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Abstract. The evolution o f eutrophication parameters (i.e., nutrients and phytoplankton biomass) during recent decades was 

examined in coastal waters of the Vilaine Bay (VB, France) in relation to those in the Loire and Vilaine Rivers. Dynamic 15 

Linear Models were used to study long-term trends and seasonality of dissolved inorganic nutrient and chlorophyll a 

concentrations (Chl a) in rivers and coastal waters. For the period 1997-2013, the reduction in dissolved riverine inorganic 

phosphorus concentrations (DIP) led to the decrease in their Chl a levels. However, while dissolved inorganic nitrogen 

concentrations (DIN) decreased only slightly in the Vilaine, they increased in the Loire, specifically in summer. 

Simultaneously, phytoplankton in the VB underwent profound changes with increase in b iomass and change in the timing of 20 

the annual peak from spring to  summer. The increase in  phytoplankton biomass in  the VB, manifested particularly by 
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increased summer diatom abundances, was due to enhanced summer DIN loads from the Loire, sustained by internal 

regeneration of DIP and dissolved silicate (DSi) from sediments. The long-term trajectories of this case study provide a more 

evidence that significant reduction of P inputs without simultaneous N abatement was not yet sufficient to control 

eutrophication all along the Loire/Vilaine – VB continuum. Upstream rivers reveal ind ices of recoveries following the 

significant diminution of P, while eutrophication continues to increase downstream, especially during the period of N 5 

limitat ion. More N input reduction, paying particular attention to diffuse N-sources, is required to control eutrophication in 

receiving VB coastal waters. Internal benthic DIP and DSi recycling appears to have contributed to the worsening of summer 

VB water quality, augmenting the effects of anthropogenic DIN inputs. For this coastal ecosystem, nutrient management 

strategies should consider the internal nutrient loads in counteracting decreased external inputs. 

Keywords : eutrophication, phytoplankton, internal nutrient loads, dual nutrient reductions, Vilaine Bay, Dynamic Linear 10 

Models 

1 Introduction 

Anthropogenic eutrophication is widely regarded as one of the major p roblems affecting both inland and coastal aquatic 

ecosystems (Downing, 2014). The increase in phytoplankton biomass is the most common symptom of eutrophication 

among the myriad responses of aquatic ecosystems to anthropogenic inputs of nitrogen (N) and phosphorus (P) (Cloern, 15 

2001; Glibert  et al., 2011). Since the beginning of the 1990s, measures to reduce nutrient inputs in European rivers were 

more effective for P, originating largely from point sources, than for N, coming mainly from diffuse sources  (Grizzetti et al., 

2012). However, this strong imbalance between N and P input reduction  still led to substantial decrease in phytoplankton 

biomass in many European rivers (Istvánovics and Honti, 2012; Romero et al., 2013). Th is result is consistent with the idea 
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that P universally limits primary productivity in many freshwater ecosystems (Correll, 1999). Thus, reducing P inputs, and 

not N, can mitigate eutrophication of freshwater ecosystems (Schindler et al., 2008; Schindler et al., 2016).  

Despite significant P input reduction, eutrophication persists in some rivers (Neal et al., 2010; Bowes et al., 2012; Jarv ie et 

al., 2013), and particularly in downstream coastal ecosystems, where the primary productivity is often limited by N (Ryther 

and Dunstan, 1971; Howarth and Marino, 2006; Paerl, 2018). As freshwater systems drain into coastal waters (Vannote et 5 

al., 1980; Bouwman et al., 2013), the efficient P reduction without simultaneous N abatement may result in more N being 

transported downstream, where it  can exacerbate eutrophication problems in coastal ecosystems, delaying  recovery (Paerl et 

al., 2004), for example the Neuse River Estuaries (Paerl et al., 2004), the Chesapeake Bay (Harding et al., 2016), Belg ian 

coastal waters (Lancelot et al., 2007), and the Seine Bay (Romero et al., 2013). Despite more than 20 years of nutrient 

reduction implementation in European freshwater ecosystems, including rivers (e.g., Nitrates Direct ive, 91/676/EEC; Urban 10 

Waste Water Treatment Directive, 91/271/EEC), little measurable progress has been observed in many European coastal 

waters (EEA, 2017; OSPAR, 2017). 

The Loire River, alongside the Vilaine River, are among these major European rivers whose phytoplankton biomass and P 

concentrations have decreased since the early 1990s , but with minor, if any, simultaneous diminution in N concentrations 

(Romero et al., 2013; Minaudo et al., 2015). Affected by the Loire and Vilaine river runoff (Guillaud et al., 2008;  Gohin, 15 

2012; Ménesguen et al., 2018b), the Vilaine Bay (VB) is one of the European Atlantic coastal ecosystems most sensitive to 

eutrophication (Chapelle et  al., 1994;  Ménesguen et al., 2014, 2019) . The VB coastal waters are classified as a problem area 

due to elevated phytoplankton biomass, according to the criteria established within OSPAR (OSPAR, 2017) and the 

European Water Framework Directive (Ménesguen et al., 2018b). However, there is little information on how eutrophication 
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parameters have evolved in the VB over the past 20 years  in the light of eutrophication mitigation in the Loire and Vilaine 

Rivers. An approach taking into account seasonal variations is required as phytoplankton in many coastal ecosystems , such 

as the coastal waters off the Loire and Vilaine Rivers , is often limited by P in spring and by N in summer (Lunven et al., 

2005; Loyer et al., 2006).  

In temperate coastal waters, diatoms and dinoflagellates constitute the two dominant phytoplankton classes (Sournia, 1982; 5 

Sournia et al., 1991). In term of nutrient requirements, the balance between these classes is controlled by silica  (Si) 

availability. Increased inputs in N and P (and not Si) in aquatic ecosystems can lead to limitation in diatom biomass due to 

lack of dissolved silicate (Conley et al., 1993). Therefore, increasing eutrophication may favor the development of non -

siliceous algae, such as dinoflagellates and harmful species (Billen and Garnier, 2007; Lancelot et al., 2007; Howarth et al., 

2011). 10 

The present study investigated the long-term evolution (trend and seasonality) of eutrophication parameters (dissolved 

inorganic nutrient concentrations and phytoplankton biomass) in the VB coastal waters, in relation to those in the Loire and 

the Vilaine between 1980 and 2013, using Dynamic Linear Models. This long-term ecosystem-scale analysis provided an 

opportunity to test the hypothesis that eutrophication trajectories in the downstream VB coastal waters during recent decades 

have been influenced by those in the Loire and Vilaine Rivers. We aim to establish the link between fresh and marine water 15 

trajectories and highlight the impact of nutrient reduction strategies in rivers on coastal water quality.  
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2 Material and Methods 

2.1 Sites 

The Loire is the longest and widest river in France (1,012 km) with a watershed of 117,000 km
2
, while the Vilaine watershed 

is only 10
th

 the size, with an area of 10,800 km
2
 (Fig. 1). Their catchment areas are dominated by agricultural activ ity, 

together sustaining two-thirds of the national livestock and half the cereal production (Bouraoui and Grizzetti, 2008; 5 

Aquilina et al., 2012). The Arzal dam, 8 km from the mouth of the Vilaine, was constructed in 1970 to regulate freshwater 

discharge and prevent saltwater intrusion (Train i et al., 2015). The two studied rivers , especially the Loire, are the main 

nutrient sources in the northern Bay of Biscay, including VB (Guillaud et al., 2008; Ménesguen et al., 2018a).  

