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List of changes 

Among other small changes, we made the following changes (page and line numbers refer to the new version of the 

manuscript): 

- P 2, L 3-5: “Hence our pattern-oriented model evaluation approach allowed us to diagnose that vegetation effects on 15 

fire are a main deficiency of fire-enabled dynamic global vegetation models to accurately simulate the role of fire 

under global environmental change.” 

- P 2, L 9-10: “Fire affects global and regional climate directly through changing surface albedo (López-Saldaña et al., 

2015; Randerson et al., 2006)” 

- P 2, L 14-15: “Climate influences several aspects of the fire regime, including the seasonal timing of lightning 20 

ignitions (Veraverbeke et al., 2017), temperature and moisture controls on fuel drying, and wind-driven fire spread 

(Jolly et al., 2015).” 

- P 3, L 8: We replaced “fire activity” with “burned area”. 

- P 5, L 22-22:  “Aggregation was done by averaging the fractional burned area from all high-resolution grid cells that 

belong to the same coarse-resolution grid cell. Nearest neighbour resampling was done if less than two high-resolution 25 

grid cells were within one coarse-resolution grid cell.” 

- P 7, L 13-16: “As a single global agreement metric, we computed the percentage of the land area that shows a “good” 

agreement from the spatial patterns of Spearman correlation Cor and FV, where good agreement for an individual 

grid cell was defined based on a positive and non-random relationship (i.e. Cor ≥ 0.25) and a comparable variance (-

0.75 ≤ FV ≤ 0.75) between simulated and observed burned area.” 30 
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- P 8, L 22-24: “The vegetation biomass dataset does not cover southern Australia and New Zealand. Although fire is 

common in these regions, we did not fill the global vegetation biomass map with a regional map to avoid potential 

artefacts in the derived sensitivities that would likely result from merging different biomass maps.” 

- P 11, L3-4 and P 13, L 11-13 and P 17, L 3-5: “Regions with missing data (white) are either without vegetation cover 

(e.g. deserts, ice sheets), had no burned area (e.g. parts of the Amazon and tundra), or were not covered by the used 5 

vegetation carbon map (i.e. regions in southern Australia and New Zealand).” 

- P 13, L 6-8: “Please note that the predicted burned area in random forest (and in reality) emerges from multiple 

predictors and that the second-most important predictor (not shown in the maps) might have similar importance.” 

- P 19, L 23-24: “Fire results from an interplay of several meteorological variables, thereby maximum temperature was 

an important predictor globally and especially in northern temperate and boreal ecosystems.” 10 

- P 20 L 25-26: “Our results demonstrate that the role of vegetation on fire needs to be better represented in fire-enabled 

DGVMs to accurately simulate the variability of burned area.” 

- Supplement, Figs. S 16 and S17: The placement of the legend within the figures was improved.  
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Abstract. Recent climate changes increases fire-prone weather conditions in many regions and likely affects fire occurrence, 

which might impact ecosystem functioning, biogeochemical cycles, and society. Prediction of how fire impacts may change 

in the future is difficult because of the complexity of the controls on fire occurrence and burned area. Here we aim to assess 

how process-based fire-enabled Dynamic Global Vegetation Models (DGVMs) represent relationships between controlling 30 

factors and burned area. We developed a pattern-oriented model evaluation approach using the random forest (RF) algorithm 

to identify emergent relationships between climate, vegetation, and socioeconomic predictor variables and burned area. We 

applied this approach to monthly burned area time series for the period 2005-2011 from satellite observations and from 

DGVMs from the Fire Model Inter-comparison Project (FireMIP) that were run using a common protocol and forcing datasets. 

The satellite-derived relationships indicate strong sensitivity to climate variables (e.g. maximum temperature, number of wet 35 

days), vegetation properties (e.g. vegetation type, previous-season plant productivity and leaf area, woody litter), and to 

socioeconomic variables (e.g. human population density). DGVMs broadly reproduce the relationships to climate variables 
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and some models to population density.  Interestingly, satellite-derived responses show a strong increase of burned area with 

previous-season leaf area index and plant productivity in most fire-prone ecosystems which was largely underestimated by 

most DGVMs. Hence our pattern-oriented model evaluation approach allowed us to diagnose that vegetation effects on fire 

are a main deficiency of fire-enabled dynamic global vegetation models to accurately simulate the role of fire under global 

environmental change. 5 

1 Introduction 

About 3% of the global land area burns every year (Chuvieco et al., 2016; Giglio et al., 2013; Randerson et al., 2012). Fire 

represents a strong control on large-scale vegetation patterns and structure (Bond et al., 2004) and can significantly accelerate 

impacts of changing climate or land management on global ecosystems (Aragão et al., 2018; Beck et al., 2011). Fire affects 

global and regional climate directly through changing surface albedo (López-Saldaña et al., 2015; Randerson et al., 2006), 10 

atmospheric trace gas and aerosol concentrations (Andreae and Merlet, 2001; Ward et al., 2012), and on longer time scales by 

affecting vegetation composition and structure with subsequent impacts on the carbon cycle and hydrology (Li and Lawrence, 

2016; Pausas and Dantas, 2017; Tepley et al., 2018; Thonicke et al., 2001).   

Climate influences several aspects of the fire regime, including the seasonal timing of lightning ignitions (Veraverbeke et al., 

2017), temperature and moisture controls on fuel drying, and wind-driven fire spread (Jolly et al., 2015). Climate also 15 

influences the nature and availability of fuel, through its impact on vegetation productivity and structure (Harrison et al., 2010). 

Vegetation structure in turn influence the patterns of fuel amounts and moisture that directly determine fire spread, severity, 

and extent (Krawchuk and Moritz, 2011; Pausas and Ribeiro, 2013). People set and suppress fires and use them to manage 

agricultural and natural ecosystems, for land use change and deforestation practices (Andela and van der Werf, 2014; Marle et 

al., 2017). Human-induced modifications and fragmentation of natural vegetation through agricultural expansion and 20 

urbanization limits fire spread (Bowman et al., 2011). Thus, climate, vegetation, and human controls on fire are multivariate 

and have strong interactions with one another (Bowman et al., 2009; Harrison et al., 2010; Krawchuk et al., 2009). Empirical 

analyses of fire regimes by using machine learning algorithms have identified the most important variables and their 

sensitivities for fire occurrence and spread  (Aldersley et al., 2011; Archibald et al., 2009; Bistinas et al., 2014; Forkel et al., 

2017; Krawchuk et al., 2009; Moritz et al., 2012). However, because of the difficulty of factoring out interactions between 25 

predictor variables, such sensitivities represent emergent relationships rather than specific physical controls on fire. Thus, it 

has proved difficult to disentangle the role of changes in any single factor on the trajectory of changes in fire regimes. For 

example, changes in climate result in increasing fire weather conditions and fire activity in some temperate regions (Holden et 

al., 2018; Jolly et al., 2015; Müller et al., 2015) but it has been suggested that changes in land use compensate climate effects 

and result for example in declining burned areas in African Savannahs (Andela and van der Werf, 2014). Hence there is still 30 

uncertainty, for example, about the cause of the recent observed decline in global burned area (Andela et al., 2017). There is 

even greater uncertainty about the potential trajectory of changes in fire regimes in the future (Settele et al., 2014). 
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Fire-enabled Dynamic Global Vegetation Models (DGVMs) or Earth System Models are process-oriented tools to predict the 

consequences of future climate change on fire regimes and associated feedbacks (Hantson et al., 2016). Our faith in these 

projections is contingent on the ability of these models to capture features of the current situation. State-of-the-art fire-enabled 

DGVMs partly capture the spatial patterns of burned area (Andela et al., 2017; Kelley et al., 2013) but doubt has been cast on 

their ability to capture the response to extreme events and recent trends in burned area (Andela et al., 2017). This suggests that 5 

these models inaccurately represent the response of fire to combined changes in climate, vegetation, and socioeconomic 

drivers.   

Here we aim to test how fire-enabled DGVMs reproduce emergent relationships with the drivers of burned area. We apply a 

machine learning algorithm to the output from seven fire-enabled DGVMs and a suite of satellite and other observation-based 

datasets in order to derive emergent relationships between a number of potential drivers of burned area. By comparing the 10 

model- and data-derived emergent relationships, we assess the degree to which DGVMs reproduce these relationships. While 

we make no assumption about the actual physical controls on burned area, this comparison allows us to pinpoint relationships 

between drivers and burned area that are unrealistic represented in fire-enabled DGVMs. 

