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Abstract. Soil organic matter (SOM) dynamics in ecosystem-scale biogeochemical models have traditionally 11 

been simulated as immeasurable fluxes between conceptually-defined pools. This greatly limits how empirical 12 

data can be used to improve model performance and reduce the uncertainty associated with their predictions of 13 

carbon (C) cycling. Recent advances in our understanding of the biogeochemical processes that govern SOM 14 

formation and persistence demand a new mathematical model with a structure built around key mechanisms and 15 

biogeochemically-relevant pools. Here, we present one approach that aims to address this need. Our new model 16 

(MEMS v1.0) is developed upon the Microbial Efficiency-Matrix Stabilization framework which emphasises the 17 

importance of linking the chemistry of organic matter inputs with efficiency of microbial processing, and 18 

ultimately with the soil mineral matrix, when studying SOM formation and stabilization. Building on this 19 

framework, MEMS v1.0 is also capable of simulating the concept of C-saturation and represents decomposition 20 

processes and mechanisms of physico-chemical stabilization to define SOM formation into four primary fractions. 21 

After describing the model in detail, we optimise four key parameters identified through a variance-based 22 

sensitivity analysis. Optimisation employed soil fractionation data from 154 sites with diverse environmental 23 

conditions, directly equating mineral-associated organic matter and particulate organic matter fractions with 24 

corresponding model pools. Finally, model performance was evaluated using total topsoil (0-20 cm) C data from 25 

8192 forest and grassland sites across Europe. Despite the relative simplicity of the model, it was able to accurately 26 

capture general trends in soil C stocks across extensive gradients of temperature, precipitation, annual C inputs 27 

and soil texture. The novel approach that MEMS v1.0 takes to simulate SOM dynamics has the potential to 28 

improve our forecasts of how soils respond to management and environmental perturbation. Ensuring these 29 

forecasts are accurate is key to effectively informing policy that can address the sustainability of ecosystem 30 

services and help mitigate climate change. 31 

1 Introduction 32 

The biogeochemical processes that govern soil organic matter (SOM) formation and persistence impact more than 33 

half of the terrestrial carbon (C) cycle, and thus play a key role in climate–C feedbacks (Jones and Falloon, 2009; 34 

Arora et al., 2013). In order to predict changes to the C cycle, it is imperative that mathematical models describe 35 

these processes accurately. However, most ecosystem-scale biogeochemical models represent SOM dynamics 36 

with first-order transfers between conceptual pools defined by turnover time, limiting their capacity to incorporate 37 
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recent advances in scientific understanding of SOM dynamics (Campbell and Paustian, 2015). Due to the use of 38 

conceptual pools, empirical data from SOM fractionation cannot be used directly to constrain parameter values 39 

that govern fluxes between pools because diverse SOM compounds can have similar turnover times but are 40 

differentially influenced by environmental variables (Schmidt et al., 2011; Lehmann and Kleber, 2015). As a 41 

result, empirical data is commonly abstracted and transformed before being used to parameterize or evaluate the 42 

processes of SOM formation and persistence that the model is intended to simulate (Elliott et al., 1996; 43 

Zimmermann et al., 2007). This has resulted in many conventional SOM models (e.g., RothC, [Jenkinson and 44 

Rayner, 1977], DNDC [Li et al., 1992], EPIC [Williams et al., 1984] and CENTURY [Parton et al., 1987]) being 45 

structurally similar (i.e., partitioning total SOM into discrete pools based on turnover times determined from 46 

radiocarbon experiments; see Stout and O’Brien [1973] and Jenkinson [1977]) but each taking different 47 

approaches to simplify the complex mechanisms that govern SOM dynamics. Consequently, simulations of SOM 48 

can vary greatly between models, often predicting contrasting responses to the same driving inputs and 49 

environmental change (e.g., Smith et al., 1997).  50 

 51 

Structuring SOM models around functionally-defined and measurable pools that result from known 52 

biogeochemical processes is one way to help minimise these discrepancies. Two recent insights into SOM 53 

dynamics present a path towards addressing this issue. There is now strong evidence that: 1) low molecular weight, 54 

chemically labile molecules, primarily of microbial origin (Liang et al., 2017), persist longer than chemically 55 

recalcitrant C structures when protected by organo-mineral complexation (Mikutta et al., 2006; Kögel-Knabner 56 

et al., 2008; Kleber et al., 2011); and 2) each soil type has a finite limit to which it can accrue C in mineral-57 

associated fractions (i.e., the C-saturation hypothesis) (Six et al., 2002; Stewart et al., 2007; Gulde et al., 2008; 58 

Ahrens et al., 2015). Structuring a SOM model around these known and quantifiable biogeochemical pools and 59 

processes has the potential to drastically reduce uncertainty by enhancing opportunities for parameterization and 60 

validation of models with empirical data. Furthermore, mechanistic models can have value in process explanation 61 

as well their value in predictive capabilities; such models can pinpoint the processes that have the greatest 62 

influence on a system even when they are not traditionally determined empirically. 63 

 64 

Conventional SOM models readily acknowledge the importance of microbes in plant litter decomposition and 65 

SOM dynamics but model improvement was initially constrained by the concept that stable SOM included 66 

‘humified’ compounds (Paul and van Veen, 1978). This quantified stable SOM using an operational proxy (high 67 

pH alkaline extraction) rather than relating stabilization to the mechanisms that are now widely recognised, such 68 

as organo-mineral interactions and aggregate formation (Lehmann and Kleber, 2015). As our contemporary 69 

understanding of stable SOM moves away from humification theory, so too must the way we represent SOM 70 

stabilization pathways in biogeochemical models. Similarly, many SOM models partition plant residues into labile 71 

and recalcitrant pools with turnover times that reflect the assumption of ‘selective preservation’ (i.e., chemically 72 

recalcitrant litter-C is only used by microorganisms when labile compounds are scarce). While many existing 73 

models do include a flux from labile residues into stable SOM, this is typically a much smaller absolute amount 74 

than the flux from recalcitrant residues. Evidence indicates that biochemically recalcitrant structural litter C 75 

compounds may not be as important in the formation of long-term persistent SOM as originally thought 76 

(Marschner et al., 2008; Dungait et al., 2012; Kallenbach et al., 2016). Instead, they form light particulate organic 77 
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matter (POM) (Haddix et al., 2015), a relatively vulnerable fraction of SOM with a turnover time of years to 78 

decades (von Lützow et al., 2006; 2007). Consequently, there have been several calls to represent this new 79 

understanding and re-examine how microbial activity is simulated in SOM models (Schmidt et al., 2011; 80 

Moorhead et al., 2014; Campbell and Paustian, 2015; Wieder et al., 2015). 81 

 82 

Current conceptual frameworks more clearly link the role of microbes to SOM dynamics (e.g., Cotrufo et al., 83 

2013 and Liang et al., 2017), and generally isolate two discrete litter decomposition pathways for SOM formation 84 

(Cotrufo et al., 2015): a ‘physical’ path through perturbation and cryomixing to move fragmented litter particles 85 

into the mineral soil forming coarse POM, vs a ‘dissolved’ path where soluble and suspended C compounds are 86 

transported vertically through water flow and, when mineral surfaces are available, form mineral associated 87 

organic matter (MAOM). Microbial products and very small litter particles can be transported by both pathways, 88 

forming a heavy POM fraction with ‘biofilms’ and aggregated litter fragments around larger mineral particles 89 

(i.e., sand; Heckman et al., 2013; Ludwig et al., 2015; Buks and Kaupenjohann, 2016). Attempts to formulate 90 

these empirical observations of litter decomposition into mathematical frameworks recently culminated with 91 

development of the LIDEL model (Campbell et al., 2016), which in turn built upon the relationships of litter 92 

decomposition described by Moorhead et al. (2013) and Sinsabaugh et al. (2013). While the LIDEL model was 93 

evaluated against a detailed lab experiment of litter decomposition (Soong et al., 2015), it does not simulate SOM 94 

pools and dynamics. In nature, litter decomposition processes and SOM formation processes are necessarily 95 

coupled but are often studied and modelled separately. However, models that link litter decomposition to SOM 96 

formation are required to represent SOM dynamics in ecosystem models. 97 

 98 

Beside the processes of leaching and fragmentation that control the two pathways mentioned above, litter 99 

decomposition processes that form SOM are governed by the balance between microbial anabolism and 100 

catabolism (Swift et al., 1979; Liang et al., 2017). A recent paradigm has emerged that emphasizes the role of 101 

microbial life strategies (e.g., K vs r, referring to copiotrophic and oligotrophic microbial functional groups) and 102 

carbon use efficiency (CUE) in the formation of SOM from plant inputs (Dorodnikov et al., 2009; Cotrufo et al., 103 

2013; Lehmann and Kleber, 2015; Kallenbach et al., 2016). As a result, scientists have explored several 104 

approaches to represent microbes in SOM models. Research has indicated that explicitly representing microbes 105 

in a SOM model can provide very different predictions of SOM dynamics and include important feedbacks such 106 

as acclimation, priming and pulse responses to wet-dry cycles (Bradford et al., 2010; Kuzyakov et al., 2010; 107 

Lawrence et al., 2009; Schmidt et al., 2011). This research has shown that, compared to conventional models, 108 

microbially-explicit SOM models have drastically different simulated responses to environmental change (Allison 109 

et al., 2010; Wieder et al., 2015; Manzoni et al., 2016). However, these responses are generally validated against 110 

data at microsite spatial scales and are not necessarily generalizable over larger spatial scales (Luo et al., 2016). 111 

 112 

Microbes have been explicitly represented in SOM models in many ways and for many years, from relatively 113 

simple approaches using a single microbial biomass pool or fungal:bacterial ratios (e.g., McGill et al., 1981, 114 

Wieder et al., 2013 and Waring et al., 2013), to more complex associations with microbial guilds or community 115 

dynamics based on dominant traits derived through genetic profiling (Miki et al., 2010; Allison et al., 2012; 116 

Wallenstein and Hall, 2012). The MIcrobial-MIneral Carbon Stabilization (MIMICS) model (Wieder et al., 2014) 117 
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consolidated existing research at the time and uses the size of a microbial biomass pool together with Michaelis–118 

