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SUPPLEMENTARY MATERIALS FOR: 1 

Unifying soil organic matter formation and persistence frameworks: the MEMS model 2 
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FULL MODEL DESCRIPTION OF MEMS V1.0 5 

Mathematical representation of MEMS v1.0 6 

Below are the differential equations for dynamics through time as calculated by MEMS v1.0. For 7 

simplicity, many of the individual fluxes are summarized by single names (e.g., 𝐶1𝑖𝑛
𝑖  to represent 8 

total inputs to the C1 pool from litter material i, instead of including the separate calculation). 9 

Please refer to the equations provided in this Supplementary Materials. Parameter descriptions can 10 

be found in Table 2 of the main manuscript. Please note that the below list equations are fully 11 

representative of the carbon dynamics of MEMS v1.0 but are layer- and time-specific. However, 12 

for simplicity are presented in a generalized form. 13 

 14 

𝒅𝑪𝟏

𝒅𝒕
= 𝑪𝟏𝒊𝒏

𝒊 − (𝒖𝒌 ∗ 𝑪𝟏 ∗ 𝒌𝟏)        (1)  15 

𝒅𝑪𝟐

𝒅𝒕
= 𝑪𝟐𝒊𝒏

𝒊 − (𝒖𝒌 ∗ 𝑪𝟐 ∗ 𝒌𝟐) − (𝑪𝟐 ∗ 𝑳𝑰𝑻𝒇𝒓𝒈)     (2)  16 

𝒅𝑪𝟑

𝒅𝒕
= 𝑪𝟑𝒊𝒏

𝒊 − (𝑪𝟑 ∗ 𝒌𝟑) − (𝑪𝟑 ∗ 𝑳𝑰𝑻𝒇𝒓𝒈)      (3)  17 

𝒅𝑪𝟒

𝒅𝒕
= 𝑪𝟒𝒂𝒔𝒔

𝑪𝟏 + 𝑪𝟒𝒂𝒔𝒔
𝑪𝟐 − (𝑪𝟒 ∗ 𝒌𝟒)       (4)  18 

𝒅𝑪𝟓

𝒅𝒕
= 𝑪𝟓𝒈𝒆𝒏

𝑪𝟒 + 𝑪𝟓 
 

𝒇𝒓𝒈

𝑪𝟐 + 𝑪𝟓 
 

𝒇𝒓𝒈

𝑪𝟑 − (𝑪𝟓 ∗ 𝒌𝟓)      (5)  19 

𝒅𝑪𝟔

𝒅𝒕
= 𝑪𝟔𝒊𝒏

𝒊 + 𝑪𝟔𝒊𝒏
𝑪𝟏 + 𝑪𝟔𝒊𝒏

𝑪𝟐 + 𝑪𝟔𝒊𝒏
𝑪𝟑 + 𝑪𝟔𝒊𝒏

𝑪𝟒 − 𝑪𝟖𝒊𝒏
𝑪𝟔     (6)  20 

𝒅𝑪𝟕

𝒅𝒕
= 𝑪𝟏𝒄𝒐𝟐 + 𝑪𝟐𝒄𝒐𝟐 + 𝑪𝟑𝒄𝒐𝟐 + 𝑪𝟒𝒄𝒐𝟐 + 𝑪𝟓𝒄𝒐𝟐 + 𝑪𝟖𝒄𝒐𝟐 + 𝑪𝟗𝒄𝒐𝟐 + 𝑪𝟏𝟎𝒄𝒐𝟐 (7)  21 

𝒅𝑪𝟖

𝒅𝒕
= 𝑪𝟖𝒊𝒏

𝑪𝟓 + 𝑪𝟖𝒊𝒏
𝑪𝟔 + 𝑪𝟖𝒊𝒏

𝑪𝟏𝟎 − 𝒔𝒐𝒓𝒑𝒕𝒊𝒐𝒏 − (𝑪𝟖 ∗ 𝑫𝑶𝑪𝒍𝒄𝒉) − (𝑪𝟖 ∗ 𝒌𝟖)  (8)  22 

𝒅𝑪𝟗

𝒅𝒕
= 𝒔𝒐𝒓𝒑𝒕𝒊𝒐𝒏 − (𝑪𝟗 ∗ 𝒌𝟗)       (9)  23 

𝒅𝑪𝟏𝟎

𝒅𝒕
= 𝑪𝟏𝟎 

 
𝒇𝒓𝒈

𝑪𝟐 + 𝑪𝟏𝟎 
 

𝒇𝒓𝒈

𝑪𝟑 − (𝑪𝟏𝟎 ∗ 𝒌𝟏𝟎)      (10)  24 

𝒅𝑪𝟏𝟏

𝒅𝒕
= (𝑪𝟖 ∗ 𝑫𝑶𝑪𝒍𝒄𝒉)        (11)  25 

 26 
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Carbon inputs from external sources 27 

In MEMS v1.0 the above- and below-ground plant residue inputs are combined and input to the 28 

system on a daily timestep. These total inputs are partitioned between C1, C2, C3 and C6 as a 29 

function of the external source (i) input properties (Eqs. 12-15): the cold water extractable fraction 30 

of the hot-water extractable litter input (𝑓𝐷𝑂𝐶
𝑖 ), the hot water extractable fraction of the litter input 31 

(𝑓𝑆𝑂𝐿
𝑖 ) and acid-insoluble fraction of the litter input (𝑓𝐿𝐼𝐺

𝑖 ). 32 

𝑪𝟏𝒋
𝑳

𝒊𝒏
𝒊 = ( 𝑪𝑻𝒋

𝑳 𝒊 ∗ 𝒇𝑺𝑶𝑳
𝒊 ) − ( 𝑪𝑻𝒋

𝑳 𝒊 ∗ 𝒇𝑺𝑶𝑳
𝒊 ∗ 𝒇𝑫𝑶𝑪

𝒊 )     (12) 33 

𝑪𝟐𝒋
𝑳

𝒊𝒏
𝒊 = 𝑪𝑻𝒋

𝑳 𝒊 − ( 𝑪𝑻𝒋
𝑳 𝒊 ∗ (𝒇𝑺𝑶𝑳

𝒊 + 𝒇𝑳𝑰𝑮
𝒊 ))     (13) 34 

𝑪𝟑𝒋
𝑳

𝒊𝒏
𝒊 = ( 𝑪𝑻𝒋

𝑳 𝒊 ∗ 𝒇𝑳𝑰𝑮
𝒊 )       (14) 35 

𝑪𝟔𝒋
𝑳

𝒊𝒏
𝒊 = 𝑪𝑻𝒋

𝑳 𝒊 ∗ 𝒇𝑺𝑶𝑳
𝒊 ∗ 𝒇𝑫𝑶𝑪

𝒊        (15) 36 

 37 

Where 𝑋𝑗
𝐿

𝑖𝑛
𝑖  is refers to the daily carbon input to pool 𝑋 from external source 𝑖 for layer 𝐿 on day 38 

