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Abstract. Is the fraction of anthropogenically released CO2 that remains in the atmosphere (the airborne fraction) increasing?

Is the rate at which the ocean and land sinks take up CO2 from the atmosphere decreasing? We analyze these questions by

means of a statistical dynamic multivariate model, from which we estimate the unobserved trend processes together with

the parameters that govern them. We show how the concept of a global carbon budget can be used to obtain two separate

data series measuring the same physical object of interest, such as the airborne fraction. Incorporating these additional data5

into the dynamic multivariate model increases the number of available observations, thus improving the reliability of trend

and parameter estimates. We find no statistical evidence of an increasing airborne fraction but we do find statistical evidence

of a decreasing sink rate. We infer that the efficiency of the sinks in absorbing CO2 from the atmosphere is decreasing at

approximately 0.54% per year.
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1 Introduction

A part of the anthropogenically released CO2 emitted to the atmosphere flows to the oceans (the ocean sink) and the terrestrial

biosphere (the land sink). Approximately 45% of released CO2 stays in the atmosphere (the airborne fraction), while the two

sinks take up approximately 24% and 31% of the CO2, respectively. (These percentages are calculated over the period 1959

to 2016 using the data described below, see e.g. Raupach et al., 2014, for similar estimates.) A key question is whether the15

airborne fraction is increasing or if it remains constant at around 45%. An increasing airborne fraction implies that the share

of anthropogenically released CO2 that ultimately remains in the atmosphere increases, and projections of future atmospheric

CO2 levels need to take this into account (Gloor et al., 2010). Closely related is the question whether the sinks will continue

taking up CO2 at the same rate (the sink rate) or if this rate is decreasing. A decreasing sink rate implies that the efficiency with

which ocean and land sinks are absorbing CO2 from the atmosphere is decreasing. Thus, analyzing the behavior of the sink20
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rate can help predict the future uptake of CO2 through the ocean and the land sink. The answers to the questions posed above

are important for our understanding of the global carbon cycle and are relevant for policy makers and the public in general.

A series of papers argue that the airborne fraction of anthropogenically released CO2 (mainly through fossil fuel emissions,

cement production, and land-use change) is increasing (Canadell et al., 2007a; Le Quéré et al., 2009; Raupach et al., 2008;

Rayner et al., 2015). Similarly, in Raupach et al. (2014) it is argued that, although the statistical evidence of an increasing5

airborne fraction is relatively weak, the evidence of a decreasing CO2 sink rate is clearer. However, the methods in these studies

have been criticized in, for example, Knorr (2009), Gloor et al. (2010), and Ballantyne et al. (2015). Indeed, by considering a

longer data set and incorporating uncertainties into the data, Knorr (2009) found that the conclusion of an increasing airborne

fraction was not warranted. Similarly, Ballantyne et al. (2015) argues that errors in the data can lead to erroneous conclusions

regarding possible trends in the airborne fraction and in the sink rate.10

In this paper, we address these statistical issues within the framework of a state-space system. It allows us to conduct statis-

tical inference by taking explicit account of stochastic and deterministic trends in the data, transient shocks to the data (coming

from, e.g., volcanic eruptions or strong El Niño events), and (potential) measurement errors. It also allows for the simultaneous

incorporation of multiple data sets for the same object, which can improve the estimation of trends and increase reliability of

parameter estimates. We find strong evidence for purely deterministic trends when we incorporate multiple measurements for15

the airborne fraction and the sink rate. These deterministic trends have a statistically significantly negative slope in the case of

the sink rate and an insignificant slope in the case of the airborne fraction. These findings corroborate earlier findings in the

literature, especially Raupach et al. (2014), but address the statistical concerns raised by Knorr (2009) and Ballantyne et al.

(2015), among others. Finally, by analyzing the ocean and land sink rates separately, we find no evidence of a decreasing ocean

sink rate but we do find evidence that the land sink rate is decreasing.20

The paper is organized as follows. In Sect. 2 we state the fundamental equations of the global carbon budget, the definitions

of the airborne fraction of anthropogenically released CO2, and the CO2 sink rate, which will motivate the specification of

the state-space system. Sect. 3 introduces the state-space system used in the paper. In Sect. 4 we conduct a trend analysis of

the airborne fraction within the proposed statistical framework. In Sect. 5 we carry out the corresponding analysis of the CO2

sink rate, and in Sect. 6 of the land and ocean sink rates separately. Sect. 7 discusses the results and Sect. 8 concludes. A25

Supplementary Material file is available online.

2 The global carbon budget

The so-called global carbon budget is defined as

EANTt =Gt +SOt +SLt , (1)

where EANTt is anthropogenically released CO2 into the atmosphere, Gt is growth of atmospheric CO2 concentration, SOt30

is the flux of CO2 from the atmosphere to the oceans (the ocean sink), and SLt is the flux of CO2 from the atmosphere to

the terrestrial biosphere (the land sink). In words, Eq. (1) states that emissions of CO2 should equal the fluxes of CO2 to the
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atmosphere, the ocean sink, and the land sink. We use the data set provided by The Global Carbon Project (Le Quéré et al.,

2018).1 All data are measured in gigatonnes of carbon (GtC) and are recorded at a yearly frequency, beginning in 1959 and

ending in 2016, resulting in 58 observations for each quantity in (1).