2 Data and Methods 

2.1 Method summary 15 

In order to infer relationships between potential drivers of fire in satellite data and fire-enabled DGVMs, we applied the random 

forest (RF) machine-learning algorithm to predict monthly burned area (response variable) from climate, vegetation, and 

socioeconomic predictor variables (Figure 1). Predictor variables and burned area were taken either from satellite and other 

observation-based datasets or from simulations by a suite of fire-enabled DGVMs from the Fire Model Inter-comparison 

project (FireMIP) (Rabin et al., 2017) to derive relationships for datasets and models, respectively.    20 

The RF algorithm is a regression approach that allows non-linear, non-monotonic, and non-additive relations between multiple 

predictor variables and the target variable. RF  averages predicted values across an ensemble of decision trees that are built 

based on the training data set (Breiman, 2001; Cutler et al., 2012). We built three sets of RF models. We first built RF models 

for satellite-observed burned area based on a multitude of predictor variables to derive relationships from data. There are 

differences between the available burned area datasets; we therefore used five recent and/or well-established datasets to 25 

encompass these uncertainties. The fire-enabled DGVMs do not use some of the predictor variables in the satellite-derived 

RF. We hence built a second set of satellite-derived RF models with a reduced set of predictor variables. The third set of RF 

models was derived for each FireMIP model by using the simulated burned area as target variable and simulations of gross 

primary production (averaged over precedent months), biomass and land cover predictor variables, and the population density 

and climate predictor variables that were used as inputs for the models (according to the FireMIP protocol).  30 

From each RF model we then derived the importance (sect. 2.7), relationships, and sensitivity (sect. 2.8) of each predictor 

variable to burned area. Relationships and sensitivities were derived by computing individual conditional expectation (ICE) 
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and partial dependencies curves (Goldstein et al., 2013). These dependencies represent the emergent relationships of burned 

area to drivers in the observation- or model-variable space. We then compared the data- and model-derived emergent 

relationships and sensitivities both globally and per grid cell basis. 

 

 5 

Figure 1: Overview of the approach on using the random forest machine learning algorithm to derive emergent relationships 

between several predictor variables for burned area in satellite and other observation-based data and in fire-enabled DGVMs.   

 

2.2 Burned area from satellite datasets  

There are several global burned area datasets, and both the spatial patterns and temporal dynamics differ between them 10 

(Hantson et al., 2016; Humber et al., 2018) because they use different satellite sensors and retrieval algorithms, and have 

different sensitivities to small fires (Chuvieco et al., 2016; Giglio et al., 2013; Randerson et al., 2012). We used the variability 

between five global datasets (Table 1) as an estimate of uncertainty. However, by doing so we might still underestimate the 

real uncertainty in burned area observations because all datasets rely on active fire detections (thermal anomaly) and on 
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reflectance changes from the same sensor (MODIS). As exception, CCI_MERIS uses MERIS reflectances combined with 

MODIS active fires.   

We restricted our analysis to burned area data with high observational quality. Observational quality indicates to which degree 

missing input satellite imagery or contaminations by clouds, smoke, snow and shadows limit burned area detection. Especially 

MERIS land observations are subject to substantial gaps in raw data acquisitions (Tum et al., 2016). Low observational 5 

coverage can result in strongly underestimated burned area. Here, we used the CCI_MERIS “observed area fraction” layer as 

a time-variant mask to all burned area datasets and only included estimates for months with observational coverage higher 

than 80 %. We also excluded burned area in months with < 0 °C to remove suspicious small burned areas in polar regions or 

in winter months that are likely caused by insufficiently corrected gas flares and other industrial activities. Analyses were made 

with monthly burned area observations for the period 2005-2011, which is the common period between the five datasets. 10 

2.3 Burned area from FireMIP models 

A detailed description of FireMIP DGVMs and the simulation protocol is given by Rabin et al. (2017). Here we used monthly 

burned area from seven models that made transient simulations from 1700 to 2013 (Table 1, bottom half). The models were 

forced using inputs of meteorological variables from the CRUNCEP V5 dataset (Wei et al., 2014), monthly cloud-to-ground 

lightning strikes (Rabin et al., 2017), annually-updated values of human population density from the HYDE 3.1 data set (Klein 15 

Goldewijk et al., 2010), annually-updated land use and land cover changes from the Hurtt et al. (2011) data set, and annually-

updated values of global atmospheric CO2 (Le Quéré et al., 2014). Although forcing datasets are common across DGVMs, 

they do not use the same set of forcing variables, i.e. wind speed (WSPEED), or use population density (PopDens) for fire 

ignitions and/or fire suppression.  

The model outputs were aggregated to a common spatial resolution of 2.5° longitude x 1.89° latitude. Aggregation was done 20 

by averaging the fractional burned area from all high-resolution grid cells that belong to the same coarse-resolution grid cell. 

Nearest neighbour resampling was done if less than two high-resolution grid cells were within one coarse-resolution grid cell. 

Analyses were made for the same period as the common window of the satellite data (2005-2011) and by also applying the 

“observed area mask” from the satellite data.  

 25 
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Table 1: Overview of used burned area datasets and FireMIP models. 

Abbreviation 

used in this 

study 

Satellite 

dataset  

or  

FireMIP model 

Spatial 

resolution  and 

temporal 

coverage 

Satellite sensor (all datasets use 

thermal anomalies from MODIS) 

or  

model characteristics 

Reference 

Satellite-derived burned area datasets 

GFED4 GFED4 
0.25° x 0.25° 

1995-2015 

Based on MODIS collection 5 (500 

m) (Giglio et al., 2009) 
(Giglio et al., 2013) 

GFED4s GFED4s 
0.25° x 0.25° 

1995-2015 

Based on GFED4 with additional 

estimation of small fires 
(Randerson et al., 2012) 

CCI_MERIS 
ESA Fire_cci 

V4.1 

300 m 

2005-2011 
MERIS V4.1 reflectances (Chuvieco et al., 2016) 

CCI_MODIS 
ESA Fire_cci 

V5.0 

250 m 

2000-2015 
MODIS V5.0 (Chuvieco et al., 2018) 

MCD64C6 MCD64C6 
500 m 

2000-2018 
MODIS collection 6 (Giglio et al., 2018) 

FireMIP models 

CLM 
CLM Li et al. 

fire module 

2.5° x 1.89° 

1700-2013 

Uses WSPEED for fire spread 

Uses PopDens for ignitions and 

suppression 

(Li et al., 2012, 2013) 

CTEM CTEM 

2.8125° x 

2.8125° 

1700-2013 

Uses WSPEED for fire spread 

Uses PopDens for ignitions and 

suppression 

(Arora and Boer, 2005; 

Melton and Arora, 2016) 

JSBACH 
JSBACH-

SPITFIRE 

1.875° x 1.875° 

1700-2013 

Uses WSPEED for fire spread 

Uses PopDens for ignitions and 

suppression 

(Lasslop et al., 2014) 

JULES JULES-Inferno 
1.25° x 1.875° 

1700-2013 

Empirical model 

No WSPEED  

Uses PopDens for ignitions only 

(Mangeon et al., 2016) 

LPJG-SIMF 

LPJ-GUESS-

SIMFIRE-

BLAZE 

0.5° x 0.5° 

1700-2013 

Empirical model with seasonal 

dynamic from GFED3 dataset 

No WSPEED for fire spread 

Uses PopDens for fire suppression 

(Knorr et al., 2014, 

2016) 

LPJG-SPITF 
LPJ-GUESS-

SPITFIRE 

0.5° x 0.5° 

1700-2013 

Uses WSPEED for fire spread 

Uses PopDens for ignitions 

(Lehsten et al., 2010, 

2016) 

ORCHIDEE 
ORCHIDEE-

SPITFIRE 

0.5° x 0.5° 

1700-2013 

Uses WSPEED for fire spread 

Uses PopDens for ignitions 
(Yue et al., 2014, 2015) 

 

2.4 Evaluation of data-data and model-data temporal agreement  

We evaluated the temporal agreement of monthly burned area time series in 2005-2011 between the datasets and between the 

datasets and the fire-enabled DGVMs based on various model performance metrics (Janssen and Heuberger, 1995) on a per-5 
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grid cell basis. We selected the Spearman rank-correlation coefficient to compare the temporal agreement and the fractional 

variance (FV) to compare the variability of burned area per grid cells: 

𝐹𝑉 =
𝜎𝑥 − 𝜎𝑟𝑒𝑓

0.5 × (𝜎𝑥 + 𝜎𝑟𝑒𝑓)
      (1) 

where σref and σx are the variances of the reference and observed or simulated burned area, respectively. FV ranges between -

2 and 2 where negative values indicate an underestimation and positive values an overestimation of the observed variance. The 5 

reference ref is a vector of monthly burned area time series from all satellite datasets:  

𝑟𝑒𝑓 = [𝐵𝐴. 𝐶𝐶𝐼𝑀𝐸𝑅𝐼𝑆 , 𝐵𝐴. 𝐶𝐶𝐼𝑀𝑂𝐷𝐼𝑆 , 𝐵𝐴. 𝐺𝐹𝐸𝐷4, 𝐵𝐴. 𝐺𝐹𝐸𝐷4𝑠, 𝐵𝐴. 𝑀𝐶𝐷64𝐶6] 

In the case of a comparison of a single satellite datasets (e.g. x = BA.CCI_MERIS) with the other satellite datasets, this dataset 

was not used in the reference vector. This approach directly considers the differences between datasets in the computation of  

model performance metrics and implies that it is impossible for a FireMIP model or for one single satellite dataset to reach an 10 

optimal correlation of unity or a FV of zero as long as the satellite burned area datasets show differences. We used the median 

of the correlation coefficient and of the FV for each grid cell to quantify the data-data or model-data agreement over the 

ensemble of datasets or models. As a single global agreement metric, we computed the percentage of the land area that shows 

a “good” agreement from the spatial patterns of Spearman correlation Cor and FV, where good agreement for an individual 

grid cell was defined based on a positive and non-random relationship (i.e. Cor ≥ 0.25) and a comparable variance (-0.75 ≤ FV 15 

≤ 0.75) between simulated and observed burned area. 

