# 1 The strategies of water-carbon regulation of plants in a subtropical

| 2  | primary forest on Karst soils in China                                                                             |
|----|--------------------------------------------------------------------------------------------------------------------|
| 3  |                                                                                                                    |
| 4  |                                                                                                                    |
| 5  | Jing Wang <sup>1,2,3</sup> ; Xuefa Wen <sup>1,2*</sup> , Xinyu Zhang <sup>1,2*</sup> , Shenggong Li <sup>1,2</sup> |
| 6  |                                                                                                                    |
| 7  | 1 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic                            |
| 8  | Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China                        |
| 9  | 2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing                         |
| 10 | 100190, China                                                                                                      |
| 11 | 3 School of Life Sciences, Beijing Normal University, Beijing 100875, China                                        |
| 12 |                                                                                                                    |
| 13 |                                                                                                                    |
| 14 |                                                                                                                    |
| 15 | *Correspondence: Xuefa Wen (Email: wenxf@igsnrr.ac.cn. Phone +86-010-64889272)                                     |
| 16 | and Xinyu Zhang (zhangxy@igsnrr.ac.cn. Phone +86-10-64889679)                                                      |
| 17 |                                                                                                                    |
| 18 |                                                                                                                    |
| 19 |                                                                                                                    |
| 20 |                                                                                                                    |
| 21 |                                                                                                                    |
| 22 |                                                                                                                    |
| 23 |                                                                                                                    |
| 24 |                                                                                                                    |
| 25 |                                                                                                                    |
| 26 |                                                                                                                    |
| 27 |                                                                                                                    |
| 28 |                                                                                                                    |
| 29 |                                                                                                                    |

## **Abstract:**

30

Coexisting plant species in a Karst ecosystem may use diversity strategies of trade off 31 32 between carbon gain and water loss to adopt to the low soil nutrient and water availability conditions. Understanding of the impact of CO<sub>2</sub> diffusion and maximum 33 carboxylase activity of Rubisco ( $V_{\rm cmax}$ ) on the light-saturated net photosynthesis (A) 34 and intrinsic water use efficiency (iWUE) can provide insight into physiological 35 strategies of water-carbon regulation of coexisting plant species used in adaptation to 36 Karst environments at the leaf scale. We selected 63 dominant species (across 6 life 37 forms) in a subtropical Karst primary forest in southwestern China, measured their 38 CO<sub>2</sub> response curves, and calculated the corresponding stomatal conductance to CO<sub>2</sub> 39  $(g_s)$ , mesophyll conductance to  $CO_2(g_m)$ , and  $V_{cmax}$ . The results showed that  $g_s$  and  $g_m$ 40 varied about 7.6- and 34.5-fold, respectively, and  $g_s$  was positively related to  $g_m$ . The 41 42 contribution of  $g_m$  to leaf CO<sub>2</sub> gradient was similar to that of  $g_s$ .  $g_s/A$ ,  $g_m/A$  and  $g_t/A$ was negative related to  $V_{\text{cmax}}/A$ . The relative limitations of  $g_{\text{s}}(l_{\text{s}})$ ,  $g_{\text{m}}(l_{\text{m}})$  and  $V_{\text{cmax}}(l_{\text{b}})$ 43 44 to A for the whole group (combined 6 life forms) were significantly different from each other (P<0.05).  $l_{\rm m}$  was the largest (0.38 $\pm$ 0.12), followed by  $l_{\rm b}$  (0.34 $\pm$ 0.14) and 45  $l_{\rm s}$  (0.28  $\pm$  0.07). No significant difference was found between  $l_{\rm s}$ ,  $l_{\rm m}$ , and  $l_{\rm b}$  for Trees 46 and Tree/shrubs, while  $l_{\rm m}$  was the largest, followed by  $l_{\rm b}$  and  $l_{\rm s}$  for Shrubs, Grasses, 47 Viens and Ferns (P<0.05). iWUE varied about 3-fold (from 29.52 to 88.92 μmol CO<sub>2</sub> 48 mol<sup>-1</sup> H<sub>2</sub>O) across all species, and was significantly correlated with  $g_s$ ,  $V_{cmax}$ ,  $g_m/g_s$ , 49 and  $V_{\text{cmax}}/g_s$ . These results indicated that Karst plants maintained relatively high A and 50 low iWUE through the co-variation of  $g_s$ ,  $g_m$ , and  $V_{cmax}$  as adaptation to Karst 51 environment. 52

53

- Key words: iWUE; mesophyll conductance; stomatal conductance; Karst critical
- zone;  $V_{\rm cmax}$

## 1 Introduction

Diversity strategies of trade off between carbon gain and water loss are critical for the survival of coexisting plant species. In order to adapt to the harsh environment, coexisting plant species develop distinct patterns of strategies of carbon-water regulation (light-saturated net photosynthesis (A) and intrinsic water use efficiency (iWUE)) (Sullivan et al., 2017). iWUE is the ratio of A to stomatal conductance to H<sub>2</sub>O (g<sub>sw</sub>) (Moreno-Gutierrez et al., 2012). Plants with high iWUE are better able to adapt to the nutrient- and water-limited environment (Flexas et al., 2016). Due to the greater hydraulic erosion and complex underground drainage network (Nie et al., 2014; Chen et al., 2015), Karst soils cannot retain enough nutrients and water for plant growth even though precipitation is high (1000-2000 mm) (Liu et al., 2011; Fu et al., 2012; Chen et al., 2015). Understanding of the impact of CO<sub>2</sub> diffusion and maximum carboxylase activity of Rubisco ( $V_{cmax}$ ) on A and iWUE in Karst plants can provide insight into physiological strategies of water-carbon regulation of plants used in adaptation to Karst environments at the leaf scale. Until now, variability in A and iWUE has been reported only in 13 co-occurring trees and 12 vines (Chen et al., 2015), and 12 co-occurring tree species (Fu et al., 2012) in two tropical Karst forests in southwestern China.

Based on Fick's first law, A has been shown to be limited only by leaf stomatal conductance to  $CO_2$  ( $g_s = g_{sw}/1.6$ ) and  $V_{cmax}$  (Flexas et al., 2012; Buckley and Warren, 2014); originally, mesophyll conductance to  $CO_2$  ( $g_m$ ) was proposed to be infinite, i.e.  $CO_2$  concentration in chloroplast ( $C_c$ ) was equal to the  $CO_2$  concentration in intercellular air space ( $C_i$ ). However,  $g_m$  varies greatly among species (Warren and Adams, 2006; Flexas et al., 2013). Recent studies have confirmed that A was constrained jointly by  $g_s$ ,  $g_m$ , and  $V_{cmax}$ , and their relative contribution to A was species-dependent and site-specific (Carriqui et al., 2015; Tosens et al., 2016; Galmes et al., 2017; Peguero-Pina et al., 2017a; Peguero-Pina et al., 2017b; Veromann-Jurgenson et al., 2017).

Variation in iWUE (= $A/g_{sw}$ ) depends on the relative changes in A ( $g_s$ ,  $g_m$ ,  $V_{cmax}$ ) and  $g_{sw}$  ( $g_{sw}=1.6g_s$ ) (Flexas et al., 2013; Gago et al., 2014). Theoretical relationships between iWUE and  $g_s$ ,  $g_m$ , and  $V_{cmax}$  have been deduced using two approaches. Based on Fick's first law of CO<sub>2</sub> diffusion, Flexas et al. (2013) deduced that iWUE was a function of  $g_m/g_s$  and  $CO_2$  gradients ( $C_a$ - $C_c$ ) within a leaf. On the other hand, combining Fick's first law of CO<sub>2</sub> diffusion and Farquhar biochemical model (Farquhar and Sharkey, 1982), Flexas et al. (2016) deduced that iWUE was a function of  $V_{\text{cmax}}/g_s$ ,  $C_c$ ,  $CO_2$  compensation point of photosynthesis  $(\Gamma^*)$ , and the effective Michaelis-Menten constant of Rubisco for CO<sub>2</sub> (K<sub>m</sub>). Until now, most previous studies focused on the role of CO<sub>2</sub> diffusion in limiting iWUE, and suggested that iWUE was negatively related to  $g_s$ , and positively related to  $g_m/g_s$  (Flexas et al., 2013). Gago et al. (2014) used a meta-analysis with 239 species, and were the first to confirm that iWUE was positively related to  $V_{\text{cmax}}/g_s$ . Although both  $g_{\text{m}}/g_s$  and  $V_{\rm cmax}/g_{\rm s}$  were positively correlated with iWUE, there was only a weak correlation between  $g_{\rm m}/g_{\rm s}$  and  $V_{\rm cmax}/g_{\rm s}$ , which indicates that iWUE can be improved by increasing  $V_{\rm cmax}$  or  $g_{\rm m}$  (proportionally higher than  $g_{\rm s}$ ), not both (Gago et al., 2014).

It is noteworthy that Flexas et al. (2016) and Gago et al. (2014) found that most of the previous work on constraints of  $g_s$ ,  $g_m$ , and  $V_{cmax}$  on A were conducted in crops or saplings, and only a few studies were in natural ecosystems. For example,  $g_m$  was the main factor limiting A in two Antarctic vascular grasses (Saez et al., 2017), and in 35 Australian sclerophylls (Niinemets et al., 2009b) in different habitats. The A of two closely-related Mediterranean Abies species growing in two different habitats was mainly constrained by  $g_m$  in one, and by  $g_s$  in the other habitat (Peguero-Pina et al., 2012). Beyond that, it still remains unknown how  $g_s$ ,  $g_m$ , and  $V_{cmax}$  regulate A and iWUE across species in natural ecosystems.