While the carbon budget is in principle always balanced for the physical quantities, in the sense that Eq. (1) always holds,

this might not be the case when inserting actual data for emissions and sinks, due to measurement errors in the data. For this5

reason, Le Quéré et al. (2018) introduce a residual term into the budget Eq. (1) to capture measurement error. It is denoted

BIMt for budget imbalance. Therefore, when considering actual data, the carbon budget is defined as

EANTt =Gt +SOt +SLt +BIMt . (2)

The sample mean of the budget imbalance over the observation period is not significantly different from zero and shows no

sign of a trend (Le Quéré et al., 2018). These facts are important in the developments below, since they motivate treating BIMt10

as part of an error term.

The growth rate in atmospheric CO2 data,Gt, is from Dlugokencky and Tans (2018), while the sink data, SOt and SLt , are av-

erages over several independent model-based estimates, constructed as explained in Le Quéré et al. (2018). The anthropogenic

emissions of CO2 can be decomposed in two parts:

EANTt = EFFt +ELUCt ,15

where EFFt are emissions from fossil fuel burning, cement production, and gas flaring, while ELUCt are emissions from land-

use change. Fossil fuel emissions, EFFt , are from Boden et al. (2018), while land-use change emissions, ELUCt , are averages

over the model-based estimates of Hansis et al. (2015) and Houghton and Nassikas (2017), updated as in Le Quéré et al. (2018).

The time series of concentrations (above preindustrial levels) of CO2 in the atmosphere is constructed as

Ct = 2.127 · ([CO2]1959− [CO2]1750) +

t∑
τ=1

Gτ ,20

where [CO2]1750 = 279 ppmv (parts per million volume) and [CO2]1959 = 315.39 ppmv are the concentrations of CO2 in the

atmosphere in 1750 and 1959, respectively; see Raupach et al. (2014). The number 2.127 is the conversion factor from ppmv

to GtC. In words, the atmospheric concentration Ct above pre-industrial levels is given by the initial value in 1959 plus the

cumulative sum of the growth in atmospheric CO2 concentrations Gt, which result from the budget equation (1).

We follow Raupach (2013) and Raupach et al. (2014) and define the airborne fraction as25

AFt =
Gt

EANTt

and the CO2 sink rate as

kS,t =
SOt +SLt

Ct
, (3)

1The data are available at http://www.globalcarbonproject.org/ and were downloaded on June 1st, 2018.
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which is the flux of CO2 from the atmosphere to the sinks (ocean plus land), normalized by the amount of CO2 (above

preindustrial levels) currently in the atmosphere. We can also consider the individual components of the sink rate for ocean and

land, which are given by

kO,t =
SOt
Ct

, kL,t =
SLt
Ct
, (4)

respectively, with kS,t = kO,t + kL,t.5

The airborne fraction and the sink rate are fundamentally different quantities. The airborne fraction AFt =Gt/E
ANT
t is the

ratio of the growth of atmospheric CO2 in period t to the amount of CO2 emitted in period t. It is thus a measure of the fraction

of emitted CO2 that stays in the atmosphere. In contrast, the sink rate kS,t = (SOt +SLt )/Ct is the ratio of the CO2 flux in the

sinks in period t to the total amount of CO2 in the atmosphere (above pre-industrial levels). By writing SOt +SLt = kS,tCt, we

can interpret the sink rate kS,t as the “efficiency”, with which CO2 flows from the atmosphere to the sinks, i.e. as the amount10

of CO2 going into the sinks for an extra unit of CO2 added to the atmosphere (Gloor et al., 2010; Raupach, 2013). We discuss

the relationship between the airborne fraction and the sink rate further in Sect. 7.

3 Trend model specification

In this section, we consider several models for the data generating process behind observations of the objects of interest defined

in Sect. 2. Common to all models is that they can be cast in a state-space system of the form:15

yt = Axt + ξt,

xt+1 = Bxt +κt,
t= 1, . . . ,n, (5)

where yt is a vector of observations at time t= 1, . . . ,n with time series length n, and the system matrices A and B have

appropriate dimensions. The vector xt is usually referred to as the state vector, which can include deterministic and stochastic

trends, and the error terms ξt and κt are both independent and identically distributed (iid) random vectors of appropriate

dimension and with mean zero. For example, when we need to model the airborne fraction alone, we have yt =AFt and the20

state-space system represents a univariate dynamic model for the airborne fraction. When modelling the ocean and land sink

rates jointly, we have yt = (kO,t , kL,t)
′, and the state-space system is a bivariate dynamic model. For given matrices A and

B, and under the assumption of mutually and serially uncorrelated Gaussian errors ξt and κt (with their respective variance

matrices Σξ and Σκ), the state-space system is a linear Gaussian model. In such regular cases, an analytic formulation for the

likelihood function is available and relies on the prediction error decomposition. Hence the parameters (variances and possibly25

covariances in Σξ and Σκ) can be estimated by the maximum likelihood method. It requires the numerical optimization of

the log-likelihood function that is evaluated via the Kalman filter. The resulting algorithm is initialized with specific starting

values; we use a diffuse initialization as outlined in Chapter 5 of Durbin and Koopman (2012). The smooth estimate of the

state process xt can also be obtained by means of the Kalman filter together with a smoothing algorithm. The extracted state is

effectively the conditional mean E(xt|y1, . . . ,yn;A,B,Σξ,Σκ), for t= 1, . . . ,n. Details of the state-space approach are given30

by Durbin and Koopman (2012), where both signal extraction and maximum likelihood estimation are discussed.
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Our baseline model is the local linear trend (LLT) model. For a univariate time series yt, we treat the underlying trend Tt as

a stochastic process given by

Tt+1 = Tt +β+ ηt, (6)

where β ∈ R is a fixed and unknown coefficient and ηt is an iid Gaussian random variable with mean zero and variance σ2
η .