Menten kinetics to feedback on C decay rates of SOM pools. While the MIMICS model and others (for an example 119 

see Manzoni et al., 2016), provide a potentially viable framework for explicitly representing microbes in a SOM 120 

model, it remains unclear whether this is practical given the lack of input data required to drive and validate these 121 

relationships (Treseder et al., 2012; Sierra et al., 2015). Furthermore, parsimony and analytical tractability are 122 

both key concerns for ecosystem models designed to operate over large spatial and temporal scales. While 123 

microbially-explicit models may be essential for addressing research questions at small spatial scales, they may 124 

introduce unnecessary, additional uncertainty to global simulations (Stockmann et al., 2013). 125 

 126 

While microbial efficiency largely controls SOM formation rates, and microbial products are major components 127 

of the MAOM and the coarse, heavy POM fractions of SOM (Christensen 1992; Heckman et al., 2013) the long-128 

term persistence of SOM is determined by mineral associations that are subject to saturation. Saturation limits for 129 

SOM were proposed more than a decade ago (Six et al., 2002) and have been supported by several empirical 130 

studies (e.g., Gulde et al., 2008; Stewart et al., 2008; Feng et al., 2012; Beare et al., 2014). Briefly, the concept 131 

of C-saturation suggests that each soil has an upper limit to the capacity to store C in mineral-associated (i.e., silt 132 

+ clay, < 53µm) fractions, due to biochemical and physical stabilization mechanisms (e.g., cation bridging, surface 133 

complexation and aggregation) that are limited by a finite area of reactive mineral surfaces. While saturation 134 

kinetics are easy to define conceptually (Stewart et al., 2007), C-saturation as a concept has been adopted by only 135 

a few SOM models (Struc-C, Malamoud et al, 2009; COMISSION, Ahrens et al., 2015; MILLENNIAL, 136 

Abramoff et al., 2017). This is partly because its use in a SOM model requires a robust estimate of the specific 137 

site’s saturation capacity. SOM saturation has been modelled using i) empirical regressions between silt + clay 138 

content and C concentration of that fraction (Six et al. 2002, as applied in COMISSION), and ii) empirical 139 

relationships between clay content and the derived ‘Qmax’ parameter of Langmuir isotherm functions (Mayes et 140 

al., 2012, as applied in MILLENNIAL). As noted by Ahrens et al. (2015), the use of C-saturation kinetics in an 141 

ecosystem model would require a map of mineral-associated C saturation capacity, and since soil C stocks in silt 142 

+ clay fractions can make up the majority of total soil C stocks, a lot of weight would be put on that single driving 143 

variable for each site. However, it is worth noting that when applying C-saturation concepts, only the mineral-144 

associated organic matter (MAOM) fraction saturates. Other SOM fractions (e.g., particulate organic matter, 145 

POM) theoretically have no saturation limit (Stewart et al., 2008; Castellano et al., 2015).  146 

 147 

Attempts to consolidate the concepts of microbial control on litter decomposition and mineral control on SOM 148 

stabilization resulted in the MEMS framework (Cotrufo et al. 2013). To date, we are aware of only one attempt 149 

to represent MEMS within a mathematical model, the MILLENNIAL model (Abramoff et al., 2017). However, 150 

this model does not simulate litter decomposition explicitly and as a result does not include the impact of litter 151 

input chemistry, which is a fundamental component of the MEMS framework and needed to improve ecosystem 152 

modelling, as discussed previously.  153 

 154 

In this study we describe and demonstrate the application of a new mathematical model (MEMS v1.0) that applies 155 

three major concepts of SOM dynamics: 1) litter input chemistry-dependent microbial CUE informing SOM 156 

formation (Cotrufo et al., 2013), 2) separate dissolved vs physical pathways to SOM formation (Cotrufo et al., 157 
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2015); and 3) soil C-saturation related to litter input chemistry (Castellano et al., 2015). The scope of this inaugural 158 

model description is limited to representing these three concepts and is not intended to include every mechanism 159 

relevant to SOM cycling. Our objective is to demonstrate the benefits of structuring a SOM model around key 160 

biogeochemical processes, rather than turnover times. Using measured SOM physical fractions from 154 forest 161 

and grassland sites across Europe, key parameters were optimised to improve model performance when simulating 162 

POM-C (consisting of both light and heavy POM) and MAOM-C, under equilibrium conditions. The resulting 163 

model was then used to test whether the behaviour of simulated SOM dynamics concur with the expected 164 

theoretical relationships. Finally, the model performance in predicting soil C stocks at equilibrium was evaluated 165 

by simulating 8192 forest and grassland sites across Europe, representing a diverse set of driving variables (i.e., 166 

climate, soil type and vegetation type). 167 

2 Materials and Methods 168 

2.1 Model description 169 

The MEMS model (herein MEMS v1.0) is designed to be as parsimonious as possible while simulating the spatial 170 

and temporal scales relevant to management and policy decision making. The model is structured (Figure 1) to 171 

simulate plant litter decomposition explicitly with decomposition products defining C inputs to discrete soil pools 172 

that can be isolated with common SOM fractionation techniques (Table 1). Each state variable in MEMS v1.0 can 173 

be quantified directly using common measurement protocols and therefore calibration/evaluation data can be 174 

generated with a single fractionation scheme (Table S1). Detailed information about the model structure, the 175 

mathematical representation (i.e., differential equations) and how each mechanism is described mathematically 176 

can be found in the supplementary material. All model parameters can be found in Table 2. 177 

 178 

MEMS v1.0 is a SOM model that operates at the ecosystem-scale on a daily timestep. Carbon inputs to the model 179 

are resolved for each source (in the case of multiple input streams, e.g., manure, crop residue, compost) discretely, 180 

partitioning daily C inputs between solid-phase (C1, C2, C3) and dissolved (C6) litter pools as a function of litter 181 

chemistry (nitrogen [N] content and the acid-insoluble [i.e., ‘lignin’] fraction) that influences microbial 182 

decomposition processes. This structure is similar to the LIDEL model (Campbell et al., 2016) and follows the 183 

hypotheses that both N availability and lignin content influence decomposition by affecting microbial activity 184 

(Aber et al., 1990; Manzoni et al., 2008; Sinsabaugh et al., 2013; Moorhead et al., 2013). Similar approaches have 185 

also been used in many of the updated traditional SOM models (e.g., lignin:N ratios in CENTURY; Kirschbaum 186 

and Paul, 2002). These input partitioning coefficients can be determined experimentally for each C input source 187 

(Table 1 & S1). Upon reaching the soil, C compounds are then subject to biotic and abiotic processes that 188 

transform and transport organic matter through an organic horizon and subsequent mineral soil layers. As 189 

described here, MEMS v1.0 currently only simulates a surface organic horizon and a single mineral soil layer, 190 

and does not yet differentiate between above- and below-ground litter input chemistry to avoid requiring 191 

additional input parameters on root litter chemistry. However, the model architecture is sufficiently generalizable 192 

to apply to multiple soil layers and/or multiple discrete sources of C input. Where possible we use the parameter 193 

names and abbreviations from the LIDEL model (Campbell et al., 2016). 194 
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2.1.1 Microbe mediated transformations and dissolved organic matter (DOM) production 195 

Many of the biogeochemical processes represented by MEMS v1.0 are assumed to be microbially-mediated (and 196 

therefore result in exo-enzyme breakdown and CO2 production), but only two lead to C assimilation into a distinct 197 

microbial biomass pool – from the water-soluble and acid-soluble litter pools (C1 and C2, respectively). In the 198 

mineral soil (i.e., pools C5, C8, C9 and C10), microbial anabolism and catabolism are implicit and considered 199 

part of the turnover of each pool. This ensures parsimony and allows model parameters to represent the differences 200 

in microbial community for each pool, as opposed to the alternative of explicit microbial pools. The C transferred 201 

from the C1 and C2 litter pools into microbial biomass is defined by a dynamic CUE parameter controlled by the 202 

N content of the input material and the lignocellulose index (LCI; defined as the ratio between acid-insoluble to 203 

the sum of acid-soluble + acid-insoluble) of the litter layer (i.e., lower CUE results when a higher proportion of 204 

the litter is acid-insoluble). Including microbially-explicit processes in the litter layer helps to determine the 205 

proportion of C inputs that result in MAOM vs POM formation (see Liang et al., 2017) and allows for future 206 

model versions to account for distinctions between different points of entry for inputs (Sokol et al., 2018). The 207 

lack of C transferred from other pools (e.g., C3) into microbial biomass implies their decay from co-metabolism 208 

with the more labile C sources (i.e., Klotzbucher et al., 2011; Moorhead et al., 2013). Once assimilated within 209 

microbial biomass, the anabolism of microbial activity results in generation of microbial products (i.e., necromass) 210 

that form tightly bound aggregates of biofilms and small litter fragments around sand-sized soil particles (Huang 211 

et al., 2006; Buks and Kaupenjohann, 2016), and dissolved organic matter (DOM). These contribute to the heavy 212 

POM (C5) and litter DOM (C6) pools, respectively. While these specific processes are well supported by relevant 213 

literature, to retain parsimony and the generalizable structure required by an ecosystem scale model MEMS v1.0 214 

represents microbial metabolism processes more generally (i.e., by linking them to a dynamic microbial CUE 215 

rather than specific community traits). 216 

 217 

Even though not all pools explicitly produce microbial biomass, all pools do produce DOM. Recent studies have 218 

shown that DOM and small suspended particulates result from the decomposition and fragmentation of all forms 219 

of inputs including those characterized as ‘inert’, such as pyrolized material (Soong et al., 2015). Consequently, 220 

the model assumes that all microbially-mediated decomposition produces some C in DOM with rates specific to 221 

the pool from which the C originates. Since DOM generation is strongly influenced by the elemental composition 222 

of the input material (Soong et al., 2015), it is intrinsically linked to microbial CUE, employing the same 223 

formulation as LIDEL, which accounts for input N content and LCI of the litter layer (Campbell et al., 2016). At 224 

present, root exudation is not explicitly represented but the presence of a soil DOM pool (C8) will allow for 225 

incorporation of root exudation processes in later versions. More detail regarding the microbially transformed 226 

organic matter inputs vs those directly incorporated into the soil can be found in the supplementary materials. 227 

2.1.2 Perturbation and physical transport 228 

While microbial activity directly influences DOM production and therefore its transport with water flow (pool 229 

C8), the physical pathway to SOM formation (i.e., forming pools C5 and C10; POM) results from perturbation 230 

and fragmentation processes (Cotrufo et al., 2015). The exact mechanisms of perturbation are hard to generalize 231 

over the globally diverse conditions that an ecosystem scale model such as MEMS v1.0 is designed to operate. 232 