In this study, we selected 63 dominant plant species, including six life forms (Tree (n=29), Tree/Shrub (n=11), Shrub (n=11), Grass (n=11), Vine (n=5), and Fern (n=3)),

from a subtropical primary forest in the Karst critical zone of southwestern China, and measured their A and  $CO_2$  response curves.  $g_m$  was calculated using the curve-fitting method (Ethier and Livingston, 2004). The obtained  $g_m$  was used to transform the A- $C_i$  into A- $C_c$  response curves, and then to calculate the A and  $V_{cmax}$ . Our objective was to determine and distinguish the limitations of  $CO_2$  diffusion ( $g_s$  and  $g_m$ ) and  $V_{cmax}$  on A and iWUE in different life forms in this Karst primary forest, and to understanding the patterns of strategies of carbon-water regulation of Karst plants.

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

115

116

117

118

119

120

121

## 2 Materials and Methods

#### 2.1 Site information

This study was conducted in a subtropical primary forest (26°14′48″N, 105°45′51″E; elevation, 1460 m), located in the Karst CZ of southwestern China. This region has a typical subtropical monsoon climate, with a mean annual precipitation of 1255 mm, and mean annual air temperature of 15.1 ℃ (Zeng et al., 2016). The soils are characterized by a high ratio of exposed rock, shallow and nonhomogeneous soil cover, and complex underground drainage networks, e.g. grooves, channels and depressions (Chen et al., 2010; Zhang et al., 2011; Wen et al., 2016). Soils and soil water are easily leached into underground drainage networks. Soil texture is silt-clay loam, and soil PH is  $6.80 \pm 0.16$  (Chang et al., 2018). The total nitrogen and phosphorus content in soil is  $7.30\pm0.66$  and  $1.18\pm0.35$  g Kg<sup>-1</sup>, respectively, which was similar with that of non-Karst CZs (Wang et al., in review). However, the soil quantities (16.04~61.89 Kg m<sup>-2</sup>) and nitrogen and phosphorus storage (12.04 and 1.68 t hm<sup>-2</sup>) is much lower than that of non-Karst CZs, due to the thin and heterogeneous soil layer (He et al., 2008; Jobbagy et al., 2000; Lu et al., 2010; Li et al., 2008). The typical vegetation type is mixed evergreen and broadleaf deciduous primary forest, dominated by Itea yunnanensis Franch, Carpinus pubescens Burk., and Lithocarpus confinis Huang, etc. (Wang et al., 2018).

142

143

#### 2.2 Leaf gas-exchange measurements

In July and August 2016, 63 species (Table S1) were selected for measurements of the *A* and CO<sub>2</sub> response curves. The species sampled were selected according to their abundance in the study site. They are the main component of this forest, including 55 woody species (46 deciduous and 10 evergreen species) and 5 herb species. To distinguish the strategies of water-carbon regulation of plants among different life forms, those species were grouped into 6 life forms, including (1) Tree (n=29), (2) Tree/Shrub (n=11), (3) Shrub (n=11), (4) Grass (n=11), (5) Vine (n=5), and (6) Fern (n=3). "Tree/Shrub" is a kind of low wood plant between Tree and Shrub. Fern grow in understory. Vine climb up to the shrub canopy to get light.

Details of leaf sampling and measurements of the  $CO_2$  response curve were briefly described as follows. Branches exposed to the sun were excised from the upper part of the crown (Trees, Tree/Shrubs, Shrubs and Vines) or aboveground portion (Grasses, Ferns), and immediately re-cut under water to maintain xylem water continuity. Back into the laboratory, branches and aboveground portions were kept at 25°C for 30 min. Fully-expanded and mature leaves were induced for 30 minutes at a saturating light density (1500  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>).  $CO_2$  response curves measurements were performed when *A* and  $g_s$  was stable. Three leaves per species were collected and measured. A total of 189 leaves were collected from adult individuals of 63 species.

The  $CO_2$  response curves were measured with 11  $CO_2$  concentration gradients in chamber following the procedural guidelines described by Longand Bernacchi (2003). The photosynthetic photon flux density was 1500  $\mu$ mol m<sup>-2</sup> s<sup>-1</sup>. The leaf temperature was 25 °C, controlled by the block temperature. The humidity in the leaf chamber was maintained at ambient condition. Leaf area, thickness (LT) and dry mass were measured after the  $CO_2$  response measurements. Leaf mass per area (LMA) was calculated by dividing the corresponding dry mass by leaf area. And leaf density (LD) was calculated by dividing the corresponding LMA by LT. More details were described in Wang et al. (2018).

## 2.3 Response curve analyses

A and the corresponding  $g_{sw}$  ( $g_s=g_{sw}/1.6$ ),  $C_a$ , and  $C_i$  were extracted from the CO<sub>2</sub> 175 response curve under saturating light (1500 µmol m<sup>-2</sup> s<sup>-1</sup>) conditions, with CO<sub>2</sub> 176 concentration inside the cuvette set to 400  $\mu$ mol mol<sup>-1</sup> (Domingues et al., 2010).  $V_{\rm cmax}$ 177 was estimated by fitting A-C<sub>c</sub> curves (Ethier and Livingston, 2004). The obtained 178 values of  $g_{\rm m}$  were used to transform the A-C<sub>i</sub> into A-C<sub>c</sub> response curves as  $C_{\rm c}$ =C<sub>i</sub> – 179  $A/g_{\rm m}$ . 180 181 Three methods are most commonly used for  $g_{\rm m}$  estimation. Those methods have been 182 reviewed by Warren (2006) and Pons et al. (2009). Briefly,  $g_{\rm m}$  can be calculated by 183 the stable isotope method (Evans, 1983; Sharkey et al., 1991; Loreto et al., 1992), J 184 method (Bongi and Loreto, 1989; Dimarco et al., 1990; Harley et al., 1992; Epron et 185 al., 1995; Laisk et al., 2005), and 'curve-fitting' method (Ethier and Livingston, 2004; 186 Sharkey et al., 2007). All of these methods are based on gas exchange measurements 187 188 (Pons et al., 2009), and some common assumptions (Warren, 2006). Thus, the accuracy of each method is to some extent unknown (Warren, 2006). 189 190

191

192

193

194

195

196

197

198

174

g<sub>m</sub> was estimated by the 'curve-fitting' method in this study. Although the 'curve-fitting' method is less precise than the stable isotope method, the 'curve-fitting' method is much more readily available and has been used for several decades (Warren, 2006; Sharkey, 2012). Accurate measurements of A and C<sub>i</sub> is a prerequisite for estimating  $g_{\rm m}$  using the 'curve-fitting' method (Pons et al., 2009). Warren (2006) pointed out that highly-accurate measurements need small leaf area and low flow rates. We confirmed that the calculated  $C_c$  and the initial slope of A- $C_c$ curves were positive, suggesting that the measured  $g_{\rm m}$  was reliable (Warren, 2006).

199

200

201

202

# 2.4 Theory of trade-off between carbon and water at leaf scale

The exchange of H<sub>2</sub>O and CO<sub>2</sub> between the leaf and the atmosphere is regulated by stomata (Gago et al., 2014). According to Fick's first law of diffusion, A and  $g_s$  are

203 related as:

$$A = g_s(C_a - C_i) \tag{1}$$

- where A is the photosynthetic rate ( $\mu$ mol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>);  $C_a$  is the ambient CO<sub>2</sub>
- concentration ( $\mu$ mol mol<sup>-1</sup>);  $C_i$  is the intercellular CO<sub>2</sub> concentration ( $\mu$ mol mol<sup>-1</sup>).

207

- Mesophyll is the barrier for CO<sub>2</sub> inside the leaf. A and mesophyll conductance to CO<sub>2</sub>
- 209  $(g_{\rm m})$  are related as:

210 
$$A = g_m(C_i - C_c)$$
 (2)

- where  $C_c$  is the CO<sub>2</sub> concentration at the sites of carboxylation (µmol mol<sup>-1</sup>).  $C_c$  not
- only depends on  $CO_2$  supply by  $g_m$ , but also on  $CO_2$  demand (the maximum
- 213 carboxylase activity of Rubisco,  $V_{\text{cmax}}$ ).

214

215

#### (1) The relationship between iWUE and $g_m/g_s$

- 216 iWUE is a function of CO<sub>2</sub> diffusion conductances (e.g.  $g_s$  and  $g_m$ ) and leaf CO<sub>2</sub>
- concentration gradients. We can express A as the product of the total  $CO_2$  diffusion
- 218 conductance (g<sub>t</sub>) from ambient air to chloroplasts, and the corresponding CO<sub>2</sub>
- concentration gradients by combining Eq. (1) and (2) (Flexas et al., 2013):

220 
$$A = g_1 [(C_a - C_i) + (C_i - C_c)]$$
 (3)

- where  $g_t = 1/(1/g_s + 1/g_m)$ . This equation demonstrates that CO<sub>2</sub> concentration gradients
- in leaves are constrained by stomatal and mesophyll resistance to CO<sub>2</sub>. Therefore,
- iWUE can be expressed as:

$$\frac{A}{g_{sw}} = \frac{1}{1.6} \left( \frac{g_{m}/g_{s}}{1 + g_{m}/g_{s}} \right) \left[ (C_{a} - C_{i}) + (C_{i} - C_{c}) \right]$$
225 (4)

- Eq. (4) means that iWUE is positively related to  $g_m/g_s$ , but not to  $g_m$  itself (Warren
- and Adams, 2006; Flexas et al., 2013; Buckley and Warren, 2014; Cano et al., 2014).