The solution to the difference equation (6) is given as5

Tt+1 = T1 + tβ+

t−1∑
i=0

ηt−i, t= 1,2, . . . ,n− 1,

where T1 can be treated as a fixed unknown coefficient (intercept or constant) or as a random variable. The solution shows that

the trend component is made up of the starting value T1, a deterministic linear term with slope β, and a random walk component∑t−1
i=0 ηt−i. Thus, Tt can be interpreted as a long-term trend in the time series and β as the slope of the deterministic part of the

trend. We also considered a time-varying slope, βt, but found no evidence supporting this generalization in either the airborne10

fraction or the sink rate. The observation equation for yt is given by

yt = Tt + εt, (7)

where Tt is given by (6) and εt captures deviations of the observed time series from the unobserved trend component. The

deviations εt can be viewed as (i) actual (transient) disturbances of the physical systems arising from, for example, volcanic

eruptions and El Niño events, and/or (ii) measurement errors arising from the way the data are collected. The random variable15

εt is assumed to be iid Gaussian with mean zero and variance σ2
ε .

The local linear trend model can be cast in the state-space system (5) where vectors and matrices are defined as

xt =

 Tt

β

 , A=
[

1 0
]
, B =

 1 1

0 1

 , ξt = εt, κt =

 ηt

0

 ,
for t= 1, . . . ,n. The state vector xt consists of the two variables of interest: stochastic trend variable Tt and deterministic

slope variable β. The state-space methods as discussed above can treat such mixed compositions of the state vector. We have20

illustrated how the state-space system can be used for a univariate time series. In the next sections, we also consider trend

analyses based on multivariate time series models.

4 Trend analysis of the airborne fraction

It follows immediately from Eq. (2) that we can measure the airborne fraction AFt in two alternative ways:

AF
(1)
t =

GATMt

EANTt

, AF
(2)
t =

EANTt −SOt −SLt
EANTt

=AF
(1)
t + ξt, (8)25

where ξt =BIMt /EANTt , sinceEANTt −SOt −SLt =Gt+B
IM
t . Although the two quantities in (8) measure the same underlying

object (the airborne fraction AFt), they differ in practice, because of a non-zero budget imbalance, i.e. ξt 6= 0. Our statistical

analysis implies that ξt is a well-behaved zero-mean and covariance stationary error process.
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We consider our baseline local linear trend model of Sect. 3 for each of the objects, that is,

yt =AF
(i)
t = T

(i)
t + ε

(i)
t ,

for i= 1,2, where the trend T (i)
t is specified in (6) and with error ε(i)t . Table 1 reports the output of the estimation, using

the state-space system and the Kalman filter. The first part of Table 1 presents estimates of the standard deviations of the

observation error term ε
(i)
t and the trend error term η

(i)
t , as well as the estimate of the slope parameter β, including the5

estimated standard error (s.e.) of β̂ and the resulting t-statistic, t-stat = β̂ /s.e.(β̂). Based on these estimation results, we can

formally test hypotheses of the type

H0 : β = 0 against H1 : β 6= 0, (9)

or, more relevantly,

H0 : β = 0 against H1 : β > 0. (10)10

By using the normal approximation to the t-distribution and for a 95% confidence level, the critical value for the test (9) is

1.96, and for (10) it is 1.645. In case of the airborne fraction, we are interested in testing (10). It is evident from Table 1 that

we cannot rejectH0 in this case (p-values 0.2711 and 0.4042, respectively). In other words, although the estimate β̂ is positive,

we cannot conclude, statistically at 95% confidence, that the airborne fraction is increasing over time.

Table 1 also contains diagnostic statistics for the standardized prediction residual ut based on

yt−E(yt|y1, . . . ,yt−1;A,B,Σξ,Σκ),

for t= 1, . . . ,n, and where Σξ and Σκ are replaced by their respective maximum likelihood estimates. Under the assumption15

that the local linear trend model is correctly specified for the time series yt, the residuals ut are Gaussian iid; see Durbin

and Koopman (2012), p. 38. To verify these properties of ut empirically, we consider two residual diagnostic statistics: the

normality test statistic N of Jarque and Bera (1987) and the serial correlation test statistic DW of Durbin and Watson (1971).

As a goodness-of-fit statistic, we consider the R2
d which is a relative measure of model fit against a random walk model. The

statistic is defined in a similar way as the standard regression fit measure R2, we have20

R2
d = 1−

∑n
t=2u

2
t∑n

t=2[(yt− yt−1)−m]2
, m= (n− 1)−1

n∑
t=2

(yt− yt−1).

