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Abstract. Is the fraction of anthropogenically released CO2 that remains in the atmosphere increasing? Is the rate at which

the ocean and land sinks take up CO2 from the atmosphere decreasing? We analyze these questions by means of a statistical

dynamic multivariate model from which we estimate the unobserved trend processes together with the parameters that govern

them. By assuming a balanced global carbon budget, we obtain more than one data series to measure the same object (for

example, the airborne fraction). Incorporating these additional data into the dynamic multivariate model in effect increases the5

number of available observations, thus improving the reliability of parameter estimates. We find no statistical evidence of an

increasing airborne fraction but we do find statistical evidence of a decreasing sink rate. We infer that the efficiency of the sinks

to absorb CO2 from the atmosphere is decreasing at approximately 0.54% per year.

Copyright statement. TEXT

1 Introduction10

A part of the anthropogenically released CO2 emitted to the atmosphere flows to the oceans (the ocean sink) and the terrestrial

biosphere (the land sink). Approximately 45% of released CO2 stays in the atmosphere (the airborne fraction), while the

two sinks take up approximately 24% and 31% of the CO2, respectively. A key question is whether the airborne fraction is

increasing or if it remains constant at around 45%. Closely related is the question whether the sinks will continue taking up CO2

at the same rate (the sink rate) or if this rate is decreasing. The answers to these questions are important for our understanding15

of the global carbon cycle and consequently for policy makers and the public in general.

A series of papers argue that the airborne fraction of anthropogenically released CO2 (mainly through fossil fuel emissions,

cement production, and land-use change) is increasing (Canadell et al., 2007; Le Quéré et al., 2009; Raupach et al., 2008).

Similarly, in Raupach et al. (2014) it is argued that, although the statistical evidence of an increasing airborne fraction is

relatively weak, the evidence of a decreasing CO2 sink rate is clearer. However, the methods in these studies have been20
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criticized in, for example, Knorr (2009), Gloor et al. (2010), and Ballantyne et al. (2015). Indeed, by considering a longer

data set and incorporating uncertainties into the data, Knorr (2009) found that the conclusion of an increasing airborne fraction

was not warranted. Similarly, Ballantyne et al. (2015) argues that errors in the data can lead to erroneous conclusions regarding

possible trends in the airborne fraction and in the sink rate.

In this paper, we conduct a statistical analysis of the dynamics and interactions of anthropic emissions of CO2 and its uptake5

in the atmosphere, the oceans, and the terrestrial biosphere. We study both the airborne fraction and the CO2 sink rate. The

statistical problem is cast in a state space system, which we argue is well designed for the problem at hand. The state space

framework allows us to conduct statistical inference by taking explicit account of stochastic and deterministic trends in the

data, transient shocks to the data (coming from, e.g., volcanic eruptions or strong El Niño events), and (potential) measurement

errors. The state space system allows for the simultaneous incorporation of multiple data sets for the same object, which can10

improve estimation and increase reliability of parameter estimates. By assuming a balanced carbon budget (Le Quéré et al.,

2018), we obtain more than one data series of the same physical object of interest (e.g., the airborne fraction or the CO2 sink

rate). This seems particularly important in the context of the global carbon budget data considered here, which goes back only

to 1959.

The paper is organized as follows. In Sect. 2 we state the fundamental equations of the global carbon budget, the airborne15

fraction of anthropogenically released CO2, and the CO2 sink rate, which will motivate the specification of the state space

model. Sect. 3 introduces the state space models used in the paper. In Sect. 4 we conduct a trend analysis of the airborne

fraction. In Sect. 5 we carry out the corresponding analysis of the CO2 sink rate and in Sect. 6 of the land and ocean sink rates

separately. Sect. 7 discusses the results and Sect. 8 concludes.

2 The global carbon budget20

The so-called carbon budget is defined as

EANTt =Gt +SOt +SLt , (1)

where EANTt is anthropogenically released CO2 into the atmosphere, Gt is growth of atmospheric CO2 concentration, SOt is

the flux of CO2 from the atmosphere to the oceans (the ocean sink), and SLt is the flux of CO2 from the atmosphere to the

terrestrial biosphere (the land sink). We use the data set provided by The Global Carbon Project (Le Quéré et al., 2018).1 The25

growth rate in atmospheric CO2 data, Gt, is thus from Dlugokencky and Tans (2018), while the sink data, SOt and SLt , are

averages over several independent model-based estimates, constructed as explained in Le Quéré et al. (2018). All data are given

in gigatonnes of carbon (GtC) and are recorded at a yearly frequency, beginning in 1959 and ending in 2016, resulting in 58

observations for each quantity in (1).