𝑗, and 𝐶𝑇𝑗
𝐿 𝑖 is the total daily carbon input from external source 𝑖 for layer 𝐿 on day 𝑗. For MEMS 39 

v1.0 the layer is fixed to the aboveground litter layer only, allowing for use of the same functions 40 

as those presenting in the LIDEL model (Campbell et al., 2016). 41 

 42 

Once allocated to their initial pools, the carbon is susceptible to assimilation in microbial biomass 43 

if it is water-soluble (C1) or acid-soluble (C2) but only co-metabolized if it is acid-insoluble (C3). 44 

The contents of these pools represent compounds of increasing chemical complexity (e.g., C1, 45 

mostly soluble carbohydrates, phenols and amino acids; C2, mostly cellulose, xylans and other 46 

hemicelluloses; C3, mostly lignin aboveground and suberin/cutin belowground) and are associated 47 

with decreasing microbial use efficiency. 48 

 49 
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Microbial assimilation from litter pools 50 

Many of the biogeochemical processes represented by MEMS are assumed to be microbially 51 

mediated, and therefore are associated with carbon dioxide (CO2) emissions. The primary carbon 52 

losses to CO2 result from the metabolic processes of bacteria and fungi within the soil and are 53 

aligned with the mathematical representations as described by Campbell et al. (2016) and, in part, 54 

summarise the findings of Sinsabaugh et al. (2013), Moorhead et al. (2013) and Soong et al. 55 

(2015). In addition, carbon assimilation of by microbial biomass (C4) in the litter layer results 56 

from the balance between anabolic and catabolic processes and thus as biomass is formed there is 57 

also CO2 as well as carbon in dissolved organic matter (DOM) production. Microbial assimilation 58 

is a function of nitrogen content and lignocellulosic index (Eq. 16) of the structural litter pools 59 

(C2 and C3; organic matter > 2 mm) in each layer and controlled by maximum decomposition 60 

rates for C1 (𝑘1) and C2 (𝑘2) that assume first-order decay. 61 

𝑳𝑪𝑰𝒋
𝑳

𝒍𝒊𝒕
 =

𝑪𝟑𝒋
𝑳

( 𝑪𝟐𝒋
𝑳 + 𝑪𝟑𝒋

𝑳 )
        (16) 62 

𝑪𝟒𝒋
𝑳

𝒂𝒔𝒔
𝑪𝟏 = 𝒖𝑩 ∗ 𝑩𝟏 ∗ (𝟏 − 𝒍𝒂𝟒) ∗ 𝒖𝒌 ∗ 𝒌𝟏 ∗ 𝑪𝟏𝒋

𝑳     (17) 63 

𝑪𝟒𝒋
𝑳

𝒂𝒔𝒔
𝑪𝟐 = 𝒖𝑩 ∗ 𝑩𝟐 ∗ (𝟏 − 𝒍𝒂𝟏) ∗ 𝒖𝒌 ∗ 𝒌𝟐 ∗ 𝑪𝟐𝒋

𝑳     (18) 64 

 65 

Where C4j
L

ass
C1  and C4j

L
ass
C2  refer to the fraction of the given litter pool (i.e., C1 or C2) that is 66 

microbially assimilated to pool C4 of layer L on day j from pool C1 or C2, respectively. Note that 67 

these functions are specific to a single layer (aboveground litter in MEMS v1.0) and parameter 68 

values may differ between layers, when more are added. More information of the parameters 𝑢𝐵, 69 

𝑢𝑘, 𝐵𝑥, 𝑙𝑎𝑥 and 𝑘𝑥 can be found in Campbell et al. (2016) and Table 2 in the main manuscript, 70 

but briefly: 71 

 uBj
L  and 𝑢𝑘j

L  are rate modifiers to represent the litter chemistry controls (LCI and 72 

available nitrogen) on microbial use efficiency, for layer L on day j. 73 



 

5 

𝒖𝑩𝒋
𝑳 = 𝒎𝒊𝒏 ((

𝟏

𝟏+𝒆−𝑵𝒎𝒂𝒙( 𝑵  𝒍𝒊𝒕−𝑵𝒎𝒊𝒅)
) , (𝟏 − 𝒆

−𝟎.𝟕(| 𝑳𝑪𝑰𝒋
𝑳

𝒍𝒊𝒕−𝟎.𝟕|∗𝟏𝟎)
))   (19) 74 

𝒖𝒌𝒋
𝑳 = 𝒎𝒊𝒏 ((

𝟏

𝟏+𝒆−𝑵𝒎𝒂𝒙( 𝑵  𝒍𝒊𝒕−𝑵𝒎𝒊𝒅)
) , (𝒆−𝟑∗ 𝑳𝑪𝑰𝒋

𝑳
𝒍𝒊𝒕))     (20) 75 

 76 

Where 𝑁𝑚𝑎𝑥 and 𝑁𝑚𝑖𝑑 are maximum and mid points of litter nitrogen content having an impact 77 

on microbial use efficiencies, using a logistic curve (see Figure S6). 𝑁 
 

𝑙𝑖𝑡 and 𝐿𝐶𝐼𝑗
𝐿

𝑙𝑖𝑡 are the input 78 

material nitrogen content and LCI of layer L being simulated on day j. 79 

 80 

IMPORTANT NOTE – In MEMS v1.0 there is no nitrogen cycling and therefore the 𝑁 
 

𝑙𝑖𝑡 value 81 

is not dynamic, as it likely should be. Consequently, MEMS v1.0 uses the nitrogen content of the 82 

input material, and therefore 𝑁 
 

𝑙𝑖𝑡  is a constant through time and across layers. This constant 83 

nitrogen value is consistent with the approach used by the LIDEL model (Campbell et al., 2016) 84 

however it is expected that a dynamic nitrogen (i.e. be 𝑁𝑗
𝐿

𝑙𝑖𝑡 – as equivalent to 𝐿𝐶𝐼𝑗
𝐿

𝑙𝑖𝑡) content 85 

would more likely reflect real-world conditions, especially in extended periods without litter input. 86 

 𝐵1 and 𝐵2 are maximum growth efficiencies associated with the water-soluble and acid-87 

soluble litter pools (C1 and C2), respectively (See Table 2 in the main manuscript). 88 