The VB, average depth 10 m, is located under direct influence of these two rivers  (Fig. 1). The Loire river plume tends to 

spread north-westward with a dilution of 20 to 100-fold by the time it reaches the VB (Ménesguen and Dussauze, 2015; 10 

Ménesguen et al., 2018b). The ECO-MARS3D model estimates that the Loire constitutes >60% of VB DIN concentrations 

during flood regimes and from 20 to 40% during low discharge periods (Gohin, 2012;  M. Plus, Ifremer Brest, pers. comm.). 

The Vilaine river plume tends to spread throughout the bay before moving westward (Chapelle et al., 1994). 

The water residence time in the VB varies between 10 and 20 days depending on the season and tends to be longer during 

calm periods (Clément, 1986; Chapelle, 1991), with tidal ranges varying between 4 and 6 m (Merceron, 1985). The water 15 

circulat ion is characterized by low tidal and residual currents, driven mainly by tides, winds and river flows (Lazure and 

Salomon, 1991;  Lazure and Jegou, 1998). During periods of prevailing winds, particularly from south-west and west, the 

water co lumn of the VB is subjected to vertical mixing, which can  lead sometimes to sediment resuspension and high 
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turbidity (Goubert et al., 2010). Except during winter and period of high hydrodynamic act ivity, phytoplankton production in 

the VB is not limited by light (Guillaud et al., 2008). 

2.2 Long-term monitoring dataset: Rivers and VB  

The Loire-Brittany River Basin Authority (http://osur.eau-loire-bretagne.fr/exportosur/Accueil) furn ished dissolved 

inorganic nutrients and phytoplankton biomass data (dissolved inorganic phosphorus concentrations, DIP; dissolved 5 

inorganic n itrogen concentrations, DIN, d issolved silicate concentrations, DSi and ch lorophyll a concentrations, Chl a) in 

rivers, at pre-estuarine stations located closest to the river mouth upstream of the haline intrusion (Fig. 1). DIN was defined 

as the sum of nitrate, nit rite and ammonium, with nitrate as the major component (>90%). Sainte -Luce-sur-Loire on the 

Loire and Rieux on the Vilaine provided DIP, DIN and Chl a, measured monthly since the 1980s. For Sainte-Luce-sur-Loire, 

the influence of tidal dynamics was avoided by discarding data collected during high tide. Monthly DSi data were available 10 

from 2002 at Montjean-sur-Loire on the Loire and at Férel on the Vilaine (Fig. 1). 

In order to calculate riverine nutrient loads, gauging stations located close to the river mouth were selected. River d ischarge 

data were ext racted from the French hydrologic “Banque Hydro” da tabase (http://www.hydro.eaufrance.fr/). For the Loire, 

river d ischarge measurements at Montjean-sur-Loire were used due to the absence of data at Sainte-Luce-sur-Loire. For the 

Vilaine, daily discharge data were available at Rieux from the 1980s. DIN and DIP loads from rivers were calculated using 15 

averaged monthly discharge and individual monthly nutrient concentrations (Romero et al., 2013).  

Nutrient and Chl a concentrations, plus phytoplankton count data in the VB, p rovided by the French National Observation 

Network for Phytoplankton and Hydrology in coastal waters (REPHY, 2017), were collected from Ouest Loscolo station 

http://osur.eau-loire-bretagne.fr/exportosur/Accueil
http://www.hydro.eaufrance.fr/
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(Fig. 1). This station is representative of the VB coastal waters (Gohin, 2011;  Bizzozero et al., 2018;  Ménesguen et al., 2019)  

and displayed the longest dataset (from 1983 for phytoplankton counts and 1997 for nutrient and Chl a concentrations). 

Acquisition periods, sampling frequencies and methods of analysis are detailed in Table S1. Briefly, nutrient concentrations 

were measured manually or automatically in flow analysis using standard colorimetric methods with fluorimetry or 

photometry detection. Chlorophyll a concentrations (Chl a) were measured with either spectrophotometry or fluorimetry. 5 

Microscopic quantitative micro-phytoplankton analyses in coastal waters were conducted on Lugol-fixed samples and 

counted according to Utermöhl (1958). Phytoplankton identification and counts were carried out fo r organis ms whose size is 

>20 µm (i.e ., micro-phytoplankton) and smaller species with chain structure. Further details about sampling and processing 

of phytoplankton species are available in Hernández-Fariñas et al. (2014) and Belin and Neaud-Masson (2017). In order to 

account for the ro le of DSi, of all the micro -phytoplankton classes, genera and species identified in  the VB, only total counts 10 

of diatoms (Bacillariophyceae) and dinoflagellates (Dinophyceae) were used in this work. Other micro–phytoplankton 

classes (Dictyophyceae, Prasinophyceae, Cyanophyceae, Chrysophyceae and Raphidophyceae) together represented only 10 

to 15 % of the VB total counts (Belin and Soudant, 2018). 

2.3 Time-series analyses 

2.3.1 Data pre-processing 15 

Prior to analysis, all datasets were examined using time scaled scatter plots. For DIP in rivers, these showed periods during 

which a limited set of values appeared repeatedly (Fig. S1), which resulted from analytical problems (Loire -Brittany River 

Basin Authority, S. Jolly, pers. comm.). Consequently, these suspect data were discarded to avoid misinterpretation. The 

removed DIP datasets represented 29% and 31% of the total number of data, corresponding respectively to the period 1980-
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1989 in the Loire, and 1980-1989 and 2009-2011 in the Vilaine. DSi in rivers was not analyzed for t rends because of the 

short data period. 

Prior to time series decomposition, a variance-stabilizing base e log transformat ion was applied to all variab les, except for 

phytoplankton counts for which the base was 10, to ensure compliance with the constant variance assumption 

(i.e. homoscedasticity).  5 

2.3.2 Time-series decomposition 

The time-series were modeled using Dynamic Linear Models (DLM, West and Harrison, 1997) with the dlm package (Petris, 

2010) in R software (R core team 2016). Th is tool belongs to the family of methods which encompass, for example, State -

Space models, Structural Time Series Model, Unobserved Component Model (Harvey et al., 1998) and Dynamic Harmonic 

Regression (Taylor et al., 2007). The model decomposes an observed time-series into component parts, typically  trend, 10 

seasonal component (i.e ., seasonality) and residual. The DLM approach is particularly  suitable fo r environmental data series 

characterized  by outliers, irregular sampling frequency and missing data . The latter are taken into account by the Kalman 

filter (Kalman, 1960), using a prio r which  replaces the missing value, i.e., no information leads to no change in distributions 

for model parameters (West and Harrison, 1997). For other examples of DLM applications, readers are referred to Soudant et 

al. (1997), Scheuerell et al. (2002), and Hernández-Fariñas et al. (2014, 2017).  15 

The model used was a second order polynomial trend, which allows modelling up to quadratic  t rend. This was chosen 

because linear trend (i.e., first order polynomial) was too restrictive and cubic t rend (i.e., third order polynomial) might lead 

to an over fitted model. For the seasonal component, the model used was trigonometric with two harmonics, which allows 
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modelling up to b imodal pattern. Th is bimodal pattern is characterized  by two  peaks per year, such as spring and autumn or 

summer and winter blooms. This model specification was used for all parameters. 