228

## 229 (2) The relationship between iWUE and $V_{\text{cmax}}/g_{\text{s}}$

- 230 When Fick's first law and the Farquhar biochemical model (Farquhar and Sharkey,
- 1982) are combined, iWUE is also a function of  $V_{\rm cmax}$ . Based on the Farquhar
- biochemical model (Farquhar and Sharkey, 1982), when A is limited by Rubisco, it

can be expressed by the following equation (Sharkey et al., 2007):

234 
$$A = \frac{V_{\text{cmax}}(C_{c} - \Gamma^{*})}{(C_{c} + K_{m})} - R_{d}$$
 (5)

235

- where  $\Gamma^*$  is the  $CO_2$  compensation point of photosynthesis in the absence of
- 237 non-photorespiratory respiration in light  $(R_d)$ , and  $K_m$  is the effective
- 238 Michaelis–Menten constant of Rubisco for CO<sub>2</sub>. Combining Eq. (1) and (5) (Flexas et
- 239 al., 2016), we obtain:

$$\frac{V_{\text{cmax}}}{g_s} = \frac{(C_c + K_m)(C_a - C_i)(A + R_d)}{(C_c - \Gamma^*)A}$$
(6)

- Because  $R_d$  is much smaller than A in actively photosynthesizing leaves,  $V_{\rm cmax}/g_{\rm s}$  can
- be approximated as:

244 
$$\frac{V_{\text{cmax}}}{g_s} \approx \frac{(C_c + K_m)(C_a - C_i)}{(C_c - \Gamma^*)} = \frac{(C_c + K_m)}{(C_c - \Gamma^*)} \frac{A}{g_s}$$
245 (7)

246 Consequently, iWUE can be expressed as:

$$\frac{A}{g_{sw}} = \frac{1}{1.6} \frac{V_{cmax}}{g_s} \frac{(C_c - \Gamma^*)}{(C_c + K_m)}$$
(8)

249

250

#### 2.5 Statistical analysis

- 251 (1) Quantitative analysis of limitations on A
- The relative contribution of  $g_s$  ( $l_s$ ),  $g_m$  ( $l_m$ ) and  $V_{cmax}$  ( $l_b$ ) to A can be separated by a
- quantitative limitation model introduced by Jones (Jones, 1985) and further developed
- by Grassi & Magnani (2005). The sum of  $l_s$ ,  $l_m$ , and  $l_b$  is 1.  $l_s$ ,  $l_m$  and  $l_b$  can be
- 255 calculated as:

256

$$l_{s} = \frac{g_{t}/g_{s} \cdot \partial A/\partial C_{c}}{g_{t} + \partial A/\partial C_{c}}$$
(9)

258

$$l_{\rm m} = \frac{g_{\rm t}/g_{\rm m} \cdot \partial A/\partial C_{\rm c}}{g_{\rm t} + \partial A/\partial C_{\rm c}}$$
 (10)

$$l_{b} = \frac{g_{t}}{g_{t} + \partial A/\partial C_{c}}$$
 (11)

| 262 |                                                                                                                    |
|-----|--------------------------------------------------------------------------------------------------------------------|
| 263 | where $\partial A/\partial C_c$ was calculated as the slope of $A$ - $C_c$ response curves over a $C_c$ range of   |
| 264 | 50-100 $\mu$ mol mol <sup>-1</sup> . $l_s$ , $l_m$ and $l_b$ have no units. $A$ is co-limited by the three factors |
| 265 | when $l_s\approx0.3$ , $l_m\approx0.3$ and $l_b\approx0.4$ (Galmes, J. et al., 2017).                              |
| 266 |                                                                                                                    |
| 267 | (2) Data analysis                                                                                                  |
| 268 | Data were analyzed either as a whole group (six life forms combined) or by individual                              |
| 269 | life forms. The bivariate linear regressions of leaf gas exchange parameters were                                  |
| 270 | performed using the standardized major axis (SMA) regression fits, and all of the data                             |
| 271 | were made on log <sub>e</sub> -transformed data (Table S2).                                                        |
| 272 |                                                                                                                    |
| 273 | To test for the differences among life forms, SMA regression fits were used to                                     |
| 274 | compare the slope of regression lines which significant relationships had already been                             |
| 275 | obtained. Note that Grass, Vine and Fern were not considered due to the small sample                               |
| 276 | size. A similar trend was obtained, and no significant difference was found between                                |
| 277 | life forms although significant relationships were not obtained for some bivariate                                 |
| 278 | linear regressions. Accordingly, six life forms were grouped together to analyze the                               |
| 279 | strategy of water-carbon regulation of plants in the whole text.                                                   |
| 280 |                                                                                                                    |
| 281 | The difference of relative limitation of $g_s$ , $g_m$ and $V_{cmax}$ to $A$ for life forms or as a                |
| 282 | whole group were performed using one-way ANOVA and                                                                 |
| 283 | Duncan multiple comparison. The probability of significance was defined at p $<$ 0.05.                             |
| 204 |                                                                                                                    |

285

286

# 3 Results

# 3.1 Interrelation among $g_s$ , $g_m$ , $g_t$ , and $V_{cmax}$

CO<sub>2</sub> concentration gradients in leaf were controlled by CO<sub>2</sub> diffusion conductance and  $V_{\rm cmax}$ . Fig. 1 shows the relationship between CO<sub>2</sub> gradients ( $C_{\rm a}$ - $C_{\rm i}$ ,  $C_{\rm i}$ - $C_{\rm c}$  and  $C_{\rm a}$ - $C_{\rm c}$ ) in leaf and the corresponding CO<sub>2</sub> diffusion conductance ( $g_{\rm s}$ ,  $g_{\rm m}$  and  $g_{\rm t}$ ) (Fig. 1a-c), and between  $C_{\rm a}$ - $C_{\rm c}$  and  $V_{\rm cmax}$  (Fig. 1d). CO<sub>2</sub> concentration gradients ( $C_{\rm a}$ - $C_{\rm i}$ ,

- 291  $C_i$ - $C_c$  and  $C_a$ - $C_c$ ) were significantly negatively associated with the corresponding CO<sub>2</sub>
- diffusion conductance ( $g_s$ ,  $g_m$  and  $g_t$ ) (P<0.001).  $V_{cmax}$  was positively associated with
- 293  $C_a$ - $C_c$  (P<0.001).

- 295  $g_s$ ,  $g_m$ , and  $g_t$  were significantly positively related to each other (P<0.001) (Fig. S1).
- The contribution of  $g_{\rm m}$  to leaf CO<sub>2</sub> gradient was similar to that of  $g_{\rm s}$ . The contribution
- of  $g_s$  (57.51–155.13 µmol mol<sup>-1</sup>) to  $C_a$ - $C_c$  (98.50–282.94 µmol mol<sup>-1</sup>) varied from
- 298 28% to 86%, and the contribution of  $g_{\rm m}$  (18.15–179.36 µmol mol<sup>-1</sup>) to  $C_{\rm a}$ - $C_{\rm c}$  varied
- 299 from 14% to 72%. But the variation range of  $g_{\rm m}$  (0.02 –0.69 mol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>) was 4.5
- 300 times that of  $g_s$  (0.05–0.38 mol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>).

301

- No relationship was found between the CO<sub>2</sub> diffusion conductance ( $g_s$ ,  $g_m$ , and  $g_t$ ) and
- $V_{\rm cmax}$  (Fig. S2). However, after normalization of  $g_{\rm s}$ ,  $g_{\rm m}$ ,  $g_{\rm t}$ , and  $V_{\rm cmax}$  for  $A_{\rm cmax}$
- parameters are hereafter called  $G_S=g_S/A$ ,  $G_m=g_m/A$ ,  $G_t=g_t/A$ , and  $V=V_{cmax}/A$ ), V was
- significantly positively correlated with  $G_{\rm m}$  and  $G_{\rm t}$  (P<0.001) (Fig. 2b and c), and was
- slightly positively correlated with  $G_s$  (P<0.05) (Fig. 2a), which represented the
- 307 trade-off between CO<sub>2</sub> supply and demand.

308

309

## 3.2 Contribution of $g_s$ , $g_m$ and $V_{cmax}$ to A

- The variation in A was attributed to variation in  $g_s$ ,  $g_m$ ,  $g_t$ , and  $V_{cmax}$ . A was positively
- 311 correlated with  $g_s$  (Fig. 3a),  $g_m$  (Fig. 3b), and  $V_{cmax}$  (Fig. 3c). We used the quantitative
- limitation model (Eqs. (9), (10) and (11)) to separate  $g_s$  ( $l_s$ ),  $g_m$  ( $l_m$ ), and  $V_{cmax}$  ( $l_b$ )
- limitations to A.  $l_s$ ,  $l_m$ , and  $l_b$  were negatively associated with  $g_s$ ,  $g_m$ , and  $V_{cmax}$ ,
- respectively (Fig. 4). The contributions by  $g_s$ ,  $g_m$ , and  $V_{cmax}$  to limiting A were
- different for each species (Fig. S3).  $l_s$  varied 2.6-fold (from 0.17 to 0.45),  $l_m$  varied
- 316 10.5-fold (from 0.05 to 0.55), and  $l_b$  varied 6.2-fold (from 0.11 to 0.68) across
- species. Overall,  $l_{\rm m}$  (0.38±0.12) was significantly larger than  $l_{\rm b}$  (0.34±0.14), and  $l_{\rm s}$
- 318  $(0.28 \pm 0.07)$  (P<0.05).