 𝑙𝑎1 and 𝑙𝑎4 are estimates of carbon in DOM generation from leaching the decayed litter 89 

pools of layer L on day j. 90 

𝒍𝒂𝒋
𝑳

𝟏 = 𝒎𝒊𝒏 ((𝑬𝑯𝒎𝒂𝒙 −  
(𝑬𝑯𝒎𝒂𝒙−𝑬𝑯𝒎𝒊𝒏)

𝑳𝑪𝑰𝒎𝒂𝒙
∗ 𝑳𝑪𝑰𝒋

𝑳
𝒍𝒊𝒕) , (𝑬𝑯𝒎𝒂𝒙 −  

(𝑬𝑯𝒎𝒂𝒙−𝑬𝑯𝒎𝒊𝒏)

𝑵𝒎𝒂𝒙
∗ 𝑵 

 
𝒍𝒊𝒕)) (21) 91 

𝒍𝒂𝒋
𝑳

𝟒 = 𝒎𝒊𝒏 ((𝑬𝑺𝒎𝒂𝒙 −  
(𝑬𝑺𝒎𝒂𝒙−𝑬𝑺𝒎𝒊𝒏)

𝑳𝑪𝑰𝒎𝒂𝒙
∗ 𝑳𝑪𝑰𝒋

𝑳
𝒍𝒊𝒕) , (𝑬𝑺𝒎𝒂𝒙 −  

(𝑬𝑺𝒎𝒂𝒙−𝑬𝑺𝒎𝒊𝒏)

𝑵𝒎𝒂𝒙
∗ 𝑵 

 
𝒍𝒊𝒕)) (22) 92 

 93 

Where 𝐸𝐻𝑚𝑎𝑥 and 𝐸𝐻𝑚𝑖𝑛 are the maximum and minimum amount of DOM leached from decay of 94 

acid-soluble litter (C2), and 𝐸𝑆𝑚𝑎𝑥 and 𝐸𝑆𝑚𝑖𝑛 are the maximum and minimum amount of DOM 95 
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leached from decay of water-soluble litter (C1). 𝐿𝐶𝐼𝑚𝑎𝑥 refers to the maximum lignocellulosic 96 

index that can have an impact on these rates. As noted above, 𝑁 
 

𝑙𝑖𝑡 and 𝐿𝐶𝐼𝑗
𝐿

𝑙𝑖𝑡 are the nitrogen 97 

content of input material and LCI of layer L being simulated on day j. 98 

 𝑘1 and 𝑘2 are the maximum decay rates of water-soluble (C1) and acid-soluble (C2) litter 99 

pools, respectively (See Table 2 in the main manuscript). 100 

 101 

Microbial mortality and necromass production 102 

After carbon is metabolized by microbes and incorporated in pool C4, the death and products of 103 

microbial activity result in the compounds that form the coarse, heavy particulate SOM (C5) that 104 

is often found coating sand particles in the > 53 µm soil fraction (Ludwig et al., 2015). In the 105 

aboveground litter layer simulated by MEMS v1.0, this process of microbial biomass decay results 106 

in loss to DOC (C6) and CO2 (C7), in addition to the C5 pool belowground. 107 

𝑪𝟓𝒋
𝑳

𝒈𝒆𝒏
𝑪𝟒 = 𝑩𝟑 ∗ (𝟏 − 𝒍𝒂𝟐) ∗ 𝒌𝟒 ∗ 𝑪𝟒𝒋

𝑳      (23) 108 

 109 

Where 𝐶5𝑗
𝐿

𝑔𝑒𝑛
𝐶4  refers to the fraction of carbon that is transferred from C4 to C5 (i.e., microbial 110 

products transported belowground with structural litter fragmentation and bioturbation or 111 

advection and leaching of DOC for layer L on day j. Belowground, this flux does not move 112 

vertically between layers but is transferred from C4 to C5 within the same soil layer. The flux 113 

from the aboveground microbial biomass pool (C4) is assumed to move belowground, to the first 114 

soil layer (see Figure 1 in the main manuscript). More information of the parameters 𝐵3, 𝑙𝑎2 and 115 

𝑘4 can be found in Table 2 in the main manuscript, but briefly, 𝐵3 refers to a maximum rate of 116 

microbial product (C5) generation per unit of microbial biomass (C4) decayed, 𝑙𝑎2 refers to the 117 

maximum amount of DOM produced per unit of microbial biomass (C4) decayed and 𝑘4 refers to 118 

the maximum rate of microbial biomass (C4) decay. 119 

 120 
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Fragmentation and perturbation 121 

To quantify the transfer of carbon from large (> 2 mm) particulates to small particulates 122 

belowground, simple parameter values have been allocated to represent first-order rates of transfer 123 

from both structural litter pools (C2 and C3). As model development continues, these rates will be 124 

improved to provide more mechanistic relationships with site conditions (see Braakehekke et al., 125 

2011). See Table 2 for information about the parameter used in MEMS v1.0 (𝐿𝐼𝑇𝑓𝑟𝑔). The amount 126 

of litter C fragmented and transferred vertically from structural litter pools to the belowground 127 

POM pools (C5 and C10) is also governed by the 𝑃𝑂𝑀𝑠𝑝𝑙𝑖𝑡 parameter that defines how much of 128 

the total is allocated to C5. 129 

 130 

𝑪𝟓𝒋
𝑳

𝒇𝒓𝒈
𝑪𝟐 = 𝑷𝑶𝑴𝒔𝒑𝒍𝒊𝒕 ∗ 𝑳𝑰𝑻𝒇𝒓𝒈 ∗ 𝑪𝟐𝒋

𝑳       (24) 131 

𝑪𝟓𝒋
𝑳

𝒇𝒓𝒈
𝑪𝟑 = 𝑷𝑶𝑴𝒔𝒑𝒍𝒊𝒕 ∗ 𝑳𝑰𝑻𝒇𝒓𝒈 ∗ 𝑪𝟑𝒋

𝑳       (25) 132 

𝑪𝟏𝟎𝒋
𝑳

𝒇𝒓𝒈
𝑪𝟐 = (𝟏 − 𝑷𝑶𝑴𝒔𝒑𝒍𝒊𝒕) ∗ 𝑳𝑰𝑻𝒇𝒓𝒈 ∗ 𝑪𝟐𝒋

𝑳     (26) 133 

𝑪𝟏𝟎𝒋
𝑳

𝒇𝒓𝒈
𝑪𝟑 = (𝟏 − 𝑷𝑶𝑴𝒔𝒑𝒍𝒊𝒕) ∗ 𝑳𝑰𝑻𝒇𝒓𝒈 ∗ 𝑪𝟑𝒋

𝑳     (27) 134 

 135 

Where 𝐶𝑋𝑗
𝐿

𝑓𝑟𝑔
𝐶𝑌  refers to the amount of carbon that is transferred from pool CY to pool CX for layer 136 