The reported diagnostic statistics and goodness-of-fit in Table 1 are satisfactory for the time series AF (1)
t and AF (2)

t . We may

conclude from these results that the local linear trend model (6)-(7) provides an adequate description of the dynamic features

in the time series. Since the AF (2)
t is well-described within our state-space framework, the extra error term ξt =BIMt /EANTt

in AF (2)
t , as introduced by the budget imbalance term in Eq. (8), is well-behaved. Hence the assumptions underlying the25

state-space system appear to be valid.
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Table 1. Univariate analysis of the airborne fraction

Parameter estimates Diagnostics

σ̂ε σ̂η β̂ s.e.(β̂) t-stat(β̂) N R2
d DW

AF
(1)
t 0.1357 0.0101 0.00109 0.00179 0.60934 0.274 0.442 1.829

AF
(2)
t 0.1353 0.0122 0.00049 0.00203 0.24246 2.324 0.489 1.991

We report parameter estimates for the standard deviations σε and ση , and slope coefficient β together with its standard error (s.e.) and t-statistic (t-stat). We

further report the normality (N ) test, the goodness-of-fit statistic R2
D and the Durbin-Watson (DW ) test statistic for serial correlation; all computed for the

standardized prediction errors ut which are obtained from the Kalman filter. The normality test N is the χ2 distributed, with 2 degrees of freedom, statistic

of Jarque and Bera (1987) with its 95% critical value of 5.99; the statistic relies on the sample estimates of skewness and kurtosis of ut. The goodness-of-fit

statistic R2
d is defined as 1−ESS/DSS where ESS =

∑n
t=2u

2
t and DSS =

∑n
t=2[(yt− yt−1)−m]2 with m= (n− 2)−1

∑n
t=2(yt− yt−1). The

Durbin-Watson DW test statistic is developed by Durbin and Watson (1971), where also its critical values are tabulated. If DW = 2 the sequence ut is

serially uncorrelated; if DW < 2 there is evidence that the errors ut are positively autocorrelated; if DW > 2 there is evidence that the errors ut are

negatively autocorrelated.

The state-space system allows both measures for the airborne fraction, AF (1)
t and AF (2)

t , to be included in a single model

with the purpose to improve the quality of the trend estimation and inference. We begin with an “uninformed” system using

two different trend components, T (1)
t and T (2)

t , both specified as (6), for the two time series. We have

yt =

AF (1)
t

AF
(2)
t

=

 GATMt /EANTt

1− (SOCEANt +SLANDt )/EANTt

=

T (1)
t

T
(2)
t

+

ε(1)t
ε
(2)
t

 , (11)

where the error terms ε(i)t , for i= 1,2, are correlated and their correlation coefficient can be estimated by the method of5

maximum likelihood together with the other parameters. The estimation results for this model are presented in Panel A of

Table 2. The main difference to Table 1 is the inclusion of the estimated correlation matrix for (ε
(1)
t , ε

(2)
t ). The diagnostic test

statistics are reasonable. In comparison with the univariate analysis, the goodness-of-fit values forR2
d are slightly higher for the

multivariate model. Hence we trust the model to be a good representation of the data. Furthermore, the slope is estimated to be

positive in both cases (that is β̂ > 0). However, when testing the null hypothesis given in (10), we cannot reject the hypothesis10

that the slopes are zero (p-values 0.3753 and 0.4895, respectively).

Since the two quantities in (8) are measuring the same object, the airborne fraction, we now force the state-space system to

recognize that these data are driven by the same underlying common trend, TAt , but with possibly different error terms ε(1)t and

ε
(2)
t . In other words, we consider15

yt =

AF (1)
t

AF
(2)
t

=

 GATMt /EANTt

1− (SOCEANt +SLANDt )/EANTt

=

TAt
TAt

+

ε(1)t
ε
(2)
t

 . (12)

The output of the estimation of this system is shown in Panel B of Table 2; the estimated common trend and the data are plotted

in Fig. 1. A slight deterioration of the diagnostic statistics is to be expected when introducing a common trend into the system,
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Table 2. Multivariate analysis of the airborne fraction

Parameter estimates Correlation matrix (ε) Diagnostics

Panel A: Two individual trends as in Eq. (11).

σ̂ε σ̂η β̂ s.e.(β̂) t-stat(β̂) AF (1) AF (2) N R2
d DW

AF (1) 0.1268 0.0333 0.00146 0.00459 0.31797 1.0000 0.7612 0.603 0.484 2.0152

AF (2) 0.1307 0.0274 0.00010 0.00383 0.02629 0.7612 1.0000 1.469 0.525 2.0853

Panel B: One common trend as in Eq. (12).