To further understand how A was limited by  $g_s$ ,  $g_m$ , and  $V_{cmax}$  among life forms, we grouped the 63 species into 6 life forms: Tree, Tree/Shrub, Shrub, Grass, Vine, and Fern. The results showed that there was no significantly difference between  $l_s$ ,  $l_m$  and  $l_b$  for Trees and Tree/shrubs.  $l_m$  of Shrubs and Grasses was significantly higher than that of  $l_s$  and  $l_b$  (P<0.05).  $l_m$  of Vines and Ferns was significantly higher than that of  $l_s$  (P<0.05) (Fig. 5).

326

327

# **3.3** Effect of $g_s$ , $g_m$ and $V_{cmax}$ on iWUE

- iWUE varied from 29.52 to 88.92 μmol CO<sub>2</sub> mol<sup>-1</sup> H<sub>2</sub>O. In theory, iWUE is regulated
- by  $g_s$  ( $g_{sw}=1.6g_s$ ),  $g_m$ , and  $V_{cmax}$ . However, a simple correlation analysis showed that
- iWUE was negatively related to  $g_s$  (Fig. 6b), and not related to A (Fig. 6a),  $g_m$  (Fig.
- 331 6c), and  $V_{\text{cmax}}$  (Fig. 6d).

332

- A correlation analysis was used to test how  $g_m/g_s$  and  $V_{cmax}/g_s$  affected iWUE. The
- results showed that iWUE was positively correlated with  $g_{\rm m}/g_{\rm s}$  (Fig. 7a) and  $V_{\rm cmax}/g_{\rm s}$
- 335 (Fig. 7b). However, there was no significant relationship between  $g_{\rm m}/g_{\rm s}$  and  $V_{\rm cmax}/g_{\rm s}$ .
- iWUE was regulated by co-variation between  $g_s$ ,  $g_m$  and  $V_{cmax}$ .

337

338

339

#### 4 Discussion

## 4.1 Co-variation in $g_s$ , $g_m$ and $V_{cmax}$ in regulating A

- 340 A was constrained by  $g_s$ ,  $g_m$ , and  $V_{cmax}$  acting together, however, variability in the
- relative contribution of these three factors depended on species and habitats (Tosens
- et al., 2016; Galmes et al., 2017; Peguero-Pina et al., 2017a; Veromann-Jurgenson et
- al., 2017). A was significantly correlated with  $g_s$ ,  $g_m$ , and  $V_{cmax}$  (Fig.3a-c).  $g_s$  was
- positively related to  $g_{\rm m}$  (Fig.S1c), while no relationship was found between the CO<sub>2</sub>
- diffusion conductance ( $g_s$  and  $g_m$ ) and  $V_{cmax}$  (Fig. S2). The relative limitations of  $g_s$ ,
- $g_{\rm m}$ , and  $V_{\rm cmax}$  were separated by a quantitative limitation model (Jones, 1985; Grassi
- & Magnani, 2005). The results showed that  $l_s$ ,  $l_m$  and  $l_b$  of 63 species varied in a large
- range (Fig. S3), indicating plants have a diverse strategies to co-ordinate the CO<sub>2</sub>

diffusion ( $g_s$  and  $g_m$ ) and  $V_{cmax}$  to maintain relative high A. The order of factors limitations to A was  $l_m > l_b > l_s$  (P<0.05) (Fig.S3). Furthermore, we tested the relationship between the relative limitations and the corresponding limitation factors. The results showed that  $l_s$ ,  $l_m$ , and  $l_b$  were negatively associated with  $g_s$ ,  $g_m$ , and  $V_{cmax}$ , respectively (Fig. 4). And the relationship was stronger for  $g_m$ -  $l_m$  (r<sup>2</sup>=0.65) than  $V_{cmax}$ -  $l_b$  (r<sup>2</sup>=0.27) and  $g_s$ -  $l_s$  (r<sup>2</sup>=0.19).

 $g_{\rm s}$  was better correlated with A, while the results showed that A was more limited by  $g_{\rm m}$ . That could be explained by two possible reasons. Firstly, compare to the linear relationship between A and  $g_{\rm s}$ , a nonlinear trend has been found between A and  $g_{\rm m}$  when  $g_{\rm m}>0.4$  (Fig. 3a, b). Secondly, leaf structure plays an important role in regulating  $g_{\rm m}$  and  $V_{\rm cmax}$ , consequently, in determining A (Veromann-Jurgenson et al., 2017). Negative relationships between  $A/{\rm LMA}$  and LT ( $r^2=0.16$ , p=0.002), and  $A/{\rm LMA}$  and LT ( $r^2=0.3$ , p<0.001) have been observed (Fig. S4c,d), while A was not correlated to LT and LD (Fig. S4a,b).

The importance of  $g_m$  in constraining A was variable, and depended on leaf structural traits, only LMA, LT, and LD were analyzed in this study. Large variability in  $g_m$  has been shown both between and within species with different life forms and habits (Gago et al., 2014; Flexas et al., 2016). Variability in  $g_m$  in this study is similar to that in global datasets (Gago et al., 2014; Flexas et al., 2016). There was no significantly difference among life forms (P>0.05). Previous studies have confirmed that LMA (Tomas et al., 2013), thickness of leaf cell wall (Peguero-Pina et al., 2017b), liquid phase of mesophyll (Veromann-Jurgenson et al., 2017), cell wall thickness of mesophyll (Terashima et al., 2011;Tosens et al., 2016), and surface area of mesophyll and chloroplast exposed to intercellular space (Veromann-Jurgenson et al., 2017) were the main limitations for  $g_m$ . The wide variability of  $g_m$  between different species and life forms in the same ecosystem seems to be related to the diversity of leaf anatomical traits.

No significant difference of LMA, LT, and LD was found among life forms (P<0.05). The negative correlation of  $g_m$  (Terashima et al., 2005) or  $g_m$ /LMA (Niinemets et al., 2009; Veromann-Jurgenson et al., 2017) with LMA have been reported. In this study, there was a significant relationship between  $g_m/LMA$  with LMA (P<0.01), however, no relationship was found between  $g_{\rm m}$  with LMA.  $g_{\rm m}$ /LMA was significantly negative related to LD (p<0.01) (Fig. S5c), and weak negative related to LT (p=0.06) (Fig. S5d), demonstrating that the negative role of cell wall thickness on  $g_{\rm m}$  (Terashima et al., 2006; Niinemets et al., 2009). The strong investment in supportive structures was the main reason for the limitation of  $g_{\rm m}$  on A (Veromann-Jurgenson et al., 2017). 388 However, it is still unknown how leaf anatomical traits affect  $g_m$  and A, and this should be further explored.

390

391

392

393

394

395

396

397

398

399

400

401

402

403

389

379

380

381

382

383

384

385

386

387

g<sub>s</sub> is responsible for CO<sub>2</sub> exchange between atmosphere and leaf, and regulate the  $CO_2$  fixation (A) and water loss (Lawsonand Blatt, 2014). The variability of  $g_s$  was controlled by stomatal anatomy, i.e. stomata density and size, and mesophyll demands for CO<sub>2</sub> (Lawsonand Blatt, 2014). However, the stomatal anatomy was not analyzed in this study. We only focused on how the relationship between  $g_s$  and  $g_m$  regulate A. Positive relationship between  $g_s$  and  $g_m$  has been observed (Flexas et al., 2013). For example, the restricted CO<sub>2</sub> diffusion from the ambient air to chloroplast is the main reason for a decreased A under water stress conditions due to both the stomatal and mesophyll limitations (Olsovska et al., 2016). g<sub>s</sub> was significantly positive related to  $g_{\rm m}$  for 63 species (P<0.001, Fig. S1) in this study, and no difference of the slopes of regression lines between  $g_s$  and  $g_m$  was found among life forms, demonstrating that A was regulated by the co-variation of  $g_s$  and  $g_m$ . However, the variability of  $g_m$  and  $l_m$ was larger than  $g_s$  and  $l_s$ , respectively (Fig.1 and Fig.S3).

404

405

406

407

408

The wide variation range of  $l_b$  (0.11-0.68) highlighted the importance role of  $V_{\rm cmax}$  in regulating A.  $V_{\rm cmax}$  was used to represent the CO<sub>2</sub> demand in photosynthetic process in this study. The relative contribution of  $V_{\rm cmax}$  to A not only depends on  $C_{\rm a}$ - $C_{\rm c}$ , but also on leaf nutrient levels. Positive relationship was found between  $C_a$ - $C_c$  and  $V_{cmax}$  (Fig.

409 ld). And the  $V_{\text{cmax}}$ /LMA was co-regulated by leaf N, P and Mg content (Jing et al.

410 2018). In addition,  $V_{\text{cmax}}/\text{LMA}$  was negatively related to LT (p<0.05) (Fig. S6c) and

411 LD (p<0.05) (Fig. S6d), while  $V_{\text{cmax}}$  was not correlated to LT and LD (Fig. S6a,b),

demonstrating that leaf structure plays an important role in regulating  $V_{\rm cmax}$ .

