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Abstract. The evolution otutrophicatiorparametergi.e., nutrients anghytoplankton biomss)during recent decades was
examinedn coastal waters ahe Vilaine Bay (VB, France) in relation tchangesn the Loire and Vilaine Rivers. Dynamic
Linear Modelswere used to study loagrm trends and seasonality of dissolved inorganic nutrient and chloraghyll
concentrations (CH) in rivers and coastal water$or the period 1992013,thereduction in dissolved riverine inorganic
phosphorus concentrations (DIRRd to the decrease in their Chllevels. However,while dissolved inorganic nitrogen
concentrations (DIN) decreased only slightly in the Vilairtbey increased in the Loirespecifically in summer.
Simultaneously, phytoplankton in the \(B\dewentprofoundchanges withincrease in biomasandchange in théiming of

the annual peak from spring to summdhe increase in phytoplankton biomass tine VB, manifestedparticularly by
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increasedsummerdiatom abundancesvas due toenhanced summebDIN loads from the Loire, sustained by internal
regeneration of DIP and dissolved silicdBSi) from sedimentsThe long-termtrajectoriesof this case study provide a more
evidence that significant reduction of P inputs withairhultaneousN abatement was not yet sufficient to control
eutrophication all along the Loire/Vilaine VB continuum Upstreamrivers revealindices ofrecoveriesfollowing the
significant diminutionof P, while eutrophication continues to increase downstream, especially during the period of N
limitation. More N input reduction paying particular attention to diffuse-séurcesjs required to control eutrophication in
receivingVB coastal waterdnternal benthic DIP and DSirecycling appears to have contributed to the worsening of summer
VB water quality, augenting the effects of anthropogenic DIN inpuEsr this coastal ecosystem,tment management

strategies should considerthe internal nutrient loads in counteracting decreased external inputs.

Keywords: eutrophication,river to coastal marine continuunvilaine Bay, nutrients phytoplankton,Dynamic Linear

Models

1 Introduction

Anthropogenic eutrophication is widely regarded as one of the major problems affecting both inland and coastal aquatic
ecosystemgDowning, 2014) The increase in phytoplankton biomass is the most common syngit@utrophication

among the myriad responses of aquatic ecosystems to anthropogenic inputs of nitrogen (N) and phos pl@oesn(P)

2001; Glibert et al., 2011)Since the beginning of thed20s, measures to reduce nutrient inputs in European rivers were
more effective for Poriginating largely from point sourcethan for N coming mainly from diffuse sourcé6rizzetti et al.,

2012) However, this strong imbalance between N and P input redustibied to substantial decrease phytoplankton

biomassin many European riverstvanovics and Honti, 2012; Romero et al., 2013)is result is consistent with the idea
2
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that P universally limits primary productivity in many freshwater ecosystoarell, 1999) Thus,reducing Pinputs, and

not N, can mitigate eutrophication of freshwater ecosys{8uoisindler et al., 2008; Schindler et al., 2016)

Despite significant P input reduction, eutrophication persists in some (Berses et al., 2012; Jarvie et al., 2018hd
particularly in downstream coastal ecosystems, where the primary productivity is often limitedRythér and Dunstan,
1971; Paerl, 2018)As freshwater systems drain into coastal wai@snnote et al., 1980; Bouwman et al., 2Q1iBje
efficient P reduction withousimultaneousN abatement may result in more N being transported downstream, where it can
exacerbate eutrophication problems in coastal ecosystems, delaying re(aerlet al., 2004)or example the Neuse
River EstuarieqPaerl et al., 2004Belgian coastal waterdancelot et al., 2007 andthe Seine BayRomero et al., 2013)
Despite more than 20 yeao$ nutrient reduction imple mentation in European freshwater ecosystems, including rivers (e.g.,
Nitrates Directive,91/676/EEC Urban Waste Water Treatment Directiv8i/271/EEQ, little measurable progress has been

observed in many European coastalwa(EEBA, 2017; OSPAR, 2017)

The Loire River, alongside the VilaindRiver, are amonghese major European rivers whose phytoplankton biomass and P
concentrations have decreased since the early 18@®svith minor, if any, simultaneoudiminution in N concentrations
(Romero et al., 2013; Minaudo et al., 201BjJfected by the Loire and Vilaine river runoffcuillaud et al., 2008; Gohin,
2012; Ménsguen et al., 2018bdhe Vilaine Bay (VB) is one of the European Atlantic coastal ecosystems most sensitive to
eutrophicationChapelle et al., 1994; Ménesguen et al., 20IB¢ VB coastal waters are classified as a problem area due to
elevated phytoplankton biomass, according to the criteria established within OGPAFAR, 2017)and the Euwpean
Water Framework DirectivgMénesguen et al., 2018bHowever there is little information on how eutrophication

parameters have evolvém the VB over the past 20 yeans the light of eutrophication mitigation ithe Loire and Vilaine

3
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Rivers. An approach taking into account seasonal variatismequred as phytoplankton in many coastal ecosystemsch
asthe coastal waters off the Loire and Vilaine Rivéassoftenlimited by P in spring and by N in summélunven et &,

2005; Loyer et al., 2006)

In temperate coastal waters, diatoms and dinoflagellates constitute the two dominant phytoplanktoiSdassieset al.,

1991) In term of nutrient requirements, the balance between these classes is controlled by silica (Si) availability. Increased
inputs in N and P (and not Si) aquatic ecosystems can lead to limitation in diatom biomass due to lack of dissolved silicate
(Conley et al., 1993)Therefore, increasing eutrophication may favor the development okiicegpous algae such as

dinoflagellates and harmful speci@llen and Garnier, 2007; Lancelot et al., 2007; Howarth et al., 2011)

The present studynvestigatedthe longterm evolution (trend and seasonality) a&utrophication parameters (dissolved
inorganic nutrientoncentratioa andphytoplankton biomagsn the VB coastal watersin relation to those in the Loire and
the Vilainebetween 1980 and 2018sing Dynamic Linear Models This longterm ecosystemcale analysis provided an
opportunity to test the hypothesis tleaitrophication trajectories in the downstream VB coastal waters dedegt decades
have been influenced by those in the Loire and Vilaine Riv¥esaim to establish the link between fresh and marine water

trajectories and highlight the impact of nutrient reduction strategies in rivers on coastalwater quality.