Consequently, the litter fragmentation and perturbation rate (𝐿𝐼𝑇𝑓𝑟𝑔) in MEMS v1.0 is represented as a first-order 233 
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process where the default value of 𝐿𝐼𝑇𝑓𝑟𝑔 was informed by empirical estimates (e.g., Scheu and Wolters, 1991; 234 

Paton et al., 1995; Yoo et al., 2011); but uncertainty can be reduced by relating this rate to specific site conditions 235 

that reflect, in particular, soil macro- and mesofauna activity. The division of litter fragmentation between the C5 236 

and C10 pool is derived from fractionation results that separate the light and heavy POM. The split between these 237 

two fractions appears to vary with land use (Poeplau and Don, 2013), although the exact relationship is unclear. 238 

Consequently, MEMS v1.0 applies an average over all land uses. Particulate organic matter is divided between a 239 

heavy and a light pool because recent evidence suggests the two fractions are differentially influenced by 240 

temperature and management linked to aggregation and land-use change (deGryze et al., 2004; Tan et al., 2007; 241 

Poeplau et al., 2017). Furthermore, the heavy, coarse POM pool can play an important role in soil nutrient cycling 242 

(Wander, 2004) and it has a different turnover time to either the MAOM or light POM fraction (Crow et al., 2007; 243 

Poeplau et al., 2018). 244 

2.1.3 Liquid phase transport  245 

Vertical transport of DOM can be simulated as a function of water flow in a process-based soil hydrology model. 246 

However, in this first, standalone version, MEMS v1.0 assumes that DOM is transported rapidly downward 247 

through percolation and advection according to a constant water flux. As with the 𝐿𝐼𝑇𝑓𝑟𝑔 parameter, the rate of 248 

vertical C transport (controlled by parameter 𝐷𝑂𝐶𝑓𝑟𝑔) would ideally be site-specific, but is currently fixed at a 249 

general, default value informed by relevant literature (Trumbore et al., 1992; Kindler et al., 2011). More 250 

information can be found in the supplementary material and in Table 2. 251 

2.1.4 Sorption and desorption with mineral surfaces 252 

The organo-mineral complexes that define a large portion of MAOM-C in MEMS v1.0 operate under the 253 

principles of Langmuir isotherms, which have also been used in the COMISSION and MILLENNIAL models 254 

(Ahrens et al. (2015) and Abramoff et al. (2017), respectively). These isotherms represent a net C transfer between 255 

soil DOM (pool C8) and MAOM (pool C9) that encapsulates all sorption mechanisms (e.g., cation bridging, 256 

surface complexation, etc.). While MEMS v1.0 uses the same general Langmuir saturation function as the 257 

MILLENNIAL model, it estimates maximum sorption capacity (parameter 𝑄𝑚𝑎𝑥) differently. Here, we use sand 258 

content to derive the maximum C concentration of the silt + clay fraction according to a regression calculated by 259 

pooling all soils data reported by Six et al. (2002). This is then converted to C density using the site-specific soil 260 

bulk density provided as a driving variable to the model. 261 

 262 

In addition to the 𝑄𝑚𝑎𝑥 parameter, the isotherm saturation function also relies on an estimate of a specific soil’s 263 

‘binding affinity’ (parameter 𝐾𝑙𝑚). Typically, this is a product of a soil’s specific mineralogy, influencing the type 264 

of organo-mineral bonds that are formed and the strength of those bonds (Kothawala et al., 2009). Furthermore, 265 

the type of C compounds being sorbed are also key to defining an isotherm’s binding affinity (Kothawala et al., 266 

2008; Kothawala et al., 2012). This parameter can be very difficult to generalise without requiring exhaustive 267 

information on soil physiochemical conditions (e.g., clay type, Fe/Al concentration, etc.), but the work of Mayes 268 

et al. (2012) presented an empirical relationship between 𝐾𝑙𝑚 and native soil pH, with pH acting as a proxy for 269 

mineralogical conditions. As a result, sorption rates to mineral surfaces are dependent on pH (see Equation 35 in 270 

supplementary). This relationship (derived from isotherms calculated for 138 soils of varying taxonomies) 271 
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provides a good starting point for estimating 𝐾𝑙𝑚 and is also used by the MILLENNIAL model (Abramoff et al., 272 

2017). It is worth noting that desorption is implicit in the Langmuir saturation function used by MEMS v1.0 273 

(unlike the explicit representation in COMISSION, Ahrens et al., 2015), meaning that when the MAOM pool 274 

reaches saturation the net transfer from soil DOM to MAOM may be negative and C is transferred from MAOM 275 

to DOM. The simulated sorption–desorption processes in MEMS v1.0 are directly derived from empirical data 276 

and are similar to other SOM models (Wang et al., 2013; Ahrens et al., 2015; Dwivedi et al., 2017). 277 

2.1.5 Heterotrophic respiration and controls on microbial activity 278 

Aside from the litter layer DOM (pool C6), each of the state variables in MEMS v1.0 decay with unique specific 279 

maximum rates, with the resultant C flux being partitioned into CO2 (aggregated into the C7 sink term) and an 280 

accompanying decomposition product flux into other pools, mainly DOM. Thus, the decay rate constants represent 281 

total mass loss potential, embodying DOM-C generation as well as CO2 emissions, as per a recent decomposition 282 

conceptualization (Soong et al., 2015). The total amount of heterotrophic respiration is the sum of CO2 produced 283 

from the biotic decay of all model pools after other fluxes (e.g., DOM generation) are calculated (more detail can 284 

be seen in the supplementary). While the maximum specific decay rates for most pools are fixed parameters 285 

informed by empirical data (Table 2), several studies suggest linking decay rates of recalcitrant compounds to 286 

those of more microbially-accessible compounds (Moorhead et al., 2013; Campbell et al., 2016). This follows 287 

similar hypotheses to the priming effect, that chemically recalcitrant compounds (e.g., lignin, cutin and suberin) 288 

are processed co-metabolically when microbes act preferentially on more energetically favourable compounds 289 

nearby (Carrington et al., 2012; Větrovský et al., 2014). Consequently, MEMS v1.0 applies this through use of 290 

the same functions as those used by the LIDEL model (Campbell et al., 2016), estimating the maximum specific 291 

decay rate of pool C3 with a relationship to parameter k2 (i.e., the maximum specific decay rate of the acid-soluble 292 

litter fraction, pool C2). At present, CO2 emitted from soil mineralization of DOM is associated with the values 293 

presented in Kalbitz et al. (2005). 294 

2.1.6 Decay rate modifiers 295 

Temperature is used as the main environmental control on maximum specific decay rates of each pool. The rate 296 

modifying function used by MEMS v1.0 is adapted from that of the StandCarb model (Harmon and Domingo, 297 

2001). This function is consistent with empirical data and enzyme kinetics, implying that microbial decomposition 298 

rates peak at an optimum temperature with reduced rates above and below. Coefficients that define the function 299 

also include the Q10 and reference temperature for that specific pool. Therefore, the function can utilise empirical 300 

data if available for a site. This is a relatively simple function that only accounts for temperature. Simulating the 301 

influence of other important controls on decomposition, such as water, oxygen, pH and nutrients, are beyond the 302 

scope of this inaugural version of the MEMS model but are central to future development efforts. 303 

2.1.7 Model implementation and driving variables 304 

MEMS v1.0 is a series of ordinary differential equations solved for discrete time steps by numerical integration 305 

using finite differencing techniques from the Runge-Kutta family of solvers. Implementation is performed through 306 

the deSolve package (Soetart et al., 2010) written for R (all equations and associated detail can be found in 307 
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Supplementary Information). Parameters used to solve MEMS v1.0 are described along with their default values 308 

and associated references in Table 2. 309 

 310 

Initializing MEMS v1.0 requires external inputs of basic site characteristics (climatic and edaphic conditions as 311 

well as land management information) and ideally measurements of daily C input. However, C inputs are rarely 312 

available at daily time scales. Consequently, for this inaugural version of the MEMS model we employ a simple 313 

function to interpolate daily C inputs from annual Net Primary Productivity (NPP), partitioning 314 

aboveground/belowground and to the simulated soil layer using land-use specific root:shoot ratios and a simple 315 

root distribution function (Poeplau, 2016). These driving variables are external inputs of the initial model version 316 

but may be obtained from coupled climate and plant growth submodels in future versions, when incorporated into 317 

a full ecosystem model. Details of these approaches are given in the supplementary materials and all required 318 

driving variables are shown in Table 3. Since the major C pools can each be quantified using common analytical 319 

methods (Table 1), the best way of initializing the size of these pools in MEMS v1.0 is to use measured data. 320 

However, when measured data are not available, a typical site simulation employs a spinup that runs the model to 321 

steady-state conditions based on average climatic and edaphic conditions, as well as average C inputs. 322 

2.2 Global sensitivity analysis 323 

The default parameter values (i.e., those governing C turnover and fluxes between pools) used by MEMS v1.0 are 324 

informed by data from relevant literature (Table 2). However, different studies may suggest different values based 325 

on discrete site conditions, meaning a priori estimates may not necessarily be generalizable across all sites that 326 

the model could simulate. A variance-based global sensitivity analysis was performed to determine each 327 

parameter’s relative contribution to the change in each state variable (i.e., determining which parameters have the 328 

largest influence on the size of each model pool). The sensitivity analysis was repeated for different simulation 329 

lengths (1 – 1000 years) as different fluxes operate at different temporal scales, thereby meaning that the relative 330 

importance of each parameter changes through time. Initial pool sizes were set to 0 and the model was initialized 331 

to simulate a steady-state scenario based on average site conditions (derived from ~8000 forest and grassland sites 332 

in the Land-Use/Land Cover Area Frame Survey (LUCAS) dataset ([Toth et al., 2013] – see Table 3). Specifically, 333 

this meant starting a model run with no C in the system and gradually building up the litter and soil pools until 334 

they reached equilibrium based on driving variables (soil type, C inputs, climate) that remain fixed over time. To 335 

evaluate how much each model parameter (e.g., decay rates, DOM generation rates, etc.; see Table 2) effects the 336 

amount of C in each pool (i.e., C1-C11; Figure 1) parameter values were changed to be higher or lower from their 337 

baseline and pool sizes are tracked over simulation time. Note that all temperature modifier parameters (𝑇𝑟𝑒𝑓, 338 