The time unit was defined as the smallest time interval between sampling dates within a period of analysis ( i.e ., one year). 

The time unit was weekly, fortnightly or monthly according to sampling frequencies of variables (see Table S1). Normality 

of standardized residuals was checked using QQ-plot and their independence using estimates of autocorrelation function. If 5 

deviations were suspected, outliers were identified as 2.5 % h igher and lower than standardized residuals and treated 

appropriately, i.e., specific observational variances were estimated for each outlier. The DLM time-series analysis provides 

figures allowing the visual identification of trends and variations in seasonality. 

2.3.3 Trend 

The DLM trend p lot displayed observed values with a shade of color fo r each  time unit  segments: weekly, fortnightly or 10 

monthly. The trend was represented by a dark grey line with the shaded area indicat ing the 90% confidence interval. For the 

longest common record of all variables , 1997-2013 called the “common period”, a monotonic linear t rend significance test 

was performed  on DLM trend components using a modified  non-parametric Mann-Kendall (MK) test (Yue and Wang, 

2004). When monotonic linear trends were significant (p<0.05), changes were calculated from differences between the 

beginning and the end of the common period of the Sen’s robust line (Helsel and Hirsch, 2002). 15 

2.3.4 Seasonality 

The seasonality plot displayed the DLM seasonal component values. The figure gave a visual access to the inter-annual 

evolution of the amplitude, corresponding to the difference between the minimum and maximum values of each year. As 

dependent variables have been log-transformed, the model was multip licat ive. Therefore, when seasonal component values 
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equaled to 1 (i.e., horizontal line), fitted values equaled to the trend. The seasonality plot also allowed a visualizat ion of how 

the values have evolved over the years according to their seasonal position. The significance of changes in the seasonality 

(monotonic linear increase or decrease in  the value for a given season) was assessed for the common period using the 

modified MK test performed on DLM seasonal components for each season. The seasons were defined as winter (January, 

February, March), spring (April, May, June), summer (July, August, September), and autumn (October, November, 5 

December). The interpretation of the seasonal components per se was not meaningful, therefore changes were not calculated, 

but when monotonic linear trends were significant (p<0.05), the sign and the percentage of the changes were provided.  

2.4 Correlation analysis  

Spearman Correlat ions were computed for annual median values  of the common period in order to analyze relat ionships 

between variables, and tested using STATGRAPHIC CENTURION software (Statgraphics Technologies Inc., Version 10 

XVII, Released 2014). 

3 Results 

3.1 Long term trends in eutrophication parameters in river basin outlet 

The daily discharge of the Loire varied between 111 and 4,760 m
3
 s

-1
 for the period 1980-2013, with DLM trend displaying 

oscillations with periodicities of 6-7 years (Fig. 2a). A significant negative trend was detected for the common period 15 

(1997-2013), with a decrease of 94 m
3
 s

-1
 (Table 1). The seasonality plot displayed no marked change, with maximum values 

always observed in winter (b lue) and minimum in summer (o range/red, Fig. 2b)  and no significant linear change whatever 

the season (Table 2). The Vilaine discharge, median of 32 m
3
 s

-1
 for the period 1980-2013), corresponded to 6 % of the Loire 
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discharge and displayed similar trend and seasonality to those of the Loire (Fig. S2, Table 1, 2), as highlighted by the 

significant correlation between their annual medians (Table 3). 

DIP in the Loire varied between 0.1 and 9.4 µmol L
-1

 for the period 1990-2013 (Fig. 3a). A significant decrease of 

0.85 µmol L
-1

 was detected for the common period (Table 1). Also during this period, the seasonality plot indicated a 

noteworthy shift in timing of annual DIP minima from summer to spring, as indicated by its change in co lor from 5 

yellow/orange (summer) in 2000 to green (spring) from 2006 onwards (Fig. 3b). This change was accompanied by a 

significant negative trend for winter-spring seasonal components and a significant positive trend for summer-autumn ones 

(Table 2). DIP loads from the Loire ranged between <0.1 and 15 mol s
-1

 for the period 1990 2013, with trend displaying 

oscillations reflecting the influence of river discharge (Fig 3c) . For the common period, the Loire DIP loads decreased 

significantly by 52% (Table 1). The seasonality plot of DIP loads from the Loire reflected that of discharge with annual 10 

minimum and maximum values always observed in summer and winter respectively (Fig. 3d). Trends of DIP and DIP loads 

for the Vilaine were similar to those for the Loire (Fig. S3, Table 1, 2), as ind icated by a significant correlat ion between 

annual medians of DIP in the two rivers (Table 3). 

DIN in the Loire ranged between 11 and 489 µmol L
-1

 for the period 1980-2013, with trend displaying a decrease between 

the 1980s and the early 1990s , followed  by an increase (Fig. 4a). However, the increase was not significant for the common 15 

period (Tab le 1). The DLM Loire DIN seasonality plot indicated a decrease in  the seasonal amplitude starting in 1990 

(Fig. 4b). For the common period, this decreasing amplitude resulted from a significant decrease in winter DIN maxima on 

the one hand and significant increase in summer minima on the other hand (Table 2) by around 60 µmol L
-1

 (Fig.4a). The 

DIN loads from the Loire varied from <1.0 to 1,142 mol s
-1

 and displayed similar trend and seasonality to those of DIN 
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(Figs. 4c, d), with  an increase in summer minima from around 5 to 50 mol s
-1

 for the common period (Fig. 4c, Table 2).  The 

trend of DIN in the Vilaine displayed an oscillation (Fig. S4), with a slight significant decrease over the common period 

(Table 1) and no marked variation in the seasonality (Fig. S4b, Table 2) . As for the Loire, the trend and seasonality of DIN 

loads from the Vilaine were similar to those of DIN (Figs. S4c, d, Table 1, 2).  

DIN:DIP rat ios in both rivers ranged between 1.0 and 1,000 with >80% of value being higher than 30 and displayed an 5 

increasing trend between 1990 and 2013 (Fig. S5). A significant increase of 85% and 303%, respectively for the Loire and 

the Vilaine, was detected for the common period (Table S3). DSi in rivers ranged between 46 and 261 µmol L
-1

 in the Loire 

and from 5.0 to 201 µmol L
-1

 in the Vilaine for period of available data (2002-2013). More than 80% of DIN:DSi ratios in 

rivers were higher than the theoretical molar N:Si ratio of 1 for potential requirement of diatoms (data not shown).  