The trade-off between  $CO_2$  supply ( $g_s$  and  $g_m$ ) and demand (carboxylation capacity of Rubisco) can help maintain relative high A (Galmes et al., 2017; Saez et al., 2017). In this study, we used  $V_{cmax}$  as a proxy for the carboxylation capacity of Rubisco, and the normalized  $V_{cmax}$  by A ( $V=V_{cmax}/A$ ) was significantly negatively correlated with the normalized  $g_t$  by A ( $G_t = g_t/A$ ) (P<0.001) (Fig. 2c), indicating that the trade-off between  $CO_2$  supply and demand also existed among different species in the same ecosystems. For genus *Limonium* (flowering plants) (Galmes et al., 2017),  $g_t$  was significantly positively related to Rubisco carboxylase specific activity, and significantly negatively related to Rubisco specificity factor to  $CO_2$ . In case of Antarctic vascular (Saez et al., 2017) and Mediterranean plants (Flexas et al., 2014), A was mainly limited by low  $g_m$ , but it could be partially counterbalanced by a highly efficient Rubisco through high specificity for  $CO_2$ . This highlights the importance of the trade-off between  $CO_2$  supply and demand in plant adaptation to Karst environment. However, it is still unknown how leaf anatomical traits affect  $g_m$ ,  $V_{cmax}$ 

# **4.2** Co-variation of $g_s$ , $g_m$ and $V_{cmax}$ in regulating iWUE

and A, and this should be further explored.

Compared with the global dataset under well-watered conditions (19.27-171.88 μmol

 $CO_2 \text{ mol}^{-1} H_2O$ ) (Flexas et al., 2016), iWUE (52.85 ± 13.08 µmol  $CO_2 \text{ mol}^{-1} H_2O$ )

was somewhat lower in this study. iWUE varied from 29.53 to 88.91 µmol CO<sub>2</sub> mol<sup>-1</sup>

434 H<sub>2</sub>O, and the variability of iWUE was larger than in the Karst tropical primary forest

(Fu et al., 2012; Chen et al., 2015). The average iWUE of 12 Vines and 13 Trees in

the Karst tropical primary forest was  $41.23 \pm 13.21 \,\mu\text{mol CO}_2 \,\text{mol}^{-1} \,\text{H}_2\text{O}$  (Chen et al.,

2015), while that of 6 evergreen and 6 deciduous Trees was  $66.7\pm4.9$  and  $49.7\pm2.0$ 

μmol CO<sub>2</sub> mol<sup>-1</sup> H<sub>2</sub>O, respectively (Fu et al., 2012). The results demonstrated that 438 Karst plants use a diverse strategies of carbon-water regulation to adopt to the harsh 439 440 Karst environment. 441 Coexisting species have a diversity strategies of carbon-water regulation, ranging 442 from 'profligate/opportunistic' to 'conservative, that means their ecophysiological 443 niche are separate (Moreno-Gutierrez et al., 2012; Nie et al., 2014; Prentice et al., 444 445 2014). Species with high  $g_s$ , and low iWUE were defined to have 'profligate/opportunistic' water use strategy, and species with low g<sub>s</sub> and high iWUE 446 were defined to exhibit 'conservative' water use strategy (Moreno-Gutierrez et al., 447 2012). In consistent with previous study (Moreno-Gutierrez et al., 2012), coexisting 448 plant species growing in the Karst ecosystem had a diversity water use strategies. 449 However, Karst plants tended to lose more water to gain more carbon, i.e. Karst plants 450 used 'profligate/opportunistic' water use strategy to adopt to the low nutrient 451 availability and water stress conditions. 452 453 Prentice et al. (2014) studied the trade-off between carbon gain and water loss of 454 woody species in contrasting climates, and found that species in hot and wet regions 455 tend to lose more water in order to fix more carbon (high  $g_s/A$ , low  $V_{\rm cmax~Ci}/A$ ), and 456 vice versa. Although Karst soils cannot contain enough water for plant growth, the 457 trade-off between carbon gain and water loss (high  $g_s/A$  and low  $V_{\text{cmax Ci}}/A$ ) were 458 similar to the shown for plants growing in hot and wet regions (Prentice et al., 2014). 459 460 461 iWUE is regulated by the co-variation of  $g_s$ ,  $g_m$ , and  $V_{cmax}$ . In theory, water loss is regulated by  $g_s$  only, while carbon gain (A) was regulated by  $g_s$ ,  $g_m$ , and  $V_{cmax}$  (Fig. 3) 462 (Lawson and and Blatt, 2014). However, iWUE in this study was negatively related to 463  $g_s$  (R<sup>2</sup>=0.30), negatively related to  $V_{\text{cmax}}$  (R<sup>2</sup>=0.09), and not related to A,  $g_{\text{m}}$  (Fig. 6). 464 465

 $g_{\rm m}/g_{\rm s}$  and  $V_{\rm cmax}/g_{\rm s}$  (Gago et al., 2014; Flexas et al., 2016). There was a hyperbolic

CO<sub>2</sub> diffusion and Farquhar biochemical model indicated that iWUE is affected by

466

dependency of iWUE on  $g_{\rm m}/g_{\rm s}$  due to the roles of  $g_{\rm s}$  and  $g_{\rm m}$  in  $C_{\rm i}$  and  $C_{\rm c}$ , and of  $C_{\rm c}$  in A (Flexas et al., 2016). In meta-analyses, both Gago et al. (2014) and Flexas et al. (2016) found that iWUE was significantly positively related to  $g_{\rm m}/g_{\rm s}$  and  $V_{\rm cmax}/g_{\rm s}$ . The results of this study are consistent with the meta-analyses (Fig. 7), demonstrating that plant species with relatively high  $g_{\rm m}/g_{\rm s}$  or  $V_{\rm cmax}/g_{\rm s}$  had relatively high iWUE. The relationship between iWUE and  $V_{\rm cmax}/g_{\rm s}$  (R<sup>2</sup>=0.50) was stronger than the relationship between iWUE and  $g_{\rm m}/g_{\rm s}$  (R<sup>2</sup>=0.20), demonstrating iWUE was mainly regulated by  $V_{\rm cmax}/g_{\rm s}$ . The reason maybe that iWUE was correlated to  $g_{\rm s}$  and  $V_{\rm cmax}$ , and  $g_{\rm s}$  was positive related to  $g_{\rm m}$ .

However, plants cannot simultaneously have high  $g_{\rm m}/g_{\rm s}$  and high  $V_{\rm cmax}/g_{\rm s}$ . Similarly to the study of Gago et al. (2014), we found no relationship between  $g_{\rm m}/g_{\rm s}$  and  $V_{\rm cmax}/g_{\rm s}$ . Gago et al. (2014) thought that the poor relationship between  $g_{\rm m}/g_{\rm s}$  and  $V_{\rm cmax}/g_{\rm s}$  indicated that the iWUE may be improved by  $g_{\rm m}/g_{\rm s}$  or  $V_{\rm cmax}/g_{\rm s}$  separately; if both of them were simultaneously improved, the enhanced effect on iWUE could be anticipated. In addition, Flexas et al. (2016) showed in a simulation that the increase in iWUE caused by overinvestment in photosynthetic capacity would progressively lead to inefficiency in the trade-off between carbon gain and water use, causing an imbalance between CO<sub>2</sub> supply and demand.

#### **5 Conclusions**

This study provides information of limitations of A and iWUE by  $g_s$ ,  $g_m$ , and  $V_{cmax}$  in 63 species across 6 life forms in the field. The results showed that plants growing in Karst CZs used a diverse strategies of carbon-water regulation, but no difference was found among life forms. The co-variation of  $CO_2$  supply ( $g_s$  and  $g_m$ ) and demand ( $V_{cmax}$ ) regulated A, indicating that species maintain a relatively high A through co-varing their leaf anatomical structure and  $V_{cmax}$ . iWUE was relatively low, but ranged widely, indicating that plants used the 'profligate/opportunistic' water use strategy to maintain the survival, growth, and structure of the community. iWUE was

- regulated by  $g_s$ ,  $V_{cmax}$ ,  $g_m/g_s$  and  $V_{cmax}/g_s$ , indicating that species with high  $g_m/g_s$  or
- 498  $V_{\rm cmax}/g_{\rm s}$  will have to be much more competitive to response to the ongoing rapid
- warming and drought in the Karst CZs.

501

#### Acknowledgements

- 502 This study was supported by the National Natural Science Foundation of China
- 503 [41571130043, 31470500, and 41671257].

504

505

#### **Author contributions**

- 506 JW, XFW. and XYZ planed and designed the research. JW performed experiments
- 507 and analyzed data. JW prepared the manuscript with contributions from all
- 508 co-authors.

509

510

#### Competing interests.

The authors declare that they have no conflict of interest.

512

#### 513 **6 References**

- Bongi, G. and Loreto, F.: Gas-exchange properties of salt-stressed olive (Olea-Europra
- 515 L) leaves, Plant Physiol., 90, 1408-1416, 1989.
- Buckley, T.N. and Warren, C.R.: The role of mesophyll conductance in the economics
- of nitrogen and water use in photosynthesis, Photosynthesis Res., 119, 77-88,
- 518 2014.
- 519 Chang, J.J., Zhu, J.X., Xu, L., Su, H.X., Gao, Y., Cai, X.L., Peng, T., Wen, X.F.,
- 520 Zhang, J.J., He, N.P.: Rational land-use types in the karst regions of China:
- Insights from soil organic matter composition and stability, Catena, 160, 345-353,
- 522 2018.
- 523 Cano, F.J., Lopez, R. and Warren, C.R.: Implications of the mesophyll conductance to
- 524 CO2 for photosynthesis and water-use efficiency during long-term water stress
- and recovery in two contrasting Eucalyptus species, Plant Cell Environ., 37,
- 526 2470-2490, 2014.