L on day j. 137 

 138 

Dissolved organic matter production 139 

Dissolved organic matter plays a major role in the MEMS model as it is the only way in which 140 

carbon can sorb to mineral surfaces in the soil, meaning that if there is limited DOM there will 141 

also be limited stabilization in MAOM (C9). Consequently, DOM production from all model pools 142 

is simulated explicitly according to the formulae provided by the LIDEL model (Campbell et al., 143 

2016) and based on empirical data in Soong et al. (2015). Each timestep, the aboveground litter 144 
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layer DOM (C6) receives a fraction of inputs from external sources directly (Eq. 15; 𝐶6𝑗
𝐿

𝑖𝑛
𝑖 ), from 145 

all litter layer pools ( 𝐶6𝑗
𝐿

𝑖𝑛
𝐶1, 𝐶6𝑗

𝐿
𝑖𝑛
𝐶2, 𝐶6𝑗

𝐿
𝑖𝑛
𝐶3) and from microbial biomass ( 𝐶6𝑗

𝐿
𝑖𝑛
𝐶4). 146 

𝑪𝟔𝒋
𝑳

𝒊𝒏
𝑪𝟏 = 𝒍𝒂𝟒 ∗ 𝒖𝒌 ∗ 𝒌𝟏 ∗ 𝑪𝟏𝒋

𝑳      (28) 147 

𝑪𝟔𝒋
𝑳

𝒊𝒏
𝑪𝟐 = 𝒍𝒂𝟏 ∗ 𝒖𝒌 ∗ 𝒌𝟐 ∗ 𝑪𝟐𝒋

𝑳      (29) 148 

𝑪𝟔𝒋
𝑳

𝒊𝒏
𝑪𝟑 = 𝒍𝒂𝟑 ∗ 𝒌𝟑 ∗ 𝑪𝟑𝒋

𝑳       (30) 149 

𝑪𝟔𝒋
𝑳

𝒊𝒏
𝑪𝟒 = 𝒍𝒂𝟐 ∗ 𝒌𝟒 ∗ 𝑪𝟒𝒋

𝑳       (31) 150 

 151 

Where 𝐶𝑥𝑗
𝐿

𝑖𝑛
𝐶𝑦

 refers to DOM leaching from pool y to pool x of layer L on day j. The parameters 152 

used are detailed in Table 2 in the main manuscript, and/or defined in previous equation in this 153 

section. Note that pool C6 only exists in the aboveground litter layer and therefore in the above 154 

equations L is always the aboveground layer. However, measurably, aboveground litter layer 155 

DOM is directly equivalent to the belowground soil DOM (C8). In MEMS v1.0, DOM enters the 156 

soil through the C6 pool only. However, when explicit inputs from belowground litter (e.g., roots) 157 

are simulated in future versions Eqs. 28-31 can apply for each soil layer adding to pool C8 instead 158 

of the ‘C6’ shown in the equations above, similarly root exudates can be simulated as direct 159 

addition to the C8 pool of any specific soil layer. Hence, just as the litter layer DOM (C6) receives 160 

inputs from the aboveground litter layer pools, the soil DOM (C8) would receive inputs from the 161 

belowground pools (e.g., decomposing root matter and root exudation). In addition, the soil DOM 162 

pool receives inputs from the POM and MAOM pools ( 𝐶8𝑗
𝐿

𝑖𝑛
𝐶5, 𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛𝑗

𝐿 , 𝐶8𝑗
𝐿

𝑖𝑛
𝐶10) as well as from 163 

leached litter DOM (C6). Here, the 𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 flux represents the net carbon exchange between 164 

soil DOM (C8) and MAOM (C9). 165 

𝑪𝟖𝒋
𝑳

𝒊𝒏
𝑪𝟓 = 𝒍𝒂𝟑 ∗ 𝒌𝟓 ∗ 𝑪𝟓𝒋

𝑳       (32) 166 

𝑪𝟖𝒋
𝑳

𝒊𝒏
𝑪𝟔 = 𝑫𝑶𝑪𝒇𝒓𝒈 ∗ 𝑪𝟔𝒋

𝑳       (33) 167 

𝑪𝟖𝒋
𝑳

𝒊𝒏
𝑪𝟏𝟎 = 𝒍𝒂𝟑 ∗ 𝒌𝟏𝟎 ∗ 𝑪𝟏𝟎𝒋

𝑳       (34) 168 
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 169 

The parameter values are defined in Table 2 in the main manuscript. As with the 𝐿𝐼𝑇𝑓𝑟𝑔 parameter, 170 

the 𝐷𝑂𝐶𝑓𝑟𝑔 value in MEMS v1.0 is set as a tuning parameter and simply assumes first-order rates 171 

to allocate a given proportion of the carbon in litter layer DOM pool (C6) to the soil DOM pool 172 

(C8) each timestep. As noted earlier, these functions are layer-specific and therefore in a multi-173 

layer version of MEMS, there would be vertical leaching of DOM between C8 pool of different 174 

layers, instead of from the aboveground C6 pool alone (i.e., to replace Eq. 33). 175 

 176 

Sorption and desorption 177 

The formation of organo-mineral complexes in MEMS v1.0 is represented by a net sorption-178 

desorption process that uses the amount of soil DOM (C8) to estimate adsorption rates based on a 179 

Langmuir isotherm (Kothawala et al., 2008). The key elements of this isotherm are the ‘binding 180 

affinity’ (𝐾𝑙𝑚) – see Eq. 35 – and maximum sorption capacity (𝑄𝑚𝑎𝑥) – see Eq. 36 – which are 181 

controlled by site-specific conditions (soil pH and soil texture, respectively). It is worth noting 182 

that each of these site-specific conditions are provided as driving variables to the model, and are 183 

constants that represent the site at time-zero (i.e., soil pH is not simulated to change through time). 184 

The net sorption rate (𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛) aims to account for several different sorption mechanisms (e.g., 185 

cation bridging, surface complexation, etc.) to retain parsimony. A more accurate net flux may 186 

simulate the different mechanisms individually to allow for more detailed representation of 187 

different mineralogies as per Six et al. (2002) (e.g., dominated by 2:1 clays vs 1:1 clays). Future 188 

development of MEMS may adopt these changes.  189 

𝑲 
𝑳

𝒍𝒎 = 𝟏𝟎(−𝟎.𝟏𝟖𝟔 𝒔𝒐𝒊𝒍𝒑𝑯 
𝑳 −𝟎.𝟐𝟏𝟔)     (35) 190 

 191 

Where 𝑠𝑜𝑖𝑙𝑝𝐻 
𝐿  refers to the ‘native’ soil pH of simulated soil layer L. The soil pH, as used in Eq 192 