Chl a in the Loire ranged between >200 µg  L
-1

 during the 1980s and <1.0 µg L
-1

 in the 2010s. The Chl a trend remained 10 

stable between 1980 and 2000 before decreasing subsequently (Fig. 5a). For the common period, the Loire Chl a decreased 

by 93% (54 µg L
-1

, Table 1). The DLM Loire Chl a seasonality plot displayed a shift in timing of the annual Chl a 

maximum, as ind icated by its change in color from orange/red (summer) during 1980-1990 to g reen (spring) during 

2005-2013 (Fig. 5b). For the common period, this change in timing was accompanied by a significant negative trend for 

autumn seasonal components and significant positive trend for winter and spring (Table 2). Results for Chl a in the Vilaine 15 

revealed similar trend and seasonality to those in the Loire (Fig. S6, Table 1, 2), as indicated by a significant correlation 

between Chl a annual medians in the two rivers (Table 3). 
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3.2 Long term trends in eutrophication parameters in the VB 

DIP in the VB varied between <0.1 and >1.0 µmol L
-1

 with no noticeable trend (Fig.6a). A significant decrease of 

0.05 µmol L
-1

 was detected over the common period (Table 1). The seasonality plot of the VB DIP revealed a change in 

timing of the min imum values, as indicated by its change in color from yellow/orange (summer) before 2006 to green 

(spring) afterwards (Fig. 6b). This shift was accompanied by a significant negative linear trend for spring seasonal 5 

components and a significant positive trend for summer (Table 2).  

DIN in the VB varied between <1.0 and >200 µmol L
-1

 with trend displaying an oscillation (Fig. 6c). A s ignificant increase 

of 3.2 µmol L
-1

 was detected for the common period (Tab le 1). The DLM seasonality indicated that this increase was focused 

on winter (Fig. 6d, Table 2). Annual DIN medians in  the VB were positively correlated with those of discharge fro m the two 

rivers (Table 3).  10 

DSi in the VB varied between <1.0 and 100 µmol L
-1

 without noticeable trend (Fig. 6e). For the common period, a 

significant increase of 3.6 µmol L
-1

 was detected, which was comparable to that of DIN (Table 1). The seasonality did not 

indicate any particu lar change (Fig. 6f, Table 2). Annual DSi medians in the VB were positively correlated with those of the 

Loire discharge and with the VB DIN (Table 3).  

DIN:DIP and DIN:DSi ratios in the VB ranged between <1.0 and 650, and from <0.1 to 44 respectively (Fig. S7). Summer 15 

values of DIN:DIP and DIN:DSi ratios were o ften below theoretical values respectively of 16 and 1 for potential 

requirements of diatoms (Fig. S7). DSi:DIP ratios in the VB ranged between <5.0 an d >100, with >80% of values being 

above the theoretical value of 16 (Fig. S7). The trends for d issolved inorganic nutrient ratios in the VB displayed a 

significant increase for the common period (Fig. S7, Table S3). 
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Chl a in the VB ranged between 0.1 and 116 µg L
-1

, with trend d isplaying an increase (Fig. 7a). For the common period, the 

VB Chl a increased significantly  by 126%
 
(2.1 µg L

-1
, Table 1). The seasonality plot of Chl a in the VB displayed a shift in 

the timing of the annual maximum, indicated by its change in color from green (spring) before 2006 to orange/red (late 

summer) afterwards (Fig. 7b). This change was accompanied by a significant negative linear trend for spring seasonal 

components (Table 2). Annual Chl a medians in the VB were negatively correlated with those of Chl a from both rivers and 5 

with DIP in the Vilaine (Table 3). 

Diatom abundances varied between 200 and 1.3 10
7
 cells L

-1
 for the period 1983-2013, with the DLM trend showing an 

increase (Fig. 7c). For the common period, d iatom abundances increased significantly by 227% (90 10
3
 cells L

-1
, Tab le 1). 

Although diatom abundances continued to peak in spring (Fig. 7d), their seasonality plot indicated a significant increase in 

summer seasonal components over the common period (Tab le 2). Dinoflagellate abundances were about ten-fold less than 10 

those of diatoms, with values ranging between 40 and 3.4 10
6
 cells L

-1
 over the period 1983-2013. Like d iatoms, the DLM 

trend for dinoflagellate abundances in the VB displayed an increase (Fig. 7d). For the common period, dinoflagellates 

abundances increased by 8 10
3
 cells L

-1
 (108%, Table 1). However, the DLM seasonality plot indicated that summer seasonal 

components of dinoflagellate abundances, corresponding to dinoflagellate annual peak, displayed a significant decreasing 

trend over the common period (Fig. 7f, Table 2). 15 

4 Discussion 

The sequence of causes and effects between eutrophication in continental aquatic ecosystems and in those located 

downstream can be studied by observing trends of eutrophication indicators using the same tool and during the same periods. 

In the present study, eutrophication trajectories in the downstream VB coastal waters during recent decades were examined, 
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through long-term trends of phytoplankton biomass and nutrient concentrations, in relation to the restoration of the eutrophic 

Loire and Vilaine Rivers. The DLM analysis provided the opportunity to explore t rends and changes in seasonality in a 

visual manner with figures displaying individual data. The modified non-parametric Mann-Kendall test applied to DLM 

trend and seasonal components of all variables  over common period has permitted corroboration of DLM observations. 

Overall results demonstrate that upstream recoveries from eutrophication were accompanied by increased eutrophication 5 

downstream. The significant reduction in P input relative to N was not enough to mit igate eutrophication all along this river  

– coastal marine continuum. More reduction of N input, paying particular attention to diffuse N-sources, is necessary to 

mitigate eutrophication effectively in the VB coastal waters. 

4.1 Eutrophication trajectories at the river basin outlet 

The decrease in Chl a in pre-estuarine stations on the Loire and Vilaine Rivers over the past decades reflects the global 10 

diminution in eutrophication in north American and European rivers (Glibert et al., 2011; Romero et al., 2013). This 

decrease in Chl a was also observed in the Upper and Middle Loire (Larroudé et al., 2013; Minaudo et al., 2015). However, 

the Loire did not retrieve its oligotrophic state of the 1930s  (Crouzet, 1983). At the studied stations, the annual Chl a peak 

decreased and shifted from late summer to spring (Figs. 8a, 8b). The parallel decrease of DIP and Chl a  in  the Loire and 

Vilaine Rivers underlines the role of decreasing P in reducing phytoplankton biomass (Descy et al., 2012; Minaudo et al., 15 

2015), as also found in other river systems, such as the Danube (Istvánovics and Honti, 2012), the Seine (Romero et al., 

2013), and some Scandinavian rivers (Grimvall et al., 2014). This decreasing trend of DIP is a result of improved sewage 

treatment, decreased use of P fert ilizers and the removal of P from detergents (Glibert, 2010;  Bouraoui and Grizzetti, 2011). 