2.5 Predictor variables and datasets  

Several variables have been identified as predictors of global fire in previous studies, inter alia the number of dry or wet days 

per month (WET), diurnal temperature range (DTR), maximum temperature (TMAX), grass and shrub cover, leaf area index 

(LAI), net primary production (NPP), population density (PopDens), and gross domestic product (GDP) (Aldersley et al., 20 

2011; Bistinas et al., 2014). Other variables have been found important for fire at a regional scale, including total precipitation, 

tree cover, forest cover type, tree height, biomass and litter fuel loads, and grazing (Archibald et al., 2009; Chuvieco et al., 

2014; Parisien et al., 2010; Pettinari and Chuvieco, 2017). We created a combined set of potential variables used in these 

studies to predict burned area (Table A 1). We used data on gross primary production (GPP) instead of NPP as GPP can be 

estimated from eddy covariance observations and does not require model assumptions about autotrophic respiration. 25 

Climate data. Climate data was taken from the CRUNCEP V5 dataset (Wei et al., 2014). CRUNCEP provides six-hourly time 

series of precipitation, maximum and minimum temperature, and wind speed. From these time series, we derived the monthly 

mean of daily maximum temperature (CRUNCEP.TMAX) and minimum temperature (CRUNCEP.TMIN), the monthly mean 

daily diurnal temperature range (CRUNCEP.DTR = TMAX – TMIN), the monthly 90th percentile of daily wind speed 

(CRUNCEP.WSPEED), monthly total precipitation (CRUNCEP.P) and the number of wet days per month (CRUNCEP.WET). 30 

A wet day was defined as a day with≥ 0.1 mm precipitation (Harris et al., 2014).  
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Land cover. Land cover was taken from the ESA CCI Land cover V2.0.7 dataset which provides annual land cover maps for 

the period 1992-2015 (Li et al., 2018). Land cover classes were converted into the fractional coverage of plant functional types 

(PFTs). For this conversion, we used the cross-walking approach (Poulter et al., 2011, 2015) based on the conversion table in 

Forkel et al. (2017). Individual PFTs combine growth form (tree, shrubs, herbaceous vegetation, or crops) with leaf type 

(broad-leaved or needle-leaved) and leaf longevity (evergreen or deciduous). The variable Tree.BD, for example, is the 5 

fractional coverage of broad-leaved deciduous trees (Table A 1). We created an additional category combining trees and shrubs 

(e.g. TreeS.BD  = Tree.BD + Shrub.BD) because most of the FireMIP models simulate woody vegetation rather than separating 

shrubs and trees explicitly (Table S 1). JULES, LPJG-SIMF, and LPJG-SPITF dynamically simulate the fractional coverage 

of PFTs, but CLM, CTEM, JSBACH, and ORCHIDEE used prescribed PFT distributions. We reclassified the PFTs of each 

model into the same set of PFTs that we derived from the CCI land cover dataset (Table S 1).  10 

Vegetation productivity. Data on gross primary production (GPP) and leaf area index (LAI) were taken to account for the 

seasonal effects of vegetation productivity and canopy development. GPP was taken from the FLUXCOM dataset which is 

up-scaled from GPP estimates at FLUXNET measurement sites (Tramontana et al., 2016). We used the FLUXCOM dataset 

that used satellite and CRUNCEP meteorological data for the upscaling. LAI was taken from MODIS (USGS, 2001, p.2). GPP 

and LAI were averaged to monthly mean values (e.g. variable name GPP.orig). To account for seasonal fuel accumulation, we 15 

also computed previous-season GPP or LAI values as the mean over the three and six months before the month of comparison 

with burned area (e.g. GPP.pre3mon and GPP.pre6mon).  

Biomass and fuels. We used temporally-static vegetation datasets to account for the effects of vegetation biomass, fuel 

properties, and ecosystem structure on burned area dynamics. Total above- and below-ground vegetation biomass was obtained 

from Carvalhais et al. (2014), which is based on an above-ground forest biomass map for the tropics for the early 2000s 20 

(Saatchi et al., 2011), a total forest biomass map for temperate and boreal forests for the year 2010 (Thurner et al., 2014), and 

an estimate of herbaceous biomass (Carvalhais et al., 2014). The vegetation biomass dataset does not cover southern Australia 

and New Zealand. Although fire is common in these regions, we did not fill the global vegetation biomass map with a regional 

map to avoid potential artefacts in the derived sensitivities that would likely result from merging different biomass maps. From 

each FireMIP model, we used the simulated vegetation carbon averaged for the years 2005-2011 as the equivalent to this data 25 

set. We used canopy height from Simard et al. (2011); this data set provides a snapshot of average canopy height in 2005. 

Factors related to fuel properties, specifically grass height, litter depth, woody litter depth, and amounts of woody litter in 

different size classes were extracted from the global fuelbed database (Pettinari and Chuvieco, 2016). This database is based 

on a land cover-based extrapolation of regional fuel databases to the globe and provides a generic picture of conditions around 

2005.    30 

Socioeconomic data. We used the annually-varying population density dataset from the HYDE V3.1 database (Klein 

Goldewijk et al., 2011), which was used as a forcing dataset for the FireMIP simulations. We also used annually-varying gross 

domestic product per capita (GDP) (World Bank, 2018), a static satellite-derived index of socio-economic development based 
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on night-time lights for the year 2006 (Elvidge et al., 2012), and a dataset on cattle density for the year 2007 (Wint and 

Robinson, 2007).  

2.6 Random forest experiments and selection of predictor variables 

We performed our analysis using the randomForest package V4.6-12 in R (Liaw and Wiener, 2002). We trained the RF with 

500 regression trees. The training target was either a “satellite-observed” or a “model-simulated” burned area, i.e. we trained 5 

one RF against each burned area dataset and each individual FireMIP model simulation, respectively. We used two sets of 

predictor variables in three sets of RF experiments (Table A 1): 

 “RF.Satellite.full” for satellite-derived RF experiments: We used 23 out of all 28 predictor variables to train RF 

models for each burned area dataset. Five predictor variables were not included in the RF because they were highly 

correlated with others (r > 0.8, i.e. night-light development index, cattle density, woody litter for the 10 h fuel size 10 

class, precedent 3-monthly GPP, and precedent 3-monthly LAI, Figure S 1). The purpose of these experiments was 

to identify the relationship between burned area and each predictor variable from datasets. 

 “RF.Satellite.fm” for satellite-derived RF experiments: These experiments were also trained against burned area 

datasets but included only the reduced set of 16 data-based predictor variables that are available from both 

observational datasets and the FireMIP (fm) models.  15 

 “RF.FireMIP.fm” for model-derived RF experiments: These experiments used the reduced set of predictor variables 

with land cover, GPP, biomass, and the response variable burned area taken from simulations of each FireMIP model. 

The purpose of these experiments was to compare relationships and sensitivities from satellite- and FireMIP-derived 

RF experiments.  

2.7 Importance of predictor variables in random forest 20 

The normal method of determining the importance of  predictor variables for RFs (increment in mean-squared error, MSE) 

was found to be overly sensitive to the burnt area dataset that was used in training because of the highly skewed distribution 

of burned area, and this hampers its interpretability (Figure S 8, Figure S 9). To overcome this issue and to obtain additional 

information about regional (i.e. grid cell-level) importance of predictor variables, we developed an alternative approach.  