- 527 Carriqui, M., Cabrera, H.M., Conesa, M.A., Coopman, R.E., Douthe, C., Gago, J.,
- Galle, A., Galmes, J., Ribas-Carbo, M., Tomas, M. and Flexas, J.: Diffusional
- limitations explain the lower photosynthetic capacity of ferns as compared with
- angiosperms in a common garden study, Plant Cell Environ., 38, 448-460, 2015.
- Chen, H., Zhang, W., Wang, K. and Fu, W.: Soil moisture dynamics under different
- land uses on karst hillslope in northwest Guangxi, China, Environ. Earth Sci., 61,
- 533 1105-1111, 2010.
- Chen, P. and Zhou, Y.: Soil nutrient capacity and forest tree sustainability in plateau
- Karst region. Earth and Environment, 45, 32-37, 2017. (In Chinese)
- 536 Chen, Y.J., Cao, K.F., Schnitzer, S.A., Fan, Z.X., Zhang, J.L. and Bongers, F.:
- Water-use advantage for lianas over trees in tropical seasonal forests, New
- 538 Phytol., 205, 128-136, 2015.
- Dimarco, G., Manes, F., Tricoli, D. and Vitale, E.: Fluorescence Parameters Measured
- Concurrently with Net Photosynthesis to Investigate Chloroplastic CO<sub>2</sub>
- Concentration in Leaves of Quercus ilex L, J. Plant Physiol., 136, 538-543, 1990.
- Domingues, T.F., Meir, P., Feldpausch, T.R., Saiz, G., Veenendaal, E.M., Schrodt, F.,
- Bird, M., Djagbletey, G., Hien, F., Compaore, H., Diallo, A., Grace, J. and Lloyd,
- J.: Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West
- Africa woodlands, Plant Cell Environ., 33, 959-980, 2010.
- Epron, D., Godard, D., Cornic, G. and Genty, B.: Limitation of net CO<sub>2</sub> assimilation
- rate by internal resistances to CO<sub>2</sub> transfer in the leaves of two tree species
- (Fagus sylvatica L. and Castanea sativa Mill), Plant Cell Environ., 18, 43-51,
- 549 1995.
- Ethier, G.J. and Livingston, N.J.: On the need to incorporate sensitivity to CO<sub>2</sub>
- transfer conductance into the Farquhar-von Caemmerer-Berry leaf
- photosynthesis model, Plant Cell Environ., 27, 137-153, 2004.
- Evans, J.R.: Nitrogen and photosynthesis in the flag leaf of Wheat (Triticum aestivum
- 554 L.), Plant Physiol., 72, 297-302, 1983.
- 555 Evans, J.R. and Voncaemmerer, S.: Carbon dioxide diffusion inside leaves, Plant
- Physiol., 110, 339-346, 1996.

- Farquhar, G.D. and Sharkey, T.D.: Stomatal conductance and photosynthesis, Annu.
- 558 Rev. Plant Physiol. Plant Mol. Biol., 33, 317-345, 1982.
- 559 Flanagan, L.B. and Farquhar, G.D.: Variation in the carbon and oxygen isotope
- composition of plant biomass and its relationship to water-use efficiency at the
- leaf- and ecosystem-scales in a northern Great Plains grassland, Plant Cell
- 562 Environ., 37, 425-438, 2014.
- Flexas, J., Barbour, M.M., Brendel, O., Cabrera, H.M., Carriqui, M., Diaz-Espejo, A.,
- Douthe, C., Dreyer, E., Ferrio, J.P., Gago, J., Galle, A., Galmes, J., Kodama, N.,
- Medrano, H., Niinemets, U., Peguero-Pina, J.J., Pou, A., Ribas-Carbo, M.,
- Tomas, M., Tosens, T. and Warren, C.R.: Mesophyll diffusion conductance to
- 567 CO<sub>2</sub>: An unappreciated central player in photosynthesis, Plant Sci., 193, 70-84,
- 568 2012.
- Flexas, J., Niinemets, U., Galle, A., Barbour, M.M., Centritto, M., Diaz-Espejo, A.,
- Douthe, C., Galmes, J., Ribas-Carbo, M., Rodriguez, P., Rossello, F.,
- 571 Soolanayakanahally, R., Tomas, M., Wright, I.J., Farquhar, G.D. and Medrano, H.:
- Diffusional conductances to CO<sub>2</sub> as a target for increasing photosynthesis and
- photosynthetic water-use efficiency, Photosynthesis Res., 117, 45-59, 2013.
- Flexas, J., Diaz-Espejo, A., Gago, J., Galle, A., Galmes, J., Gulias, J. and Medrano, H.:
- Photosynthetic limitations in Mediterranean plants: A review, Environ. Exp. Bot.,
- 576 103, 12-23, 2014.
- 577 Flexas, J., Diaz-Espejo, A., Conesa, M.A., Coopman, R.E., Douthe, C., Gago, J.,
- Galle, A., Galmes, J., Medrano, H., Ribas-Carbo, M., Tomas, M. and Niinemets,
- U.: Mesophyll conductance to CO<sub>2</sub> and Rubisco as targets for improving intrinsic
- water use efficiency in C-3 plants, Plant Cell Environ., 39, 965-982, 2016.
- Fu, P.-L., Jiang, Y.-J., Wang, A.-Y., Brodribb, T.J., Zhang, J.-L., Zhu, S.-D. and Cao,
- K.-F.: Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with
- the leaf phenology of angiosperm trees in an Asian tropical dry karst forest, Ann.
- Bot., 110, 189-199, 2012.
- 585 Gago, J., Douthe, C., Florez-Sarasa, I., Escalona, J.M., Galmes, J., Fernie, A.R.,
- Flexas, J. and Medrano, H.: Opportunities for improving leaf water use

- efficiency under climate change conditions, Plant Sci., 226, 108-119, 2014.
- 588 Galmes, J., Angel Conesa, M., Manuel Ochogavia, J., Alejandro Perdomo, J., Francis,
- D.M., Ribas-Carbo, M., Save, R., Flexas, J., Medrano, H. and Cifre, J.:
- Physiological and morphological adaptations in relation to water use efficiency
- in Mediterranean accessions of Solanum lycopersicum, Plant Cell Environ., 34,
- 592 245-260, 2011.
- 593 Galmes, J., Molins, A., Flexas, J. and Conesa, M.A.: Coordination between leaf CO2
- diffusion and Rubisco properties allows maximizing photosynthetic efficiency in
- Limonium species, Plant Cell Environ., 40, 2081-2094, 2017.
- 596 Giuliani, R., Koteyeva, N., Voznesenskaya, E., Evans, M.A., Cousins, A.B. and
- Edwards, G.E.: Coordination of leaf photosynthesis, transpiration, and structural
- traits in rice and wild relatives (Genus Oryza), Plant Physiol., 162, 1632-1651,
- 599 2013.
- 600 Grassi, G. and Magnani, F.: Stomatal, mesophyll conductance and biochemical
- limitations to photosynthesis as affected by drought and leaf ontogeny in ash and
- oak trees, Plant Cell Environ., 28, 834-849, 2005.
- 603 Gusewell, S.: N: P ratios in terrestrial plants: variation and functional significance,
- New Phytol., 164, 243-266, 2004.
- Harley, P.C., Loreto, F., Dimarco, G. and Sharkey, T.D.: Theoretical considerations
- when estimating the mesophyll conductance to CO<sub>2</sub> flux by analysis of the
- response of photosynthesis to CO<sub>2</sub>, Plant Physiol., 98, 1429-1436, 1992.
- He, N.P., Yu, Q., Wu, L., Wang, Y.S. and Han, X.G.: Carbon and nitrogen store and
- storage potential as affected by land-use in a Leymus chinensis grassland of
- 610 northern China. Soil Biol. Biochem. 40, 2952-2959, 2008.
- Jobbagy, E. G. and Jackson, R. B.: The vertical distribution of soil organic carbon and
- its relation to climate and vegetation. Ecol. Appl. 10, 423-436, 2000.
- Jones, H.G.: Partitioning stomatal and non-stomatal limitations to photosynthesis,
- 614 Plant Cell Environ., 8, 95-104, 1985.
- Laisk, A., Eichelmann, H., Oja, V., Rasulov, B., Padu, E., Bichele, I., Pettai, H. and
- Kull, O.: Adjustment of leaf photosynthesis to shade in a natural canopy: rate