𝑇𝑜𝑝𝑡, 𝑇𝑄10, 𝑇𝑙𝑎𝑔 and 𝑇𝑠ℎ𝑝; Table 2) were excluded in this sensitivity analysis as the resulting 𝑇𝑚𝑜𝑑 has the same 339 

effect on all decay rates. Maximum and minimum values of all other parameters (n = 24) were defined as 50 % 340 

above and below the literature-derived (baseline) value (Table 2). Using Latin Hypercube techniques to sample 341 

within the full parameter space, a global sensitivity varying all parameters was used to determine total variance 342 

for changes to each model pool (i.e., how much each pool changes in size when all parameters vary up to 50 %). 343 

Then, in turn, each individual parameter was fixed at its baseline value while all others varied. This defines each 344 

parameter’s contribution to a pool’s variance, averaged over variations in all other parameters (Sobol, 2001; 345 

Saltelli et al., 2008) (i.e., how much each pool changes in size when all parameters, except one, vary up to 50%). 346 
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When normalized over the global sensitivity variance, a contribution index provides the proportion of variance 347 

explained by each parameter. The analysis was run 10,000 times to define the total parameter space and the whole 348 

procedure was repeated annually for simulation lengths between 1 to 1000 years. Put simply, 10,000 different 349 

combinations of parameter values between the minimums and maximums were used to repeatedly run the model 350 

for 1000 years given average site conditions. The results showing changes in pool size correspond to the changes 351 

in parameter values (e.g., when maximum decay rate of MAOM is increased, pool C9 may decrease in size but 352 

other pools may increase). The impact that a single parameter has on pool size, compared to that of all parameters, 353 

is described by the contribution index, where the total effect of all the parameters is equal to the maximum change 354 

in pool size. Note that the results of a global sensitivity analysis of this kind are non-directional and do not indicate 355 

whether a parameter increases or decreases a pool size, but rather that it simply changes from the baseline. 356 

2.3 Model response to changes in driving variables 357 

To determine the model’s steady-state response to changes in each individual driving variable, a local one-at-a-358 

time (OAT) sensitivity analysis was performed by sequentially simulating different equilibrium conditions for 359 

1000 years. The baseline estimates for edaphic inputs, temperature and C input quantity were informed by the 360 

LUCAS dataset ([Toth et al., 2013] – see Table 3 and below for more details), with mean values defining the mid-361 

points and ranges defined as the minima and maxima. Litter chemistry driving variables were adapted from the 362 

ranges described by Campbell et al. (2016). Note that while typically described as a sensitivity analysis, an OAT 363 

approach is not as robust as variance-based techniques because it cannot determine interactions between input 364 

variables. However, OAT results are easier to interpret as there are no confounding impacts and relationships 365 

observed are solely a result of changing one variable. Additionally, we assess the model’s qualitative relationships 366 

between driving variables by comparison to a study by Castellano et al. (2015); combinations of high/low sand 367 

content and high/low soil pH were used to examine whether model projections agree with the hypothesized 368 

relationships between input litter chemistry and MAOM-C stocks at steady-state. In these scenarios, alfalfa 369 

(Medicago sativa) and ponderosa pine (Pinus ponderosa) were used as examples of a high- and low-quality litter 370 

input, respectively, with litter chemistry driving variables adopted from Campbell et al. (2016). 371 

2.4 Parameter optimization 372 

2.4.1 LUCAS dataset and soil fractionation data 373 

Parameter optimization for MEMS v1.0 used data from the LUCAS dataset (Toth et al., 2013). This dataset 374 

contains basic soil properties including C data for almost 20,000 sites across Europe, sampled in 2009, 375 

representing a wide spatial range over 25 countries with diverse gradients of soil types, climates and land uses 376 

(Figure S1). Complimented with geo-referenced estimates of annual NPP from MODIS satellite data (ORNL 377 

DAAC, 2009), and daily temperature data from the Climate Prediction Center’s Global Temperature (CPC-GT) 378 

database (NOAA, 2018), this provided all driving variables required to run MEMS v1.0. The use of 379 

modelled/interpolated NPP and climate data is not recommended over measurement data directly collected from 380 

the site(s) being simulated, but for the analysis herein these measured data were unavailable. 381 

 382 

A representative subsample (Figure S2) of forest and grassland sites from LUCAS were selected for fractionation 383 

to generate data for POM and MAOM pools (see dataset online available at the European Soil Data Centre). 384 



11 

 

Specifically, topsoil (0-20 cm) samples from 78 grassland sites and 76 forested sites were fractionated by size (53 385 

m) after full soil dispersion in dilute (0.5 %) sodium hexametaphosphate with glass beads on a shaker. The 386 

fraction passing through (< 53 µm) was collected as the MAOM, while the fraction remaining on the sieve was 387 

collected as the POM. It is worth noting that this fractionation did not separate the POM into a light and a heavy 388 

POM, as represented in MEMS v1.0 (i.e., C5 and C10), thus these model fractions were combined for data-model 389 

comparisons (see below). After drying to constant weight in a 60 °C oven, each fraction was analysed for C and 390 

N concentration in an elemental analyser (LECO TruSpec CN). Samples from sites with a soil inorganic C content 391 

greater than 0.2 % (as reported in the LUCAS database) were acidified before elemental analyses to remove 392 

carbonates, so that the %C of each fraction represented the organic C only. Carbon concentrations of each fraction 393 

and the total soil organic carbon (SOC) were converted to stocks for the top 20 cm soil layer using bulk density 394 

estimates reported with the LUCAS database. A georeferenced summary of these 154 sites can be seen in Figure 395 

S2 and summary information of the fractionation data and comparisons between land use classes is shown in 396 

Figures S3 and S4. 397 

2.4.2 Optimization procedure 398 

Informed by the global sensitivity analysis, four parameters accounted for ~60 % of the variation in steady-state 399 

bulk (and MAOM/total POM) soil C stocks. These were Nmid, k5, k9 and k10 (see Table 2 for details) and were 400 

used for optimization to improve model performance. Maximum and minimum values representing realistic 401 

ranges of each parameter were informed by relevant literature and rounded to appropriate boundaries (Table 2; 402 

Table S2): Nmid (0.875, 2.625), k5 (6.0-5, 1.0-3), k9 (1.0-5, 4.0-5), k10 (1.0-4, 1.0-3). These values set the limits for 403 

Latin Hypercube sampling to define 1024 unique parameter sets that, together, span the full range of each 404 

parameter. The fractionated LUCAS site data was used to train and test the model, applying a repeated k-fold 405 

cross-validation approach (Kuhn and Johnson, 2013) to identify best parameter values for the full variation of 406 

conditions at all 154 sites. Comparisons were made between measured soil C stocks and those resulting from 407 

steady-state simulations for each site. Of these sites, 120 (78 %) were used for training and the remaining 34 (22 408 

%) were used for testing. Root mean squared error (RMSE) was applied as the objective function. Using the 409 

training results, the set of parameters that reported the lowest RMSE for each fraction was used to ensure this 410 

‘best’ parameter set also performed well (i.e., RMSE was within 10 % of that reported for the training sites) 411 

against the 34 sites of measured data withheld for testing. This process was repeated 10 times using different 412 

subsets of the 154 sites for training and testing (i.e., 10 ‘folds’ in the cross-validation approach).  413 

 414 

To determine the optimized parameter values, a single fold was chosen at random from those that reported the 415 

lowest RMSE for each subset of training sites (i.e., each fold). Optimized values differ depending on which 416 

measured fraction is compared to model predictions (whether comparing pool C9 to measured MAOM-C, the sum 417 

of pools C5 and C10 to measured total POM-C, or the sum of pools C5, C8, C9 and C10 to measured bulk SOC). 418 

The new, optimized parameter values (Table S2) were derived from a randomly chosen fold that minimized RMSE 419 

when compared to the MAOM fraction. This was chosen (instead of those optimized for POM or bulk SOC) since 420 

the MAOM fraction is typically the largest single soil C pool and using this approach led to the biggest overall 421 

decrease in RMSE when compared to all available data (Table S2). In future analyses, a more rigorous approach 422 
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may be to apply a cost function regarding all available measured pool data (e.g., including litter pool data when it 423 

is also measured) but for our initial model evaluation we deemed this random choice sufficient. 424 

2.5 Model evaluation for forests and grasslands in Europe 425 

Having optimized key parameter values, the new global parameter set for MEMS v1.0 was used to simulate the 426 

remaining forest and grassland sites of the LUCAS dataset for independent evaluation. Driving variables of 427 

edaphic conditions and land-use type were extracted for each site from LUCAS and combined with daily estimates 428 

of C inputs and temperature (derived from simple interpolations assuming a normal distribution of MODIS annual 429 

NPP data [see Supplementary for details] and CPC-GT daily maximum and minimum air temperature data, 430 

respectively). Where these data were unavailable, the site was removed from further evaluation. Three forest land-431 

use classes (as described in LUCAS) were included, along with the pure grassland land-use class. This resulted in 432 

a final dataset of 8192 sites (3487 grasslands, 1713 coniferous forests, 1590 broadleaved forests and 1402 ‘mixed’ 433 

forests). Mixed forests are defined to contain coniferous and broadleaved species that each contribute > 25% to 434 

total tree canopy. Summary information for these sites can be found in Figure S1. To differentiate between input 435 

litter chemistry, root:shoot ratios and root distribution of the four land-uses, generic driving variables for each 436 

were derived from relevant literature. Details of these inputs are shown in Table 3. 437 

 438 

Each of the 8192 sites was initialized with zero pool sizes and simulated for 1000 years to achieve steady-state 439 

conditions. This assumed the same intra-annual distribution of daily temperature and C input for each year. 440 

Organic carbon content reported in LUCAS was converted to SOC stock using the estimated bulk density reported 441 

with the database and reduced according to the measured rock/gravel content (Equation 1), i.e., 442 

 443 

𝑆𝑂𝐶 =  𝐶𝑐𝑜𝑛𝑐 ∗ 𝜌 
𝐿 ∗ (1 − 𝑟𝑜𝑐𝑘 

𝐿 )        (1) 444 

 445 

where 𝑆𝑂𝐶 is soil organic carbon stock in Mg C ha-1, 𝐶𝑐𝑜𝑛𝑐 is the measured C content in percent, 𝜌 
𝐿  is the bulk 446 

density of soil layer L in g cm-3
 and 𝑟𝑜𝑐𝑘 

𝐿  is the rock content of soil layer L expressed as a fraction. This total 447 

SOC stock, was compared to MEMS v1.0 model output. In addition to comparing measured values with those 448 

predicted at steady-state (which may not be an accurate assumption for many sites), a more general comparison 449 

was performed to examine groups of sites under similar site conditions. Model performance was evaluated for 450 

several classes of environmental conditions, with sites divided into above and below median values of mean 451 

annual temperature (MAT, 8.3 ºC), mean annual precipitation (MAP, 687 mm), annual NPP (647 gC m-2 yr-1) and 452 

sand content (50 %), for each land-use type. Several standard metrics for error and bias were used to evaluate 453 

model performance following the flowchart presented in Smith et al. (1997), including Mean Absolute Error 454 