This alternative approach uses the fractional variance (FV) and Spearman correlation (r) instead of the MSE and is computed 25 

for each grid cell. The importance of variables is quantified as a distance D in a two-dimensional space based on these metrics: 

𝐷 =  √(0.5 × (𝐹𝑉𝑝 − 𝐹𝑉0))
2

+ (𝑟𝑝 − 𝑟0)
2
     (2) 

where FV0 and r0, and FVp and rp are the performance metrics based on the original RF predictions and based on the RF 

predictions after permuting a single predictor variable, respectively. The FV-related term was multiplied with 0.5 to obtain the 

same range as the correlation. FV and r are computed at grid cell-level based on monthly burned area time series from the RF 30 Deleted: like
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predictions and the training data (i.e. burned area from a satellite dataset or from a FireMIP model). As the metric D depends 

on the permutation, we permutated each predictor variable 10 times and averaged the D metric.  

2.8 Deriving emergent relationships and sensitivities from random forest  

Insight into the shape of a relationship between a predictor and the target variable in a trained RF can be obtained from partial 

dependence (PDP) (Friedman, 2001) and individual conditional expectation (ICE) plots (Goldstein et al., 2013) (Figure S 2). 5 

PDPs show the partial relationship between the predicted target variable and one predictor variable when other predictor 

variables are set to their mean value. ICE plots show the relationship between the predicted target variable and one predictor 

variable for individual cases of the predictor dataset (Goldstein et al., 2013). In our application, an individual case is a specific 

combination of climate, land cover, vegetation, and socioeconomic data for a given grid cell in a given month (Figure S 2). 

The average of all ICE curves corresponds to the PDP. We used the ICEbox package V1.1.2 for R for the computation of ICE 10 

curves and partial dependencies (Goldstein et al., 2013).   

We computed ICE curves for all predictor variables and from all RF experiments (Supplementary Information 4 and 5). We 

computed ICE curves and PDPs based on the global dataset to analyse and compare global emergent relationships. Pearson’s 

correlation coefficient was computed between pairs of satellite- and model-derived ICE curves to quantify the agreement of 

the emergent relationships (Figure S 15). We also computed PDPs for each grid cell to produce global maps of partial 15 

sensitivities for selected predictor variables. To summarize and map the PDP of each grid cell in a single number, we fitted a 

linear quantile regression to the median between the partial dependence of burned area and the corresponding predictor variable 

and mapped the slope of this regression. In the following, we name this slope “sensitivity”. 

3 Results  

3.1 Evaluation of temporal burned area dynamics   20 

Here we compare the monthly temporal dynamics of burned area from the satellite datasets, FireMIP model simulations, and 

random forest predictions for the overlapping period 2005-2011. The satellite datasets showed in average relatively good 

agreement with each other (i.e. “good” is r ≥ 0.25 and -0.7 ≤ FV ≤ 0.7) over 70% of the global vegetated land area, with best 

agreement in frequently burning grasslands and savannahs (Figure 2 a). However, individual datasets showed good agreement 

in only 31-56% of the land area (Figure S 3). The largest dissimilarities between burned area datasets occurred in temperate 25 

land use-intense regions (North America, Europe, China), tropical forests, and in sparsely vegetated arid and tundra regions. 

These difference are likely caused by limited detection possibilities under cloud cover (e.g. in the Amazon) and by the 

sensitivities of the algorithms to detect small fires (temperate and sparsely-vegetated regions). As the CCI_MERIS dataset is 

based on a different sensor, it is the most different from the other datasets (31% of land area with good agreement, Figure S 

3). Hence these uncertainties make it necessary to train RF to each dataset separately in order to assess how such uncertainties 30 

translate into emergent relationships to burned area.  
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FireMIP models showed good agreement with satellite datasets in 9% of the land area (Figure 2 b). In particular, models tended 

to underestimate the variability of burned area in key biomass burning regions, while overestimating fire variability in arid and 

some temperate regions of infrequent fire activity. Individual FireMIP models had weaker performance than the model 

ensemble (6% to 8% with good agreement, Figure S 4).   

 5 

 

Figure 2: Comparison of temporal burned area dynamics from satellite datasets, fire-enabled DGVMs, and random forest. The 

maps show the median Spearman rank-correlation coefficient and median fractional variance of the monthly burned area in 2005-

2011 between (a) satellite datasets and the other satellite datasets (Figure S 3), (b) FireMIP model simulations and all satellite datasets 

(Figure S 4), (c) predicted burned area from RF  and all satellite datasets (“full” set of predictor variables, Figure S 5), and (d) 10 
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predicted burned area from RF trained against FireMIP models and the corresponding simulated burned area from each FireMIP 

model (Figure S 7). Green percentage numbers indicate land area with “good” agreement (Correlation ≥ 0.25 and -0.7 ≤ FV ≤ 0.7). 

Regions with missing data (white) are either without vegetation cover (e.g. deserts, ice sheets), had no burned area (e.g. parts of the 

Amazon and tundra), or were not covered by the used vegetation carbon map (i.e. regions in southern Australia and New Zealand). 

 5 

The RF models can reproduce the temporal dynamics of the satellite burned area datasets reasonably well in most frequently 

burning regions (Figure 2 c). The overall proportion of the vegetated land area showing good agreement in “full” experiments 

was only 36% but individual RF models reached better performances (up to 41% with good agreement, Figure S 5). The “fm” 

RF models had slightly weaker performance (22% to 38% with good agreement, Figure S 6). However, the performance of 

RF models was much higher than the performance of FireMIP models (Figure 2 b). RF was also able to largely emulate the 10 

simulated burned area from FireMIP models (85% with good agreement with the FireMIP simulation, Figure 2 d). The RF 

models most closely emulated simulated burned area in those FireMIP models that are based on empirical relationships 

(JULES, LPJG_SIMF, Figure S 7). In summary, the ability of RF models to emulate simulated or observed monthly burned 

area dynamics is sufficient for the purposes of comparing satellite-derived and FireMIP-derived relationships.  

3.2 Importance of predictor variables in random forest 15 

Satellite-derived RF experiments show that temperature-related variables were the most important predictors for temporal 

burned area dynamics in temperate and boreal regions, and land cover- or productivity-related variables were most important 

in subtropical and tropical regions (Figure 3 a). Maximum temperature had on average the highest importance globally and 

was the most important predictor in 30-40% of the land area in satellite-derived RF (Figure 3 c and e). Productivity and land 

cover-related variables (i.e. mostly precedent 6-monthly GPP and broad-leaved deciduous tree cover in Savannahs) were the 20 

most important predictors in another 20-30% of the land area. Dryness-related predictor variables (WET and P) were most 

important in tropical forest regions. Human-related predictor variables were only most important in a few grid cells, whereby 

cropland cover was, on average, of higher importance than population density (Figure 3 c). The satellite-derived importance 

was very similar among the burned area datasets (Figure 3 e).  

On average, the FireMIP model-derived RF experiments broadly reproduced the satellite-derived importance of predictor 25 

variables (Figure 3 b). However, maximum temperature, precedent 6-monthly GPP, and number of wet days had a lower 

importance, but diurnal temperature range, cropland cover, and precipitation had a higher importance than in the satellite-

derived RFs (Figure 3 d). In addition, the model-derived importance of predictor variables differed among FireMIP models 

(Figure 3 e, Figure S 10). Most model-derived RF experiments underestimated the importance of precedent 6-monthly GPP 

and showed large differences in the importance of land cover-related predictors. The strongly varying size of the yellow and 30 

green bars in Figure 3 e indicate that differences in simulated burned area between FireMIP models mostly originate from how 

productivity and land cover effects on fire are represented.   
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Figure 3: Grid cell-level importance of predictor variables in satellite- and FireMIP-derived RF experiments. Importance of 

variables is quantified as the change in the grid-cell level performance of the RF predictions after a predictor variable is permuted 

(D metric, see Methods). (a and b) Maps of the group of variables with the highest importance. For example, “temperature” (red) 5 
indicates that either TMAX or DTR had the maximum D metric and were the predictors with highest importance in a grid cell. 

Please note that the predicted burned area in random forest (and in reality) emerges from multiple predictors and that the second-

most important predictor (not shown in the maps) might have similar importance. (c and d) Global distributions of D for each 

variable from satellite- and model-derived “fm” RF experiments, respectively. Variables with the same colour are grouped together 

for the figures in panels (a, b, and e). (e) Area distribution of the variable groups with the highest D for each RF experiment.  In (a) 10 
and (b), regions with missing data (white) are either without vegetation cover (e.g. deserts, ice sheets), had not burned area (e.g. 

parts of the Amazon and tundra), or were not covered by the used vegetation carbon map (i.e. regions in southern Australia and 

New Zealand). 
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Figure 4: Example of global emergent relationships of the fractional burned area per month to predictors from satellite-derived 

(grey, mean and range based on the five burned area datasets) and FireMIP model-derived (colours) “fm” random forest 

experiments for six selected variables. Tick marks along the x-axis show the deciles (minimum, quantile 0.1 to maximum) of the 

global distribution of each predictor variable. Maximum temperature was cut at 0°C in (a) and population density was cut at 100 5 
person km-2 in (d). Emergent relationships for other predictor variables are shown in Figure S 16 and Figure S 17. 

