated

::::
sink

:::
rate

::::
will

::
be

::::::
found

::
to

::
be

::::::::::
decreasing.

::
To

::::
see

:::
this,

::::
use

:::
the20

:::::
Taylor

:::::::::
expansion

::
to

::::
write

:

SL

t
::

⇡ kL,tCt,
::::::::

:::::
where

kL,t =
↵

C0
� 1

2

↵

C0

Ct

C0
:::::::::::::::::

:
is
:::::::::
decreasing

::
in

:::
Ct.::

In
:::
our

:::::
data,

::
we

::::
have

::::::::::
C1959 ⇡ 80

::::
GtC

:::
and

::::::::::
C2016 ⇡ 267

:::::
GtC,

:::::::
resulting

::
in

::::::::::::::
C1959/C0 ⇡ 14%

:::
and

:::::::::::::::
C2016/C0 ⇡ 45%.25

::
In

::::
other

::::::
words,

:::
the

:::::
linear

::::::::::::
approximation

::
to
:::
the

:::::::::
Bacastow

:::
and

:::::::
Keeling

:::::
model

:::
of

:::
the

:::
land

::::
sink

::::
flux

:::::
might

::::
have

:::::
been

:::::::::
reasonable

::
in

:::
the

::::
past,

:::::
since

:::::::::::::::
C1959/C0 ⇡ 14%,

:::
but

::
is

:::::
likely

::::::::::
misspecified

:::
in

:::
the

::::::
present,

:::::
since

:::::::::::::::
C2016/C0 ⇡ 45%.

::::
That

:::
is,

::
if

:::
this

::::::
model

::
is

:::::::
accurate,

::::
then

:
a
::::::::::
decreasing

:::::
(land)

::::
sink

:::
rate

::::::::
indicates

:::
that

:::
we

::::
have

:::::::
entered

:
a
::::::
regime

::
of

:::::::::::
atmospheric

::::
CO2 ::::::::::::

concentrations,
::::::
where

::
the

:::::
linear

:::::::::::::
approximation

:::::
breaks

:::::
down

::::
and

:::::
higher

:::::
order

:::::
terms

::::::
should

::
be

:::::
taken

::::
into

:::::::
account.
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