(MAE), Mean Bias Error (MBE), Root Mean Square Error (RMSE), modelling efficiency (EF), and Coefficient 455 

of Determination (CofD). Additionally, we used 16 environmental classes to derive an estimate of measurement 456 

uncertainty based around sites of similar conditions (e.g., hot, wet, low input, sandy soil) for each land use. To 457 

include both measurement and simulation error in the same evaluation metric, we applied a modified F-test 458 

statistic that uses lack-of-fit sum of squares to account for both experimental and prediction uncertainty (see Sima 459 

et al., 2018 for more information). The variance required to calculate these was derived by using the full number 460 

of environmental classes as described above (n = 16). Due to the lower number of fractionated sites in each group, 461 
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only temperature and sand content were used as environmental classes (i.e., n = 4) to evaluate performance at 462 

these 154 sites. One-way ANOVAs were performed to show where average model results were significantly 463 

different from average measured C stocks. An α level of 0.05 was used to determine the significance of the 464 

ANOVA and F-tests. Finally, we also use the standard errors for bulk topsoil C stocks of each environmental class 465 

to determine the significance of RMSE assuming a two-tailed Student’s t distribution and 95% confidence interval, 466 

as described by Smith et al. (1997). All data processing and statistical analysis was performed in R (v3.4; R Core 467 

Modelling Team, 2018). 468 

3 Results  469 

3.1 Sensitivity and behaviour of MEMS v1.0 470 

3.1.1 Parameter sensitivity at different timescales 471 

Bulk SOC stocks were sensitive to different sets of parameters depending on the duration of the simulation (Figure 472 

2; Figure S5). Parameters that define litter fragmentation and perturbation rates (LITfrg) or microbial CUE (mainly 473 

LCmax, Nmax and Nmid) are responsible for rapid (< 2 years) changes in C stocks, particularly those in the litter 474 

layer and light POM. As simulation time increases, the influence of these parameters declines relative to the litter 475 

and POM decay rate parameters, particularly k5 and k10. Fifty years after simulations are initialized, more than 476 

75 % of the sensitivity in total soil C stock was due to the maximum specific decay rate of light POM (i.e., 477 

parameter k10). After this point, its relative contribution to total C stock sensitivity diminishes (to approximately 478 

45 %) as the parameters that define MAOM-C sorption become more important (i.e., coefficients that determine 479 

the regression to calculate MAOM-C saturation capacity [scIcept and scSlope]). Overall, our sensitivity analysis 480 

showed that the expected dynamics with different processes (e.g., litter fragmentation, microbial processing and 481 

sorption) are operating at the appropriate timescales to structure SOM dynamics, and their associated parameters 482 

are more, or less, important depending on the initial pool sizes and model run/experiment duration. Figure 2 can 483 

be interpreted as a depiction of how the C pools of MEMS v1.0 are impacted by different parameters as each pool 484 

accumulates over time. 485 

 486 

3.1.2 Soil carbon response to changing environmental conditions 487 

Alone, each driving variable (edaphic conditions, temperature, and input litter quantity/quality) in MEMS v1.0 488 

has a discrete and non-linear relationship to the proportion of soil C stored in the MAOM and POM pools under 489 

steady-state conditions (Figure 3). This analysis alters only one driving variable at time while holding others 490 

constant at an average value. Bulk C stocks are predicted to be mostly MAOM in all cases except when C inputs 491 

(annNPP) are very high (i.e., > 1.5 kg C m-2 yr-1; Figure 3). This results from the fact that the MAOM pool will 492 

saturate at high input rates whereas the POM pools do not (Castellano et al., 2015). Sand content and soil pH 493 

influence a site’s MAOM saturation capacity, and therefore a low capacity (i.e., high sand content) with 494 

mineralogy associated with weaker organo-mineral bonding (i.e., high soil pH) has proportionally more total 495 

POM. Litter input chemistry variables also have different, and sizable, impacts on whether SOM forms and 496 

persists primarily in MAOM or in POM (as denoted by the MAOM:POM ratio). Note that POM in the 497 

MAOM:POM ratio refers to total POM (i.e., pools C5 and C10 combined). The fraction of litter input that is hot-498 
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water extractable (fSOL) is a key determinant of MAOM formation rates and when fSOL is high, MAOM-C stocks 499 

at steady-state are predicted to be more than four times higher than POM-C stocks (Figure 3). Conversely, when 500 

input material has a high acid-insoluble (fLIG) content and a low N content (LitN) the size of the organic horizon 501 

increases and, over time, POM-C stocks approach a 1:1 ratio with MAOM-C stocks. Figure 3 shows the impact 502 

of changing one driving variable while all others remain constant. When many of these inputs vary at the same 503 

time, the relationships to MAOM:POM can be very different (for example, the model predicts twice as much 504 

POM-C as MAOM-C when simulating a sandy soil with coniferous vegetation and high annNPP). 505 

 506 

MAOM-C saturation in the model is largely dependent on an interaction between the quantity of C inputs, the 507 

soil texture (i.e., sand content) and mineralogy (i.e., for which soil pH is used as a proxy).  Figure 4 shows that 508 

our mathematical formulation of sorption to mineral surfaces generated a very similar relationship to that 509 

proposed by Castellano et al. (2015). When C inputs are low, litter input chemistry has the greatest influence on 510 

the MAOM-C stock under steady-state conditions. This is particularly true in soils with the strongest mineral 511 

bonding (i.e., low pH) and high sorption capacity (i.e., low sand %; Figure 4 top right panel). 512 

 513 

3.2 Improved simulation due to parameter optimization 514 

Initial parameter values derived from relevant literature provided good estimates judging from model performance 515 

with measured fractionation data (Table S2). Prior to optimisation, the difference between measured and modelled 516 

bulk soil C stocks of fractionated LUCAS sites was insignificant for all four land-uses (one-way ANOVA, p > 517 

0.05). However, accounting for experimental and simulation uncertainty (variance calculated by four groups: 518 

divisions of high/low mean annual temperature and sand content) MEMS v1.0 only accurately described bulk 519 

SOC stocks for the grassland land-use class (F-statistic < 0.05). After optimisation, overall model fit with all soil 520 

C fractions (MAOM, total POM and bulk) was improved by increasing the maximum decay rate of MAOM 521 

(parameter k9) and decreasing the maximum decay rate of light POM (parameter k10), the maximum decay rate 522 

of coarse, heavy POM (parameter k5), and the inflection point for the logistic curve that defines the N effect on 523 

microbial CUE (parameter Nmid). This resulted in a lower RMSE against all measured data compared to baseline 524 

values (Table S2). Despite the improved model fit, the error in simulated values for broadleaved forest sites was 525 

still more than the error inherent to the measured data (at a 95% threshold and as defined by the modified F-test 526 

from Sima et al., 2018). This was primarily caused by two sites where measured total POM-C stocks were reported 527 

to be > 95 Mg C ha-1 in the top 20 cm (Figure 5). When these sites were removed from statistical comparisons 528 

there were no significant differences between modelled and measured bulk SOC stocks for any land use class. 529 

 530 

Measured fractionation data from the four major land-use classes showed a wide range of soil C stocks and a 531 

significantly different MAOM:POM ratio between grassland and forests (Figure 5; Figure S4). This was 532 

predominantly due to grassland topsoil (0-20 cm) having more MAOM and less total POM, compared to 533 

coniferous soils (Figure S3). On average, simulations of the fractionated sites agreed well with measured data, 534 

demonstrating no significant differences (p > 0.05) between measured and modelled C stocks of total POM or 535 

bulk soil for all land uses, and for MAOM at broadleaved, mixed and coniferous forest sites (Figure 5). The only 536 

statistically significant difference was between measured and modelled MAOM-C stocks for grassland sites (p < 537 

0.01). However, measurements have a considerably larger range between minimum and maximum values than 538 
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did model simulations, particularly for total POM, which largely explained the high overall RMSE when 539 

comparing all 154 sites (Table S2). 540 

 541 

3.3 Model evaluation for forests and grasslands in Europe 542 

Despite only including a few of the many factors that influence SOM dynamics, MEMS v1.0 was able to capture 543 

the expected relationships between site conditions and total mineral soil C stocks based on an evaluation of the 544 

optimized model with independent data (Figure 6). Mean absolute error over all sites (n = 8192) was low (MBE 545 

= 1.1 MgC ha-1) and CofD was above 1, indicating that the simulated C stocks capture the trend of the measured 546 

data better than the mean of the measurements (Table 4). The main lack of fit was observed as the model 547 

consistently underestimated bulk soil C stocks in forest systems with low mean annual temperature (MAT < 8.3 548 

ºC) and sandy soil textures (sand content > 50 %) (Figure S6). When divided by land-use classes, grassland sites 549 

had the lowest residuals and mixed forest sites had the highest (Figure 6; Figure S6). Using low and high divisions 550 

of MAT, MAP, sand content and C input quantity, to account for variance between each of these groups (n=16), 551 

RMSE indicated that the model predictions of C stocks fell within the 95 % confidence interval of the 552 

measurements for coniferous and mixed forest sites. Using the same groups but also accounting for simulated 553 

variance indicated that the accuracy of MEMS v1.0 predictions were statistically significant for all land uses 554 

besides broadleaf forest sites (F-statistic > 0.05; Table 4). A geographic analysis of model performance indicated 555 

that the model performed best across France and Northeastern Europe but poorly across the UK, Ireland and 556 

Southern Sweden (Figure 7). Furthermore, topsoil C stocks of broadleaved sites in Southeastern Europe, 557 

particularly Romania, were consistently overestimated by the model, especially when sites had low MAP (Figure 558 

6; Figure 7). 559 

 560 

In general, discrepancies between measured and modelled values were largest for the broadleaved forest land use 561 

class (Figure S6). Results from analysis of the fractionated sites suggest that the model cannot achieve the very 562 

high POM-C stocks measured at some sites. Optimized parameter values aim to produce a good overall model fit 563 

but are unlikely to be able to capture the full range of measured values (for example, the lowest bulk topsoil C 564 

stock for a broadleaved site was 7 Mg C ha-1 whereas the highest was 218 Mg C ha-1). A summary of model 565 

performance against these 8192 evaluation sites is shown in Table 4. While the model’s performance comparing 566 

absolute C stocks appears good, this is done with the assumption that these topsoil C stocks at forest and grassland 567 

sites in our analysis are at steady-state. This is unlikely to be true and therefore it is encouraging when general 568 

trends are as expected (as is the case for many of the land uses and for many of the different environmental 569 

divisions; Figure 6).   570 
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4 Discussion 571 