 

3.3 Emergent relationships of burned area to driving factors 

3.3.1 Climate  

The satellite-derived global relationships showed expected patterns between burned area and climate variables: burned area 10 

increased exponentially with maximum temperature, decreased with an increasing number of wet days per month, and 

increased with diurnal temperature range (Figure 4 a-c). The shapes of the relationships of burned area to climate variables 

were robust among the burned area datasets (Figure S 11). However, burned area datasets show offsets between the relationship 

curves: For example, the curves that were derived from the GFED4s and CCI_MERIS datasets show usually higher burned 

area than the curves from the other datasets (Figure S 11). These positive offsets are caused by the fact that GFED4s and 15 
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CCI_MERIS include more small fires and have hence an overall higher burned area than the other datasets. RF experiments 

that either use the “full” or “fm” set of predictor variables resulted in largely similar relationships (Figure S 12). 

The relationships between burned area and climate variables were broadly similar for the FireMIP models (Figure 4 a-c, Figure 

S 15, Figure S 16). Most model-derived global relationships agreed relatively well (r > 0.5) with satellite-derived relationships 

for maximum temperature, diurnal temperature range, and the number of wet days (Figure 5). However, LPJG-SPITF and 5 

ORCHIDEE did not reproduce the satellite-derived increase of burned area with maximum temperature (Figure 4 a). In the 

case of LPJG_SPITF, this is likely due to a modification to the calculation of dead fuel moisture. In contrast to other SPITFIRE 

implementations, LPJG_SPITF uses soil moisture in part to determine dead fuel moisture. This likely explains the failure of 

LPJG_SPITF to reproduce the dependency on maximum temperature and the markedly different behaviour from the other 

SPITFIRE models seen here. CLM and JSBACH did not reproduce the decrease of burned area with increasing number of wet 10 

days (Figure 4 b).  

Regionally, sensitivities to maximum temperature were positive over most land areas in satellite-derived RF experiments 

(Figure 6 a, Figure S 18). Regional sensitivities to the number of wet days were negative in most land areas but were positive 

in arid regions and in boreal regions of Northern America (Figure 6 d, Figure S 20). Most FireMIP models tended to 

overestimate the regional sensitivities between maximum temperature and burned area in comparison to the satellite-derived 15 

sensitivities in most non-forested regions (Figure 6 b-c). Regional sensitivities to wet days were very different among FireMIP 

models and in comparison to the satellite-derived sensitivities (Figure 6 e-f, Figure S 21). In summary these results show that 

fire-enabled DGVMs broadly reproduced the overall relationships and sensitivities of burned area with climate variables. 

 

 20 

Figure 5: Correlations between global relationships from satellite-derived and model-derived RF “fm” experiments. Pearson 

correlations were computed from the relationships as shown in Figure 4. Boxes show the distribution of all model-data correlations 

(5 satellite-derived relationships x 7 FireMIP model-derived relationships). Correlations for individual satellite- and model-derived 

RFs are shown in Figure S 15.  

Deleted: ¶25 



 

16 

 

 

Figure 6: Regional sensitivities of burned area to the driving factors for six selected variables (a-c) maximum temperature, (d-f) 

number of wet days per month, (g-i) population density, (j-l) herbaceous vegetation cover, and (m-o) precedent 6-monthly GPP. 

Sensitivities are  slopes of a linear quantile regression fit to grid cell-level partial dependencies between burned area and the predictor 

variables as derived from satellite-derived “fm” RF experiments (left panel) and model-derived RF experiments (middle panel). The 5 
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right panel shows the difference between model- and satellite-derived sensitivities. Stippling indicates locations where fewer than 

two model-derived sensitivities are within the range of satellite-derived sensitivities. Sensitivities for individual satellite datasets and 

FireMIP models are shown in Figure S 18 to Figure S 27. Regions with missing data (white) are either without vegetation cover (e.g. 

deserts, ice sheets), had not burned area (e.g. parts of the Amazon and tundra), or were not covered by the used vegetation carbon 

map (i.e. regions in southern Australia and New Zealand). 5 

 

3.3.2 Socioeconomics 

The satellite-derived global relationships showed that burned area increased exponentially as population density decreased at 

very low values (< 20 persons km-2) and, generally, showed no sensitivity when population density was > 40 persons km-2 

(Figure 4 d, Figure S 13 a). Regionally, the satellite-derived sensitivity to population density varied with vegetation type. It 10 

was negative in most grassland and savannah ecosystems but positive in infrequently burning forested ecosystems (Figure 6 

g). Burned area exponentially increased at very low gross domestic product per capita (Figure S 13 b). The relationship between 

burned area and cropland area was non-monotonic: all datasets showed a burned area peak at < 5% cropland, minimum burned 

area at 5-30% cropland cover, and an increasing burned area at > 30% cropland cover (Figure S 13 c). The satellite-derived 

relationships with cropland cover had only moderate correlations with the other satellite-derived relationships for some datasets 15 

(e.g. r = 0.53 for CCI_MODIS, Figure S 15 k) because global burned area products are not very accurate for agricultural fires 

(Hall et al., 2016).  

The relationships between burned area and population density were very different among FireMIP models and partly in 

comparison to the satellite-derived relationships (Figure 4 d, Figure S 23). ORCHIDEE, LPJG_SIMF, and partly CLM and 

JSBACH reproduced the satellite-derived decline of burned area with increasing population density (r > 0.4, Figure S 15). 20 

LPJG_SPITF, CTEM, and JULES had a weak agreement with the satellite-derived sensitivities (r < -0.34). However, the model 

ensemble median reproduced the regionally negative relationships in savannahs and the partly positive relationships in forest 

regions (Figure 6 h-i). FireMIP model sensitivities to cropland cover showed large differences in comparison to satellite-

derived sensitivities (Figure S 16 g). Only LPJG_SIMF reached a comparable correlation (r = 0.41) to the satellite-derived 

sensitivity because its internal formulation reduces burned area with increasing cropland cover, it however does not simulate 25 

crop fires. These large differences in the sensitivities of burned area to socioeconomic variables demonstrate that fire-enabled 

DGVMs mostly disagree on how human effects on fire should be represented.  

3.3.3 Land cover, vegetation productivity, and biomass 

The satellite-derived global relationships to vegetation-related predictor variables showed that burned area increased with 

increasing herbaceous vegetation cover (Figure 4e), with precedent 6-monthly GPP (Figure 4 f), with precedent 6-monthly 30 

LAI (Figure S 14 b), and with woody litter (Figure S 14 h). The satellite-derived relationships were for most land cover types 

and for vegetation carbon moderately to highly correlated (Figure S 15 f-o). Regionally, the satellite-derived relationship to 

herbaceous vegetation cover was positive in most ecosystems but negative in agricultural areas in Europe, India, Eastern Asia, 
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and North America (Figure 6 j). The regional sensitivity to precedent 6-monthly GPP was strongly positive in most semi-arid 

regions (Figure 6 m). These relationships reflect the importance of plant productivity and fuel production for burned area. 

Burned area decreased with increasing actual-month LAI (Figure S 14 a-d), reflecting the fact that fires usually do not occur 

during the wet season when LAI is high in semi-arid regions. Globally, burned area showed a bimodal sensitivity to grass 

height and litter depth (Figure S 14 f-g). In summary, the satellite-derived sensitivities demonstrate a strong global dependence 5 

of burned area dynamics on vegetation type and coverage, litter fuels, pre-season plant productivity and fuel accumulation. 

FireMIP models reproduced the general increase of burned area with increasing herbaceous vegetation (Figure 4 e, Figure 5). 

However, regional sensitivities to herbaceous cover differed among models (Figure S 25). The satellite-derived increase of 

burned area with precedent 6-monthly GPP was reproduced by LPJ_SPITF, ORCHIDEE, JSBACH, and JULES (r > 0.6) while 

LPJG_SIMF had a reverse relationship (Figure 4 f). However, the FireMIP models underestimated the regional sensitivity to 10 

precedent 6-monthly GPP especially in most fire-prone semi-arid regions such as African savannahs, Australia, the 

Mediterranean, and temperate steppes (Figure 6 n-o) but patterns strongly differed among models (Figure S 27).  