2 Material and Methods

2.1 Sites

The Loire is the longest and widest river in France (1,012 km) with a watershed of 117)@hkethe Vilaine waterséd
is only 10" the size, with an area of 10,800 kifFig. 1). Their catchment areaare dominated byagriculturalactivity,

4
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togethersustainingtwo-thirds of the national livestock and half the cereal produc{Bouraoui and Grizzetti, 2008;
Aquilina et al., 2012)The Arzal dam, 8 km from the mouth of the Vilaine, was constructed in 1970 to regulate freshwater
discharge and prevent saltwater intrusi@maini et al.,, 2015)The two studied riversespecially the Loireare the main

nutrientsources in the northern Bay of Biscaycluding VB (Guillaud et al., 2008; Ménesguen et al., 2018a)

The VB, average deptl0 m, is locatedinder direct influence of these two rivgfsig. 1). The Loire river plume tends to
spread nortlwestward with a dilution of 20 to 16@ld by the time it reaches the V@1énesguen and Dussauze, 2015;
Ménesguen et al., 2018bjhe ECOMARS3D model estimates that the ®iconstitutes >60% of VB DIN concentrations
during flood regimes and from 20 to 40% during low discharge pe(@dhin, 2012 M. Plus, Ifremer Brest, pers. comm.)

The Vilaine river plume tends to spread throughout the bay before moving we¢Ghaklle et al., 1994)

The water residence time in théB varies between 10 and 20 days depending on the season and tends to be longer during
calm periodg(Chapelle, 1991; Chapelle et al., 1994ijith tidal ranges varying between 4 and §Merceron, 1985)The

water circulation is characterized by low tidal and residual currents, driven mainly by tides, winds and rivéLdlpuve

and Salomon, 1991; Lazure and Jegou, 1998jing periods of prevailing winds, particularly from gbhwwest and west, the

water column of the VB is subjected to vertical mixing, which can lead sometimes to sediment resuspension and high
turbidity (Goubert et al., 2010)Except during winter and period of high hydrodynamic activity, phytoplankton production in

the VB is notlimited byight (Guillaud et al., 2008)

2.2 Long-term monitoring dataset: Rivers and VB

The LoireBrittany River Basin Authority littp://osur.eatoire-bretagne.fr/exportosur/Accugilfurnished dissolved

inorganic nutrients and phytoplankton biomass data (dissolved inorganic phosphorentaions, DIP; dissolved
5
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inorganic nitrogen concentrations, DIN, dissolved silicate concentrations, DSi and chloragbyltentrations, Cha) in

rivers, at preestuarine stations located closest to the river mouth upstream of the haline intrusidr). (BidN was defined

as the sum of nitrate, nitrite and ammonium, with nitrate as the major component (>90%)-LBaéserLoire on the

Loire and Rieuxon the Vilaine provided DIP, DIN and @himeasured monthly since the 1980s. For Sdint=-surLoire,

the influence of tidal dynamics was avoided by discarding data collected during high tide. Monthly DSi data were available

from 2002 at MontjearsurLoire onthe Loire and at Férel on the Vilaine (Fig. 1).

In order to calculate riverine nutrient logdgauging stations located close to the river mouth were selected. River discharge

data were extracted from t he Fr etipdiwwhywdnd.eaoftarce.fi/ Eor tfieBair,q u e

river discharge measurements at MontjsarLoire were used due to the absence of data at SairtesurLoire. For the
Vilaine, daily discharge data were available at Rieux from the 1980s. DIN and DIP loads from rivers were calculated using

averaged montkldischarge and individual monthly nutrient concentratitmmero et al., 2013)

Nutrient and Chh concentrations, plus phytoplankton count data in the VB, provided by the French National Observation
Network for Phytoplankton and Hydrology in coastal watREPHY, 2017) were collected from Ouest Loscolo station
(Fig. 1). This station is representative thfe VB coastal water¢Bizzozero et al., 2018; Ménesguen et al., 2048)

displayed the longest datagiedom 1983 for phytoplankton counts and 1997 for nutrient ande@dncentrations)

Acquisition periods, sampling frequencies and methods of analysetaiiedin Table S1.Briefly, nutrient concentrations
were measured manually or automatically in flow analysis using standard colorimetric methods with fluorimetry or
photometry detection. Chlorophyd concentrations (Chd) were measured with either spectrophotoynetr fluorimetry.

Microscopic qiantitative micro-phytoplankton analyses in coastal waters were conducted on-Eixgdl samples and
6
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counted according totermohl (1958)Phytoplankton identification ancbunts werearried oufor organis ms whose size is

>20 um (i.e., microphytoplanktonyandsmallerspecieswith chain structureFurther detailabout samplingand processig

of phytoplanktonspeciesare available irHernande#arifias et al. (2014)nd Belin and NaudMasson (2017)In order to

account for the role of DSifall the microphytoplankton classes, genera and species identified in the VB, only total counts

of diatoms (Bacillariophyceae) and dinoflagellates (Dinophyceae) were used in this work. nitheirphytoplankton

classes (Dictyophyceae, Prasinophyceae, Cyanophyceae, Chrysophyceae and Raphidophyceae) together represented only

to 15 % of the VB total coun{8elin and Soudant, 2018)

DIN:DIP, DIN:DSi and DSi:DIP molar ratios were calculated and compared with theoretical molar N:P:Si ratios of 16:1:16
(Redfield, 1958; Brzezinski, 198%) order to assess the potential limitation of phytoplankton growth by nutrient in rivers

and in the VB and to investigate for trends.