MEMS v1.0 was designed to consolidate recent advances in our understanding of SOM formation and persistence 572 

into a parsimonious mathematical model that uses a generalizable structure which, after further development, can 573 

be implemented in Ecosystem and Earth System model applications. In this study we aimed to provide proof-of-574 

concept that a model structure built around known biogeochemical mechanisms (Figure 1) and measurable pools 575 

could be advantageous for application over varied site conditions. Another advantage of using this novel structure 576 

is that each aspect is empirically quantifiable, allowing for straightforward model evaluation of both total and 577 

fractionated SOM, addressing a common concern among conventional SOM models (Campbell and Paustian, 578 

2015). 579 

4.1 Sensitivity and behaviour of MEMS v1.0 580 

The relationships between model driving variables and soil C stocks at steady-state highlight the importance of 581 

litter chemistry on relative proportions of MAOM and total POM in MEMS v1.0 (Figure 3). This is generally 582 

because both POM pools accumulate C when input litter has a high acid-insoluble fraction and a low N content, 583 

resulting from reduced microbial accessibility and reduced DOM production (Scheibe and Gleixner, 2014). This 584 

trend is also common in empirical studies and often associated with land-use change from herbaceous to woody 585 

vegetation (Filley et al., 2008). Many of the parameters that influence the processes of POM formation and 586 

persistence (e.g., LITfrg, Nmid, LCImax, etc.) have relatively high importance (i.e., sensitivity) to changes in total 587 

SOM within relatively short time frames (i.e., < 10 years; Figure 2). This may potentially capture the important 588 

real-world trend that POM is typically more vulnerable to decomposition with disturbance compared to MAOM 589 

(Cambardella and Elliott, 1992). However, disturbance impacts were not evaluated in the inaugural study. 590 

 591 

One main objective of structuring MEMS v1.0 around empirically-defined biogeochemical processes is so that it 592 

can accurately represent the timescales on which different processes operate, rather than being solely dependent 593 

on turnover times of conceptual pools. This is particularly relevant given our new understanding that the MAOM 594 

fraction has short-term dynamics (Jilling et al., 2018). Consequently, it is reassuring to see that this knowledge, 595 

which is incorporated into the MEMS v1.0 design, can be seen in Figure 2 (and Figure S5), where the parameters 596 

that operate on short time-scales also have an immediate impact on the MAOM pool given the complexity of 597 

controls in the model structure. The model’s agreement with the hypothesized relationship from Castellano et al. 598 

(2015) is also reassuring, and represents an important proof of concept that associates litter chemistry and C 599 

saturation capacity with MAOM-C stocks at steady-state (Figure 4). 600 

4.2 Model evaluation of MEMS v1.0 601 

While average agreement between measured and modelled soil C stocks was very good for MEMS v1.0, the model 602 

failed to capture the wide range in total POM-C stocks that were observed at the fractionated LUCAS sites (Figure 603 

5). This may be because this first version of the model does not include several of the key controls on POM 604 

dynamics, such as water/oxygen limitations (Keiluweit et al., 2016), aggregation (Gentile et al., 2011), activity of 605 

soil fauna (Frouz, 2018) and nutrient availability (Bu et al., 2015; Averill and Waring, 2018). There are also 606 

limitations of our approach given that very few of the sites will likely be under true steady-state conditions, leading 607 

to further discrepancies between model predictions and measured values. Furthermore, the variability in driving 608 
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variables of litter chemistry, N content and root:shoot ratios are underestimated when using our approach of 609 

grouping many different land uses into broad classes. 610 

 611 

When examining the comparison between measured and modelled bulk soil C stocks for the 8192 forest and 612 

grassland sites, residuals were particularly large for high latitude forestry sites in southern Sweden and the UK 613 

(Figure 7). We hypothesize that this is primarily due to the fact that MEMS v1.0 does not simulate soil moisture 614 

controls on decomposition, and temperature effects are applied through a simple function. In reality, these sorts 615 

of forest soils are known to have very high total POM-C stocks, resulting from decades of consistent inputs and 616 

cold, wet climates resulting in low decomposition rates (Berg, 2000). Differences between measured and modelled 617 

soil C stocks are also likely due to uncertainties with driving variables and specifically the MODIS estimates of 618 

NPP. The 2009 NPP data from MODIS were used to estimate the C inputs to soils in our simulations, and these 619 

data may not be representative of the average historical C inputs for those sites, which would impact the observed 620 

amounts of soil C.  621 

4.3 Improving the parameters of MEMS v1.0 622 

The current iteration of the MEMS model is not intended to be able to simulate all scenarios and environmental 623 

conditions, but this study indicates it can be reasonably accurate in simulating forest and grassland sites in Europe 624 

under steady-state conditions (Figure 6; Table 4). That said, several of the parameters in MEMS v1.0 are either 625 

poorly constrained or loosely defined in the current model. The LITfrg parameter, for example, defines a fixed 626 

litter fragmentation and perturbation rate that transfers C from the structural litter pools (C2 and C3) belowground 627 

(to C5 and C10). The global sensitivity analysis of MEMS v1.0 indicates that LITfrg is particularly important for 628 

several model pools and total SOC early in a simulation (Figure 2; Figure S5). There are several areas of research 629 

that may help make this process more mechanistic in MEMS and allow for feedbacks with site conditions (e.g., 630 

Scheu and Wolters, 1991; Yoo et al., 2011). One option to generalise the vertical transport of structural litter into 631 

the soil may be to apply a diffusion approach that can be valid at the ecosystem scale, as described in the 632 

SOMPROF model (Braakhekke et al., 2011). More empirical data to link site conditions to perturbation processes 633 

(e.g., cryoturbation, bioturbation, churning clays) would help with this area of MEMS model development. 634 

 635 

As with vertical distribution of physical SOM, the transport of DOM vertically between layers lacks a mechanistic 636 

foundation in MEMS v1.0. A noteworthy approach that attempts to simulate this transport while also representing 637 

bioturbation through diffusion and sorption-desorption processes is presented in the COMISSION model (Ahrens 638 

et al., 2015). While these models apply more mechanistic functions to represent these key processes, one can 639 

debate whether the increased complexity and computational demands are necessary. This, of course depends on 640 

the model objectives and in MEMS v1.0 we have prioritised parsimony and deliberately minimised the number 641 

of algorithms and parameters. While the model cannot yet address hypotheses about litter fragmentation or DOM 642 

leaching, the generic structure of MEMS v1.0 can incorporate these processes in a more explicit manner in future 643 

versions. 644 

 645 

Additional parameters of MEMS v1.0 that are poorly constrained include those associated with the LIDEL model. 646 

These parameters (specifically those related to DOM generation and microbial assimilation, see Table 2) were 647 
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estimated using Bayesian analysis that employed empirical data (Soong et al., 2015), but resulted in large posterior 648 

distributions with high uncertainty as noted by Campbell et al. (2016). Consequently, more data is required from 649 

different litter types to help constrain these parameter values. In particular, the amount of DOM leached from 650 

decaying microbial biomass (parameter la2) is particularly important for MAOM formation when the pool is 651 

relatively small (< 25 years in Figure 2). MEMS v1.0 currently uses the estimated value from Campbell et al. 652 

(2016) for this parameter (0.19 g DOM g decayed microbial biomass-1) but it is worth noting the reported posterior 653 

interval width was more than double this value (0.398 g DOM g decayed microbial biomass-1). Similarly, the rate 654 

of microbial product generation from microbial biomass (parameter B3) was seen to be even more variable 655 

(Campbell et al., 2016). Empirically, the rate that microbial products are generated from microbial turnover is 656 

highly variable depending on the microbial community and the site conditions (Xu et al., 2014). While improving 657 

these parameters was outside the scope of this study, the path towards improved model performance can be 658 

addressed with new empirical data that better inform the model parameters. 659 

4.4 Opportunities for further development in MEMS v1.0 660 

In its current capacity, MEMS v1.0 is far from being able to simulate full ecosystems and is limited in scope 661 

regarding the land use scenarios it can simulate accurately. Specifically, the initial model does not simulate the 662 

hydrological or nitrogen cycles, and currently operates on a single soil layer. However, MEMS v1.0 has been built 663 

to have a modular architecture, with careful consideration given to how additional processes can be addressed 664 

through future model development. 665 

 666 

The relationship between C and N in soils is fundamental to SOM dynamics (McGill and Cole, 1981), and 667 

therefore simulating the N cycle is at the forefront of plans to develop in the MEMS model. Since the MEMS 668 

model structure is based on soil fractions that can be physically isolated, each current soil C pool in MEMS v1.0 669 

(i.e. pools C5, C8, C9 and C10) can also have a direct equivalent for N, and be consistent with the fractionation 670 

scheme for the C dynamics (Table S1). However, additional pools of nitrate and ammonium (and associated 671 

mechanisms to describe N- fixation, nitrification and denitrification) are needed to accurately describe plant-soil 672 

nutrient feedbacks. This highlights a major objective of future MEMS model development, i.e., to ensure the 673 

model can be easily coupled with existing modules that describe other aspects of the ecosystem (e.g., plant growth 674 

routines).  675 

 676 

Another key feature of MEMS v1.0 is its ability to test specific hypotheses directly against empirical data, such 677 

as effects of soil priming on soil C stocks, effects of microbial feedbacks on OM sorption to mineral surfaces, or 678 

the effects of soil fauna on SOM formation. Because each of the existing model pools can be isolated physically 679 

and quantified, the rates of flux between these pools can also be quantified with isotopic tracer studies. Not only 680 

does this mean parameterization and evaluation data can be generated easily, but also that experiments can be 681 

designed with this mathematical framework in mind, specifically generating the data required to develop, evaluate 682 

and improve the model. While the current scope of MEMS v1.0 does not address all climate-C feedbacks, it does 683 

provide the basis for a more mechanistic model that can simulate SOM dynamics at the ecosystem scale. 684 
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5 Conclusions 685 