The anthropogenic emissions of CO2 are defined as30

EANTt = EFFt +ELUCt ,

1The data are available at http://www.globalcarbonproject.org/ and were downloaded on June 1st, 2018.
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based where EFFt is emissions from fossil fuel burning, cement production, and gas flaring, while ELUCt is emissions from

land-use change. The former data, EFFt , are from Boden et al. (2018), while the latter data, ELUCt , are averages over the

model-based estimates of Hansis et al. (2015) and Houghton and Nassikas (2017), updated as in Le Quéré et al. (2018). The

time series of concentrations (above preindustrial levels) of CO2 in the atmosphere is constructed as

Ct = 2.127 · ([CO2]1959− [CO2]1750) +
t∑

τ=1

Gτ ,5

where [CO2]1750 = 279 ppmv (parts per million volume) and [CO2]1959 = 315.39 ppmv are the concentrations of CO2 in the

atmosphere in 1750 and 1959, respectively; see Raupach et al. (2014). The number 2.127 is the conversion factor from ppmv

to GtC.

In words, Eq. (1) states that emissions of CO2 should equal the fluxes of CO2 to the atmosphere, the ocean sink, and the

land sink. The term Gt is a growth rate per unit time, and sometimes it is written in the continuous time version as10

Gt =
dCt
dt

.

While the carbon budget is in principle always balanced, in the sense that Eq. (1) always holds, this might not be the case

when inserting actual data for emissions and sinks, due to measurement errors in the data. The residual term is referred to as

the budget imbalance by Le Quéré et al. (2018) and is denoted by BIMt . Therefore, when considering actual data, the carbon

budget is defined as15

EANTt =Gt +SOt +SLt +BIMt . (2)

We follow Raupach et al. (2014) and define the airborne fraction

AFt =
Gt

EANTt

and the sink fraction

SFt =
SOt +SLt
EANTt

= 1−AFt,20

where the second equality assumes that BIMt is equal to zero. These fractions are for the anthropogenically released CO2 that

stays in the atmosphere (AFt) and in the combined sink of ocean plus land (SFt). One can also consider the ocean and land

sinks separately and define the ocean and land fractions as

OFt =
SOt

EANTt

, LFt =
SLt

EANTt

,

respectively, with SFt =OFt +LFt.25

Following Raupach (2013) and Raupach et al. (2014), we further consider the CO2 sink rate which is defined at time t by

kS,t =
SOt +SLt

Ct
, (3)
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which is the flux of CO2 from the atmosphere into the sinks (ocean plus land), normalized by the amount of CO2 (above

preindustrial levels) currently in the atmosphere. Using a simplifying linear specification, Gloor et al. (2010) interprets the

variable kS,t as a “sink efficiency”.

From the global carbon budget (1), it follows that the sink efficiency kS,t can alternatively be written as

kS,t =
EANTt −Gt

Ct
. (4)5

We can also consider the individual components of the sink rate for ocean and land which are given by

kO,t =
SOt
Ct

, kL,t =
SLt
Ct
, (5)

respectively, with kS,t = kO,t + kL,t.

3 Trend model specification

In this section, we consider several models for the data generating process behind observations of the objects of interest defined10

in Sect. 2. Common to all models is that they can be cast in a state space system of the form:

yt = Axt + ξt,

xt+1 = Bxt +κt,
t= 1, . . . ,n, (6)

where yt is a vector of observations at time t= 1, . . . ,n with time series length n, the system matrices A and B have appro-

priate dimensions, the vector xt is usually referred to as the state vector which can include deterministic and stochastic trends,

and the error terms ξt and κt are both independent and identically distributed (iid) random vectors of appropriate dimension15

and with mean zero. For example, when we need to model the airborne fraction alone, we have yt =AFt and the state space

system represents a univariate dynamic model for the airborne fraction. When modelling the ocean and land fractions jointly,

we have yt = (OFt , LFt)′ and the state space system is for a bivariate dynamic model. For given matrices A and B, and

under the assumption of mutually and serially uncorrelated Gaussian errors ξt and κt (with their respective variance matrices

Σξ and Σκ), the state space system is a linear Gaussian model. In such regular cases, an analytic formulation for the like-20

lihood function is avaiable and relies on the prediction error decomposition. Hence the parameters (variances and possibly

covariances in Σξ and Σκ) can be estimated by the maximum likelihood method. It requires the numerical optimization of the

log-likelihood function that is evaluated via the Kalman filter. The smooth estimate of the state process xt can also be obtained

by means of the Kalman filter together with a smoothing algorithm. The extracted state is effectively the conditional mean