2.3Time-series analyses

2.3.1Data pre-processing

Prior to analysis, all datasets were examined using time scale@rsglatis. For DIP in rivers, these showed periods during
which a limited set of values appeared repeatedly (Fig. S1), which resulted from analytical proble m8i(ti@ing River

Basin Authority, S. Jolly, pers. comm.). Consequently, these suspect dagtalizearded to avoid misinterpretation. The
removed DIP datasets represented 29% and 31% of the total number of data, corresponding respectively to the period 198(
1989 in the Loire, and 198D989 and 2002011 in the Vilaine. DSi in rivers was not anzdyg for trends because of the

short data period.



10

15

Prior to time series decomposition, a variasstabilizing base log transformation was applied to all variables, except for
phytoplankton counts for which the base was, i® ensure compliance with the caast variance assumption

(i.e. homoscedasticity).

2.3.2Time-seriesdecomposition

The timeseries were modeled using Dynamic Linear ModBlkM, West and Harrison, 199With thedIm packagePetiis,

2010)in R software (R core team 2016). This tool belongs to the family of methods which encompass, for example, State
Space models, Structural Time Series Model, Unobserved Component (flatety et al., 1998and Dynamic Harmonic
RegressionTaylor et al., 2007) The model decomposes an observed S8eres into component gar typically trend,
seasonal component (i.e., seasonality) and residual. The DLM approach is particularly suitable for environmental data series
characterized by outliers, irregular sampling frequency and missing Tregalatter are taken into account by the Kalman

filter (Kalman, 1960)using a prior which replaces the missing value, i.e., no information leads to no change in distributions
for model paramete@Vest and Harrison, 1997For other examples of DLM applications, readers are referrSoualant et

al. (1997) Scheuerell et al. (2002)andHernande#arifias et al2014)

The model used was a second order polynomial trend, which allows modelling up to quadratic trend. This was chosen
because linear trend (i.e., first order polynomial) was too restrictive and cubic trend (i.e., third order polyno mid§amaight

to an over fitted model. For the seasonal component, the model used was trigonometric with two harmonics, which allows
modelling up to bimodal pattern. This bimodal pattern is characterized by two peaks per year, such as spring and autumn o

summer and witer blooms. This model specification was used for all parameters.
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The ime unit defined as the smallest time interval between sampling dates within a period of aufisdysone yearwas

weekly, fortnightly or monthly according to sampling frequencies of variables (see Table S1). Normality of standardized
residuals was checked using @@t and their independence using estimates of autocorrelation function. If deviations were
suspectedoutliers were identified as 2.5 % higher and lower than standardized residuals and treated appropriately, i.e.,
specific observational variances were estimated for each odttierDLM timeseries analysis provides figures allowing the

visual identificaion of trends and variations in seasonality.

2.3.3 Trend

The DLM trend plot displayed observed values with a shadmlof for each time unit segmentaeekly, fortnightly or
monthly. The trend was represented by a dark grey line with theeshaa indicating the 90% confidence interval. For the
longest common record of all variabJek97#2013c al | ed t h e #A,@ ononatonit linpae trend sihbificance test
was performed on DLM trend components using a modified-pemametric Man#Kendall (MK) test (Yue and Wang,
2004) When monotoniclinear trends werssignificant £<0.05), changes were calculated from differences between the

beginning and the end ofttemmonp er i od of t h e(HeBel and slirsacho200) st | i ne

2.3.4Seasonality

The seasonality plot displayed the DLM seasonal component values. The figure gave acdesalto the intemnual
evolution of the amplitude, correspang to the difference between the minimum and maximum values of each year. As
dependent variables have been-teansformed, the modevas multiplicative. Therefore, when seasonal componverfiies
equaédto 1(i.e., horizontal line)fitted values equalto the trend. The seasonality plot also abboMa visualization of how

the values have evolved over the years according to their seasonal pdgigosignificance of changes in the seasiby

9



10

15

(monotonic linear increase or decrease in the value for a given sesasassessedor the common periodising the
modified MK test performed on DLM seasonal components for each season. The seasons were defined as winter (January
February, March)spring (April, May, June), summer (July, August, September), and autumn (October, November,
December). The interpretation of thkeasonal componenter se was not meaningful, therefore changes were not calculated,

but whenmonotoniclinear trends were ghificant £<0.05), the sign and the percentage of the changes were provided.

2.4 Correlation analysis
Spearman Correlations were computed for annual median veluge common perioéh order to analyze relationships
between variables, and tested using STATGRAPHIC CENTURION software (Statgraphics Technologies Inc., Version

XVIl, Released 2014).

3 Results

3.1Long term trends in eutrophication parameters in river basin outlet

The daily dischargeof the Loirevaried betweenl1land4,760n? s for the period1980-2013 with DLM trend displaying
oscillations with periodicities of-@ years(Fig. 2a). A significant negative trend was detected for the commperiod
(1997-2013, with adecreas of 94 nt s* (Table1). The seasonality plot displayes marked changevith maximum values
always observed in winter (blue) and minimum in summer (orange/red, Figan2h)o significantlinear changavhatever
theseason (Tabl@). The Vilaine dischargemedian of32 nt* st for the periodl980-2013), correspondetio 6 % of the Loire
discharge and displayed similar trend and seasonality to those of the Loire (Fifat8 1, 2, as highlighted by the