As a carbon model designed around the processes that govern SOM formation, MEMS v1.0 provides an 686 

analytically tractable framework that can be used to test specific hypotheses by pairing empirical experiments 687 

with model simulations. While the inaugural version of this new model has limitations for direct evaluation with 688 

real-world measurements, on average, its performance with simulating steady-state conditions equates well with 689 

topsoil C stocks measured for ~8000 forest and grassland sites across Europe. Using a structure that aligns with 690 

our contemporary understanding of soil C dynamics, we also show that MEMS v1.0 is capable of accurately 691 

proportioning SOM between particulate and mineral-associated fractions by accounting for litter chemistry of the 692 

input material. By using litter chemistry to inform SOM formation pathways and edaphic conditions to inform the 693 

C-saturation capacity of a soil, MEMS v1.0 also shows consistent trends with experimental findings.  694 

 695 

Next steps for MEMS model development will require detailed routines of N and hydrological cycling, as well as 696 

additional external drivers of SOM dynamics (e.g., land management practices). To reliably incorporate these 697 

aspects in the MEMS model will require effective collaboration between modellers and experimentalists to design 698 

studies that can both i) elucidate the underlying mechanisms that MEMS is built upon and ii) generate the 699 

parameterization and validation data required to reduce model uncertainty. Successful execution of this strategy 700 

will help to develop an ecosystem scale model that can improve assessments of management and policy action on 701 

sustainability of soils and associated ecosystem services.    702 
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Figure legends 1033 

Figure 1 - Conceptual model diagram of MEMS v1.0 (see Table 1 for detailed information regarding each pool). Litter 1034 
pools of MEMS v1.0 are defined as > 2mm particles and comprise of hot-water extractable (C1), acid-soluble (C2) and acid-1035 
insoluble (C3) fractions. A microbial pool (C4) and dissolved carbon pool (C6) are also part of the organic horizon and 1036 
litter decomposition processes (see LIDEL for more information, Campbell et al., 2016). Soil organic matter (< 2mm 1037 
particles belowground) comprises of a light particulate organic matter pool (light POM, C10) formed from the input 1038 
through fragmentation and physical transfer of the structural litter residues (C2 and C3), a coarse heavy POM pool (C5) 1039 
formed from both litter fragmentation and microbial residues coating sand-sized particles, a dissolved organic matter 1040 
(DOM) pool (C8) formed from the decomposition of all other pools and receiving DOM from the organic soil layer, and a 1041 
mineral-associated organic matter pool (MAOM C9), which exchanges C through sorption and desorption with the DOM. 1042 
Arrows indicate the fluxes of carbon between the different pools. Carbon dioxide is produced from a number of these fluxes 1043 
but for simplicity of graphical representation, these arrows are not linked to the carbon dioxide pool (C7). Deeper soil 1044 
layers can be represented by the same structure, with or without root inputs depending on depth, but are not implemented 1045 
in this inaugural version of MEMS v1.0. 1046 
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Figure 2 - Global sensitivity analysis results showing the relative contribution of each parameter to a change in carbon 1049 
stock of each pool in MEMS v1.0 (leached carbon to deeper soil layers [pool C11] is omitted for clarity) after simulation to 1050 
steady-state. The two top left panels represent the sum of soil pools (C5, C8, C9 and C10) and organic layer pools (C1, C2, 1051 
C3, C4 and C6), respectively. Details of each parameter and the abbreviations used can be found in Table 2. The sensitivity 1052 
analysis was repeated annually for simulation times between 1 and 100 years, every 10 years after that to 400-year 1053 
simulations and every 100 years after that up to a 1000-year simulation. Results are presented on a log scale in years. The 1054 
four parameters that were optimized in our analysis (Table S2) are coloured to highlight their importance in the different 1055 
pools (mid-point of logistic curve where nitrogen content of input influences microbial carbon use efficiency, Nmid, red; 1056 
maximum decay rate of heavy particulate organic matter, k5, orange; maximum decay rate of mineral-associated organic 1057 
matter, k9, blue; maximum decay rate of light particulate organic matter, k10, green). A fully colourised, high quality 1058 
version of these results can be in Figure S5. 1059 
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Figure 3 - The ratio between mineral-associated organic matter and total particulate organic matter (MAOM:POM) under 1064 
steady-state input conditions in MEMS v1.0 as a response to the full, realistic range of driving variables. Note, total POM 1065 
refers to the sum of pools C5 and C10. Each input was varied individually while all others remained fixed at baseline values 1066 
(indicated by dashed lines) – mean, maximum and minimum values for litter chemistry driving variables (LitN, fDOC, fLIG 1067 
and fSOL) were derived from Campbell et al. (2016) and edaphic, climatic and C input driving variables (soil bulk density, 1068 
sand content, soil pH, mean annual temperature and annual net primary productivity) were derived from the LUCAS 1069 
dataset (Toth et al., 2013). 1070 
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Figure 4 - Mineral-associated organic matter (MAOM) stock response to different levels of input litter quality and quantity, 1073 
compared for edaphic conditions which equate to different MAOM sorption relationships in MEMS v1.0. Formatting 1074 
adopted from Castellano et al. (2015) to aid comparison between the hypothetical relationship postulated and the actual 1075 
response simulated by MEMS v1.0 here. 1076 
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Figure 5 - Measured and modelled soil C stocks (split into mineral-associated organic matter, MAOM, total particulate 1079 
organic matter, POM, and total soil organic carbon, SOC) for the forest and grassland land-use classes of the fractionated 1080 
sites from the LUCAS dataset (n = 154). Note that the MAOM:POM ratio facet is unitless, not as shown by the y-axis label. 1081 
Also note the free y-axis scales and that total POM is a sum of both light and heavy fractions. 1082 
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Figure 6 - Comparisons between average (± 1 standard error) measured (red) and modelled (blue) bulk SOC stocks for 1085 
8192 forestry and grassland sites over a climatic and edaphic gradient across Europe. Each comparison is partitioned into 1086 
high and low groups of mean annual precipitation, MAP (top vs bottom panels), mean annual temperature, MAT (left vs 1087 
right panels) and soil texture (alternating panels left to right). ANOVA comparisons of means is performed to show 1088 
significant differences (*** p < 0.001, ** p < 0.01, * p < 0.05). Number of samples for each land use and division is shown 1089 
at the base of each bar. 1090 
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Figure 7 - Model residuals of topsoil (0-20 cm) C stocks (Mg C ha-1) for 8192 sites (3487 grasslands, 1713 coniferous forests, 1093 
1590 broadleaved forests and 1402 ‘mixed’ forests) across Europe, comparing measured values from the LUCAS database 1094 
(Toth et al., 2013) to simulated steady-state estimates from the MEMS v1.0 model. All land uses are grouped for averages. 1095 
Residuals are averaged across all sites within each NUTS2 region (populations between 800,000 and 3 million) and coloured 1096 
accordingly. Measured site C stocks were subtracted from modelled values, meaning that the model underestimates SOC 1097 
stocks in positive (blue) regions and overestimates SOC stocks in negative (red) regions. Residuals average to within 10 Mg 1098 
C ha-1 in areas with the lightest yellow colour. The size of circles within each region represents the number of sites simulated. 1099 
Grey regions included no sites.  1100 
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Tables 1102 

Table 1 - State variables of MEMS v1.0 and fractionation definitions (measurement proxy and protocol) for isolating each 1103 
pool. C1 to C4, and C6, refer to the organic layer (aboveground, > 2mm particles), while C5 and C8 to C10 refer to the 1104 
mineral soil (belowground, < 2mm particles). POM, Particulate organic matter; DOM, Dissolved organic matter; OM, 1105 
Organic Matter. All SOM fractions are primary fractions obtained after dispersion to break up aggregates. For detail on 1106 
a fractionation scheme to quantify each pool of the MEMS model please refer Table S1. 1107 

 1108 

State 

variable 

Pool description Measurement proxy Method reference 

C1 Water soluble litter Hot-water extractable C Tappi (1981) 

C2 Acid-soluble litter Hydrolyzable fraction Van Soest and Wine (1968); Van 

Soest et al. (1991) C3 Acid-insoluble litter Unhydrolyzable fraction 

C4 Microbial biomass Direct extraction Various (e.g., Setia et al., 2012) 

C5 Coarse, heavy POM > 1.8 g cm-3 and > 53 µm C Christensen, 1992 

C6 Litter layer DOM < 0.45 µm extractable C Kolka et al., 2008 

C7 Emitted CO2 Heterotrophic soil respiration See Subke et al., 2006 

C8 Soil layer DOM < 0.45 µm extractable C Kolka et al., 2008 

C9  Mineral-associated OM > 1.8 g cm-3 and < 53 µm C Christensen, 1992 

C10 Light POM < 1.8 g cm-3  Christensen, 1992 

C11 Leached DOM Suction cups / pans etc. See Kindler et al., 2011 
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Table 2 - Description and default values of all parameters used with MEMS v1.0. Where possible, notation has been used to remain consistent with further 

details in the supplementary information. Driving variables are reported in Table 3. Ranges are indicative of those observed in literature. Refer to 

Materials and Methods and Table S2 for details of the optimized parameter ranges. 