- parameters, Plant Cell Environ., 28, 375-388, 2005.
- Lawson, T. and Blatt, M.R.: Stomatal Size, Speed, and Responsiveness Impact on
- Photosynthesis and Water Use Efficiency, Plant Physiol., 164, 1556-1570, 2014.
- 620 Li, Z.P., Han, F. X., Su, Y., Zhang, T.L., Sun, B., Monts, D.L., and Plodinec, M.J.:
- Assessment of soil organic and carbonate carbon storage in China. Geoderma
- 622 138, 119-126, 2007.
- Liu, C.C., Liu, Y.G., Guo, K., Fan, D.Y., Yu, L.F. and Yang, R.: Exploitation of patchy
- soil water resources by the clonal vine Ficus tikoua in karst habitats of
- southwestern China, Acta Physiol. Plant., 33, 93-102, 2011.
- 626 Long, S.P. and Bernacchi, C.J.: Gas exchange measurements, what can they tell us
- about the underlying limitations to photosynthesis? Procedures and sources of
- 628 error, J. Exp. Bot., 54, 2393-2401, 2003.
- 629 Loreto, F., Harley, P.C., Dimarco, G. and Sharkey, T.D.: Estimation of mesophyll
- conductance to CO<sub>2</sub> flux by three different methods, Plant Physiol., 98,
- 631 1437-1443, 1992.
- Lu, X.T., Yin, J.X., Jepsen, M.R. and Tang, J.W.: Ecosystem carbon storage and
- partitioning in a tropical seasonal forest in Southwestern China. For. Ecol.
- Manage. 260, 1798-1803, 2010.
- Moreno-Gutierrez, C., Dawson, T.E., Nicolas, E. and Querejeta, J.I.: Isotopes reveal
- contrasting water use strategies among coexisting plant species in a
- 637 Mediterranean ecosystem, New Phytol., 196, 489-496, 2012.
- 638 Muir, C.D., Conesa, M.A., Roldan, E.J., Molins, A. and Galmes, J.: Weak
- coordination between leaf structure and function among closely related tomato
- species, New Phytol., 213, 1642-1653, 2017.
- Nie, Y.P., Chen, H.S., Wang, K.L. and Ding, Y.L.: Seasonal variations in leaf  $\delta^{13}$ C
- values: implications for different water-use strategies among species growing on
- continuous dolomite outcrops in subtropical China, Acta Physiol. Plant., 36,
- 644 2571-2579, 2014.
- Niinemets, U., Diaz-Espejo, A., Flexas, J., Galmes, J. and Warren, C.R.: Role of
- mesophyll diffusion conductance in constraining potential photosynthetic

- 647 productivity in the field, J. Exp. Bot., 60, 2249-2270, 2009a.
- Niinemets, U., Wright, I.J. and Evans, J.R.: Leaf mesophyll diffusion conductance in
- 35 Australian sclerophylls covering a broad range of foliage structural and
- 650 physiological variation, J. Exp. Bot., 60, 2433-2449, 2009b.
- Olsovska, K., Kovar, M., Brestic, M., Zivcak, M., Slamka, P. and Shao, H.B.:
- 652 Genotypically identifying Wheat mesophyll conductance regulation under
- progressive drought stress, Front. Plant Sci., DOI 10.3389/fpls.2016.01111,
- 654 2016.
- Peguero-Pina, J.J., Flexas, J., Galmes, J., Niinemets, U., Sancho-Knapik, D., Barredo,
- G., Villarroya, D. and Gil-Pelegrin, E.: Leaf anatomical properties in relation to
- differences in mesophyll conductance to CO<sub>2</sub> and photosynthesis in two related
- Mediterranean Abies species, Plant Cell Environ., 35, 2121-2129, 2012.
- Peguero-Pina, J.J., Siso, S., Flexas, J., Galmes, J., Garcia-Nogales, A., Niinemets, U.,
- Sancho-Knapik, D., Saz, M.A. and Gil-Pelegrin, E.: Cell-level anatomical
- characteristics explain high mesophyll conductance and photosynthetic capacity
- in sclerophyllous Mediterranean oaks, New Phytol., 214, 585-596, 2017a.
- Peguero-Pina, J.J., Siso, S., Flexas, J., Galmes, J., Niinemets, U., Sancho-Knapik, D.
- and Gil-Pelegrin, E.: Coordinated modifications in mesophyll conductance,
- photosynthetic potentials and leaf nitrogen contribute to explain the large
- variation in foliage net assimilation rates across Quercus ilex provenances, Tree
- 667 Physiol., 37, 1084-1094, 2017b.
- Perdomo, J.A., Capo-Bauca, S., Carmo-Silva, E. and Galmes, J.: Rubisco and Rubisco
- Activase Play an Important Role in the Biochemical Limitations of
- photosynthesis in rice, wheat, and maize under high temperature and water
- deficit, Front. Plant Sci., DOI: 10.3389/fpls.2017.00490, 2017.
- Pons, T.L., Flexas, J., Von Caemmerer, S., Evans, J.R., Genty, B., Ribas-Carbo, M.
- and Brugnoli, E.: Estimating mesophyll conductance to CO<sub>2</sub>: methodology,
- potential errors, and recommendations, J. Exp. Bot., 60, 2217-2234, 2009.
- Prentice, I.C., Dong, N., Gleason, S.M., Maire, V. and Wright, I.J.: Balancing the
- costs of carbon gain and water transport: testing a new theoretical framework for

- plant functional ecology, Ecol. Lett., 17, 82-91, 2014.
- 678 Saez, P.L., Bravo, L.A., Cavieres, L.A., Vallejos, V., Sanhueza, C., Font-Carrascosa,
- M., Gil-Pelegrin, E., Peguero-Pina, J.J. and Galmes, J.: Photosynthetic
- limitations in two Antarctic vascular plants: importance of leaf anatomical traits
- and Rubisco kinetic parameters, J. Exp. Bot., 68, 2871-2883, 2017.
- Sharkey, T.D., Vassey, T.L., Vanderveer, P.J. and Vierstra, R.D.: Carbon metabolism
- enzymes and photosynthesis in transgenic tobacco (Nicotiana tabacum L.)
- having excess phytochrome, Planta, 185, 287-296, 1991.
- 685 Sharkey, T.D., Bernacchi, C.J., Farquhar, G.D. and Singsaas, E.L.: Fitting
- photosynthetic carbon dioxide response curves for C3 leaves, Plant Cell Environ.,
- 687 30, 1035-1040, 2007.
- Sharkey, T.D.: Mesophyll conductance: constraint on carbon acquisition by C3 plants,
- 689 Plant Cell Environ., 35, 1881-1883, 2012.
- Sun, Y., Gu, L.H., Dickinson, R.E., Pallardy, S.G., Baker, J., Cao, Y.H., Damatta, F.M.,
- Dong, X.J., Ellsworth, D., Van Goethem, D., Jensen, A.M., Law, B.E., Loos, R.,
- Martins, S.C.V., Norby, R.J., Warren, J., Weston, D. and Winter, K.:
- Asymmetrical effects of mesophyll conductance on fundamental photosynthetic
- parameters and their relationships estimated from leaf gas exchange
- 695 measurements, Plant Cell Environ., 37, 978-994, 2014.
- 696 Sullivan, P. L., Wymore, A., McDowell, B., and co-authors: New Opportunities for
- 697 Critical Zone Science, Report of 2017 Arlington CZO All Hands Meeting
- 698 white booklet: Discuss new opportunities for CZ Science,
- 699 http://www.czen.org/sites/default/files/CZO\_2017\_White\_Booklet\_20171015a.p
- 700 df, 2017.
- 701 Terashima, I., Araya, T., Miyazawa, S., Sone, K.and Yano, S.: Construction and
- maintenance of the optimal photosynthetic systems of the leaf, herbaceous plant
- and tree: an eco-developmental treatise, Ann. Bot., 95, 507-519, 2005.
- Terashima, I., Hanba, Y.T., Tazoe, Y., Vyas, P.and Yano, S.: Irradiance and phenotype:
- comparative eco-development of sun and shade leaves in relation to
- photosynthetic CO<sub>2</sub> diffusion, J. Exp. Bot., 57, 343-354, 2006.

- 707 Terashima, I., Hanba, Y.T., Tholen, D. and Niinemets, U.: Leaf Functional Anatomy in
- Relation to Photosynthesis, Plant Physiol., 155, 108-116, 2011.
- 709 Tomas, M., Flexas, J., Copolovici, L., Galmes, J., Hallik, L., Medrano, H.,
- Ribas-Carbo, M., Tosens, T., Vislap, V. and Niinemets, U.: Importance of leaf
- anatomy in determining mesophyll diffusion conductance to  $CO_2$  across species:
- quantitative limitations and scaling up by models, J. Exp. Bot., 64, 2269-2281,
- 713 2013.
- 714 Tosens, T., Nishida, K., Gago, J., Coopman, R.E., Cabrera, H.M., Carriqui, M.,
- Laanisto, L., Morales, L., Nadal, M., Rojas, R., Talts, E., Tomas, M., Hanba, Y.,
- Niinemets, U. and Flexas, J.: The photosynthetic capacity in 35 ferns and fern
- allies: mesophyll CO<sub>2</sub> diffusion as a key trait, New Phytol., 209, 1576-1590,
- 718 2016.
- 719 Veromann-Jurgenson, L.L., Tosens, T., Laanisto, L. and Niinemets, U.: Extremely
- thick cell walls and low mesophyll conductance: welcome to the world of ancient
- 721 living!, J. Exp. Bot., 68, 1639-1653, 2017.
- Wang, J., Wen, X.F., Zhang, X.Y., Li, S.G., and Zhang, D.Y.: Magnesium enhances the
- photosynthetic capacity of a subtropical primary forest in the Karst critical zone,
- 724 SCI REP-UK, DOI:10.1038/s41598-018-25839-1, 2018.
- Warren, C.: Estimating the internal conductance to CO<sub>2</sub> movement, Funct. Plant Biol.,
- 726 33, 431-442, 2006.
- 727 Warren, C.R. and Adams, M.A.: Internal conductance does not scale with
- 728 photosynthetic capacity: implications for carbon isotope discrimination and the
- economics of water and nitrogen use in photosynthesis, Plant Cell Environ., 29,
- 730 192-201, 2006.
- 731 Wen, L., Li, D.J., Yang, L.Q., Luo, P., Chen, H., Xiao, K.C., Song, T.Q., Zhang, W.,
- He, X.Y., Chen, H.S. and Wang, K.L.: Rapid recuperation of soil nitrogen
- following agricultural abandonment in a karst area, southwest China,
- 734 Biogeochemistry, 129, 341-354, 2016.
- Zeng, C., Liu, Z.H., Zhao, M. and Yang, R.: Hydrologically-driven variations in the
- karst-related carbon sink fluxes: Insights from high-resolution monitoring of

three karst catchments in Southwest China, Journal of Hydrology, 533, 74-90, 2016. Zhang, X.B., Bai, X.Y. and He, X.B.: Soil creeping in the weathering crust of carbonate rocks and underground soil losses in the karst mountain areas of southwest china, Carbonates and Evaporites, 26, 149-153, 2011. 