significant correlation between their annual medians (Taple

10
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DIP in the Loirevaried betweerD.1 and 9.4umol L for the period 199®013 (Fig. 39. A significant decrease of
0.85umol L™ was detectedfor the common periodTable 1). Also during this periodthe seasonality plot indicated a
noteworthy shift in timing of annual DIP minima from summer to springas indicated by its change in color from
yellow/orange (summer) in 2000 to green (spring) from 2006 onwéFis 3b). This change was accompanied by
significantnegative trend fowinter-springseasonal componenénda significant positivetrend forsummeautu mnones
(Table 2). DIP loads from the Loire ranged between <0.1 and 15 nldbsthe period 1990 2013yith trend displaying
oscillationsreflecting the influence of river discharge (Fig 3€pr the common periodhe Loire DIP loadsdecreased
significanty by 52% (Table 1). The seasonality plot of DIP loadrom the Loire reflected that of discharge with annual
minimum and maximum values always obsenredummer and winterespectively(Fig. 3d).Trendsof DIP andDIP loads
for the Vilainewere similarto those for the Loirg(Fig. S3, Tablel, 2), as indicated by a significant correlation between

annual medians of DIP in the two rivers (TaB)e

DIN in the Loireranged between 11 and 489 pmot for the period 198@013 with trenddisplaying a decrease between
the 1980s and the early 1990sllowed by an increas@ig. 4a).However, the increase was not significant for ¢oenmon
period (Table 1). The DLM Loire DIN seasonalityplot indicateda decrease in the seasonal amplitsdarting in 1990
(Fig. 4b). For the commorperiod this decreasing amplitude resulted frarsignificantdecrease in winter DIN maxinan
the one handéndsignificantincrease in summer minima on the other h&hable 2) by around 60 umol T (Fig.4a) The
DIN loads from the Loirevaried from <1.0 to 1,142 mol'sanddisplayedsimilar trend and seasonality to those of DIN
(Figs. 4c, d), with an increase in summer minima from around 5 to 50 Mddsthecomnon period (Fig. 4c, Table 2)The

trend of DIN in the Vilainedisplayedan oscillation (Fig. S4), witla slightsignificantdecreaseover the common period

11
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(Table ) and no marked variation in the seasonality (Fig. S4b, Tabl&<¥or the Loire, he trend and seasonality of DIN

loads from the Vilaine were similar tothose of DIN (Figs. S#icTable1, 2).

DIN:DIP ratios in both rivers ranged between 1.0 and 1,000 with >80% of value being higher than 30 and displayed an
increasing trend betweet®90 and 2013 (Fig. S5A significant increase of 85% and 303%, respectively for the Loire and

the Vilaine, was detected for tite mmonperiod (Table S3)DSi in rivers ranged between 46 and 36to! L in the Loire

and from 5.0 to 201 umol'tin the Vilaine for period of available data (26@913). More than 80% dbIN:DSi ratios in

rivers were higher than the theoretical molar N:Si ratio of 1 for potential requirement of diatoms (data not shown).

Chl a in the Loire ranged between >200 pg' Huring the 1980s and <1.0 pg'lin the 2010sThe Chla trendremained
stable between 1980 and 200€foredecreasingubsequentlyfFig. 5a).For the common periadhe Loire Chla decreased
by 93% (54 ug L, Table 1).The DLM Loire Chla seasonality plot displayed shift in timing of the annualChl a
maximum as indicated by its change in color from orange/red (summer) during-1#BDto green (spring) during
20052013 (Fig. 5b).For the common perigdhis change in timingvas accompanied by significant negativetrend for
autumnseasonal componengmdsignificant positivetrend for winter and springTable 2). Resultsfor Chla in the Vilaine
revealed similar trend and seasonatitythose in the LoirgFig. S6, Table 1, 2), as indicated by a significant correlation

between Chh annualmediansin the two rivergTable 3).

3.2Long term trends in eutrophication parameters in the VB
DIP in the VB varied between <0.1 and >1.0 umot with no noticeable trend (Fig.6a). A significant decrease of
0.05pmol L was detected over theommonperiod (Table 1). The seasonality plot of the VB DIP revealed a change in

timing of the minimum valuesas indicated by its change in color from yellow/orange (summer) before 2006 to green
12
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(spring) afterwards (Fig. 6b). This shift was accompanied by a significant negative linear trend for spring seasonal

components and a significant positive trend for sumffiable 2).

DIN in the VB varied between <1.0 and >200 pmc'ﬂ Wwith trend displaying an oscillation (Fig. 6¢c). A significant increase
of 3.2 pmo| ! was detecteébr thecommonperiod (Tablel). The DLM seasonality indicated that this increase was focused
on winter (Fig. 6d, Table 2). Annual DIN medians in the VB were positively correlated with those of discharge fromthe two

rivers (Table 3).

DSi in the VB varied between <1.0 and 100 umct without noticeable trend (Fig. 6e).0Fthe common perigda
significant increase of 3.6 pmol™Lwas detected, which was comparable to that of DIN (Table 1). The seasonality did not
indicate any particular change (Fig. 6f, Table 2). Annual DSi medians in the VB were positively correlated with those of the

Loire discharge and with the VB DIN (Table. 3)

DIN:DIP and DIN:DSi ratios in the VB ranged between <1.0 and 650, and from <0.1 to 44 respectively (Fig. S7). Summer
values of DIN:DIP and DIN:DSi ratios were often below theoretical values respectively of 16 and 1 for potential
requirements of diatom@ig. S7). DSi:DIP ratios in the VB ranged between <5.0 and >100, with >80% of values being
above the theoretical value of 16 (Fig. S7). The trends for dissolved inorganic nutrient ratios in the VB displayed a

significant increase for thmommonperiod (Fg. S7, Table S3).

Chla in the VB ranged between 0.1 and 116 }ig, with trend displaying an increase (Fig. 7a)r Ehe common periqdhe
VB Chla increased significantly by 126¢2.1 pg L*, Table 1). The seasonality plot of Ghin the VB displayed a shift in
the timing of the annual maximum, indicated by its change in color from green (spring) before 2006 to orange/red (late

13
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summer) afterwards (Fig. 7b). This change was accompanied lignificant negative linear trend for spring seasonal
components (Table 2). Annual Chlmedians irthe VB were negatively correlated with those of Ghfrom both riversand

with DIP in the Vilaine (Table 3).