 

Parameter Parameter definition 
Default value 

(range) 
Units Reference(s) 

𝐵1 
Maximum growth efficiency of microbial use of 

water-soluble litter carbon (C1) 

0.6 

(0.4 – 0.7) 

g microbial 

biomass C/g 

decayed 

Sinsabaugh et al., 2013 

𝐵2 
Maximum growth efficiency of microbial use of 

acid-soluble structural litter carbon (C2) 

0.5 

(0.3 – 0.6) 

g microbial 

biomass C/g 

decayed 

Sinsabaugh et al., 2013 

𝐵3 

Heavy, coarse particulate organic matter (C5) 

generation from microbial biomass carbon (C4) 

decay 

0.33 

(0.028 – 0.79) 

g microbial 

products C/g 

decayed C 

Campbell et al., 2016 

𝐿𝐼𝑇𝑓𝑟𝑔 

Carbon in structural litter inputs (C2 and C3) 

transported to soil particulate organic matter (C5 

and C10) each time step 

0.006 

(1∙10-5 – 2∙10-3) 

g C/g C 

decayed 
- 

𝑃𝑂𝑀𝑠𝑝𝑙𝑖𝑡 
Fraction of fragmented litter inputs that form 

heavy particulate organic matter (C5) 

0.30 

(0.07 – 0.83)  
0-1 scaling 

Poeplau and Don, 2013; 

Soong et al., 2016 

𝐷𝑂𝐶𝑓𝑟𝑔 
Carbon in litter layer DOM (C6) transported to 

soil DOM (C8) each time step 

0.8 

(0.2 – 0.99) 

g DOM-C/g 

DOM-C 
- 

𝐷𝑂𝐶𝑙𝑐ℎ 

Maximum specific rate of leaching to represent 

vertical transport of carbon in DOM through the 

soil profile 

0.00438 

(1∙10-5 – 0.02) 
g C day-1 Trumbore et al. 1992 

𝐸𝐻𝑚𝑎𝑥 

Maximum amount of carbon leached from 

decayed acid-soluble litter carbon (C2) to litter 

layer DOM (C6) 

0.15 
g DOM-C/g 

decayed C 
Campbell et al., 2016 
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𝐸𝐻𝑚𝑖𝑛 

Minimum amount of carbon leached from 

decayed acid-soluble litter carbon (C2) to litter 

layer DOM (C6) 

0.005 
g DOM-C/g 

decayed C 
Campbell et al., 2016 

𝐸𝑆𝑚𝑎𝑥 

Maximum amount of carbon leached from 

decayed water-soluble litter carbon (C1) to litter 

layer DOM (C6) 

0.15 
g DOM-C g 

decayed C-1 
Campbell et al., 2016 

𝐸𝑆𝑚𝑖𝑛 

Minimum amount of carbon leached from 

decayed water-soluble litter carbon (C1) to litter 

layer DOM (C6) 

0.005 
g DOM-C g 

decayed C-1 
Campbell et al., 2016 

𝑘1 
Maximum decay rate of water-soluble litter 

carbon (C1) 

0.37 

(0.16 – 0.70) 
day-1 Campbell et al., 2016 

𝑘2 
Maximum decay rate of acid-soluble litter 

carbon (C2) 

0.009 

(0.0011–0.0200) 
day-1 Campbell et al., 2016 

𝑘3 * 
Maximum decay rate of acid-insoluble litter 

carbon (C3) 

0.0002 

(2∙10-5– 1∙10-3) 
day-1 Moorhead et al., 2013 

𝑘4 
Maximum decay rate of microbial biomass 

carbon (C4) 

0.57 

(0.11-0.97) 
day-1 Campbell et al., 2016 

𝑘5 
Maximum decay rate of heavy, coarse particulate 

soil organic matter (C5) 

0.0005 

(6∙10-5– 1∙10-3) 
day-1 

Campbell et al., 2016; Del 

Galdo et al., 2003 

𝑘8 Maximum decay rate of soil DOM (C8) 0.00144 day-1 Kalbitz et al., 2005 

𝑘9 
Maximum decay rate of mineral-associated soil 

organic matter (C9) 

2.2∙10-5 

(1∙10-5– 4∙10-5) 
day-1 Del Galdo et al., 2003 

𝑘10 
Maximum decay rate of light particulate soil 

organic matter (C10) 

2.96∙10-4 

(4∙10-3–1∙10-4) 
day-1 Del Galdo et al., 2003 

𝑙𝑎2 
Carbon leached from decayed microbial biomass 

carbon (C4) 

0.19 

(0.022 – 0.42) 

g DOM-C g 

decayed C-1 
Campbell et al., 2016 
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𝑙𝑎3 

Carbon leached from acid-insoluble litter carbon 

and heavy, coarse particulate organic matter 

carbon (C3 and C5) 

0.038 

(0.014 – 0.050) 

g DOM-C g 

decayed C-1 

Campbell et al., 2016; Soong 

et al., 2015 

𝐿𝐶𝐼𝑚𝑎𝑥 
Maximum lignocellulosic index that influences 

DOM generation from litter decay 
0.51 - 

Campbell et al., 2016; Soong 

et al., 2015 

𝑁𝑚𝑎𝑥 

Maximum N content that influences rates (above 

this, there is no limit) of DOM generation and 

microbial carbon assimilation 

3 % Sinsabaugh et al., 2013 

𝑁𝑚𝑖𝑑 
Mid-point of logistic function that describes N 

limitation 
1.75 % 

Campbell et al., 2016; Soong 

et al., 2015 

𝑇𝑜𝑝𝑡 
Optimum temperature at which decay rates are 

highest 
45 °C Harmon and Domingo, 2001 

𝑇𝑄10 
Rate at which the decomposition rate increases 

with a 10 °C increase in soil temperature 
2 - Harmon and Domingo, 2001 

𝑇𝑟𝑒𝑓 
The reference temperature of estimated 

maximum decay rates (i.e., parameters kx) 
13.5 °C Del Galdo et al., 2003 

𝑇𝑠ℎ𝑝 

Shape of the excessive temperature limitation for 

temperature modifier on decay rates beyond 

optimum temperature 

15 - Harmon and Domingo, 2001 

𝑇𝑙𝑎𝑔 

Difference from optimum temperature to the 

decline above that threshold applying to the 

temperature modifier on decay rates 

4 °C Harmon and Domingo, 2001 

𝑇𝑟𝑎𝑛𝑔𝑒 

Difference between the maximum and minimum 

soil temperature values over a given year (unused 

when temperature inputs are available) 

24 °C Toth et al., 2013 

𝑆𝐶𝑖𝑐𝑒𝑝𝑡 

Intercept coefficient used for the linear 

regression that estimates the maximum sorption 

capacity (parameter 𝑄 
 

𝑚𝑎𝑥) of a soil 

11.08 

g C in < 53 µm 

fraction kg 

soil-1 

Six et al., 2002 
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𝑆𝐶𝑠𝑙𝑜𝑝𝑒 

Slope coefficient used for the linear regression 

that estimates the maximum sorption capacity 

(parameter 𝑄 
 

𝑚𝑎𝑥) of a soil 

0.2613 - Six et al., 2002 

𝑘 
𝐿

𝑙𝑚 * 

Binding affinity for carbon in soil DOM (C8) 

sorption to mineral surfaces (C9) of the soil layer 

L 

0.25 gC day-1 
Mayes et al., 2012; 

Abramoff et al., 2017 

𝑄 
𝐿

𝑚𝑎𝑥 * 

Maximum sorption capacity of mineral-

associated soil organic matter carbon (C9) of soil 

layer L 

- gC m-2 depth-1 Six et al., 2002 

* These parameters are calculated as functions of others. For example, 𝑄 
 

𝑚𝑎𝑥 is a function of sand content, soil bulk density, rock fraction, 𝑆𝐶𝑖𝑐𝑒𝑝𝑡 

and 𝑆𝐶𝑠𝑙𝑜𝑝𝑒. More details and the equations associated can be found in the supplementary materials. 
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Table 3 - List of required driving variables for the MEMS v1.0 model. Baseline values represent mean values as reported in the LUCAS database (Toth 

et al., 2013) of 8192 forest and grassland sites across Europe and were used for all qualitative testing and sensitivity analyses. 

 

Driving variable Symbol Units 

Basel

ine 

value 

Land-use specific values 

 
Reference 

Grass

land 

Broadleaf 

forest 

Mixed 

forest 

Conifero

us forest 
 

Site condition variables        

Annual net primary productivity annNPP g C m-2 yr-1 681 
Site-specific values required 

ORNL DAAC, 2009 

Sand content of soil layer Sand % 47.8 

Toth et al., 2013 
Bulk density of soil layer BD g cm-3 1.21 

Rock fraction of soil layer Rock % 7.62 

Soil pH of layer pH - 5.58 

* Daily total carbon input CT g C m-2 day-1 1.30 - 

* Mean daily soil temperature  soilT ºC 8.28 NOAA, 2018 

         

Litter chemistry variables        

Hot-water extractable fraction fSOL 0-1 0.45 0.35 0.40 0.38 0.35 

Campbell et al., 2016 Acid-insoluble fraction fLIG 0-1 0.20 0.15 0.27 0.30 0.32 

Internal nitrogen content LitN % 1.00 1.10 1.32 0.87 0.41 

         

Root distribution variables        

Maximum rooting depth Rdepmx cm 300 260 290 340 390 Canadell et al., 1996 

Depth to which 50% of root mass 

is distributed 

Rdep50 cm 
20 15 25 27.5 30 

Jackson et al., 1996 

Root to shoot ratio RtoS - 1.00 3.70 0.23 0.21 0.18 Jackson et al., 1996 
 

* - When daily measurements are not available annual values can be used to interpolate daily estimates. For more information please refer to the 5 

supplementary materials. 
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Table 4 - Evaluation results of comparisons between measured and modelled topsoil (0-20 cm) C stock for 8192 grassland and forest sites across Europe 

(see Figure 7 for geographic distribution of residuals). Mean absolute error (MAE) and mean bias error (MBE) describe the overall difference and 

directional difference between measured and modelled values, respectively. The model is deemed to describe the trend of the measured data better than 

the mean of the measurements when the modelling efficiency (EF) is positive, or when the Coefficient of Determination (CofD) is above 1. Each is a discrete 

evaluation metric. Divisions of high/low site conditions (mean annual temperature, mean annual precipitation, annual C inputs, sand content) were used 5 
to derive statistical significance (root mean square error, RMSE, and F-statistic) of differences between measured and modelled values while accounting 

for measurement variance within these divisions. An RMSE value below RMSE95 indicates that simulated C stocks fall within the 95 % confidence interval 

of the measurements. An F-statistic below 0.05 also shows that simulated values are not significantly different to measurements at a 95 % confidence level. 

 

  Evaluation metrics for individual site performance 
 Evaluation metrics using site condition 

divisions to include variance 

Land use n 
Mean ± 1 S.E. 

(Mg C ha-1) 

MAE 

(Mg C 

ha-1) 

MBE 

(Mg C 

ha-1) 

EF CofD 

 RMSE 

(Mg C ha-

1) 

RMSE95 

(Mg C 

ha-1) 

F-statistic 

  Observed Predicted         

Pure grass 3487 65.9 ± 0.5 66.3 ± 0.3 24.7 -0.4 -0.047 4.52  13.0 10.3 0.009 

Broadleaved 1590 71.2 ± 1.0 73.8 ± 0.4 31.0 -2.5 -0.062 5.54  19.0 14.7 0.052 

Mixed Forest 1402 82.3 ± 1.1 75.2 ± 0.3 35.4 7.0 -0.173 8.36  12.9 19.2 0.042 

Coniferous 1713 79.0 ± 1.1 76.3 ± 0.3 36.1 2.7 -0.057 10.35  13.5 18.7 0.006 

* All 8192 72.5 ± 0.4 71.4 ± 0.2 30.2 1.1 -0.048 6.32  14.9 15.7 0.020 
 10 
* All sites use 64 divisions (high/low site conditions and land use type) 