# **Figures**

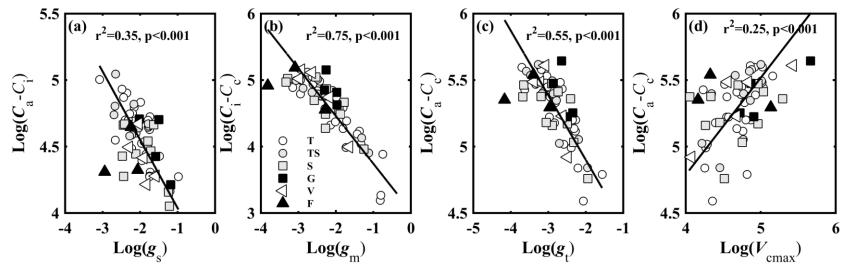



Figure 1. Relationships between (a)  $CO_2$  gradient between ambient air and intercellular air space ( $C_a$ - $C_i$ ,  $\mu$ mol mol<sup>-1</sup>) and stomatal conductance to  $CO_2$  ( $g_s$ , mol  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>); (b)  $CO_2$  gradient between intercellular air space and chloroplasts ( $C_i$ - $C_c$ ,  $\mu$ mol mol<sup>-1</sup>) and mesophyll conductance to  $CO_2$  ( $g_m$ , mol  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>); (c)  $CO_2$  concentration gradient between ambient air and chloroplasts ( $C_a$ - $C_c$ ,  $\mu$ mol mol<sup>-1</sup>) and total conductance to  $CO_2$  ( $g_t$ , mol  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>); and (d)  $C_a$ - $C_c$  and the maximum carboxylase activity of Rubisco ( $V_{cmax}$ ,  $\mu$ mol  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>). Lines refer to regression line for 63 species. T, TS, S, G, V, and F represent Tree, Tree/Shrub, Shrub, Grass, Vine, and Fern, respectively.

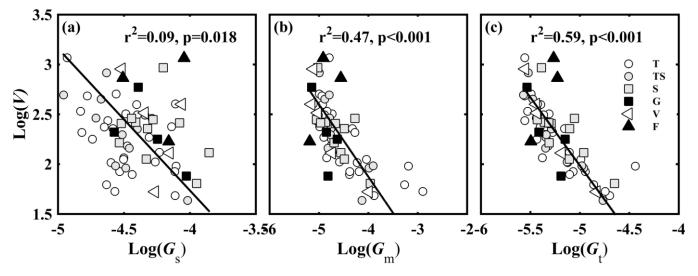



Figure 2. Relationships between (a) V and  $G_s$ ; (b) V and  $G_m$ ; and (c) V and  $G_t$ . V is the ratio of photosynthetic capacity ( $V_{cmax}$ ) to light-saturated net photosynthesis (A, µmol  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>);  $G_s$  is the ratio of stomatal conductance to  $CO_2$  ( $g_s$ , mol  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>) to A;  $G_m$  is the ratio of mesophyll conductance to  $CO_2$  ( $g_m$ , mol  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>) to A;  $G_t$  is the ratio of total conductance to  $CO_2$  ( $g_t$ , mol  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>) to A. Lines refer to regression line for 63 species. T, TS, S, G, V, and F represent Tree, Tree/Shrub, Shrub, Grass, Vine, and Fern, respectively.

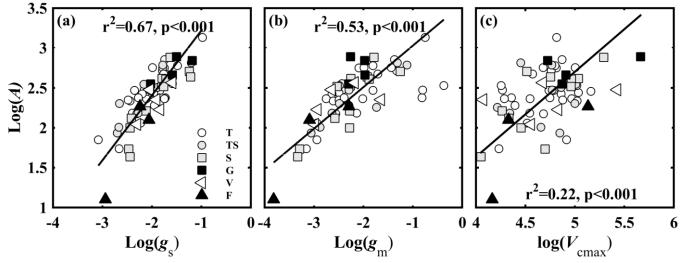



Figure 3. Relationships between light-saturated net photosynthesis (A,  $\mu$ mol  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>) and (a) stomatal conductance to  $CO_2$  ( $g_s$ , mol  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>); (b) mesophyll conductance to  $CO_2$  ( $g_m$ , mol  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>); and (c) the maximum carboxylase activity of Rubisco ( $V_{cmax}$ ,  $\mu$ mol  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>). Lines refer to regression line for 63 species. T, TS, S, G, V, and F represent Tree, Tree/Shrub, Shrub, Grass, Vine, and Fern, respectively.

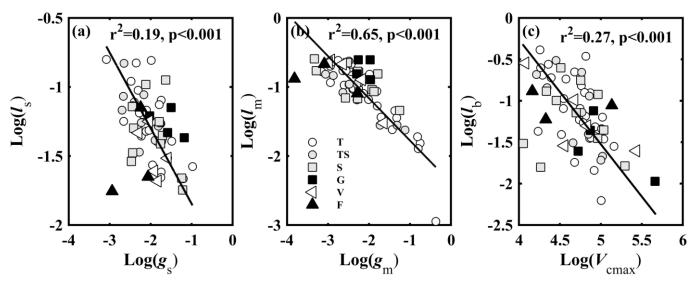



Figure 4. Relationships between (a) stomatal conductance to  $CO_2$  ( $g_s$ , mol  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>) and  $l_s$  ( $g_s$  limitation on light-saturated net photosynthesis (A)); (b) mesophyll conductance to  $CO_2$  ( $g_m$ , mol  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>) and  $l_m$  ( $g_m$  limitation on A); and (c) the maximum carboxylase activity of Rubisco ( $V_{cmax}$ ,  $\mu$ mol  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>) and  $l_b$  ( $V_{cmax}$  limitation on A). Lines refer to regression line for 63 species. T, TS, S, G, V, and F represent Tree, Tree/Shrub, Shrub, Grass, Vine, and Fern, respectively.

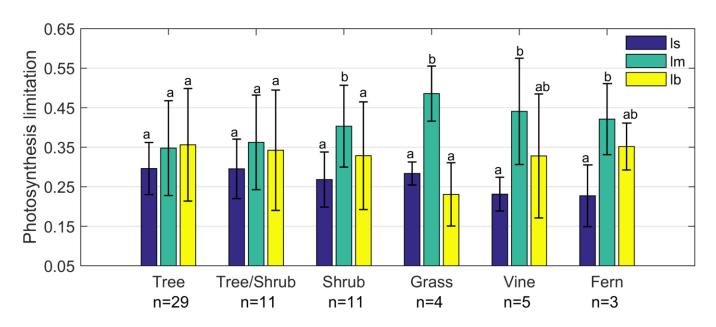



Figure 5. Limitation to light-saturated net photosynthesis (A) in six life forms by stomatal conductance to  $CO_2(l_s)$ , mesophyll conductance to  $CO_2(l_m)$ , and the maximum carboxylase activity of Rubisco  $(l_b)$ . Error bars denominate standard deviation  $(1\sigma)$ .

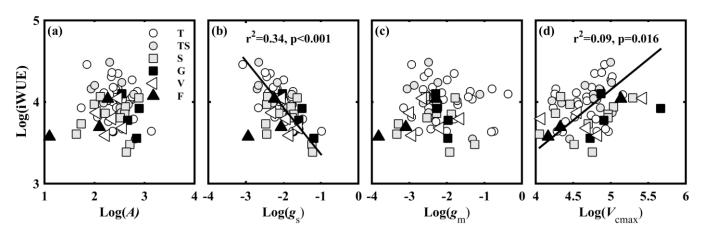



Figure 6. Relationships between the observed intrinsic water use efficiency (iWUE,  $\mu$ mol CO<sub>2</sub> mol<sup>-1</sup> H<sub>2</sub>O) and (a) light-saturated net photosynthesis (A,  $\mu$ mol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>); (b) stomatal conductance to CO<sub>2</sub>( $g_s$ , mol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>); (c) mesophyll conductance to CO<sub>2</sub>( $g_m$ , mol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>) and (d) the maximum carboxylase activity of Rubisco ( $V_{cmax}$ ,  $\mu$ mol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>). Lines refer to regression line for 63 species. T, TS, S, G, V, and F represent Tree, Tree/Shrub, Shrub, Grass, Vine, and Fern, respectively.



Figure 7. The relationships of the intrinsic water use efficiency (iWUE,  $\mu$ mol CO<sub>2</sub> mol<sup>-1</sup> H<sub>2</sub>O) and (a) the ratio of mesophyll conductance to CO<sub>2</sub> ( $g_{\rm m}$ ) to ( $g_{\rm s}$ ) ( $g_{\rm m}/g_{\rm s}$ ) and (b) the ratio of the maximum carboxylase activity of Rubisco ( $V_{\rm cmax}$ ) to gs ( $V_{\rm cmax}/g_{\rm s}$ ). Lines refer to regression line for 63 species. T, TS, S, G, V, and F represent Tree, Tree/Shrub, Shrub, Grass, Vine, and Fern, respectively.