However, the decline of Chl a in both studied rivers began several years after that of DIP when the latter reached limit ing 

concentrations for phytoplankton, as deduced at Montjean on the Loire by Garnier et al. (2018). The change in  timing of the 20 
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annual DIP minima from summer to spring in the Loire and Vilaine Rivers during last decades of the studied period, 

concomitant with that of the annual peak of Chl a, can be exp lained by the increasingly early depletion of DIP by 

phytoplankton (see Floury et al., 2012 for the Loire).  

The trend of DIN in studied rivers reveals the general trends observed in other large European rivers, showing a slight 

decrease, a steady trend or even an increase, depending on the degree of fertilizer application in catchment areas (Bouraoui 5 

and Grizzetti, 2011;  Romero et al., 2013). The increase in summer Loire DIN since the early 1990s was offset by the 

decrease in winter values, which  is related to the reduction in N point source emissions and N fert ilizer application (Poisvert 

et al., 2016; data from French Min istry of Agriculture, S. Lesaint, pers. comm.). An increase summer DIN of several tens of 

µmol L
-1

 was also reported in the Middle Loire (Minaudo et al., 2015). This increase in summer DIN is the result of a 

delayed response due to the long transit time of DIN through soils and aquifers in the Loire catchment (up to 14 years; 10 

Bouraoui and Grizzetti, 2011). The decreasing DIN uptake by phytoplankton in the Loire, may have also contributed to the 

increase in  summer DIN (Lair, 2001;  Floury et  al., 2012). Concerning the Vilaine, the slight decrease in DIN from the early 

1990s reflects the decrease in N fert ilizer application in the Vilaine catchment (Bouraoui and Grizzetti, 2011;  Aquilina et al., 

2012), which is facilitated by a relatively short transit time of DIN in the Vilaine watershed (~5-6 yr, Molenat and Gascuel-

Odoux, 2002; Aquilina et al., 2012).  15 

DSi data series in both rivers were too short to investigate long-term trends and seasonality, but provided values in order to 

examine nutrient stoichiometry. Larroudé et al. (2013) observed no significant trend in DSi between 1985 and 2008 in the 

Middle Loire, as also confirmed at Montjean station by Garn ier et al. (2018). The decrease in  DIP led  to the increasing trend 

of DIN:DIP rat ios, and probably DSi:DIP, in  both rivers, as was observed in numerous rivers (Beusen et al., 2016). Based on 
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these trends, the DIP limitation has been thus reinforced in studied rivers during the last decades, and potentially in receiving 

coastal waters, regardless of the season.   

4.2 Eutrophication trajectories in the VB 

In contrast to what happened in rivers, eutrophication in the downstream VB coastal waters has worsened during rec ent 

decades, as indicated by significant increase in Chl a, also confirmed  by the significant augmentation of both diatom and 5 

dinoflagellate abundances. The increase in Chl a in the VB was accompanied by a shift in its annual peak from spring to 

summer (Figs. 8c, 8d). This modification in the seasonal course of phytoplankton biomass coincides with the increase in 

diatom abundances, occurring main ly in summer. The dynamics of phytoplankton in the VB during the last decad e of the 

studied period thus underwent important changes: 1) an increase in biomass, 2) a change in timing of the annual peak from 

spring to summer, 3) a modification in seasonal course of diatoms  and dinoflagellates. 10 

4.2.1 Increased Chl a 

The increase in phytoplankton biomass  could result from several causes, namely  overfishing, decrease in commercially 

grown suspension-feeders, increase in  temperature, and increase in nutrient inputs. Increased predation on planktonic 

herbivores could reduce grazing on phytoplankton (Caddy, 2000). In the VB, commercial fishing is banned in order to 

protect its ecological function as nursery for demersal fish (Désaunay et al., 2006). The decline in fisheries in the Bay of 15 

Biscay since the 1990s (Rochet et al., 2005; Lassalle et al., 2012) was unlikely to have caused increased Chl a in the VB, 

since phytoplankton biomass in these oceanic waters has always been lower than that in  the VB (Table S2). Grazing act ivity 

by bivalve suspension-feeders can modify phytoplankton biomass (Cloern, 1982; Souchu et al., 2001). In the VB, there was 

an increase in commercial mussel production (Mytilus edulis) between 2001 and 2012 (Le Bihan et al., 2013). This should 
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have led to depletion in phytoplankton biomass, in fact the opposite trend was observed. In regions where the phytoplankton 

productivity is limited by light availability, an  increase in sea surface temperature can  promote phytoplankton growth due to 

water column stabilizat ion (Doney, 2006; Boyce et al., 2010) and decreased turbidity (Cloern et al., 2014). In the VB, except 

during winter and high hydrodynamic act ivity periods, phytoplankton production is limited by nutrients (Guillaud et al., 

2008). Therefore, the increase in Chl a in the VB was particularly due to enhanced nutrient availability, as also reported in 5 

China Sea coastal waters by Wang et al. (2018). 

4.2.2 Changes in timing of annual Chl a peak 

Seasonal changes in phytoplankton biomass peaks have been reported in other aquatic ecosystems and mostly attributed to 

climate change-induced temperature (Edwards and Richardson, 2004;  Racau lt et al., 2017). Variat ions in nutrient availab ility 

can also induce a change in the seasonal pattern of phytoplankton biomass  (Thackeray et  al., 2008; Feuchtmayr et al., 2012). 10 

These authors observed that the advancement in  the timing  of the spring diatom bloom in  some English lakes was related to 

the increase in winter DIP. In the VB, the shift in annual Chl a  peak from spring to summer, coupled with the change in 

position of the annual DIP min ima from summer to spring, suggests that DIP deplet ion by phytoplankton bloom occurred 

progressively earlier during the last two decades. Based on nutrient concentrations and stoichiometry (Justić et al., 1995), the 

first nutrient limiting phytoplankton biomass in the VB shifts seasonally from D IP in spring to DIN in summer, as verified 15 

by bioassays (Retho et al. Ifremer, unpublished data). The conjunction of the decrease in DIP and an increase in DIN in the 

VB has probably also contributed to the shift in annual Chl a. 
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4.2.3 Role of DSi on seasonal course of diatoms and dinoflagellates  

In terms of nutrients, the balance between diatoms and dinoflagellates is predominantly regulated by the DSi availab ility 

(Egge and Aksnes, 1992). In  the VB, based on nutrient concentrations and stoichiometry, d iatoms were rarely  limited by the 

DSi availability, thanks probably to internal DSi regeneration, as suggested by Lunven et al. (2005) and Loyer et al. (2006) 

in the northern Bay of Biscay continental shelf. The fact that diatoms have increased more than dinoflagellates in the VB, 5 

contradicts the idea that excessive DIN and DIP inputs favor phytoplankton species, which do not require DSi (Conley et al., 

1993; European Communit ies, 2009; Ho warth et al., 2011). An increase in diatom abundances during the eutrophication 

process was also observed in Tolo Harbor (Yung et al., 1997; Lie et al., 2011) and the coastal waters of the Gulf of Finland 

(Weckström et al., 2007). Conversely, decreasing eutrophication in the Seto Inland Sea (Yamamoto, 2003), in Thau (Collos 

et al., 2009) and other Mediterranean Lagoons (Leruste et al., 2016) was accompanied by the increase in dinoflagellate 10 

abundances to the detriment of diatoms. These observations and our results provide evidence that eutrophication can be 

manifested by an increase in diatom abundances. 