4 Discussion and Conclusions 

In summary, fire-enabled DGVMs showed the best correlations with monthly observed burned area in some Savannah regions 

in Africa and South America. However, models generally underestimated the variance of burned area in most fire-prone semi-15 

arid ecosystems and over-estimated the variance in temperate regions. By using the RF machine learning algorithm, we were 

able to diagnose reasons for these differences between data and models: Fire-enabled DGVMs largely reproduced data-derived 

relationships and sensitivities between burned area and climate variables. However, models showed very different relationships 

with socioeconomic variables and generally underestimated sensitivities to pre-season plant productivity in all semi-arid 

ecosystems. As a consequence, these results point towards fuel properties and fuel dynamics, and human-fire interactions as 20 

components of fire-enabled DGVMs that should be in the focus of future model development. In the following, we will discuss 

methodological aspects of our applied pattern-oriented model evaluation approach (4.1), discuss controls on fire in data and 

models (4.2), and finally provide suggestions on how to improve fire-enabled DGVMs by using current Earth observation 

datasets (4.3).  

4.1 Pattern-oriented evaluation of DGVMs using machine learning 25 

Simply speaking, simulations of fire (e.g. burned area) in DGVMs can be wrong because #1 the vegetation model simulates 

wrong vegetation distributions, plant productivity, and hence fuels, or #2 because the fire module misrepresents the response 

of fire to weather, humans, or fuel properties. Classical model benchmarking uses, for example, maps of burned area, biomass, 

and tree cover to quantify the model-data mismatch between these variables (Kelley et al., 2013; Schaphoff et al., 2018). 

However, classical model benchmarking does not allow to disentangle the individual effects of the vegetation or fire module 30 

on the simulated burned area because errors in the simulated vegetation might be caused by errors in burned area and vice 
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versa. Because we use the same climate forcing, and vegetation state variables derived from each model in our machine 

learning approach, we are able to evaluate the response of fire models independent from their underlying DGVMs. This allows 

us to derive (as partial dependencies or individual conditional expectations) and evaluate the relationships between predictors 

and response for each fire module separately. Hence we are able to attribute deficiencies in fire-enabled DGVMs to human- 

and productivity-influences on fire. Previously, a similar approach used also a tree-based machine learning algorithm to 5 

evaluate drivers of soil carbon stocks in observational databases and in Earth System Models (Hashimoto et al., 2017). Unlike 

classical model benchmarking, such pattern-oriented model evaluation approaches help to diagnose the reasons for model-data 

mismatches.  

The core of our pattern-oriented model evaluation is the application of a machine learning algorithm to learn emergent 

relationships from data or models. We used the random forest algorithm because this algorithm has been previously used to 10 

identify drivers of burned area (Aldersley et al., 2011; Archibald et al., 2009) and does not require any assumptions about the 

statistical distribution of predictor variables, the shape of relationships, and the interactions between predictor variables unlike 

algorithms such as generalized additive/linear models (Bistinas et al., 2014; Forkel et al., 2017; Krawchuk et al., 2009). Other 

flexible algorithms such as maximum entropy have been used as well in empirical fire modelling (Moritz et al., 2012; Parisien 

et al., 2016) with very similar prediction performance and importance of variables compared to random forest (Arpaci et al., 15 

2014). In addition, the emergent relationships between predictors and burned area that we identified here show the same 

directions like the relationships that have been found in a previous study based on generalized linear models (Bistinas et al., 

2014). These findings suggest that the choice of the machine learning algorithm only marginally affects the direction and 

overall shape of the derived relationships.  

4.2 Controls on burned area 20 

Following previous studies, we found that climate is the primary control of global burned area which affects fire directly 

through fire weather and fuel moisture conditions, and indirectly through ecosystem productivity, vegetation type, and fuel 

loads (Archibald et al., 2013; Krawchuk and Moritz, 2011). Fire results from an interplay of several meteorological variables, 

thereby maximum temperature was an important predictor globally and especially in northern temperate and boreal 

ecosystems. Fire-enabled DGVMs generally reproduced the relationships with maximum temperature but on average 25 

overestimated the sensitivity in grassland and Savannah ecosystems. Relationships and sensitivities with the number of wet 

days showed larger differences among models and in comparison to satellite-derived relationships, suggesting that climate 

effects on fuel moisture need to be improved in fire-enabled DGVMs.  

As an indirect climate effect, we found that previous season plant productivity was among the most important predictor 

variables globally and was the dominant predictor with the strongest sensitivity to burned area in semi-arid savannah regions. 30 

It has been long recognized that the occurrence and development of fires is affected by the production and accumulation of 

fuels (Krawchuk and Moritz, 2011; Pausas and Ribeiro, 2013). Plant productivity in fire-prone semi-arid ecosystems has a 

high year-to-year variability (Ahlström et al., 2015). Our results demonstrate that the inter-annual variability in productivity 
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and hence fuel accumulation is an important driver for the variability in burned area. Most fire-enabled DGVMs poorly 

captured the importance, relationship, and sensitivity of previous-season plant productivity on burned area. This may be a 

reason why they underestimate observed variability in burned area and it might be one reason why they misrepresent trends in 

fire occurrence in Africa and globally (Andela et al., 2017).  

While climate and fuel controls when and where fires can burn, humans are on the one hand responsible for the majority of 5 

fire ignitions and on the other hand suppress fire. We found a strong decline of burned area with increasing population density 

between 0 and 20 person km-2 which confirms previous findings (Bistinas et al., 2014; Knorr et al., 2014). Human effects on 

fire emerge from various activities such as from traditional land use practices (shifting cultivation, hunting, grazing, and 

grassland burning); the use of fires for land clearing or as tool in land conflicts; from prescribed small fires within fire 

management; and from unintended or illegal ignitions (Archibald, 2016; Bowman et al., 2011; Lauk and Erb, 2009; Marle et 10 

al., 2017). The modest performance of random forest in reproducing satellite burned area suggests that we did not capture the 

complexity of human-fire interactions with the used set of predictor variables. For example, the complex non-monotonic 

relationship between burned and cropland cover suggests that agricultural land use has diverging effects on fire in different 

agricultural regions of the world (Figure S 13 c) (Korontzi et al., 2006). However, alternative variables such as cattle density 

or the night light-based index of socio-economic development were highly correlated with population density or cropland 15 

cover at the coarse resolution of our analysis and did therefore not add to prediction performance of random forest. At regional 

scales, land use or infrastructure-related variables are important predictors for fire (Archibald et al., 2009; Arpaci et al., 2014; 

Chuvieco and Justice, 2010; Parisien et al., 2010). However, these regional findings also show that the importance of human-

related predictors largely differs between regions, which complicates its applicability for global-scale fire modelling. However, 

random forest largely emulated the simulated burned area from FireMIP models, which suggests that we indeed included the 20 

main predictors for the model world. Although some newer global fire models include effects of cropland and pasture 

management on fires (Rabin et al., 2018), the complexity of human-fire interactions lacks currently a solid and large-scale 

empirical basis that would allow to derive alternative formulations on human-fire interactions for fire-enabled DGVMs.   

4.3 Improving vegetation controls on fire in DGVMs 

Our results demonstrate that the role of vegetation on fire needs to be better represented in fire-enabled DGVMs to accurately 25 

simulate the variability of burned area. The links between vegetation productivity, fuel production, and fire need to be 

improved. Fuel production depends on plant productivity, and on the allocation, turnover, and respiration processes of carbon 

in different fuel types. As a first step for model improvement, fire-enabled DGVMs need to be tested and possibly re-calibrated 

against observations or observation-based estimates of plant productivity, above-ground biomass, and carbon turnover 

(Carvalhais et al., 2014; Thurner et al., 2016, 2017).  Beyond total above-ground biomass, the evaluation of different fuel types 30 

(e.g. biomass in wood, canopy and understory, and litter size classes) is currently hampered by the availability of data. Only a 

few in-situ measurements of fuel loads exists (van Leeuwen et al., 2014) and global maps of fuel properties are based on spatial 

extrapolations including various assumptions and uncertainties (Pettinari and Chuvieco, 2016). As an alternative, hybrid 
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data/model-based approaches such as land carbon cycle data assimilation systems (Bloom et al., 2016) may provide consistent 

information to benchmark vegetation productivity, turnover, and litter fuel dynamics in DGVMs.  

Fire largely depends on the vegetation type (Rogers et al., 2015). Also our results show consistent land cover-specific 

relationships to burned area in satellite data, but these relationships differed among FireMIP models and in comparison to the 

satellite-derived relationships (Figure S 17). Vegetation types and associated morphological, biochemical, and structural 5 

characteristics of plants affect the flammability and fire tolerance of vegetation (Archibald et al., 2018; Pausas et al., 2017). 