Diatom abundances varied beeme200 and 1.3 TCcells L for the period 1982013, with the DLM trend showing an
increase (Fig. 7c). df the common periaddiatom abundances increased significantly by 227% (Saaits L*, Table 1).

Although diatom abundances continued to peakpirng (Fig. 7d), their seasonality plot indicated a significant increase in
summer seasonal components overcbmmonperiod (Table 2). Dinoflagellate abundances were aboufaldnless than

those of diatoms, with values ranging between 40 and 3.4ell§ L™ over the period 1982013. Like diatoms, the DLM

trend for dinoflagellate abundances in the VB displayed an increase (Fig. 7d). Foorttmon period, dinoflagellates
abundances increased by 8 ¢6lls L (108%, Table 1). However, the DLM seasonality plot indicated that summer seasonal
components of dinoflagellate abundances, corresponding to dinoflagellate annual peak, displayed a significant decreasing

trend over theommonperiod (Fig. 7f, Table 2).

4 Discussion

The sequence of causes and effects between eutrophication in continental aquatic ecosystems and in those locate
downstream can be studied by observing trends of eutrophication indicators using the same tool and during the same period:
In the present styd eutrophication trajectories in the downstream VB coastal waters during recent decades were examined,

through longtermtrends of phytoplankton biomass and nutrient concentrations, in relation to the restoration of the eutrophic

Loire and Vilaine RiversThe DLM analysis provided the opportunity to explore trends and changes in seasonality in a

visual manner with figures displaying individual data. The modified-parametric ManfKendall test applied to DLM
14



trend and seasonal components of all varialoleer common periodhas permitted corroboration of DLM observations.
Overall results demonstrate that upstream recoveries from eutrophication were accompanied by increased eutrophicatiol
downstream. The significant reduction in P input relative to N wagnough to mitigate eutrophication all along this river
T coastal marine continuum. More reduction of N input, paying particular attention to diffisoeifdes, is necessary to

5 mitigate eutrophication effectively in the VB coastalwaters.

4.1 Eutrophication trajectories at the river basin outlet
The decrease in Cld in preestuarine stations on the Loire and Vilaine Rivers over the past decades reflects the global
diminution in eutrophication in north American andir&pean rivers(Glibert et al., 2011; Romero et al., 2013)his
decrease in Chd was also observed in the Upper and Middle Lglrerroudé et al., 2013; Minaudo et al., 201Hpwever,

10 the Loire did not retrieve its oligotrophic state of the 19@Dsuzet, 1983)At the studied stationthe annual Chd peak
decreased and shifted from late summer to spring (Figs. 8aTl@eparallel decrease of DIP and Chin the Loire and
Vilaine Rivers underlines the role of decreasing P in reducing phytoplankton bigbessy et al., 2012; Minaudo et al,,
2015) as also found in other river systems, such as the Dafistydnovics and Honti, 2012}he SeinglRomero et al.,
2013) and some Scandinavian rivgiGrimvall et al., 2014) This decreasing trend of DIP is a result of improved sewage

15 treatment, decreased use of P fertilizerd #me removal of P from deterger{Bouraoui and Grizzetti, 2011However, the
decline of Chla in both studied rivers began several years after that of DIP when the latter reached limiting concentrations
for phytoplankton, as deduced at Montjean on the Loir€&Saynier et al. (2018)The change in timing of the annual DIP
minima from simmer to spring in the Loire and Vilaine Rivers during last decades of the studied period, concomitant with
that of the annual peak of ChJlcan be explained by the increasingly early depletion of DIP by phytopla(de¢erFloury et

20 al., 2012 for the Loire)
15
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The trend of DIN in stdied rivers reveals the general trends observed in other large European rivers, showing a slight
decrease, a steady trend or even an increase, depending on the degree of fertilizer application in catchiigouramss

and Grizzetti, 2011; Romero et al., 2013he increase in summer Loire DIN since the war®90s was offset by the
decrease in winter values, which is related to the reduction in N point source emissions and N fertilizer ap{fwiatien

et d., 2016; data from French Ministry of Agriculture, S. Lesaint, pers. confmn.)increase summer DIN of several tens of
pmol L was also reported in the Middle Loi®inaudo et al., 2015) This increase in summer DIN is the result of a
delayed response due to the long transit time of DIN through soils and aquifers in the Loire cafcipmenid ears;
Bouraoui and Grizzetti, 2011Yhe decreasing DIN uptake by phytoplankton in the Loire, may have also contributed to the
increase in summer DIKLair, 2001; Floury et al., 2012Concerninghe Vilaine, he slight decrease in DIN from the early
1990s reflects the decrease in N fertilizer application in the Vilaine catch{Beuataoui and Grizzetti, 2011; Aquilina et al.,
2012) whichis facilitated by a relatively short transit time of DIN in the Vilaine watersfés6 yr, Molenat and Gascuel

Odoux, 2002; Aquilina et al., 2012)

DSi data series in both rivers were too short to investigatetierg trends and seasonality, but provided values in order to
examinenutrient stoichiometryLarroudé et al. (2013)bserved no ghificant trend in DSi between 1985 and 2008 in the
Middle Loire, as also confirmed at Montjean stationGgrmier et al. (2018)The decrease in DIP led to the increasing trend
of DIN:DIP ratios and probably DSi:DIFin both rivers, as was observed in numerous riyBesisen et al., 2016Based on
thesetrends, theDIP limitation has beethusreinforcedin studiedrivers during the last decadesnd potentially in receiving

coastalwaters, regardless of the season.
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4.2 BEutrophication trajectories inthe VB
In contrast to what happened in rivers, eutrophication in the downstream VB coastal waters has worsened during recen
decades, as indicated by significant increase ineClallso confirmed by the significant augmentation of bo#tatnh and
dinoflagellate abundance$he increase in Ch in the VB was accompanied kyshift in its annual peak from spring to