35, acts as a proxy for mineralogical differences between soils, with higher native soil pH being 193 
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equated with weaker chemical bonding. This tenet is adopted from the regression provided in 194 

Mayes et al. (2012) and results in 𝐾𝑙𝑚 being estimated as in the MILLENNIAL model (Abramoff 195 

et al., 2017). However, the MEMS v1.0 estimate of 𝑄𝑚𝑎𝑥 does not follow the MILLENNIAL 196 

model and instead calculates a general relationship between maximum soil carbon capacity and 197 

soil texture using the entire dataset of Six et al. (2002). This takes a simple linear regression 198 

approach using the soil layer’s percent silt and clay content (i.e., 100 − 𝑠𝑎𝑛𝑑) 199 

𝑸 
𝑳

𝒎𝒂𝒙 = 𝝆 
𝑳 ∗ (𝟎. 𝟐𝟔𝟏𝟐𝟔 ∗ (𝟏𝟎𝟎 − 𝒔𝒂𝒏𝒅 

𝑳 ) + 𝟏𝟏. 𝟎𝟕𝟖𝟐𝟎) ∗ (𝟏 − 𝒓𝒐𝒄𝒌 
𝑳 ) (36) 200 

 201 

Where 𝜌 
𝐿  refers to the bulk density of soil layer L at the site being simulated. Note that the bulk 202 

density is a conversion specific to the depth of the soil layer that converts a concentration from 203 

the regression of Six et al. (2002) to carbon density (e.g., gC m-2 layer depth-1) and therefore the 204 

equations shown here assume a 1 meter deep layer for simplification. Both the sand content 205 

( 𝑠𝑎𝑛𝑑 
𝐿 ) and rock fraction ( 𝑟𝑜𝑐𝑘 

𝐿 ) are expressed in percent (i.e., 0-100) and specific to layer L. 206 

The resulting equation to represent net sorption is controlled by a Langmuir saturation function, 207 

using the amount of soil DOC (C8) available for sorption as well as the saturation deficit of 208 

MAOM (C9). Note, all coefficients in the equation below are layer- and timestep-specific. 209 

𝒔𝒐𝒓𝒑𝒕𝒊𝒐𝒏𝒋
𝑳 = 𝑪𝟖𝒋

𝑳 ∗

((
( 𝑲 

𝑳
𝒍𝒎∗ 𝑸 

𝑳
𝒎𝒂𝒙∗ 𝑪𝟖𝒋

𝑳 )

𝟏+( 𝑲𝒋
𝑳

𝒍𝒎∗ 𝑪𝟖𝒋
𝑳 )

)− 𝑪𝟗𝒋
𝑳 )

𝑸 𝑳
𝒎𝒂𝒙

     (37) 210 

 211 

Where 𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛𝑗
𝐿  is a net exchange of carbon between the soil DOM (C8) and MAOM (C9) pools 212 

of layer L given their size on day j. Since 𝐾𝑙𝑚 and 𝑄𝑚𝑎𝑥 are site-specific parameters, and the pool 213 

sizes (C8 and C9) are dynamic through time, there are interactions between these factors which 214 

mean sorption rates are not necessarily comparable between sites. This sorption process is 215 

assumed to be abiotic in that it results in no CO2 emitted. As a net rate, sorption and desorption 216 

are not simulated individually which may make it difficult to represent potential priming effects 217 
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on organo-mineral associations (e.g., Keiluweit et al., 2015). Future MEMS model version will 218 

explore these feedbacks further. 219 

 220 

Decomposition and pool decay rates 221 

Apart from the litter layer DOM (C6), each of the state variables in MEMS v1.0 decay directly 222 

with unique decay rates informed by literature values (see Table 2). This decay results in CO2 223 

emissions which continually accumulate in the sink C7. The amount of CO2 associated with each 224 

microbial process is equivalent to the amount of carbon leftover after losses to DOM are calculated 225 

so the decay rate constants for pool x (𝑘𝑥) also embody explicit DOM generation and not just CO2 226 

emissions, as is more common in traditional SOM models (e.g., CENTURY or RothC). As with 227 

earlier equations, these below are layer- and time-specific but for simplicity are presented in a 228 

generalized form. 229 

𝑪𝟏𝒄𝒐𝟐 = ((𝟏 − (𝒖𝑩 ∗ 𝑩𝟏)) ∗ (𝟏 − 𝒍𝒂𝟒)) ∗ 𝒖𝒌 ∗ 𝒌𝟏 ∗ 𝑪𝟏   (38) 230 

𝑪𝟐𝒄𝒐𝟐 = ((𝟏 − (𝒖𝑩 ∗ 𝑩𝟐)) ∗ (𝟏 − 𝒍𝒂𝟏)) ∗ 𝒖𝒌 ∗ 𝒌𝟐 ∗ 𝑪𝟐   (39) 231 

𝑪𝟑𝒄𝒐𝟐 = (𝟏 − 𝒍𝒂𝟑) ∗ 𝒌𝟑 ∗ 𝑪𝟑       (40) 232 

𝑪𝟒𝒄𝒐𝟐 = ((𝟏 − 𝑩𝟑) ∗ (𝟏 − 𝒍𝒂𝟐)) ∗ 𝒌𝟒 ∗ 𝑪𝟒     (41) 233 

𝑪𝟓𝒄𝒐𝟐 = (𝟏 − 𝒍𝒂𝟑) ∗ 𝒌𝟓 ∗ 𝑪𝟓       (42) 234 

𝑪𝟖𝒄𝒐𝟐 = 𝒌𝟖 ∗ 𝑪𝟖        (43) 235 

𝑪𝟗𝒄𝒐𝟐 = 𝒌𝟗 ∗ 𝑪𝟗        (44) 236 

𝑪𝟏𝟎𝒄𝒐𝟐 = (𝟏 − 𝒍𝒂𝟑) ∗ 𝒌𝟑 ∗ 𝑪𝟏𝟎      (45) 237 

 238 

Where all parameters are defined in Table 2 in the main manuscript and earlier in this section. 239 