E(xt|y1, . . . ,yn;A,B,Σξ,Σκ), for t= 1, . . . ,n. Details of the state space approach to time series modeling, including the sta-25

tistical treatment of the initial state x1, are given by Durbin and Koopman (2012) where both signal extraction and maximum

likelihood estimation are discussed.
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Our baseline model is the local linear trend (LLT) model with a fixed and unknown growth (or slope) coefficient.2 For a

univariate time series yt, we treat the underlying trend Tt as a stochastic process given by

Tt+1 = Tt +β+ ηt, (7)

where β ∈ R is a fixed and unknown coefficient and ηt is an iid Gaussian random variable with mean zero and variance σ2
η .

The solution to the difference equation (7) is given as5

Tt+1 = T1 + tβ+
t−1∑

i=0

ηt−i, t= 1,2, . . . ,n− 1,

where T1 can be treated as a fixed unknown coefficient (intercept or constant) or as a random variable. It shows that the trend

component is made up of the starting value T1, a deterministic linear term with slope β, and the random walk component
∑t−1
i=0 ηt−i. In this way, Tt can be interpreted as a long-term trend in the time series and β as the slope of the deterministic part

of the trend. The observation equation for yt is given by10

yt = Tt + εt, (8)

where Tt is given by (7) and εt captures deviations of the observed time series from the unobserved trend component. The

deviations εt can be viewed as (i) actual (transient) disturbances of the physical systems arising from, for example, volcanic

eruptions and El Niño events, and/or (ii) measurement errors arising from the way the data are collected.3 The random variable

εt is assumed to be iid Gaussian with mean zero and variance σ2
ε .15

The local linear trend model can be cast in the state space system (6) where vectors and matrices are defined as

xt =


 Tt

β


 , A=

[
1 0

]
, B =


 1 1

0 1


 , ξt = εt, κt =


 ηt

0


 ,

for t= 1, . . . ,n. The state vector xt consists of the two variables of interest: stochastic trend variable Tt and deterministic

slope variable β. The state space methods as discussed above can treat such mixed compositions of the state vector. We have

illustrated how the state space system can be used for a univariate time series. In the next sections, we also consider trend20

analyes based on multivariate time series models.

4 Trend analysis of the airborne fraction

When we assume that the carbon budget is balanced, see the discussion in Sect. 2, for all time periods t= 1, . . . ,n, we can

measure the airborne fraction AFt in two alternative ways:

AF
(1)
t =

GATMt

EANTt

, AF
(2)
t = 1−SFt = 1− SOt +SLt

EANTt

. (9)25

2We also considered a time-varying slope but found no evidence supporting this generalization in either the airborne fraction or the sink rate.
3See Ballantyne et al. (2015) for the importance of accounting for measurement errors in the data.
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Although these two quantities measure the same underlying object (the airborne fraction AFt), they may differ when we

consider the actual data; see also Eq. (2). We consider our baseline local linear trend model of Sect. 3 for each of the objects,

that is

yt =AF
(i)
t = T

(i)
t + ε

(i)
t ,

for i= 1,2, where the trend T (i)
t is specified in (7) and with error ε(i)t . Table 1 reports the output of the estimation, using5

the state space system and the Kalman filter. The first part of Table 1 presents estimates of the standard deviations of the error

terms ε and η, as well as the estimate of the slope parameter β, including the estimated standard deviation of β̂ and the resulting

t-statistic, t-stat = β̂

s.d.(β̂)
. Based on these estimation results, we can formally test hypotheses of the type

H0 : β = 0 against H1 : β 6= 0, (10)

or, more relevantly,10

H0 : β = 0 against H1 : β > 0. (11)

By using the normal approximation to the t-distribution and for a 95% confidence level, the critical value for the test (10) is

1.96, and for (11) it is 1.645. In case of the airborne fraction, we are interested in testing (11). It is evident from Table 1 that

we cannot reject H0 in this case. In other words, although the estimate β̂ is positive, we cannot conclude, statistically at 95%

confidence, that the airborne fraction is increasing over time.15

Table 1 also contains diagnostic statistics for the standardized prediction residual ut based on yt−E(yt|y1, . . . ,yt−1;A,B,Σξ,Σκ),

for t= 1, . . . ,n, and where Σξ and Σκ are replaced by their respective maximum likelihood estimates. Under the assumption

that the local linear trend model is correctly specified for the time series yt, the residuals ut are Gaussian iid; see (Durbin

and Koopman, 2012, p.38). To verify these properties of ut empirically, we consider two residual diagnostic statistics: the

normality test statistic N of Jarque and Bera (1987) and the serial correlation test statistic DW of Durbin and Watson (1971).20