σ̂ε σ̂η β̂ s.e.(β̂) t-stat(β̂) AF (1) AF (2) N R2
d DW

AF (1) 0.1370 7.2e-09 0.00073 0.00095 0.77258 1.0000 0.5518 0.245 0.470 1.8722

AF (2) 0.1375 – – – – 0.5518 1.0000 2.573 0.516 1.9820

We report parameter estimates for the standard deviations σ(i)
ε and σ(i)

η , for i= 1,2, correlation matrix for εt, and slope coefficient β together with its

standard error (s.e.) and t-statistic (t-stat). We further report the normality (N ) test, the goodness-of-fit statistic R2
D and the Durbin-Watson (DW ) test

statistic for serial correlation; for details see Table 1. In Panel B, the trend cofficients (ση and β) for AF (2) are the same as for AF (1) given the construction

of model (12).

but the diagnostic statistics are still such that we can accept (12) as a plausible model. For the estimate of the slope β̂, we find

a larger t-statistic in absolute value than in the uninformed model, indicating that the restriction to the common trend increases

the precision of the estimates. An explanation of this finding is that the informed system has used twice as many observations

for estimating the trend compared to the uninformed system. The hypothesis test (10) reveals that the estimate of the slope

parameter, although again positive, is still not statistically different from zero (p-value 0.2199).5

Figure 1. Estimated trend TAt of the airborne fraction from Model (12).
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5 Trend analysis of the CO2 sink rate

In this section, we analyse the CO2 sink rate in the same way as the airborne fraction above. Analogously we can define two

alternative versions of the sink rate:

k
(1)
S,t =

SOt +SLt
Ct

, k
(2)
S,t =

EANTt −Gt
Ct

= k
(1)
S,t + ξt, (13)

where now ξt =BIMt /Ct and where we have used Eq. (2). As was the case for the airborne fraction, these two quantities are5

measuring the same underlying object (the sink rate, kS,t) but differ in practice because of a non-zero budget imbalance, i.e.

ξt 6= 0.

The basic (univariate) local linear trend model for each of these objects is then given by

yt = k
(i)
S,t = T

(i)
t + ε

(i)
t ,

for i= 1,2, where T (i)
t is specified as in (6). When the model is cast in the state-space system, the parameters can be estimated10

for each of the data series individually. The estimation results are presented in Table 3. The diagnostic statistics are satisfactory,

and we conclude again that the error term ξt =BIMt /Ct is well-behaved, in the sense that the assumptions underlying the state-

space system appear to be valid, also for the alternative sink rate data, k(2)S,t . Even though the estimates of the slopes are negative,

we cannot reject the null hypothesis of β = 0 (p-values 0.2233 and 0.0761, respectively). We still consider a one-sided test as

in (10) but now the relevant alternative hypothesis is H1 : β < 0.15

Table 3. Univariate analysis of the CO2 sink rate

Parameter estimates Diagnostics

σ̂ε σ̂η β̂ s.e.(β̂) t-stat(β̂) N R2
d DW

k
(1)
S 0.0066 8.8077e-04 -0.00010 0.00013 -0.76117 4.880 0.464 1.968

k
(2)
S 0.0063 6.3982e-04 -0.00015 0.00010 -1.43179 0.967 0.442 1.875

We report parameter estimates for the standard deviations σε and ση , and slope coefficient β together with its standard error (s.e.) and t-statistic (t-stat). We

further report the normality (N ) test, the goodness-of-fit statistic R2
D and the Durbin-Watson (DW ) test statistic for serial correlation; all computed for the

standardized prediction errors ut which are obtained from the Kalman filter; for details see Table 1.

Analogously to the airborne fraction above, these data can be put in a joint “uninformed” system with two different trend

components, and we have

yt =

k(1)S,t
k
(2)
S,t

=

 (SOt +SLt )/Ct

(EANTt −Gt)/Ct

=

T (1)
t

T
(2)
t

+

ε(1)t
ε
(2)
t

 , (14)

which can be compared with model (11). The estimation results for this model are reported in Panel A of Table 4. Although20

the slope estimates are negative, they are not significant (p-values 0.3106 and 0.1947, respectively).

9



Table 4. Multivariate analysis of the CO2 sink rate

Parameter estimates Correlation matrix (ε) Diagnostics

Panel A: Two individual trends as in Eq. (14).

σ̂ε σ̂η β̂ s.e.(β̂) t-stat(β̂) AF (1) AF (2) N R2
d DW

k
(1)
S 0.0064 0.0015 -0.00010 0.00020 -0.49406 1.0000 0.7733 3.348 0.511 2.0233

k
(2)
S 0.0060 0.0014 -0.00017 0.00020 -0.86071 0.7733 1.0000 1.365 0.488 2.0185

Panel B: One common trend as in Eq. (15).

σ̂ε σ̂η β̂ s.e.(β̂) t-stat(β̂) k
(1)
S k

(2)
S N R2

d DW

k
(1)
S 0.0068 4.1762e-09 -0.00014 0.00005 -2.99145 1.0000 0.5621 4.012 0.499 2.0276

k
(2)
S 0.0065 – – – – 0.5621 1.0000 0.090 0.474 1.7967

We report parameter estimates for the standard deviations σ(i)
ε and σ(i)

η , for i= 1,2, correlation matrix for εt, and slope coefficient β together with its

standard error (s.e.) and t-statistic (t-stat). We further report the normality (N ) test, the goodness-of-fit statistic R2
D and the Durbin-Watson (DW ) test

statistic for serial correlation; for details see Table 1. In Panel B, the trend cofficients (ση and β) for k(2)S are the same as for k(1)S given the construction of

model (15).