While the maximum decay rates (𝑘𝑥) for most pools are fixed constants, Campbell et al. (2016) 240 
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suggested that 𝑘3  and 𝑘5  were best estimated in relation to the maximum decay rate of the 241 

microbially-accessible litter (C2) pool (𝑘2). 242 

𝒌𝒋
𝑳

𝟑 = 𝒌𝟐 ∗ (
𝟎.𝟐

𝟏+
𝟐𝟎𝟎

𝒆
𝟖.𝟏𝟓∗ 𝑳𝑪𝑰𝒋

𝑳
𝒍𝒊𝒕

)       (46) 243 

𝒌𝟖 =
(((𝟎.𝟎𝟎𝟎𝟎𝟗𝟗)∗(

𝟏

𝟏𝟎𝟎
))+((𝟎.𝟎𝟎𝟎𝟖𝟓𝟓)∗(

𝟏

𝟒𝟐
))+((𝟎.𝟎𝟎𝟏𝟕𝟗𝟔)∗(

𝟏

𝟏𝟑
)))

𝒔𝒖𝒎((
𝟏

𝟏𝟎𝟎
),(

𝟏

𝟒𝟐
),(

𝟏

𝟏𝟑
))

   (47) 244 

 245 

Note that when 𝑘2 is a fixed value, 𝑘3 only fluctuates with changes in the LCI of the litter layer. 246 

At present, CO2 emitted from soil DOM (determined by the maximum decay rate, 𝑘8) is associated 247 

with the values presented in Kalbitz et al. (2005). Also note that because the maximum decay rate 248 

of acid-insoluble litter (𝑘3) is determined relative to the LCI of all litter pools in a given layer (L) 249 

on a given day (j) the parameter itself is also layer- and time-specific. 250 

 251 

Decay rate modifiers 252 

Soil temperature is simulated to have a polynomial relationship with decomposition, modifying 253 

each pool’s decay rate according to the mean soil temperature of that layer on that day. The 254 

rationale behind this is to attempt to capture microbial processes and equate with realistic changes 255 

in enzymatic activity to be consistent with Michaelis-Menten kinetics. This follows the same 256 

function that is used by the STANDCARB 2.0 model (Harmon and Domingo, 2001) and produces 257 

a multiplier based on provided coefficients of optimum decomposition temperature (𝑇𝑜𝑝𝑡), the rate 258 

at which the decomposition rate increases with a 10 °C increase (𝑇𝑄10), the reference temperature 259 

at which that Q10 value was derived (𝑇𝑟𝑒𝑓), the shape of the excessive temperature limitation (𝑇𝑠ℎ𝑝) 260 

and the difference between optimum temperature and the decline above that threshold (𝑇𝑙𝑎𝑔).  261 

𝑻𝒋
𝑳

𝒎𝒐𝒅
 = 𝒆

(−(
𝒔𝒐𝒊𝒍𝑻𝒋

𝑳

𝑻𝒐𝒑𝒕+𝑻𝒍𝒂𝒈
))

𝑻𝒔𝒉𝒑

∗ 𝑻𝑸𝟏𝟎

𝒔𝒐𝒊𝒍𝑻𝒋
𝑳 −𝑻𝒓𝒆𝒇

𝑻𝒓𝒆𝒇     (48) 262 
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 263 

Where 𝑇𝑗
𝐿

𝑚𝑜𝑑
  is the temperature multiplier applied to decomposition of pools in layer L on day j, 264 

given the soil temperature of that layer on that day ( 𝑠𝑜𝑖𝑙𝑇𝑗
𝐿 ). An initial MEMS v1.0 evaluation 265 

(prior to use with the LUCAS sites reported in the main manuscript), indicated the model 266 

consistently overestimated decomposition due to the temperature modifier effect. Consequently, 267 

the coefficients reported in Harmon and Domingo (2001) were revised down from those reported 268 

in Table 2 of the main manuscript (𝑇𝑜𝑝𝑡 reduced to 35 °C, 𝑇𝑠ℎ𝑝 reduced to 3, 𝑇𝑙𝑎𝑔 increased to 7 269 

°C and 𝑇𝑄10 increased to 3). In MEMS v1.0 this single function is used for all pools and over the 270 

single soil layer, however, it is also sufficiently generalizable to represent varying temperature 271 

sensitivities of the different pools (i.e., through the 𝑇𝑄10 coefficient) and of different layers. In 272 

which case, the temperature modifier would be specific to pool x of layer L on day j – e.g. 𝑇𝑗
𝐿

𝑚𝑜𝑑
𝑥 . 273 

Furthermore, in future versions of the MEMS model, we expect more explicit and complex 274 

relationships to temperature and moisture. 275 

 276 

DOM transfer through soil layers 277 

MEMS v1.0 does not have an explicit hydrological model, however this is likely needed for 278 

MEMS outputs to be reliably compared with empirical data at most sites (soil moisture often has 279 

a considerable influence on SOM formation and decomposition rates). Consequently, this is one 280 

of the first developments intended for MEMS. As a placeholder, leaching is assumed to be a 281 

unidirectional process with DOM lost to deeper soil layers (in the single-layer version) at a given 282 

maximum rate. This follows a first order rate of loss and simply assumes half the highest literature 283 

value found when performing a search of relevant studies. 284 

 285 
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DRIVING VARIABLES AND INITIALIZING MEMS V1.0 286 

Site inputs and interpolating daily values from annual measurements 287 

Driving variables of MEMS v1.0 can be either provided manually if they are known, or 288 

interpolated/estimated using basic site information. The format of this input information is 289 

typically in comma separated values (CSV) or any other ASCII text format and in R (R Core 290 

Team, 2018) is stored as a dataframe. As a single-layer, carbon model that only simulates litter 291 

and soil components of a site, MEMS v1.0 includes only a few essential driving variables. These 292 

fall into three major categories (climatic, edaphic and land use). For convenience, a summary of 293 

these essential inputs is provided in Table 3 of the main manuscript. The model operates on the 294 

assumption that a user must have measurements of soil pH, soil bulk density, annual NPP, sand 295 

content and rock fraction in order to simulate the site. Additionally, if daily temperature data are 296 

not known, the maximum, minimum and mean annual temperature can be used to interpolate daily 297 

values. 298 

 299 

At the time of writing, daily soil temperature is the only climatic variable simulated in MEMS 300 

v1.0. The model can either be initialized using real, site-specific temperature data (if available), 301 

or daily values can be roughly estimated using a simple sine function related to the mean annual 302 

temperature (MAT) of the site (Eq. 49). This sine function provides 365 days of temperature values 303 

that are normally distributed around the MAT (therefore ensuring that the average from these daily 304 

values will also equal the MAT provided), with the peak of this sine on Julian day 182 (July 1st). 305 

This assumes the site is in the northern hemisphere but simulating a site in the southern hemisphere 306 

simply requires changing the sign of the 1.5 coefficient in Equation 49 below. 307 