As a goodness-of-fit statistic, we consider the R2
d which is a relative measure of model fit against a random walk model. The

statistic is defined in a similar way as the standard regression fit measure R2, we have

R2
d = 1−

∑n
t=2u

2
t∑n

t=2[(yt− yt−1)−m]2
, m= (n− 1)−1

n∑

t=2

(yt− yt−1).

The reported diagnostic statistics and goodness-of-fit in Table 1 are satisfactory for the time series AF (1)
t and AF (2)

t . We may

conclude from these results that the local linear trend model (7)-(8) provides an adequate description of the dynamic features25

in the time series.

The state space system allows both measures for the airborne fraction, AF (1)
t and AF (2)

t , to be included in a single model

with the purpose to improve the quality of the trend estimation and inference. We begin with an “uninformed” system using

6
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Table 1. Univariate analysis of the airborne fraction

Parameter estimates Diagnostics

σ̂ε σ̂η β̂ s.e.(β̂) t-stat(β̂) N R2
d DW

AF
(1)
t 0.1357 0.0101 0.00109 0.00179 0.60934 0.274 0.442 1.829

AF
(2)
t 0.1353 0.0122 0.00049 0.00203 0.24246 2.324 0.489 1.9905

We report parameter estimates for the standard deviations σε and ση , and slope coefficient β together with its standard error (s.e.) and t-statistic (t-stat). We

further report the normality (N ) test, the goodness-of-fit statistic R2
D and the Durbin-Watson (DW ) test statistic for serial correlation; all computed for the

standardized prediction errors ut which are obtained from the Kalman filter. The normality test N is the χ2 distributed, with 2 degrees of freedom, statistic

of Jarque and Bera (1987) with its 95% critical value of 5.99; the statistic relies on the sample estimates of skewness and kurtosis of ut. The goodness-of-fit

statistic R2
d is defined as 1−ESS/DSS where ESS =

∑n
t=2u

2
t and DSS =

∑n
t=2[(yt− yt−1)−m]2 with m= (n− 2)−1

∑n
t=2(yt− yt−1). The

Durbin-Watson DW test statistic is developed by Durbin and Watson (1971), where also its critical values are tabulated. If DW = 2 the sequence ut is

serially uncorrelated; if DW < 2 there is evidence that the errors ut are positively autocorrelated; if DW > 2 there is evidence that the errors ut are

negatively autocorrelated.

two different trend components, T (1)
t and T (2)

t , both specified as (7), for the two time series, we have

yt =


AF

(1)
t

AF
(2)
t


 =


 GATMt /EANTt

1− (SOCEANt +SLANDt )/EANTt


 =


T

(1)
t

T
(2)
t


 +


ε

(1)
t

ε(2)


 , (12)

where the error terms ε(i)t , for i= 1,2, are correlated and its correlation coefficient can be estimated by the method of maximum

likelihood together with the other parameters. The estimation results for this model are presented in Panel A of Table 2. The

main difference to Table 1 is the inclusion of the estimated correlation matrix for (ε(1)t , ε
(2)
t ). The diagnostic test statistics are5

reasonable. In comparison with the univariate analysis, the goodness-of-fit values forR2
d are slightly higher for the multivariate

model. Hence we trust the model to be a good representation of the data. Furthermore, the slope is estimated to be positive in

both cases (that is β̂ > 0), indicating an increasing airborne fraction. However, when testing the null hypothesis given in (11),

we cannot reject the hypothesis that the slopes are zero.

10

Since the two quantities in (9) are measuring the same object, the airborne fraction, we now force the state space system to

recognize that these data are driven by the same underlying common trend, TAt say, but with possibly different error terms ε(1)t
and ε(2)t . In other words, we consider

yt =


AF

(1)
t

AF
(2)
t


 =


 GATMt /EANTt

1− (SOCEANt +SLANDt )/EANTt


 =


T

A
t

TAt


 +


ε

(1)
t

ε(2)


 . (13)

The output of the estimation of this system is shown in Panel B of Table 2; the estimated common trend and the data are15

plotted in Fig. 1. A slight deterioration of the diagnostic statistics is to be expected when introducing a common trend into the

system, but the diagnostic statistics are still such that we can accept (13) as a plausible model. For the estimate of the slope

β̂, we find a larger t-statistic in absolute value than in the uninformed model, indicating the restriction to the common trend
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Table 2. Multivariate analysis of the airborne fraction

Parameter estimates Correlation matrix (ε) Diagnostics

Panel A: Two individual trends as in Eq. (12).