5 summer (Figs. 8c, 8d)This modification in the seasonal course of phytoplankton biomass coincides with the increase in
diatomabundances, occurring mainly in summer. The dynamics of phytoplankton in the VB during the last decade of the
studied period thus underwent important changes: 1) an increase in biomass, 2) a change in timing of the annual peak fror

spring to summer, 3) aodification in seasonalcourse of diatoasd dinoflagellates

4.2.1 Increased Chla
10 The increase in phytoplankton biomassuld result from several causes, naniggreased predation\erfishing, decrease
in commercially grown suspensidaeedersjncreasen temperatureand increasdn nutrient inputs. Ineeased predation on
planktonic herbivores could reduce grazing on phytoplani@aady, 2000)In the VB, commercial fishingargeting smal
pelagic (herbivorousis bannedsince 1977Dintheer, 1980) The decline in fisheries in the Bay of Biscay since the 1990s
(Rochet et al., 2005)as unlikely to have caused increased & the VB, since phytoplankton biomass in these oceanic
15 waters has always beemwer than that in the VB (Table S2). Grazing activity by bivalve suspeifie@ders can modify
phytoplankton biomas¢Cloern, 1982; Souchu et al., 2001y the VB, there was an increase in commercial mussel
production Mytilus eduli3 between 2001 and®012 (Le Bihan et al., 2013)This should have led to depletion in
phytoplankton biomass, in fact the opposite trend was observed. In segiuere the phytoplankton productivity is limited
by light availability, an increase in sea surface temperature can promote phytoplankton growth due to water column

20 stabilization(Doney, 2006; Boyce et al., 2018hd decreased turbidifCloern et al., 2014)n the VB, except during winter
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and high hydrdynamic activity periods, phytoplankton production is limited by nutriéBtsllaud et al., 2008)Therefore,
the increase iChla in the VB was patrticularly due to enhanced nutrient availability, as also reported in China Sea coastal

waters byWang et al. (2018)

4.2.2 Changes in timing of annual Chh peak

Seasonal changes phytoplanktonbiomasspeaks have been reportedatheraquatic ecosystems and mostly attributed to
climate changénduced temperatugedwards and Richardson, 2004; Racault et al., 204at)ations innutrientavailability

can also induce change in the seasonattean of phytoplankton biomag$hackeray et al., 2008; Feuchtmayr et al., 2012)
These authors observed that the adeanent in the timing of the spring diatom bloom in some English lakes was related to
the increase in winter DIP. In the VB, tléift in annualChla peak from spring to summecoupled with the change in
position of the annual DIP minima from summer taisg, suggests that DIP depletion by phytoplankton bloom occurred
progressively earlier during the last two decades. Based on nutrient concentrations and stoichidmetsyt i | ghe al .
first nutrient limiting phytoplankton biomass in the VB shifts seasonally from DIP in spring to DIN in summer, as verified
by bioassays (Retho et al. Ifremenpublished data). The conjunction of the decrease in DIP and an increase in DIN in the

VB has probably also contributed to the shifainnualChl a.

4.2.3 Role of DSi on seasonal course of diatoms and dinoflagellates

In terms of nutrients, the balance between diatoms and dinoflagellates is predominantly regulated by the DSi availability
(Egge and Aksnes, 1992n the VB, based on nutrient concentrations and stoichiometry, diatoms were rarely hynttesl

DSi availability, thanks probably timternalDSi regeneration, as suggestedlmnven et al. (2005and Loyer et al. (2006)

in the northern Ba of Biscay continental shelf. The fact that diatoms have increased more than dinoflagellates in the VB,
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contradicts the idea that excessive DIN and DIP inputs favor phytoplankton species, which do not req@en@8iet al.,
1993; European Communities, 2009; Howarth et al., 20Ah) increase in diatom abundances during the eutrophication
process was also observed in Tolo Harparng et al., 1997; Lie et al., 201&hd the coastal waters of the Gulf of Finland
(Weckstrom et al., 2007Conversely, decreasing eutrophication in the Seto InlandY&eBamoto,2003), in Thau(Collos

et al, 2009)and other Mediterranean Lagooflsruste et al., 2016)vas accompanied by the increase in dinoflagellate
abundances to the detriment of diatoms. These observatmh®wr results provide evidence that eutrophication can be

manifested by an increase in diatom abundances.

4.3 Loire/Vilaine - VB continuum

In theory, several external nutrient sources could have contributed to havieiability in the VB: atmospheric, oceanic
and riverine inputs. DIN inputs from rainwater estimatedGnflos et al. (1989)epresent only 1% of river inputs, while
levels of nutrients and Clalin the Bay of Biscay always remained low during the studied period (Table S2). The proximity
of the VB to the Loire and Vilaine Rivedesignatesiverine inputsas main external nutrient sourcegliese coastal waters

(Ménesguen etal., 2018a,.b)

4.3.1 Rivers as the main external nutrient source tohe VB

Watersheds, rivers and coastal waters located at their outlet, constitute a continuum in which anthropogenic pollution,
generated in watersheds, are transported to coastal pgamsote et al., 1980)The transfer of nutrients from continents to
coastal waters is largely demined by freshwater inputs, the dynamics of which depend largely on precipitation in
watersheds. Trends in the Loire and the Vilaine discharges displayed similar oscillations to those of rivers flowing to the
North Sea as reported lBadach and Patsch (2008uggesting a common hydetimatic pattern in Western Europe linked
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to the North Atlantic Oscillation. The decrease in the Loire discharge observed betweemd2d¥13 was also found in the
middle section of the river for the period 192308 (Floury et al., ®12) and attributed essentially to abstraction for
irrigation and drinking water by these authors. The strong correlation between Loire and Vilaine discharges underlines the
similarities between the two rivers concerning the precipitation regime. Howeite a tenfold higher discharge than the

5 Vilaine, the Loire remains the main source of freshwater for the northern Bay of Biscay, with a major role in the
eutrophication of coastal waters in south Brittany, including thg ®8illaud et al., 2008; Ménesguex al., 2018a, 2019)
Aside from floal periods, the closure of the Arzal dam during the-lgater periodgTraini et al.,, 2015) makes nutrient

inputs into the VB by the Vilaine negligible in summer, compared to those from the Loire.