𝒔𝒐𝒊𝒍𝑻𝒋
𝑳 =

𝑻𝒓𝒂𝒏𝒈𝒆

𝟐
∗ 𝒔𝒊𝒏((𝟐 ∗ 𝑷𝑰𝒔𝒆𝒒) − 𝟏. 𝟓) + 𝑴𝑨𝑻   (49) 308 

 309 
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Where 𝑠𝑜𝑖𝑙𝑇𝑗
𝐿  is the soil temperature in degrees Celsius for soil layer L on day j, Trange is the 310 

difference between the maximum daily soil temperature and minimum daily soil temperature 311 

measured over a year in degrees Celsius, PIseq is a sequence of 365 values evenly distributed 312 

from 0 to pi (≈ 3.14159), and MAT is the mean annual temperature in degrees Celsius of the site 313 

in question. While this approximation provides more realistic inputs than a constant temperature 314 

for each day, where possible, real, measured values should be imported separately as a list of 315 

average daily soil temperature values.  316 

 317 

It should be noted that this sine function (with an intra-annual variation of Trange degrees Celsius) 318 

may not work well for sites near the equator where reduced seasonal dynamics mean that a 319 

smoothed sine curve does not represent reality. The 𝑇𝑟𝑎𝑛𝑔𝑒 coefficient in Equation 49 is ideally 320 

calculated from estimates/measurements of a site’s maximum and minimum soil temperatures of 321 

an average year, included alongside the MAT as inputs. However, these are optional and instead, 322 

a constant 𝑇𝑟𝑎𝑛𝑔𝑒 value (i.e., the same range at all sites simulated) can be set as a global parameter 323 

as shown in Table 2 in the main manuscript. This should be chosen carefully by the model user to 324 

best represent their site(s). It should also be noted that when simulating deeper soil layers they are 325 

also less likely to see large fluctuations in soil temperature and this should be considered when the 326 

user initializes multi-layer versions of the MEMS model.  327 

 328 

Land use and management conditions 329 

As with the sine function estimate soil temperature, the daily carbon inputs ( 𝐶𝑇𝑗
 

 
𝑖) can also be 330 

estimated crudely according to a simplistic relationship with annual net primary productivity 331 

(NPP) – Equation 50). 332 

𝑪𝑻𝒋
 

 
𝒊 = 𝒅𝒏𝒐𝒓𝒎(𝒔𝒆𝒒𝑫𝑨𝒀, 𝒑𝒆𝒂𝒌𝑫𝑨𝒀, 𝒔𝒅𝑵𝑷𝑷) ∗ 𝒂𝒏𝒏𝑵𝑷𝑷   (50) 333 

 334 
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Where 𝐶𝑇𝑗
 

 
𝑖 are the daily total carbon inputs from material i on day j, 𝑠𝑒𝑞𝐷𝐴𝑌 is a list of 365 335 

integers that represent each day of the year, 𝑝𝑒𝑎𝑘𝐷𝐴𝑌 is a parameter value to specify the julian 336 

day of year when inputs peak (around which a normal distribution is generated) and 𝑠𝑑𝑁𝑃𝑃 is the 337 

‘width’ of the distribution around the peak value. The 𝑎𝑛𝑛𝑁𝑃𝑃 value is the site-specific annual 338 

NPP value in gC m-2 yr-1. The 𝑠𝑑𝑁𝑃𝑃 parameter (specified as a global parameter) can be modified 339 

to represent different intra-annual distributions of the total carbon inputs. Specifically, this can 340 

change how ‘quickly’ the inputs are added to the soil (is the whole carbon input added within a 341 

few days or is it spread out over months?). For different land uses, 𝑠𝑑𝑁𝑃𝑃 may change according 342 

to the trends in plant growth at a given site. However, when simulating an equilibrium scenario 343 

where steady-state inputs are assumed, this has little or no effect over long simulations (i.e., 500+ 344 

years). 345 

 346 

In most systems the total annual NPP is not directly equivalent to the total carbon inputs to the 347 

topsoil layer. Consequently, MEMS v1.0 reduces the annual amount based on how much of the 348 

total can be realistically expected to be input to the specific layer given that site’s land use. For 349 

example, Bolinder et al. (2007) suggest that, in arable sites where all residues are returned to soil, 350 

the proportion of annual NPP that is input to all soil varies between 55% and 78%. Whereas when 351 

all residues are removed, the proportion input can be as little as 21%. Furthermore, not all of this 352 

will be input to the topsoil layer simulated by MEMS v1.0. Consequently, before the daily inputs 353 

are interpolated from an annual value using Equation 50, the total is reduced based on best 354 

estimates for the land use and management routines of the site simulated. 355 

𝒂𝑪𝑻𝒋
 

 
𝒊 = 𝑪𝑻𝒋

 
 
𝒊 ∗ (

𝟏

𝑹𝒕𝒐𝑺𝒊+𝟏
) ∗ (𝟏 − 𝒂𝑯𝑨𝑹𝑽𝒋

 
 
𝒊)     (51) 356 

𝒃𝑪𝑻𝒋
 

 
𝒊 = 𝑪𝑻𝒋

 
 
𝒊 ∗ (

𝑹𝒕𝒐𝑺𝒊

𝑹𝒕𝒐𝑺𝒊+𝟏
) ∗ (𝟏 − 𝒃𝑯𝑨𝑹𝑽𝒋

𝑳
 
𝒊)     (52) 357 

 358 
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Where 𝑎𝐶𝑇𝑗
 

 
𝑖 and 𝑏𝐶𝑇𝑗

 
 
𝑖 are the aboveground and belowground carbon inputs of material i on day 359 

j. The aboveground and belowground split is achieved by use of a land-use specific root to shoot 360 

ratio of material i (𝑅𝑡𝑜𝑆𝑖) which are then reduced by fixed fractions (i.e., 0-1) to represent any 361 

losses through harvesting. Another parameter to describe natural losses due to weather (e.g., high 362 

winds) is also possible and resides as a placeholder in the general crop parameters file of MEMS 363 

v1.0. After the realistic aboveground fraction of NPP is derived, it can then replace the 𝐶𝑇𝑗
 

 
𝑖 term 364 

in Equation 50 and be used to interpolate daily inputs. However, the belowground fractions of 365 

NPP also includes inputs that are likely allocated to deeper soil layers than the topsoil simulated 366 

by MEMS v1.0. Consequently, the 𝑏𝐶𝑇𝑗
 

 
𝑖  as calculated in Equation 52 is reduced by use of a 367 

Michaelis-Menten style function (see Kätterer et al., 2011) to proportion roots to the simulated 368 

soil layer. 369 

𝒃𝑪𝑻𝒋
𝑳

 
𝒊 = 𝒃𝑪𝑻𝒋

 
 