σ̂ε σ̂η β̂ s.e.(β̂) t-stat(β̂) AF (1) AF (2) N R2
d DW

AF (1) 0.1268 0.0333 0.00146 0.00459 0.31797 1.0000 0.7612 0.603 0.484 2.0152

AF (2) 0.1307 0.0274 0.00010 0.00383 0.02629 0.7612 1.0000 1.469 0.525 2.0853

Panel B: One common trend as in Eq. (13).

σ̂ε σ̂η β̂ s.e.(β̂) t-stat(β̂) AF (1) AF (2) N R2
d DW

AF (1) 0.1370 7.2e-09 0.00073 0.00095 0.77258 1.0000 0.5518 0.245 0.470 1.8722

AF (2) 0.1375 – – – – 0.5518 1.0000 2.573 0.516 1.9820

We report parameter estimates for the standard deviations σ(i)
ε and σ(i)

η , for i= 1,2, correlation matrix for εt, and slope coefficient β together with its

standard error (s.e.) and t-statistic (t-stat). We further report the normality (N ) test, the goodness-of-fit statistic R2
D and the Durbin-Watson (DW ) test

statistic for serial correlation; for details see Table 1. In Panel B, the trend cofficients (ση and β) for AF (2) are the same as for AF (1) given the construction

of model (13).

increases the precision of the estimates. An explanation of this finding is that the informed system in effect has used twice as

many observations for estimating the trend, when compared to the uninformed system. The hypothesis test (11) reveals that the

estimate of the slope parameter, although again positive, is still not statistically different from zero.

Figure 1. Estimated trend TAt of the airborne fraction from Model (13).
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5 Trend analysis of the CO2 sink rate

In this section, we analyse the CO2 sink rate in the same way as the airborne fraction above. The definition of the sink rate is5

given in Eq. (3). The assumption of a balanced carbon budget provides the alternative definition (4). As a result we can now
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define two alternative versions of the sink rate:

k
(1)
S,t =

SOt +SLt
Ct

, k
(2)
S,t =

EANTt −Gt
Ct

.

Our basic (univariate) local linear trend model for each of these objects is then given by

yt = k
(i)
S,t = T

(i)
t + ε

(i)
t ,

for i= 1,2, where T (i)
t is specified as in (7). When the model is cast in the state space system, the parameters can be estimated5

for each of the data series individually. The estimation results are presented in Table 3. The diagnostic statistics are again

satisfactory. Although we do have negative estimates of the slopes, we cannot reject the null hypothesis of β = 0. We still

consider a one-sided test as in (11) but now the relevant alternative hypothesis is H1 : β < 0.

Table 3. Univariate analysis of the CO2 sink rate

Parameter estimates Diagnostics

σ̂ε σ̂η β̂ s.e.(β̂) t-stat(β̂) N R2
d DW

k
(1)
S 0.0066 8.8077e-04 -0.00010 0.00013 -0.76117 4.880 0.464 1.968

k
(2)
S 0.0063 6.3982e-04 -0.00015 0.00010 -1.43179 0.967 0.442 1.875

We report parameter estimates for the standard deviations σε and ση , and slope coefficient β together with its standard error (s.e.) and t-statistic (t-stat). We

further report the normality (N ) test, the goodness-of-fit statistic R2
D and the Durbin-Watson (DW ) test statistic for serial correlation; all computed for the

standardized prediction errors ut which are obtained from the Kalman filter; for details see Table 1.

Similar to the airborne fraction above, these data can be put in a joint “uninformed” system with two different trend compo-10

nents, and we have

yt =


k

(1)
S,t

k
(2)
S,t


 =


 (SOt +SLt )/Ct

(EANTt −Gt)/Ct


 =


T

(1)
t

T
(2)
t


 +


ε

(1)
t

ε(2)


 , (14)

which can be compared with model (12). The estimation results for this model are reported in Panel A of Table 4. Although

the slope estimates are negative, they are not significantly negative.