Although global fire models have PFT-specific parametrisations for flammability (Thonicke et al., 2010), such fire-relevant 

plant characteristics need to be incorporated in DGVMs (Zylstra et al., 2016). Such efforts need to be complemented by 

calibrating DGVMs against satellite observations that provide relevant information about the spatial distributions of fuel 

structure (Pettinari and Chuvieco, 2016; Riaño et al., 2002),  fuel moisture content (Yebra et al., 2013, 2018), fire ignitions 10 

and spread (Laurent et al., 2018), fuel consumption (Andela et al., 2016), and fire radiative energy (Kaiser et al., 2012). In 

summary, besides human-fire interactions, we identified vegetation effects on fire as a main deficiency of fire-enabled dynamic 

global vegetation models in simulating temporal dynamics of burned area.   

Data availability 

Data is available from the references as indicated in Table A1. 15 

Code availability 

This analysis is based on R (version 3.3.2) by using the packages randomForest (version 4.6-12) and ICEbox (version 1.1.2). 

R and the packages are available from the Comprehensive R Archive Network (CRAN, https://cran.r-project.org/).   
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Appendix 

 

Table A 1: Overview of predictor variables, used datasets, and their use in random forest experiments. 

Variable Description Data source 
Variable 
selection 

Use of variables and data sources in 
random forest (RF) experiments 

 Time scale of 
variables: 
(C) = constant value 
or multi-year average 
from model output 
(A) = annual time 
series 
(M) = monthly time 
series 

 

 
Correlations 
in Figure S 1 

RF.Satellite 
.full 

RF with full  
selected set 

of 
observational 

variables 

RF.Satellite 
.fm  

RF with 
same 

variables that 
are available 
from FireMIP 

models 

RF.FireMIP 
.fm 

RF using 
forcing and 

outputs from 
each FireMIP 

model 

PopDens 
Population density 
(A) 

HYDE V3.1 (Klein 
Goldewijk et al., 
2011) 

HYDE HYDE HYDE HYDE 

GDP 
Gross domestic 
product per capita 
(C) 

W18 (World Bank, 
2018) 

W18 W18 -- -- 

NLDI 
Night-light 
development index 
(C) 

E12 (Elvidge et al., 
2012) 

E12 -- -- -- 

CattleDens Cattle density (C) 
WR07 (Wint and 
Robinson, 2007) 

WR07 -- -- -- 

TMAX 
Mean of daily 
maximum 
temperature (M) 

CRUNCEP V5 (Wei 
et al., 2014) 

CRUNCEP CRUNCEP CRUNCEP CRUNCEP 

TMIN 
Mean of daily 
minimum 
temperature (M) 

CRUNCEP -- -- -- 

DTR 
Mean of daily diurnal 
temperature range 
(M) 

CRUNCEP CRUNCEP CRUNCEP CRUNCEP 

P 
Total precipitation 
(M) 

CRUNCEP -- CRUNCEP CRUNCEP 

WET 
Number of wet days 
per month (M) 

CRUNCEP CRUNCEP CRUNCEP CRUNCEP 

WSPEED 
Monthly 90%-ile of 
daily wind speed (M) 

CRUNCEP CRUNCEP CRUNCEP CRUNCEP 

Tree.NE 
Needle-leaved 
evergreen trees (A) 

CCI: ESA CCI land 
cover V2.0.7 (ESA 
CCI-LC, 2017; Li et 
al., 2018) 
 

- OR – 
 

FM: Coverage of 
plant functional types 
from each FireMIP 
model 

CCI CCI -- FM 

Tree.ND 
Needle-leaved 
deciduous trees (A) 

CCI CCI CCI FM 

Tree.BE 
Broadleaved 
evergreen trees (A) 

CCI CCI -- FM 

Tree.BD 
Broadleaved 
deciduous trees (A) 

CCI CCI -- FM 

Shrub.BD 
Broadleaved 
deciduous shrubs (A) 

CCI CCI -- -- 

Shrub.BE 
Broadleaved 
evergreen shrubs (A) 

CCI CCI -- -- 

Shrub.NE 
Needle-leaved 
evergreen shrubs (A) 

CCI CCI -- -- 

Herb 
Herbaceous 
vegetation (A) 

CCI CCI CCI FM 

Crop Croplands (A) CCI CCI CCI FM 
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TreeS.BE 
= Tree.BE + 
Shrub.BE (A) 

-- -- CCI -- 

TreeS.BD 
= Tree.BD + 
Shrub.BD (A) 

-- -- CCI -- 

TreeS.NE 
= Tree.NE + 
Shrub.NE (A) 

-- -- CCI -- 

GPP.orig 
Monthly gross 
primary production 
(M) 

FLUXCOM: Upscaled 
GPP based on 
CRUNCEP climate 
and satellite data 
(Tramontana et al., 
2016) 

- OR - 
FM: simulated GPP 
from each FireMIP 
model 

FLUXCOM FLUXCOM FLUXCOM FM 

GPP.pre3mon 
Average GPP over 
the 3 precedent 
months (M) 

FLUXCOM -- FLUXCOM FM 

GPP.pre6mon 
Average GPP over 
the 6 precedent 
months (M) 

FLUXCOM FLUXCOM FLUXCOM FM 

LAI.orig Monthly LAI (M) MODIS MODIS MODIS -- -- 

LAI.pre3mon 
Average LAI over the 
3 precedent months 
(M) 

MODIS MODIS -- -- -- 

LAI.pre6mon 
AveragLAI over the 6 
precedent months 
(M) 

MODIS MODIS MODIS -- -- 

cVeg 
Total vegetation 
carbon (C) 

C14: Global  biomass 
map (Carvalhais et 
al., 2014) 

- OR - 
FM: simulated cVeg 
from each FireMIP 
model 

C14 C14 C14 FM 

CanHeight Canopy height (C) 
S11: Satellite-derived 
canopy height 
(Simard et al., 2011) 

S11 -- -- -- 

G_height Grass height (C) 

PC16: Global fuelbed 
database (Pettinari 
and Chuvieco, 2016) 

PC16 PC16 -- -- 

L_depth Litter depth (C) PC16 PC16 -- -- 

W_1h 
Woody fuel of the 1 h 
size class (C) 

PC16 PC16 -- -- 

W_10h 
Woody fuel of the 10 
h size class (C) 

PC16 -- -- -- 
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Supporting Information 

SI 1: Methods 

 

Table S 1: Aggregation table to convert the PFT classes of each FireMIP model into a set of common PFTs. Note that JSBACH does 

not include a PFT for needle-leaved deciduous trees. Therefore, the ExtD (extratropical deciduous tree) PFT was spilt into Tree.ND 5 
for regions in north-east Siberia and to Tree.BD for all other regions. 

 Common PFT classes used in analysis 

Model Tree.NE Tree.ND Tree.BE Tree.BD Herb Crop 

 
Needle-leaved 
evergreen 
trees 

Needle-leaved 
deciduous 
trees 

Broadleaved 
evergreen 
trees 

Broadleaved 
deciduous 
trees 

Herbaceous 
vegetation 

Croplands 

CLM TeNE +  
BNE 

BNS TrBE +  
TeBE +  
BE_Shb 

TrBR + 
TeBS + 
BBS + 
BBS_Shb 

C3G_arc + 
C3G + 
C4G 

Crop1 + Crop2 

CTEM NDL-EVG NDL-DCD BDL-EVG BDL-DCD-
COLD +  
BDL-DCD-
DRY 

C3-GRASS + 
C4-GRASS 

C3-CROP + 
C4-CROP 

JSBACH-
SPITFIRE 

ExtE ExtD (if  lon > 
95°E & lat > 
48°N & ExtD > 
0.2) 

TrE TrD +  
Rg_Shb + 
De_Shb + 
ExtD (if not 
classified as  
Tree.ND) 

C3G + 
C4G +  
C3G_pas + 
C4G_pas 

Crop 

JULES-
INFERNO 

NE + 
Ev_Shb 

ND TrBE +  
TeBE 

BD + 
De_Shb 

C3G + 
C4G 

-- 

LPJ-GUESS-
SIMFIRE 

BNE +  
BINE 

BNS  TeBE +  
TrBE + 
TrIBE 

TeBS + 
IBS + 
TrBR 

C3G + 
C4G + 
C3G_pas +  
C4G_pas 

TeSW + 
TeSWirr + 
TeWW +  
TeWWirr + 
TeCo + 
TeCoirr 

LPJ-GUESS-
SPITFIRE 

BNE +  
BINE + 
TeNE 

BNS TeBE + 
TrBE + 
TrIBE 

BIBS + 
TeBS + 
TeIBS 

C3G + 
C4G 

-- 

ORCHIDEE-
SPITFIRE 

TeNE + 
BNE 

BNS TrBE + 
TeBE 

TrBR + 
TeBS + 
BBS 

C3G + 
C4G 

C3_agr + 
C4_agr 

 



 

33 

 

 

Figure S 1: Pair-wise correlations of observation-based predictor variables. Correlations are based on the global dataset that 

includes monthly observations on 2.5° x 1.89° for the period 2005-2011. Values from annual datasets were repeated to match monthly 

observations. Some predictor variables were not used in random forest models because of high correlations (r >= 0.8) with other 

variables, i.e. night-light development index (with CCI.Crop), cattle density (with CCI.Crop), woody litter for the 10 h fuel size class 5 
(with Fuelbed.W_1h), precedent 3-monthly GPP (with FLUXCOM.GPP.pre6month), and precedent 3-monthly LAI (with 

MODIS.LAI.orig and MODIS.LAI.pre6month).  