Finally, we consider the state-space system that imposes a common trend for both time series, TSt , that is

yt =

k(1)S,t
k
(2)
S,t

=

 (SOt +SLt )/Ct

(EANTt −Gt)/Ct

=

TSt
TSt

+

ε(1)t
ε
(2)
t

 , (15)

which can be compared with model (12). The estimation results are presented in Panel B of Table 4. Similar to the analysis

of the airborne fraction in the previous section, the diagnostic statistics are somewhat worse for the less flexible system with5

a common trend. However, the diagnostics are still satisfactory while the goodness-of-fit statistics have improved overall. The

estimate of the slope is

β̂ =−0.00014,

and this estimate is statistically significant: we reject the hypothesis H0 : β = 0 in favor of H1 : β < 0 at a 95% confidence

level (p-value 0.0014). The mean of the sink rate (calculated using either data set k(1)S or k(2)S ) is 0.0258. It follows that we10

estimate the sink rate to be decreasing with approximately 0.00014/0.0258 = 0.54% every year. The estimated trend and the

data are plotted in Fig. 2.

The state-space system is also well-suited for forecasting; see Durbin and Koopman (2012). Using model (15), we forecast

the sink rate 25 years ahead in time. The output is presented in Fig. 3. The downward trend in the forecasts is the result of the

negative estimate of β. Under current conditions, the forecast implies that in approximately 15 years, the sink rate will have15

declined to below 2%.

10



Figure 2. Estimated trend TSt of the CO2 sink rate from Model (15).
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Figure 3. Forecasting the CO2 sink rate based on Model (15).
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Figure 3. The blue solid line represents the data, while the red solid line represents the point forecasts from the Kalman filter with the

unknown parameters estimated by maximum likelihood. The dashed red lines are 95% confidence bands (±1 standard deviation) for the

forecasts.
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6 Trend analysis of the ocean and land sink rates

We may conclude from the analysis in the previous section that the combined (land plus ocean) sink rate appears to be de-

creasing. To investigate this finding in more detail, we study two alternative models, which consider the two sink variables

separately. The first model specifies local linear trends for ocean and land sink rates, i.e.,

yt =

kO,t
kL,t

=

SOt /Ct
SLt /Ct

=

TOt
TLt

+

ε(1)t
ε
(2)
t

 , (16)5

where the time series kO,t and kL,t are defined in (4) while the trend variables TOt and TLt are specified as in (6). To inform

the state-space system of the structure of the carbon budget, we also consider the model equations

yt =


kO,t

kL,t

kS,t

=


SOt /Ct

SLt /Ct

(EANTt −Gt)/Ct

=


TOt

TLt

TOt +TLt

+


ε
(1)
t

ε
(2)
t

ε
(3)
t

 . (17)

This trivariate model equation can be cast in the state-space system (5) as well. The model specification has two independent

trend processes of the form (6) for land and ocean sinks. Since kS,t = kO,t + kL,t, the time series kS,t of combined ocean and10

land sinks must feature the sum of the two trend processes for the individual sinks as its trend process.

The estimation results for these two model specifications are presented in Table 5. The residual diagnostic statistics N and

DW are satisfactory, but we are particularly interested in the estimates of the slope parameters. It seems that most of the

decrease in the sink rate can be attributed to the land sink. The slope estimates of the trend driving the ocean sink rate are very

close to zero and not statistically significant (p-values 0.5227 and 0.5168, respectively). On the other hand, the slope estimates15

of the trend driving the land sink rate are negative for both specifications. In the first model (16), we can reject the hypothesis

that the slope of the trend driving the land sink rate is zero, in favor of the one-sided alternativeH1 : β < 0 at a 95% confidence

level (p-value of 0.0420). For the more informed model specification (17), the estimation results are reported in Panel B of

Table 5. Here we can reject H0 at a 90% confidence level (p-value of 0.0882). Further, the results show that the estimate of the

slope parameter from the land sink rate is equal to the estimate of the slope parameter from the combined sink rate as in Sect.20

5, that is, β̂ =−0.00014. In other words, it appears that the decrease in the combined sink rate studied in the previous section

is entirely explained by the decrease in the land sink rate.

7 Discussion

Previous studies of the airborne fraction and the CO2 sink rate have focused on detecting a single linear and deterministic25

trend in the data of the form a0 + a1t, where a0,a1 are constants (Canadell et al., 2007a; Le Quéré et al., 2009; Knorr,

2009; Raupach et al., 2008, 2014). However, possible statistical difficulties in such analyses have been pointed out in Knorr

(2009). For instance, a linear regression analysis of two or more non-stationary variables can yield invalid inference (Granger

12



Table 5. Analysis of ocean and land sink rates

Panel A: Two trends, two observation series as in Eq. (16).

Parameter estimates Correlation matrix (ε) Diagnostics

σ̂ε σ̂η β̂ s.e.(β̂) t-stat(β̂) kO,t kL,t N R2
d DW

kO,t 0.0001 0.00081 0.00001 0.00011 0.057 1.00 -1.00 4.839 0.0343 1.847

kL,t 0.0067 0.00015 -0.00010 0.00006 -1.728 -1.00 1.00 5.332 0.513 1.908

Panel B: Two trends, three observation series as in Eq. (17).