15

Finally, we consider the state space system that imposes a common trend for both time series, TSt say, that is

yt =


k

(1)
S,t

k
(2)
S,t


 =


 (SOt +SLt )/Ct

(EANTt −Gt)/Ct


 =


T

S
t

TSt


 +


ε

(1)
t

ε(2)


 , (15)

which can be compared with model (13). The estimation results are presented in Panel B of Table 4. Similar to our analysis

of the airborne fraction in the previous section, the diagnostic statistics are somewhat worse for our less flexible system with
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Table 4. Multivariate analysis of the CO2 sink rate

Parameter estimates Correlation matrix (ε) Diagnostics

Panel A: Two individual trends as in Eq. (14).

σ̂ε σ̂η β̂ s.e.(β̂) t-stat(β̂) AF (1) AF (2) N R2
d DW

k
(1)
S 0.0064 0.0015 -0.00010 0.00020 -0.49406 1.0000 0.7733 3.348 0.511 2.0233

k
(2)
S 0.0060 0.0014 -0.00017 0.00020 -0.86071 0.7733 1.0000 1.365 0.488 2.0185

Panel B: One common trend as in Eq. (15).

σ̂ε σ̂η β̂ s.d.(β̂) t-stat(β̂) k
(1)
S k

(2)
S N R2

d DW

k
(1)
S 0.0068 4.1762e-09 -0.00014 0.00005 -2.99145 1.0000 0.5621 4.012 0.499 2.0276

k
(2)
S 0.0065 – – – – 0.5621 1.0000 0.090 0.474 1.7967

We report parameter estimates for the standard deviations σ(i)
ε and σ(i)

η , for i= 1,2, correlation matrix for εt, and slope coefficient β together with its

standard error (s.e.) and t-statistic (t-stat). We further report the normality (N ) test, the goodness-of-fit statistic R2
D and the Durbin-Watson (DW ) test

statistic for serial correlation; for details see Table 1. In Panel B, the trend cofficients (ση and β) for k(2)
S are the same as for k(1)

S given the construction of

model (15).

a common trend. However, the diagnostics are still satisfactory while the goodness-of-fit statistics have improved overall. Our

estimate of the slope is

β̂ =−0.00014,

and this estimate is statistically significant: we reject the hypothesis H0 : β = 0 in favor of H1 : β < 0 at a 95% confidence

level. The mean of the sink rate (calculated using either data set k(1)
S or k(2)

S ) is 0.0258. It follows that we estimate the sink rate5

to be decreasing with approximately 0.00014/0.0258 = 0.54% every year. The estimated trend and the data are plotted in Fig.

2.

The state space system is also well-suited for forecasting; see Durbin and Koopman (2012). The output of the forecasting

exercise for the sink rate is presented in Fig. 3 where we forecast the sink rate 25 years ahead in time. The decreasing nature

of the forecasts is clearly visible.10

6 Trend analysis of the ocean and land sink rates

We may conclude from the analysis in the previous section that the combined (land plus ocean) sink rate appears to be de-

creasing. To verify this finding in more detail, we can consider the two sink variables separately. The analysis can be done

simultaneously based on the model

yt =


kO,t
kL,t


 =


S

O
t /Ct

SLt /Ct


 =


T

O
t

TLt


 +


ε

(1)
t

ε(2)


 , (16)15
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Figure 2. Estimated trend TSt of the CO2 sink rate from Model (15).
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Figure 3. Forecasting the CO2 sink rate based on Model (15).
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Figure 3. The blue solid line represents the data, while the red solid line represents the point forecasts from the Kalman filter with the unkown

parameters estimated by maximum likelihood. The dashed red lines are 68.3% confidence bands (±1 standard deviation) for the forecasts.
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where the time series kO,t and kL,t are defined in (5) while the trend variables TOt and TLt are specified as in (7). To inform

the state space system of the structure of the carbon budget, we consider the model equations

yt =




kO,t

kL,t

kS,t


 =




SOt /Ct

SLt /Ct

(EANTt −Gt)/Ct


 =




TOt

TLt

TOt +TLt


 +




ε
(1)
t

ε(2)

ε(3)


 . (17)

Also this trivariate model equation can be cast in the state space system (6). The model specification has two independent

trend processes of the form (7) for land and ocean sinks. The kS,t time series of combined ocean and land sinks must therefore5

feature the sum of the two trend processes for the individual sinks as its trend process.