4.3 Loire/Vilaine - VB continuum  

In theory, several external nutrient sources could have contributed to nutrient availab ility in the VB: atmospheric, oceanic 

and riverine inputs. DIN inputs from rainwater estimated by  Collos et al. (1989) represent only 1% of river inputs, while 15 

levels of nutrients and Chl a  in  the Bay of Biscay always remained low during the studied period (Table S2). The proximity 

of the VB to the Loire and Vilaine Rivers designates riverine inputs as main external nutrient sources in these coastal waters 

(Ménesguen et al., 2018a, b).  
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4.3.1 Rivers as the main external nutrient source to the VB 

Watersheds, rivers and coastal waters located at their outlet, constitute a continuum in which anthropogenic pollution, 

generated in watersheds, are transported to coastal zones (Vannote et al., 1980; Bouwman et al., 2013) . The transfer of 

nutrients from continents to coastal waters is largely  determined by freshwater inputs, the dynamics of which depend largely 

on precipitation in  watersheds. Trends in the Loire and the Vilaine discharges displayed similar oscillat ions to those of rivers 5 

flowing to  the North  Sea as reported by Radach and Pätsch (2007), suggesting a common hydro-climatic pattern in  Western 

Europe linked to the North Atlantic Oscillation. The decrease in the Loire discharge observed between 1997 and 2013 was 

also found in the middle section of the river for the period 1977-2008 (Floury et al., 2012) and attributed essentially to 

abstraction for irrigation and drinking water by these authors. The strong correlation between Loire and Vilaine discharges 

underlines the similarities between the two rivers concerning the precipitation regime. However, with a tenfold higher 10 

discharge than the Vilaine, the Loire remains the main  source of freshwater for the northern Bay of Biscay, with a major role  

in the eutrophication of coastal waters in south Brittany, including the VB (Guillaud et al., 2008; Ménesguen et al., 2018a, 

2019). Aside from flood periods, the closure of the Arzal dam during the low -water periods (Train i et al., 2015), makes 

nutrient inputs into the VB by the Vilaine negligible in summer, compared to those from the Loire. 

4.3.2 Role of estuaries and the Vilaine dam 15 

Biogeochemical processes with in estuaries may alter the nutrient t ransfer from rivers to coastal waters (Statham, 2012; 

Jickells et al., 2014). Coupled n itrification-denitrification and ammonificat ion-anammox can  be a sink of N in  estuaries 

(Howarth et al., 1996; Abril et al., 2000). Inorganic nutrients in estuaries can also be removed by phytoplankton uptake, 

which is nonetheless limited by turbidity (Middelburg and Nieuwenhuize, 2000; Guillaud et al., 2008). Estuaries can also act 

as a source of nutrients, resulting from mineralizat ion of riverine phytoplankton organic matter (Meybeck et  al., 1988; 20 
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Middelburg et al., 1996; Etcheber et al., 2007). However, for the studied rivers, this process may have dimin ished with the 

decreasing trend in riverine Chl a. The desorption of loosely bound P from suspended mineral particles on arrival in saline 

waters can also provide a source of DIP (Deborde et al., 2007; van der Zee et al., 2007). Except during flood periods, the 

suspended particle fluxes from the Loire are generally low (Moatar and Dupont, 2016). In addition to these biogeochemical 

processes, the increase in population around the Loire estuary (ca. 1% per year, INSEE, 2009) during the last decades may 5 

have contributed to the increase in N and P inputs. However, inputs of DIN and DIP from wastewater treatment plants in the 

Loire and Vilaine estuaries have not increased due to improved treatment techniques (Loire -Brittany River Basin Authority, 

P. Fera, pers. comm.). The presence of a dam at the river outlet may increase water residence time, thus favoring nutrient 

uptake by phytoplankton and loss of N via denitrificat ion (Howarth et al., 1996; Seitzinger et al., 2006). Unfortunately, for 

these two studied rivers, processes in estuaries and dam are poorly investigated and quantified, which makes it  difficult to 10 

estimate their influence on nutrient transfer to coastal zone.  

Despite influences of estuaries and dam, the increase in DIN:DIP and DSi:DIP ratios in rivers during last two decades, with 

values already largely above the theoretical value of 16 in the 1990s, has been reflected in the VB coastal waters 

(Figs. S5, S7). Although biogeochemical p rocesses in estuaries and the Vilaine dam may introduce bias in nutrient transfer 

from rivers to the VB, they are probably not intense enough to decouple the observed trends between rivers and the VB, as 15 

suggested by Romero et al. (2016) for the Seine River – Seine Bay continuum. Moreover, significant negative correlat ions 

between annual Chl a  medians in the VB and in rivers, as well as significant positive correlat ions between annual medians of 

DIN and DSi in the VB with those of river discharge suggest that changes in eutrophication parameters in the VB (i.e., 

phytoplankton biomass) were related to changes in rivers (Ménesguen et al., 2018a, b). 
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4.3.3 Link between eutrophication trajectories in rivers and in the VB 

During  the last two  decades, the downstream VB coastal waters have received decreasing DIP inputs, increasing DIN inputs 

especially from the Loire during summer, and no change in DSi inputs (Fig. 8). The decrease in riverine DIP loads was the 

cause of the simultaneously decreasing trend in the VB DIP and may have reinforced spring DIP limitation as also reported 

by Billen et al. (2007) in  the Seine Bay. The worsening eutrophication in the VB was the consequence of increasing DIN 5 

inputs from the Loire. A similar observation was reported in other coastal ecosystems, such as the Neuse River estuary (Paerl 

et al., 2004), Belgian coastal waters (Lancelot et al., 2007), and the Seine Bay (Romero et al., 2013), where decreasing 

upstream Chl a, due to DIP input reduction, was accompanied by the increase in  downstream Chl a, as a result of increasing 

DIN input. The seasonal change in annual Chl a peak in the VB resulted also from the conjunction of decreasing DIP loads 

and increasing summer DIN loads from the Loire. The summer limitation of phytoplankton production by DIN in the VB 10 

cannot be explained by the stoichiometry of nutrients in rivers. Internal sources of nutrients, especially sediments (see 

below), were also likely to support a significant portion of nutrient availability for phytoplankton production during the 

period of low river discharge (Cowan and Boynton, 1996; Pitkänen et al., 2001). 