σ̂ε σ̂η β̂ s.e.(β̂) t-stat(β̂) kO,t kL,t kS,t N R2
d DW

kO,t 0.0001 0.00081 0.00000 0.0001 0.0422 1.00 -0.122 -0.884 4.839 0.0343 1.916

kL,t 0.0068 0.00068 -0.00014 0.0001 -1.352 -0.122 1.00 0.572 4.054 0.494 1.989

kS,t 0.0065 - - - - -0.884 0.572 1.00 1.114 0.477 1.801

We report parameter estimates for standard deviations σ(i)
ε and σ(i)

η , for i= 1,2,3, correlation matrix for εt, and slope coefficient β together with its

standard error (s.e.) and t-statistic (t-stat). We further report the normality (N ) test, the goodness-of-fit statistic R2
D and the Durbin-Watson (DW ) test

statistic for serial correlation; for details see Table 1. In Panel B, we have two trends and two sets of trend cofficients (ση and β) for kO,t and kL,t, the trend

for kS,t is a combination of the two, given the construction of model (17).

and Newbold, 1974). The approach of this paper is to consider the data in a state-space system. In this way, non-stationary

components are explicitly modelled as unobserved trend components and inference is valid (e.g., Durbin and Koopman, 2012).

Furthermore, the trend specification of the state-space system allows for both deterministic and stochastic trend components.

In some of the “un-informed” models, cf. Table 1, Panel A of Table 2, and Panel A of Table 4, we estimate σ̂Slp > 0 and,

thus, in these cases, we find evidence of the trend component varying in time. However, in our “informed” models with a single5

trend object for two alternative time series, the extracted trends are practically deterministic, that is, the estimates of σSlp in

Panel B of Tables 2 and 4 are near zero, cf. also Fig. 1 and 2. In conclusion, there is evidence that a simple deterministic trend

fits both the airborne fraction and the sink rate data well, although this only becomes evident when incorporating two data sets

for each of these objects.

Several studies have highlighted the need for accounting for noise in measurements of climate-related data (Knorr, 2009;10

Ballantyne et al., 2015). The state-space approach explicitly incorporates such noise in the framework as well. Ballantyne et al.

(2015) argue that errors in EANTt might be autocorrelated. As shown in Tables 1 through 5, the diagnostic statistics do not

indicate that autocorrelated errors pose a serious problem in our specifications. Nevertheless, the state-space framework can

incorporate autocorrelated errors in the measurement equation.

Why do we find statistical evidence of a decreasing CO2 sink rate but no evidence of an increasing airborne fraction when15

these two quantities are closely linked and the data entering the analyses are the same? It was noted in Gloor et al. (2010) that the

airborne fraction and the sink rate are actually not as closely linked as they may seem prima facie. In particular, an increasing

airborne fraction does not necessarily imply a decreasing sink rate (Gloor et al., 2010, Section 8). Secondly, the concept of

an airborne fraction is that of a long-term quantity: the airborne fraction should represent the amount of anthropogenically

released CO2 that eventually stays in the atmosphere, after other fluxes have been taken into account. However, the ratio of the20

concurrent fluxes, i.e., Gt/EANTt , is likely a very noisy measurement of this object. Also, as we saw above, it is reasonable to

13



consider sink fluxes, and therefore indirectly Gt, as dependent on the level of CO2 in the atmosphere (i.e., Ct =
∑
Gt), which

is not captured by the concurrent ratioGt/EANTt . When studying the airborne fraction, it would perhaps be more reasonable to

study an object taking this cumulative nature into account, e.g.
∑
Gt/

∑
EANTt = Ct/

∑
EANTt (in fact, such specifications

were often considered in earlier parts of the literature, e.g. Keeling, 1973; Bacastow and Keeling, 1979; Oeschger and Heimann,

1983; Enting and Pearman, 1986). However, cumulative statistics of this type would present other difficulties. The dominance5

of the long-term history may mask sudden changes, for example. In contrast, the sink rate St/Ct, as a flow-to-stock ratio, is

immediately compatible with the underlying theory, at least as long as the linear approximation of the relationship between St

and Ct, such as was made in e.g. Gloor et al. (2010) and Rayner et al. (2015), is adequate.

What are possible physical reasons for the apparent decrease in the sink rate? Raupach (2013) argues that a necessary

condition for a constant sink rate is that the so-called “LinExp” assumption holds, i.e., that the sink fluxes SOt and SLt are10

linear in concentrations Ct (“Lin”) and that emissions (EANTt ) grow exponentially (“Exp”). Constancy of the airborne fraction

rests on a similar “LinExp” argument. Since we find no statistical evidence that the airborne fraction, AFt, and the ocean sink

rate, kO,t, are non-constant in time, it is unlikely that the “Exp” assumption is violated over the observation period considered

in this paper. In contrast, it was found above that the efficiency of the land sink, kL,t, is decreasing. A plausible explanation of

these findings is that the “Lin” assumption no longer holds for the land sink, for instance because the terrestrial sink could be15

slowly saturating (Canadell et al., 2007b). In Appendix A we give a formal argument for how this could lead to the findings

documented above.

It is possible that the analyses conducted above are influenced by external natural events such as ENSO, volcanic eruptions,

and the like (Frölicher et al., 2013). The state-space system used in this paper can explicitly account for such effects through

the additive error terms εt, cf. Eq. (5). To verify that the approach is indeed robust to such external and transitory events,20

we have also conducted our analyses using 5-year average data. The findings from the estimated state-space system for these

time series of averages confirm those reported above: In the joint estimation, we find no statistical evidence of a trend in the

airborne fraction (p-value of 0.3214), and we do find statistical evidence of a decreasing trend in the sink rate (p-value of

0.00064). We conclude that the findings of this paper are not likely to be driven by external natural events such as ENSO and

volcanic eruptions. We also considered 2-, 3-, and 4-year averages with similar results. We present details of this analysis in25

the Supplementary Material file.