4.3.2 Role of estuaries and the Vilaine dam

10 Biogeochemical processes within estuaries may alter the nutrient transfer from rivers to coastalStatteasn, 2012)
Coupled nitrificationdenitrification and ammonificaticanammox can be a sink of N in estuari@sril et al.,, 2000)
Inorganic nutrientsn estuaries can also be removed by phytoplankton uptake, which is nonetheless limited by turbidity
(Middelburg and Nieuwenhuize, 2000fstuaries can also act assaurce of nutrients, resulting fromineralization of
riverine phytophnkton organic mattg§Meybeck et al., 1988; Middelburg et al., 1996fpwever, forthe studied rivers, this

15 process may have diminished with the decreasing trend in riverina. Chle desorption of loosely bound P from suspended
mineral particlesn estuariesan alsce a source of DIFDeborde et al., 2007 Except during flood periods, the suspended
particle fluxes from the Loirare generally lowMoatar and Dupont, 2016)n addition to these biogeochemical processes,
the increase in population around the Loire estuary (ca. 1% per year, INSE®, 0thg the last decadeuld have
contributed to the increase in N and P inputs. However, inputs of DIN and DIP from wastewater treatment plants in the Loire

20 and Vilaine estuaries have not increased due to improved treatment techniqueS((tizirey River Basin Authority, P.
20



10

15

Fera, pers. comm.). The presence of a dam at the river outlet may increase water residence time, thus favoring nutrien
uptake by phytoplankton and loss of N via denitrificati@eitzinger et al., 2006)Unfortunately, for these two studied
rivers, processes in estuaries and dam are poorly investigated and quantified, which makes it difistifnate their

influence on nutrient transfer to coastal zone.

Despite influences of estuaries and dam, the increase in DIN:DIP and DSi:DIP ratios in rivers during last two decades, with
values already largely above the theoretical value of 16 in th@s]19®as been reflected in the VB coastal waters
(Figs.S5,S7). Moreover, significant negative correlations between arPhulad medians in the VB and in rivers, as well as
significant positive correlations between annual medians of DIN and DSi in theitiBhese of river discharge suggest that
changes in eutrophication parameters in the VB (i.e., phytoplankton biomass) were related to changegMénesiguen

et al., 2018a, bAlthough biogeochemical processes in estuaries and the Vilaine dam may introduce bias in nutrient transfer
fromrivers to he VB, they are probably not intense enough to decouple the observed trends between rivers and the VB, as

suggested bRRomero et al. (2016jor the Seine Rivef Seine Bay continuum.

4.3.3 Link between eutrophication trajectories in rivers and in the VB

During the last two decades, the downstream VB coastarsvhave received decreasing DIP inputs, increasing DIN inputs
especially from the Loire during summer, and no change in DSi inputs (Fig. 8). The decrease in riverine DIP loads was the
cause of the simultaneously decreasing trend in the VB DIP and mayrbiaorced spring DIP limitation as also reported

by Billen et al. (2007)n the Seine Bay. The worsening eutrophication in the VB was the consequence of increasing DIN
inputs fromthe Loire. A similar observation was reported in other coastal ecosystems, such as the Neuse Riv@taestuary

et al., 2004) Belgian coastal waterfLancelot et al., 2007)and the Seine BayRomero et al., 2013)where decreasing

21



10

15

upstream Ché, due to DIP input reduction, was accompanied by the increase in downstreapa€lal result of increasing
DIN input. The seasonal change in annual €lgeak in the VB resultedlsofrom the conjunction of decreasing DIP loads
and increaimg summer DIN loads fromthe Loire. The summer limitation of phytoplankton production byr&her than a
limitation by DIP and especially DS the VB cannot be explained by the stoichiometry of nutrients in rivetsrnal
sources of nutrients, esgelly sediments (see below), were also likely to support a significant portion of nutrient availability

for phytoplankton production during the period of low river dischg@pavan and Boynton, 1996; Pitkénen et al., 2001)

4.3.4 Role of internal nutrient loads

In shallow ecosystems, internal nutrient recycling can regulate phytoplankton production and potentially exacerbate
eutrophication(Paerl et al., 2016 s observed both in laké3eppesen et al., 200&hd coastalkecosystemgPitkanen et al.,

2001) Compared tofreshwater the fragility of marine ecosystems related to salinityBlomgvist et al., 2004) The
presece of sulfate anajor elemenbf salinity) decreases the efficiey of sediments to retain DIfCaraco et al., 1990;
Lehtoranta et al, 2009and favors the recycling of DIP over DIN, the latter being potentially eliminated through
denitrification (Conley, 2000; Conley teal., 2009) In the VB, measurements of benthic nutrient fluxes confirm that
sediments represent a substantial DIP and DSi source compared to riverine (Raumaya, 2018)allowing summer
phytoplankton production to benefit from surplus DIN inputs from the Ldin& increase in summer diatom abundances in

the VB wasthus mainly due to increased summer DIN loads from the Loire, sustdigeinternal sources of DIP and DSi

coming from sediments.
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4.4 Implications for nutrient management