𝒊 ∗ (

𝒅𝒆𝒑𝒕𝒉 
𝑳 ∗(𝑹𝒅𝒆𝒑𝟓𝟎+𝑹𝒅𝒆𝒑𝒎𝒂𝒙)

𝑹𝒅𝒆𝒑𝒎𝒂𝒙∗(𝑹𝒅𝒆𝒑𝟓𝟎+ 𝒅𝒆𝒑𝒕𝒉 
𝑳 )

)    (53) 370 

 371 

Where 𝑏𝐶𝑇𝑗
𝐿

 
𝑖 is the belowground carbon input of material i to soil layer L on day j, 𝑑𝑒𝑝𝑡ℎ 

𝐿  is the 372 

depth of soil layer L in centimetres, 𝑅𝑑𝑒𝑝50 is the soil depth from the surface at which 50 % of 373 

the root biomass is proportioned in centimeters, and 𝑅𝑑𝑒𝑝𝑚𝑎𝑥 is the maximum rooting depth in 374 

centimeters. These last two parameters are site specific but can be generalized according to 375 

different land-uses, reducing the number of inputs required by the model user. For information 376 

regarding these generalized parameters, see Canadell et al. (1996) and Jackson et al. (1996). For 377 

an example implementation of Equation 53 for the purpose of simulating SOM dynamics, see 378 

Poeplau (2016). 379 

 380 
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As with the interpolation of daily soil temperature from MAT, estimating daily values of carbon 381 

input are less precise than using real measured data. When possible, empirical data should be 382 

preferred and can be input along with daily climate data.  383 

  384 
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SUPPLEMENTARY FIGURES 385 

(see attached files for high-resolution versions) 386 

 387 

Figure S1 – Site information of all 8192 forest and grassland sites of the LUCAS dataset (Toth et 388 

al., 2013) used for validation of the MEMS v1.0 soil organic matter model. Different shapes 389 

represent different land use classes and all are overlaid over each other (grass = circles, n = 3487; 390 

broadleaved forests = triangle, n = 1590; mixed forest = crosses, n = 1402; coniferous forest = 391 

squares, n = 1713). 392 

 393 

 394 

 395 

 396 
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Figure S2 - Geographical distribution of 154 grassland and forest sites chosen for fractionation (a 397 

representative subsample of the total LUCAS database, see Toth et al., 2013). Reported mean 398 

annual temperature, mean annual precipitation and sand content are indicated for each site along 399 

with Net Primary Productivity (NPP) in 2009 derived from MODIS. Symbols indicate the land 400 

use division within grassland and forest. Cin is the C input, MAP is the mean annual precipitation 401 

and MAT is the mean annual temperature. 402 

 403 

 404 
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Figure S3 - Summary statistics of the site information and soil C stocks for four land use classes (Grassland, n=78; Broadleaved forest, n=25; 405 

Coniferous forest, n=27; Mixed forest, n=24) across Europe. Boxplots indicate the median, first and third quartiles with the box and maximum 406 

and minimum at the extent of the whiskers. Outliers beyond the 95% are shown by individual points. MAT = Mean Annual Temperature; MAP = 407 

Mean Annual Precipitation; NPP = Net Primary Productivity; SOC = Soil Organic Carbon; POM = Particulate Organic Matter; MAOM = Mineral-408 

Associated Organic Matter. 409 

 410 

 411 
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Figure S4 - One-way ANOVA results with pairwise comparisons for each measured fractionation data (bulk soil C stock, mineral-associated 412 

organic matter (MAOM) C stock, particulate organic matter (POM) C stock, and the MAOM:POM ratio) between the four land use classes 413 

(Grassland, n=78; Broadleaved forest, n=25; Coniferous forest, n=27; Mixed forest, n=24) of topsoils (0-20 cm) from 154 sites across Europe. 414 

Significant differences indicated by p-values for each pair (p < 0.001, red; p < 0.01, orange; p < 0.05, yellow; p < 0.1, green; p > 0.1, blue). NPP 415 

= Net Primary Productivity. 416 

   417 
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Figure S5 - Modifiers for microbial carbon use efficiency and rates of water-soluble and acid-

soluble litter fractions decay by lignocellulosic index (A and B) and initial litter percent 

nitrogen (C). Reproduced with permission from Campbell et al., 2016. 
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SUPPLEMENTARY TABLES 

Table S1 - Fractionation scheme to measure each OM pool of MEMS v1.0. Physical particle 

size is given sequentially from top to bottom (i.e. C9 pools are between 0.45 µm and 53 µm in 

size). Soil particles (< 2mm) are primary particles obtained after soil aggregates dispersion. All 

SOM fractions can be separated sequentially on one soil sample by first isolating the DOM 

through centrifugation, separating the solid subnatant into a light POM and a heavy fraction by 

density (at 1.8 g/cm3) and the latter into a heavy POM and a MAOM by wet sieving (at 53m).  

NDF – Neutral detergent fibre; ADF – Acid detergent fibre; HWE – Hot-water extractable. 
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Table S2 - Optimized parameter values for the mid-point of the nitrogen modifier (Nmid), 

maximum decay rate for coarse, heavy particulate organic matter (k5), maximum decay rate 

for mineral-associated organic matter (k9) and maximum decay rate for light particulate 

organic matter (k10). Depending on what fraction was match (measured-modelled 

comparisons), different parameter values were derived. Root mean square error (RMSE) was 

minimised for each unique parameter set and assessed for each fraction (Mineral-Associated 

Organic Matter, MAOM; total Particulate Organic Matter, POM; bulk soil Soil Organic 

Carbon, SOC). Note that total POM refers to the composite of light and heavy POM 

measurements and the sum of the C5 and C10 pools). Analysis was performed on 154 forest 

and grassland sites from the LUCAS database – see Figure S2 and Figure S3 for more 

information. 

 

Parameter 

Default 

(Initial optimized 

range) 

Optimized for 

POM 

Optimized for 

MAOM 

Optimized for 

total SOC 

Nmid 
1.750 

(0.875 – 2.625) 
1.603 0.912 2.450 

k5 

5.00-4 

(6.0-5 – 1.0-3) 
5.71-4 2.36-4 2.53-4 

k9 
2.19-5 

(1.0-5 – 4.0-5) 
2.37-5 2.97-5 3.97-5 

k10 
2.96-4 

(1.0-4 – 1.0-3) 
4.30-4 2.94-4 3.02-4 

RMSE between measured and modelled C stocks for 154 sites (Mg C ha-1) 

Total SOC 35.5 35.7 35.1 33.7 

POM-C 23.4 23.4 23.1 25.3 

MAOM-C 17.9 17.7 17.5 20.2 
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