The estimation results for these two model specifications are presented in Table 5. The residual diagnostic statistics N and

DW are satisfactory, but we are particularly interested in the estimates of the slope parameters. It seems that most of the

decrease in the sink rate can be attributed to the land sink. The slope estimates of the trend driving the ocean sink rate are very

close to zero and not statistically different from zero. On the other hand, the slope estimates of the trend driving the land sink10

rate are negative for both specifications. In the first model (16), we can reject the hypothesis that the slope of the trend driving

the land sink rate is zero, in favor of the one-sided alternative H1 : β < 0 at a 95% confidence level. For the more informed

model specification (17), the estimation results are reported in Panel B of Table 5. We learn from this analysis that the estimate

of the slope parameter from the land sink rate is equal to the estimate of the slope parameter from the combined sink rate as

we have found it in Sect. 5, that is β̂ =−0.00014. In other words, it appears that the slope in the land sink rate explains all of15

the slope in the combined sink rate studied in the previous section.

In summary, the statistical evidence presented for the trivariate model is not as strong as we have presented for the model of

the combined sink rate in the previous section. For instance, if we would have conducted the two-sided test (10), as opposed to

the one-sided test in (11), on the basis of model specification (16), with the results presented in Panel A of Table 5, we could

not have rejected H0 : β = 0 in favor of H1 : β 6= 0. Nevertheless, the findings of this section provide some evidence that the20

decrease in the sink rate, as found in Sect. 5 above, is mainly driven by a decrease in the land sink rate.

7 Discussion

Previous studies of the airborne fraction and the CO2 sink rate have focused on detecting a single linear and deterministic trend

in the data of the form a0 +a1t, where a0,a1 are constants (Canadell et al., 2007; Le Quéré et al., 2009; Knorr, 2009; Raupach25

et al., 2008, 2014). However, possible statistical difficulties in such analyses have been pointed out in Knorr (2009). For in-

stance, a linear regression analysis can yield invalid inference if the data are non-stationary, e.g., if they contain trends (Granger

and Newbold, 1974). The approach of this paper is to consider the data in a state space system. In this way, non-stationary

components are explicitly modelled as unobserved trend components and inference is valid (e.g., Durbin and Koopman, 2012).

Furthermore, the trend specification of the state space system allows for both deterministic and stochastic trend components.30
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Table 5. Analysis of ocean and land sink rates

Panel A: Two trends, two observation series as in Eq. (16).

Parameter estimates Correlation matrix (ε) Diagnostics

σ̂ε σ̂η β̂ s.d.(β̂) t-stat(β̂) kO,t kL,t N R2
d DW

kO,t 0.0001 0.00081 0.00001 0.00011 0.057 1.00 -1.00 4.839 0.0343 1.847

kL,t 0.0067 0.00015 -0.00010 0.00006 -1.728 -1.00 1.00 5.332 0.513 1.908

Panel B: Two trends, three observation series as in Eq. (17).

σ̂ε σ̂η β̂ s.d.(β̂) t-stat(β̂) kO,t kL,t kS,t N R2
d DW

kO,t 0.0001 0.00081 0.00000 0.0001 0.0422 1.00 -0.122 -0.884 4.839 0.0343 1.916

kL,t 0.0068 0.00068 -0.00014 0.0001 -1.352 -0.122 1.00 0.572 4.054 0.494 1.989

kS,t 0.0065 - - - - -0.884 0.572 1.00 1.114 0.477 1.801

We report parameter estimates for standard deviations σ(i)
ε and σ(i)

η , for i= 1,2,3, correlation matrix for εt, and slope coefficient β together with its

standard error (s.e.) and t-statistic (t-stat). We further report the normality (N ) test, the goodness-of-fit statistic R2
D and the Durbin-Watson (DW ) test

statistic for serial correlation; for details see Table 1. In Panel B, we have two trends and two sets of trend cofficients (ση and β) for kO,t and kL,t, the trend

for kS,t is a combination of the two, given the construction of model (17).

Further, several studies have highlighted the need for accounting for noise in measurements of climate-related data (Knorr,

2009; Ballantyne et al., 2015). The state space approach explicitly incorporates such noise in the framework as well. Ballantyne

et al. (2015) argue that errors in EANTt might be autocorrelated. As shown in Tables 1 through 5, the diagnostic statistics

do not indicate that autocorrelated errors pose a serious problem. Nevertheless, the state space framework can incorporate

autocorrelated errors in the measurement equation.5

This paper considers data recorded at a yearly frequency, while many of the previous studies of the airborne fraction and the

sink rate use monthly data. The advantage of using monthly data is obvious: more observations. However, there are also some

downsides. For instance, while the CO2 concentration Ct (and therefore also the growth rate Gt) are recorded every month,

these data contain a strong seasonal component induced by the photosynthesis/respiration cycle of terrestrial vegetation. This

seasonality needs to be accounted for in some way; for instance, Raupach et al. (2014) smooth the data using a 15-month10

running mean. Conversely, some of the other data are recorded only yearly; for instance, the emissions data available to us,

EANTt , are reported at a yearly frequency. In this case Raupach et al. (2014) use linear interpolation to get monthly estimates

of emissions. Such transformations of the data, i.e., smoothing or interpolation, might introduce new and complicated errors

into the transformed data, possibly invalidating the analyses. For these reasons, we prefer to work with yearly data.