This paper considers data recorded at a yearly frequency, while many of the previous studies of the airborne fraction and the

sink rate use monthly data. The advantage of using monthly data is obvious: more observations. However, there are also some

disadvantages. For instance, while the CO2 concentration Ct (and therefore also the growth rate Gt) are recorded every month,

these data contain a strong seasonal component induced by the photosynthesis/respiration cycle of terrestrial vegetation. This30

seasonality needs to be accounted for in some way; for instance, Raupach et al. (2014) smooth the data using a 15-month

running mean. In contrast, some of the other data are recorded only yearly; for instance, emissions data available to us, EANTt .

In this case, Raupach et al. (2014) use linear interpolation to get monthly estimates of emissions. Such transformations of the

data, i.e., smoothing or interpolation, might introduce new and complicated errors, possibly invalidating the analyses. For these

reasons, we prefer to work with yearly data.35
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8 Conclusions

We have argued that the state-space system can be a useful approach to analyze possible trends in the airborne fraction of

anthropogenically released CO2 and in the CO2 sink rate. We have shown that deterministic and stochastic trend processes can

be explicitly and jointly incorporated as unobserved components, allowing for valid inference, even when the observed time

series are non-stationary. The state-space framework also allows for the incorporation of multiple data sets for the same object,5

which increases reliability of the resulting estimates.

We estimate a positive, yet statistically insignificant, slope in the data for the airborne fraction. Using two alternative time

series for the sink rate and imposing a common trend, we obtain a significantly negative deterministic trend. Our analyses

support the conclusions as set out by Raupach et al. (2014): the rate at which the combined (ocean plus land) sink takes up

CO2 from the atmosphere seems to be decreasing. The best estimate resulting from our state-space system is that the CO2 sink10

rate, and therefore the efficiency with which the combined land and ocean sink is absorbing carbon from the atmosphere, is

decreasing by 0.54% per year. We do not find evidence of this rate itself changing over time.

Finally, there is tentative evidence that the decrease in the sink rate is mainly driven by a weakening uptake in the land sink.

This could be the result of non-linearities in the response of the terrestrial carbon sink to the level of atmospheric concentrations

of CO2. That is, although the land sink is itself increasing and thus continuing to take up a large part of anthropogenically15

emitted CO2, as also noted recently by e.g. Rayner et al. (2015), Keenan et al. (2016), and Fernández-Martínez et al. (2019),

the rate of this uptake appears to be decreasing. The statistical evidence for this is not strong, however, and we suggest that

additional research must be conducted to further investigate this question.
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Appendix A: Linear approximation of the relation of land sink and concentrations

In this appendix, we argue that the levels of atmospheric concentrations of CO2 may have risen to a point where a linear

expansion of the logarithmic Bacastow and Keeling (1973) formula, describing the flux of CO2 into the land sink, is no longer

sufficient. Consequently, the “Lin” assumption of Raupach (2013) might be violated for the land sink, implying that second-

order effects may be driving the negative slope of the sink rate that we document in this paper.5

From Eq. (4) we obtain the relation

SLt = kL,t ·Ct,

which implies that the flux of CO2 to the land sink is linear in Ct, where kL,t would then be treated as a constant. On the other

hand, a decreasing kL,t implies that the efficiency with which the land sink absorbs CO2 is decreasing, i.e., that the flux of

CO2 to the land sink is non-linear in Ct and this non-linearity is such that the efficiency is decreasing. These statements are10

consistent with simulation results from climate cycle models (Friedlingstein et al., 2006). Here we illustrate mathematically

how such non-linearities can arise.

The precise relationship between SLt and Ct still alludes us but Bacastow and Keeling (1973), p. 94, suggest that (in our

notation):

SLt ≈ α log(1 +Ct/C0),15

where α is a constant and C0 = 591.30 GtC is the amount of CO2 in the atmosphere in pre-industrial times. Using this function,

we can write a second-order Taylor expansion

SLt ≈ α log(1 +Ct/C0)≈ αCt
C0
− 1

2
α

(
Ct
C0

)2

.

Thus, if C0 is large compared to Ct, this implies that a linear specification between SLt and Ct is reasonable. However, once

Ct becomes large compared to C0, this shows that the estimated sink rate will be found to be decreasing. To see this, use the20

Taylor expansion to write

SLt ≈ kL,tCt,

where

kL,t =
α

C0
− 1

2

α

C0
Ct
C0

is decreasing in Ct. In our data, we have C1959 ≈ 80 GtC and C2016 ≈ 267 GtC, resulting in C1959/C0 ≈ 14% and C2016/C0 ≈25

45%. In other words, the linear approximation to the Bacastow and Keeling model of the land sink flux might have been

reasonable in the past, since C1959/C0 ≈ 14%, but is likely misspecified in the present, since C2016/C0 ≈ 45%. That is, if this

model is accurate, then a decreasing (land) sink rate indicates that we have entered a regime of atmospheric CO2 concentrations,

where the linear approximation breaks down and higher order terms should be taken into account.
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