4.3.4 Role of internal nutrient loads 

In shallow ecosystems, internal nutrient recycling can regulate phytoplankton production and potentially exacerbate 15 

eutrophication (Paerl et al., 2016), as observed both in lakes (Jeppesen et al., 2005) and coastal ecosystems (Pitkänen et al., 

2001). Compared to freshwater, the fragility of marine ecosystems is related to salinity (Blomqvist et al., 2004). The 

presence of sulfate a major element of salinity) decreases the efficiency of sediments to retain DIP (Caraco et al., 1990; 

Lehtoranta et al., 2009) and favors the recycling of DIP over DIN, the latter being potentially eliminated through 

denitrification (Conley, 2000; Conley et  al., 2009). In the VB, measurements of benthic nutrient fluxes confirm that 20 
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sediments represent a substantial DIP and DSi source compared to riverine inputs (Ratmaya, 2018), allowing summer 

phytoplankton production to benefit from surplus DIN inputs from the Loire. Sediments were then able to support 

phytoplankton production by providing DIP and DSi, as found in other coastal ecosystems (Cowan and Boynton, 1996; 

Boynton et al., 2008), and probably to switch the first limiting nutrient from DIP in spring to DIN in summer, as observed in 

the Balt ic Sea (Conley, 2000; Pitkänen et al., 2001). Consequently, the increase in  summer d iatom abundances in the VB 5 

was mainly due to increased summer DIN loads from the Loire, sustained by internal sources of DIP and DSi coming from 

sediments. 

4.4 Implications for nutrient management 

4.4.1 Impact of nutrient management strategies  

The need to control both N and P inputs to mitigate eutrophication along the freshwater-marine continuum is still debated 10 

within  the scientific community (see Sch indler et  al., 2008; Conley et al., 2009; Sch indler, 2012;  Paerl et  al., 2016; Schindler 

et al., 2016). Despite the imbalance between P and N input reduction, eutrophication in  the river section of the Loire/Vilaine 

– VB continuum has diminished but the increase in phytoplankton biomass in the VB provides evidence that significant 

reduction of P inputs, without concomitant N abatement, was not yet sufficient to improve water quality along the entire 

continuum. Targeting N and P pollution from point sources  has successfully reduced eutrophication in marine ecosystems, as 15 

evidenced in Tampa Bay (Greening and Jan icki, 2006) and in several French Mediterranean lagoons (Collos et al., 2009; 

Leruste et al., 2016). However, N pollution in coastal waters from rivers with watersheds largely occupied by intensive 

agriculture remain problematic in many European countries (Bouraoui and Grizzetti, 2011; Romero et al., 2013). Reducing 

diffuse N inputs through improved agricu ltural practices and structural changes in the agro -food system (Des mit et al., 2018; 

Garnier et al., 2018) would probably help to lessen eutrophication (Conley et  al., 2009; Paerl, 2009). Assuming that rap id 20 
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and radical change in farming practices is implemented, the delayed responses due to variations in transit time of NO3
-
 in 

aquifers should be taken into account for restauration strategy (Bouraoui and Grizzetti, 2011).  

In the VB, a reduction in DIN inputs especially during the summer would probably have prevented eutrophication from 

worsening in this ecosystem. Given that in many other coastal ecosystems the first nutrient limit ing phytoplankton 

production tends to switch from DIP in spring to DIN in summer (Fisher et al., 1992; Del Amo et al., 1997; Conley, 2000; 5 

Tamminen and Andersen, 2007), it would be relevant to take into account seasonal aspects for nutrient reduction strategy. 

4.4.2 Influence of internal nutrient regeneration 

In the VB, the internal nutrient recycling from sediments appears to have contributed to the worsening of summer water 

quality during the last two decades and augmented the effects of anthropogenic nutrient inputs. Internal nutrient loads can 

delay ecosystem recovery from eutrophication following external nutrient input reduction (Duarte et  al., 2009). In  lakes, this 10 

delay induced by internal loads of P on the oligotrophication process varies from 10 to 20 years (Jeppesen et al., 2005; 

Søndergaard et al., 2007). In coastal ecosystems, the delay resulting from internal nutrient loads was less studied. However, 

Soetaert and Middelburg (2009), using a model in a shallow coastal ecosystem, estimated a delay of more than 20 years 

following the reduction of external N input. Therefore, fo r the Loire/Vilaine – VB continuum, nutrient management 

strategies should consider the internal nutrient loads in o rder to anticipate the delay  in recovery o f the VB coastal waters 15 

from eutrophication. 
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5. Conclusions and perspectives 

Parallel investigation of eutrophication parameters in the Loire and Vilaine Rivers, and coastal waters under their in fluence  

revealed several striking patterns and relationships, of which the most apparent was upstream recoveries from eu trophication 

accompanied by increased eutrophication downstream (Fig. 8). During the last two decades, Loire -Vilaine coastal waters 

have experienced a diminution in DIP inputs, whereas DIN continued to increase in the Loire  during summer. While the 5 

decreasing trends in DIP were accompanied by declin ing phytoplankton biomass in rivers, the seasonal cycle of 

phytoplankton has been changed in downstream VB, with an increase in biomass, a shift in its annual peak from spring to 

summer, and a modification in the seasonal course of diatoms and d inoflagellates. Moreover, the concept of d iatom 

replacement by dinoflagellates during the eutrophication process does not seem to be applicable to all shallow coastal 

ecosystems.  10 

These results open up a whole field  of investigation into the effects of changes in the phytoplankton dynamics on food webs, 

which is of major importance to this flatfish nursery and commercial shellfish area (Désaunay et al., 2006; Chaalali et al., 

2017). Further studies are necessary to investigate the modifications in the phytoplankton community, especially the 

phenology of the different species, as well as the possible consequence on food webs. Finally, the internal loads of nutrient s 

from sediments are suspected of counteracting the reduction of external nutrients, thus delaying the restauration progress. 15 

During the eutrophication process, sediments may also play an important role in the balance between diatoms and others 

classes of phytoplankton. Taking into account these internal processes in modelling studies (i.e., ECO-MARS3D, 

Ménesguen et al., 2018a, b; Ménesguen and Lacro ix, 2018) , will better simulate nutrient load scenarios in shallow coastal 

bays (work in progress). 
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Figure 1: Map of the area studied showing Loire and Vilaine rivers and delimitation of Vilaine Bay (inset red dotted line). Black 

dots mark the sampling and gauging stations cited  
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Figure 2: Long-term trend and seasonality of the Loire discharges (a, b). Dark grey lines represent DLM trends. Shaded areas 

indicate the 90 % confidence interval. Each dot in the trend plot (left) represents an observed value, those in the seasonality plot 
(right) represent values estimated by the model. On the seasonality plot, the horizontal line (y = 1.0) indicates seasonal components 

for which fitted values equal to the trend. Dashed vertical blue line corresponds to the longest common period for all studied 5 

variables in rivers and in the VB   
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Figure 3: Long-term trend and seasonality of DIP in the Loire (a, b) and DIP loads from the Loire (c, d). See Fig. 2 for details  
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Figure 4: Long-term trend and seasonality of DIN in the Loire (a, b) and DIN loads from the Loire (c, d). Black dots represent 

data considered as outliers (see Section 2.4.). See Fig. 2 for details  
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Figure 5: Long-term trend and seasonality of Chl a in the Loire (a, b). See Fig. 2 for details  
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Figure 6: Long-term trend and seasonality of DIP (a, b), DIN (c, d) and DSi (e, f) in the VB. Black dots represent data considered 