Why do we find statistical evidence of a decreasing CO2 sink rate but no evidence of an increasing airborne fraction when15

these two quantities are closely linked and the data going into the analyses are the same? It was noted in Gloor et al. (2010) that

the airborne fraction and the sink rate are actually not as closely linked as they seem prima facie. In particular, an increasing

airborne fraction does not necessarily imply a decreasing sink rate (Gloor et al., 2010, Section 8). Secondly, we believe that the

way the two quantities are defined makes the sink rate an easier object to study statistically. The idea of an airborne fraction

(and a sink fraction) appears to be a long-term quantity: the airborne fraction should represent the amount of anthropogenically20

released CO2 that eventually stays in the atmosphere, after other fluxes have been taking into account. However, the ratio of the
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concurrent fluxes, i.e., Gt/EANTt , is likely a very noisy measurement of this object. Also, as we saw above, it is reasonable to

think that sink fluxes, and therefore indirectly Gt, will depend on the level of CO2 in the atmosphere (i.e., Ct =
∑
Gt), which

is not captured by the concurrent ratio Gt/EANTt . When studying the airborne fraction, it would perhaps be more reasonable

to study an object taking this cumulative nature into account, e.g.
∑
Gt/

∑
EANTt = Ct/

∑
EANTt . However, cumulative

statistics of this type would present other difficulties. The dominance of the long-term history may mask sudden changes, for5

example. These difficulties are even more pronounced when studying the sink fractions SF, OF, and LF: observations such

as SOt /E
ANT
t are very noisy and since, as just discussed, St actually depends on Ct and generally not directly on EANTt ,

this makes it difficult to interpret the results directly. In contrast, the sink rate St/Ct, as a flow-to-stock ratio, is immediately

compatible with the underlying theory, at least as long as the linear approximation of Gloor et al. (2010) is adequate.

In our “informed” models with a single trend object for two alternative time series, the extracted trends are practically10

deterministic, that is, the estimates of σSlp in Panel B of Tables 2 and 4 are near zero, cf. also Fig. 1 and 2. It is important to

stress that our modeling framework for the trend component, as specified in (7), allows for the trend to vary stochastically over

time. However, we have not found strong evidence for a stochastic trend in our analyses. In contrast, in some of the univariate

models, cf. Table 1, Panel A of Table 2, and Panel A of Table 4, we estimate σ̂Slp > 0 and, thus, in these cases, we find evidence

of the trend component varying in time. This variability disappears, however, once we impose a common trend in the models.15

In other words, there is evidence that a simple deterministic trend fits the data well (both the airborne fraction and the sink

rate), and therefore that allowing for time-variation in the trend is redundant.

8 Conclusions

We have argued that the state space system can be a useful approach to analyze possible trends in the airborne fraction of

anthropogenically released CO2 and in the CO2 sink rate. We have shown that deterministic and stochastic trend processes can20

be explicitly and jointly incorporated as unobserved components, allowing for a valid inference, even when the observed time

series are non-stationary. The state space framework also allows for the incorporation of multiple data sets for the same object,

which can increase reliability of the resulting estimates.

We estimate a positive, yet statistically insignificant, slope in the data for the airborne fraction. The sink rate exhibits some

evidence of a decreasing trend. Using two alternative time series as data and imposing a common trend component for both,25

we obtain a significantly negative deterministic trend slope in the sink rate.

Our analyses support the conclusions as set out by Raupach et al. (2014): the rate at which the combined (ocean plus land)

sink takes up CO2 from the atmosphere seems to be decreasing. The best estimate resulting from our state space model is that

the CO2 sink rate, and therefore the efficiency with which the combined land and ocean sink is absorbing carbon from the

atmosphere, is decreasing with 0.54% per year. We do not find evidence of this rate itself changing over time.30

Finally, there is tentative evidence that the decrease in the sink rate is mainly driven by a weakening uptake in the land sink.

The statistical evidence for this is not strong, however, and we suggest that additional research must be conducted to further

investigate this question.
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