4.4.1 Impact of nutrient management strategies

The need to control both N and P inputs to mitigate eutrophication along the fresmaairee continuum istill debaed

within the scientific communitysee Schindler et al., 2008; Conleyad, 2009; Schindler, 2012; Paerl et al., 2016; Schindler

et al., 2016) Despite the imbalance between P and N input reduction, eutrophication in the river section of the Loire/Vilaine
T VB continuum has diminished but thecrease in phytoplankton biomass in the VB provides evidence that significant
reduction of P inputs, without concomitant N abatement, was not yet sufficient to improve water quality along the entire
continuum. Targeting N and P pollution from point soursas successfully reduced eutrophication in marine ecosystems, as
evidenced in Tampa BaGreening and Janicki, 2006d in several French Mediterranean lago{srolez et al., 2019)
However, N pollution in coastal waters from rivers with watersheds largely occupied by intensive agriculture remain
problematic in many European countri@@uraoui and Grizzetti, 2011; Romero et al., 200Rducing diffuse N inputs
through improved agricultural practices and structural changes in thdfamgteysten{Desmit et al., 2018; Garnier et al,,
2018) would probably help to lessen eutrophicati@onley et al., 2009; Paerl, 200Assuming that rapid and radical
change in farming practicesiigple mented, the delayed responses due to variations in transit timesoihNQuifers should

be taken into account for restauration strat@puraoui and Grizzetti, 2011)

In the VB, a reduction in DIN inputs especially during the summer would probably have prevented eutmpffioati
worsening in this ecosystem. Given that in many other coastal ecosystems the first nutrient limiting phytoplankton
production tends to switch from DIP in spring to DIN in sumifigisher et al., 1992; Del Amo et al., 1997; Tamminen and

Andersen, 2007)it would be relevant to take into account seasonalaspects for nutrient reduction strategy.
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4.4.2 Influence of internal nutrient regeneration

In the VB, the internal nutrient recycling from sediments appears to have contributed to the worsening of summer water
quality during the last two decades and augmented the effects of anthropogenic nutrientritgutal nutrient loads can

delay ecosygmrecovery from eutrophication following external nutrient input redu¢iorarte et al., 2009)n lakes, this

delay induced by internal loads of P on the oligotrophication process varies from 10 to 2@Jgpaessen et al., 2005;
Sendergaard et al., 200Th coastal ecosystems, the delay resulting from internal nutrient loads was less studied. However,
Soetaert and Middelburg (20Q9)sing a model in a shallow coastal ecosystem, estimated a delay of more than 20 years
following the reduction of external N input. Tkeéore, for the Loire/Vilainei VB continuum, nutrient management
strategies should consider the internal nutrient loads in order to anticipate the delay in reddtieryB coastal waters

from eutrophication.

5. Conclusiors and perspectives

Parallelinvestigation of eutrophication parameters in the Loire and Vilaine Rivers, and coastal waters under their influence
revealed several striking patterns and relationships, of which the most apparent was upstream recoveries from eutrophicatiol
accompanied byncreased eutrophication downstream (Fig. 8). During the last two decadesVilaire coastal waters

have experienced a diminution in DIP inputs, whereas DIN continued to increase in theuWig summerWhile the
decreasing trends in DIP were acgmanied by declining phytoplankton biomass in rivers, the seasonal cycle of
phytoplankton has been changed in downstream VB, with an increase in biomass, a shift in its annual peak from spring to

summer, and a modification in the seasonal course of diatordsdinoflagellatesMoreover, the concept of diatom
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replacement by dinoflagellates during the eutrophication process does not seem to be applicable to all shallow coasta

ecosystems.

These results open up a whole field of investigation into the efféaisanges in the phytoplankton dynamics on food webs,
which is of major importance to this flatfish nursery and commercial shellfish(B¥essaunay et al., 2006; Chaalali et al.,

2017) Further studies are necessary to investigatt he modiycations in the phytopl
phenology of the different species, as well as the possible consequence on food webs. Finally, the internal loadssof nutrient
from sediments are suspected of counteracting the reductiererhal nutrients, thus delaying the restauration progress.
During the eutrophication process, sediments may also play an important role in the balance between diatoms and other
classes of phytoplankton. Taking into account these internal processesdillingp studies (i.e., ECOMARS3D,

Ménesguen et al., 2018a, b, 2Q19)ill better simulatenutrient load scenarios in shallow coastalbays (work in progress).

Data availability

All data used in this study are available in the following online data b&esch National Observation Network for

Phytoplankton and Hydrology in coastal watenstis://doi.org/10.17882/472%8French Oceanographic Cruises PELGAS

surveys (http://campagnes.flotteoceanographique.fr/series[18f&-Brittany River Basin Athority (http://osur.eatoire-

bretagne.fr/lexportosur/Accukil French hydrologic databasehttp://www.hydro.eaufrance.fi/ ICES Oceanographic

databasenttp://ocean.ices.dk/HydChem/HydChem.aspx?plot¥yes
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Figure 1: Map of the area studied showing Loire and Vilaine rivers and delimitation of Vilaine Bay (inset red dotted line).|Bck
dots mark the sampling and gauging stations cited
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Figure 2: Lona-term trend and seasonality of the Loire discharaes (a, b). Dark arey lines represent DLM trends. Shaded areas
indicate the 90 % confidence interval. Each dot in the trend plot (left) represents an observed value. those in the seasonalitv plot
(riaht) represent values estimated by the modelOn the seasonality plot, the horizontal line (v = 1.0) indicates seasonal components

5 for which fitted values equal to the trend.Dashed vertical blue lineindicates the beginning ofthe longest commonperiod for all
studiedvariables inrivers and in the VB(1997%2013)
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Figure 3: Long-term trend and seasonality of DIP in the Loire (a, b) and DIP loads from the Loire (c, dBee Fig. 2 for details
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Figure 4: Long-term trend and seasonality of DIN in the Loire (a, bJand DIN loads from the Loire (c, d). Black dots represent
data consideredas outliers (see Sectior82). See Fig. 2 for details
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Figure 5: Long-term trend and seasonality of Chhin the Loire (a, b). See Fig. 2 for details
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