as outliers (see Section 2.4.). See Fig. 2 for details 
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Figure 7: Long-term trend and seasonality of Chl a (a, b), diatom (c, d) and dinoflagellate (e, f) in the VB. Insets display trends of 

diatom and dinoflagellate abundances with optimal scale. See Fig. 2 for details  
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Figure 8: Graphical representation of the major changes in nutrient concentrations and phytoplankton in river (a, b) and the VB 

coastal waters (c, d) for the period 1996-2005 (top) and 2006-2013 (bottom). Downward arrows and curves, representing 
respectively long-term trends and seasonal courses of eutrophication parameters in rivers and in the VB, were fitted according to 

results. Shaded areas underline the season of maximum Chl a. Internal benthic nutrient inputs (upward arrows) were fitted 5 

according to the measurement of benthic fluxes in summer 2015 (Ratmaya, 2018) 
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Table 1: Statistical results from Mann-Kendall test performed DLM trend components of eutrophication parameters in rivers and in the VB coastal 

waters for the common period 1997-2013. If the test was significant at p<0.05, differences of the Sen’s robust line between the beginning and the end of 

the period (17 years) were calculated. Values in parentheses are percentages of changes relative to the initial values of the Sen’s robust line. Increasing 

or decreasing trends are indicated by + and – signs respectively. Cells were left blank when tests were not applicable. NS = non-significant  

Site 

Discharge 

(m
3
 s

-1
) 

DIP 

(µmol L
-1

) 

DIP loads 

(mol s
-1

) 

DIN 

(µmol L
-1

) 

DIN loads 

(mol s
-1

) 

DSi 

(µmol L
-1

 

Chl a 

(µg L
-1

) 

Diatoms 

(Cells L
-1

) 

Dinoflagellates 

(Cells L
-1

) 

p 
Change 

(%) 
p 

Change 

(%) 
p 

Change 

(%) 
p 

Change 

(%) 
p 

Change 

(%) 
p 

Change 

(%) 
p 

Change 

(%) 
p 

Change 

(%) 
p 

Change 

(%) 

Loire 0.01 
− 94 

(16%) 
<0.001 

− 0.85 
(47%) 

<0.001 
− 0.60 
(52%) 

0.63 NS 0.42 NS   <0.001 
− 54 

(93%) 
    

Vilaine 0.02 
− 8.7 

(23%) 
<0.001 

− 1.9 
(75%) 

<0.001 
− 0.09 
(88%) 

<0.001 
− 71 

(21%) 
<0.001 

− 4.6 
(38%) 

  <0.001 
− 12 

(76%) 
    

VB   <0.001 
− 0.05 
(13%) 

  0.01 
+ 3.2 

(40%) 
  <0.001 

+ 3.6 
(34%) 

<0.001 
+ 2.1 

(126%) 
<0.001 

+ 90*10
3
 

(227%) 
<0.001 

+ 8*10
3
 

(108%) 

 5 
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Table 2: Statistical results of modified Mann-Kendal test performed on DLM seasonal components of eutrophication parameters in rivers and in the VB 

for the common period 1997–2013. If the test was significant at p<0.05, percentages of changes relative to the initial values of the Sen’s robust line were 

calculated. Increasing or decreasing trends are indicated by + and – signs respectively. Cells were left blank when tests were not applicable. NS = non-

significant 

Site/ Season 

Discharge 

(m
3
 s

-1
) 

DIP 

(µmol L
-1

) 

DIP loads 

(mol s
-1

) 

DIN 

(µmol L
-1

) 

DIN loads 

(mol s
-1

) 

DSi 

(µmol L
-1

 

Chl a 

(µg L
-1

) 

Diatoms 

(Cells L
-1

) 

Dinoflagellates 

(Cells L
-1

) 

p % p % p % p % p % p % p % p % p % 

Loire                    

Winter 0.63 NS 0.04 − 23% <0.01 − 41% 0.02 − 24% <0.01 − 40%   <0.001 + 190%     

Spring 0.50 NS <0.001 − 28% 0.02 − 33% 0.21 NS 0.49 NS   <0.001 + 283%     

Summer 0.60 NS <0.001 + 33% <0.001 + 59% <0.01 + 55% 0.01 + 69%   0.09 NS     

Autumn 0.98 NS <0.01 + 35% 0.26 NS 0.29 NS 0.92 NS   <0.001 − 82%     

Vilaine                    

Winter 0.23 NS 0.02 − 17% 0.07 NS 0.90 NS 0.11 NS   <0.01 + 97%     

Spring 0.93 NS 0.06 NS 0.07 NS 0.99 NS 0.56 NS   <0.001 + 63%     

Summer 0.26 NS <0.001 + 9.4% 0.09 NS 0.29 NS 0.28 NS   <0.001 − 41%     

Autumn 0.97 NS 0.51 NS 0.40 NS 0.66 NS 0.69 NS   0.01 − 44%     

VB                   

Winter   0.73 NS   0.03 + 32%   0.329 NS 0.11 NS 0.85 NS 0.05 NS 

Spring   <0.001 − 30%   0.10 NS   0.086 NS <0.001 − 36% 0.93 NS 0.83 NS 

Summer   <0.001 + 80%   0.17 NS   0.085 NS 0.19 NS <0.001 + 43% <0.001 − 23% 

Autumn   0.94 NS   0.76 NS   0.647 NS 0.37 NS 0.27 NS 0.87 NS 

 5 
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Table 3: Spearman’s rank correlations between annual median values of river discharge, nutrient concentrations and phytoplank ton biomass in the 

Loire, Vilaine and the VB for the common period (n = 17). Asterisks designate significant correlations (***p<0.001, **p<0.01, *p<0.05) 

 Loire discharge Vilaine discharge 
DIN 
Loire  

DIP 
Loire  

Chl a 
Loire  

DIN 
Vilaine  

DIP 
Vilaine  

Chl a 
Vilaine  

DIN 
VB 

DIP 
VB 

DSi 
VB 

Chl a 
VB 

Loire discharge 
1.00            

Vilaine discharge 
0.88*** 1.00           

DIN Loire  
0.52* 0.39 1.00          

DIP Loire  
0.51* 0.43 0.44 1.00         

Chl a Loire  
-0.08 -0.06 0.25 0.35 1.00        

DIN Vilaine  
0.33 0.47 0.02 0.55* 0.59* 1.00       

DIP Vilaine  
0.16 0.24 0.23 0.77** 0.65* 0.54 1.00      

Chl a Vilaine  
-0.21 -0.28 0.31 0.20 0.64** 0.04 0.35 1.00     

DIN VB 
0.78** 0.74** 0.36 0.35 -0.10 0.29 -0.01 -0.20 1.00    

DIP VB 
0.13 -0.09 0.07 0.38 0.05 0.11 0.29 0.19 -0.12 1.00   

DSi VB 
0.55* 0.41 0.35 0.08 -0.48 -0.17 -0.51 -0.31 0.63* -0.02 1.00  

Chl a VB 
0.11 0.17 -0.14 -0.48 -0.61* -0.34 -0.58* -0.50* 0.25 -0.45 0.33 1.00 

 