 



 

34 

 

 

Figure S 2: Deriving partial dependencies and individual conditional expectation curves from trained random forest models. (a) A 

random forest  is trained against the target variable (observed burned area) based on a set of predictor variables X. (b) The partial 

dependency (e.g. to maximum temperature, TMAX) is derived from the trained random forest experiment by setting all other 

predictor variables (e.g. number of wet days, WET) to its mean values. Random forest predictions are then done over the range of 5 
the variable of interest (TMAX). (c) For the computation of individual conditional expectation curves, individual combinations of 

predictor variables are sampled from the predictor data (grey dots in a and c). Predictions are then done for each case over the 

range of the variable of interest (grey lines in c). The average over all ICE curves approximates then the partial dependence (yellow 

highlighted line in c). The average ICE curve agrees with the partial dependence when no sampling was performed (i.e. ICE curves 

were computed for all cases in the input data). The figures in (b) and (c) were computed from the random forest experiment 10 
RF.CCI_MERIS.fm by using the global predictor dataset and hence show the global sensitivity of burned area to TMAX. ICE curves 

in (c) show that in most cases burned area increases with increasing TMAX. This behaviour is then also reflected in the average ICE 

curve and the partial dependency, respectively. However, some ICE curves show a stable or non-monotonic response of burned area 

to TMAX which indicates that certain cases burned area does not increase with TMAX. 

 15 
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SI 2: Evaluation of temporal burned area dynamics 

 

 

Figure S 3: Comparison of burned area datasets with each other. Shown is the Spearman rank-correlation coefficient and fractional 

variance of the monthly burned area in 2005-2011 from a single satellite dataset in comparison to the four other datasets. See Figure 5 
2 for a detailed description. Individual datasets show a weaker agreement than the agreement of all datasets (Figure 2) because low 

FV or correlations of a single dataset at grid cell-level are averaged-out (median), resulting in larger areas with “good” agreement.  
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Figure S 4: Evaluation of simulated burned area from FireMIP models against satellite datasets. Shown is the Spearman rank-

correlation coefficient and fractional variance of the monthly burned area in 2005-2011 from one FireMIP model in comparison to 

the five satellite datasets. See Figure 2 for a detailed description. 

  5 

  

Figure S 5: Evaluation of predicted burned area from the “full” random forest experiments with the “full” set of predictor variables 

against satellite datasets. Shown is the Spearman rank-correlation coefficient and fractional variance of the monthly burned area in 

2005-2011 from one random forest experiment in comparison to the five satellite datasets. Each random forest experiment was 
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trained against a single burned area dataset based on the “full” set of predictor variables and the predicted burned area was  then 

evaluated against the five burned area datasets. See Figure 2 for a detailed description. 

 

 

Figure S 6: Evaluation of predicted burned area from the “fm” random forest experiments against satellite datasets. Shown is the 5 
Spearman rank-correlation coefficient and fractional variance of the monthly burned area in 2005-2011 from one random forest 

experiment in comparison to the five satellite datasets. Each random forest experiment was trained against a single burned area 

dataset based on “fm” predictor variables that are also available for FireMIP models and the predicted burned area was then 

evaluated against the five burned area datasets. See Figure 2 for a detailed description. 

 10 
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Figure S 7: Performance of random forest in reproducing the simulated burned area of each FireMIP model. Shown is the Spearman 

rank-correlation coefficient and fractional variance of the monthly burned area in 2005-2011 from one random forest experiment 

in comparison to the simulated burned area of the FireMIP model that was used to train the random forest. Each random forest 

experiment was trained based on “fm” predictor variables and the predicted burned area was then evaluated against the origina l 5 
burned area from this FireMIP model. See Figure 2 for a detailed description. 

 

 

 

  10 
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SI 3: Importance of predictor variables 

 

 

Figure S 8: Importance of predictor variables in satellite-derived RF experiments. Panel (a) shows the percentage increment in the 

out-of-bag prediction mean squared error (MSE) if a variable is permuted for the RF.CCI_MERIS.full experiment. The most 5 
important variable (CRUNCEP.TMAX) has the highest increment in MSE. Panel (b) compares the ranked increment in MSE for 

different RF experiments. For example, the rank of variables in panel (a) is shown in the second column in panel (b) and the most 

important variable is coloured in red and denoted with 1. White fields denote predictor variables that were not used in the respective 

RF experiment. The importance of variables depends on the burned area dataset that was used to train RF and differs between the 

“full” and “fm” set of predictor variables.  10 
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Figure S 9: Importance of predictor variables in satellite- and FireMIP-based “fm” RF experiments. Further explanations of this 

figure are provided in Figure S 8.  
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Figure S 10: Groups of predictor variables with the highest importance for RF predictions. See Figure 3 for further details.  
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SI 4: Satellite-derived global relationships  

  

Figure S 11: Global relationships of the fractional burned area per month to climate-related predictor variables as learned by the 

“full” random forest experiments. 

 5 
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Figure S 12: Comparison of global relationships of the fractional burned area per month to predictor variables as learned by the 

“full” and “fm” random forest experiments. Panel (l) shows the distribution of correlations between the global relationships from 

the “full” and “fm” random forest experiments for each predictor variable.  
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Figure S 13: Global relationships of the fractional burned area per month to socioeconomic and land cover-related predictor 

variables as learned by the “full” random forest experiments. 
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Figure S 14: Global relationships of the fractional burned area per month to vegetation and fuel-related predictor variables as 

learned by the “full” random forest experiments. 
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SI 5: Comparison of satellite- and model-derived global relationships  

 

 

Figure S 15: Correlations between global sensitivity functions from satellite-derived against other satellite-derived random forests 

(D~D) and from model-derived against satellite-derived random forests (M~D). Pearson correlations were computed from the partial 5 
dependencies as shown in Figure 2. Boxes show the distribution of all data-data (blue, 5 datasets) and model-data correlations (red, 

5 datasets x 7 models), respectively. Coloured dots and triangles show the mean correlation for each satellite-derived and model-

derived sensitivity function, respectively.   
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Figure S 16: Global sensitivities of the fractional burned area per month to predictor variables as learned by the “fm” random forest 

experiments (Part 1). 
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Figure S 17: Global sensitivities of the fractional burned area per month to predictor variables as learned by the “fm” random forest 

experiments (Part 2). 
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SI 6: Regional sensitivities  

 

 

Figure S 18: Regional sensitivities of the partial fractional burned area per month to monthly maximum temperature from satellite-

derived “fm” RF models.  5 
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Figure S 19: Regional sensitivities of the partial fractional burned area per month to monthly maximum temperature from model-

derived “fm” RF models.  

 

 5 

Figure S 20: Regional sensitivities of the partial fractional burned area per month to the monthly number of wet days from satellite-

derived “fm” RF models.  
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Figure S 21: Regional sensitivities of the partial fractional burned area per month to the monthly number of wet days from model-

derived “fm” RF models.  

 

 5 

Figure S 22: Regional sensitivities of the partial fractional burned area per month to the population density from satellite-derived 

“fm” RF models.  
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Figure S 23: Regional sensitivities of the partial fractional burned area per month to the population density from model-derived 

“fm” RF models.  

 

 5 

Figure S 24: Regional sensitivities of the partial fractional burned area per month to the herbaceous vegetation cover  from satellite-

derived “fm” RF models.  
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Figure S 25: Regional sensitivities of the partial fractional burned area per month to the herbaceous vegetation cover  from model-

derived “fm” RF models. 

 5 

 

Figure S 26: Regional sensitivities of the partial fractional burned area per month to precedent 6-monthly GPP from satellite-derived 

“fm” RF models.  
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Figure S 27: Regional sensitivities of the partial fractional burned area per month to precedent 6-monthly GPP  from model-derived 

“fm” RF models.  
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