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Abstract 10 

In drylands, microbes that colonise rock surfaces were linked to erosion because water scarcity excludes traditional 

weathering mechanisms. We studied the origin and role of rock biofilms in geomorphic processes of hard lime and dolomitic 

rocks that feature comparable weathering morphologies though originating from arid and hyperarid environments, 

respectively. We hypothesised that weathering patterns are fashioned by salt erosion and mediated by the rock biofilms that 

originate from the adjacent soil and dust. We used a combination of microbial and geological techniques to characterise 15 

rocks morphologies and the origin and diversity of their biofilm. Amplicon sequencing of the SSU rRNA gene suggested 

that bacterial diversity is low and dominated by Proteobacteria and Actinobacteria. These phyla formed laminar biofilms 

only on rock surfaces that were exposed to the atmosphere and burrowed up to 6 mm beneath the surface, protected by 

sedimentary deposits. Unexpectedly, the microbial composition of the biofilms differed b etween the two rock types and was 

also distinct from the communities identified in the adjacent soil and settled dust, showing a habitat -specific filtering effect. 20 

Moreover, the rock bacterial communities were shown to secrete extracellular polymeric subst ances that form an evaporation 

barrier, reducing water loss rates by 65-75%. The reduced water transport rates through the rock also limit salt transport and 

its crystallisation in surface pores, which is thought to be the main force for weathering. Concomitantly, the biofilm layer 

stabilises the rock surface via coating and protects the weathered front. Our hypothesis contradicts common models, which 

typically consider biofilms as weathering-promoting agents. In contrast, we propose the microbial colonisat ion of mineral 25 

surfaces acts to mitigate geomorphic processes in hot, arid environments. 

1 Introduction 

In arid and hyperarid stony deserts, bedrock surfaces are typically barren and free of vegetation or continuous soil mantle. 

When these surfaces are exposed to atmospheric conditions, they undergo weathering processes that shape the landscape 

(Smith, 2009). Weathering is an in-situ set of processes that include physical, chemical and mechanical forces that result in 30 

the breakdown and transport of the shuttered fragments from the parent rock. Weathering can appear in a range of sizes and 

morphologies (Smith et al., 2005), including gravel shattering (Amit et al., 1996), surface crazing (Smith, 1988), ventifacts 

(Smith, 1988), microrills (Smith, 1988; Sweeting and Lancaster, 1982) and cavernous patterns [also known as tafoni, 

honeycomb or pitting (Mustoe, 1983; Viles, 2005). Weathering is an essential, though often neglected, element in the overall 

denudation of hot deserts.  35 

Cavernous weathering is one of the most frequently occurring weathering patterns that have been observed in various 

regions across the globe, including humid and arid, cold and hot, coastal and inland sites (Bruthans et al., 2018). In the 
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Negev Desert, Israel, cavernous weathering patterns are common in carbonate rocks in arid and hyperarid regions. Upon 

exposure to the atmosphere, these rocks develop a carbonate coating, termed calcrete or dolocrete (respective to limestone or 

dolomite) by displacive and replacive cementation of calcium or dolomite onto the rock surface (Wright and Wacey, 2004; 

Alonso-Zarza and Wright, 2010). Following the cementation processes, typical honeycomb features are formed on the 

exposed parent rock, typified by pits separated by thin walls that are coated by the calcrete or dolocrete. Recent studies 5 

suggest that microbial activity also promotes the processes of calcrete and dolocrete formation (Alonso-Zarza et al., 2016; 

Alonso-Zarza and Wright, 2010). 

The accepted conceptual model for the formation of cavernous rock weathering in hot deserts involves the presence of 

permeable rocks that are subjected to soluble salts and repeated episodes of drying-rewetting cycles (Goudie et al., 2002; 

Smith, 1988; Smith et al., 2005). The proposed mechanisms assume that cavernous weathering results from physicochemical 10 

processes including salt crystallization (Cooke, 1979; Scherer, 2004), incipient fractures (Amit et al., 1996), exfoliation 

(Shtober-Zisu et al., 2017), or stress-erosion (Bruthans et al., 2014; McArdle and Anderson, 2001). Recently, Bruthans and 

colleagues (2018) conclusively demonstrated that in temperate climate the superiority of the hydraulic hypothesis (moisture 

flux followed by salt crystallisation at the boundary layer) over govern the case hardening model, in a temperate climate. 

In addition, biological mechanisms have been proposed to promote rock weathering through mechanisms such as flaking via 15 

colony growth (Viles, 2012), acidification by bacterial extractions (Garcia-Pichel, 2006; Warscheid and Braams, 2000) or 

alkalization during photosynthesis by cyanobacteria (Büdel et al., 2004). In contrast, it was proposed that micro- and macro-

organisms colonisation can mitigate weathering in temperate, coastal regions (McIlroy de la Rosa et al., 2014; Mustoe, 2010) 

through encrustation or protection from direct rain impact. Yet, it is not clear which of these mechanisms dominates or what 

is the relative contribution of chemical vs biological processes to weathering in arid environments. 20 

Microorganisms colonising rocks form a hardy biofilm known as the biological rock crusts (BRC), which is common in most 

arid and hyperarid regions worldwide (Gorbushina, 2007; Lebre et al., 2017; Pointing and Belnap, 2012). Epilithic 

communities colonising rock surfaces are ubiquitous in arid environments, while hyperarid rocks, which experience 

increased radiation and desiccation, are dominated by endolithic communities that colonise internal rock pores 

(Makhalanyane et al., 2013; Pointing and Belnap, 2012; Viles, 1995). The BRC communities include cyanobacteria and 25 

other phototrophic bacteria and heterotrophic bacteria, but very low abundances of archaea, fungi or algae (Lang‐Yona et al., 

2018). However, the BRC inoculum was not resolved and was proposed to originate from settled dust (Viles, 2008), or the 

surrounding soil (Makhalanyane et al., 2015). 

The goal of this study was to illuminate the origin and role of BRCs in cavernous weathering of exposed limestone and 

dolomite rocks in arid and hyperarid regions. We predicted that the BRC communities on exposed rock surfaces will 30 

resemble either the ever-present dust or the surrounding soil, supporting a subset of adapted taxa from both sources. We 

further hypothesised that the cavernous weathering morphologies of exposed rocks result from salt mobilisation by dew, 

causing crystallisation pressure under atmospheric conditions. The developed rock biofilms clog the surface rock pores 

through secretion of extracellular polymeric substances (EPS), lowering evaporation and slowing the salt crystallisation, but 

also stabilising the exfoliated rocks preventing further weathering. Thus, the presence of a BRC mitigates the geomorphic 35 

processes. To test our hypotheses, we applied a holistic approach combining field o bservations, geological, geotechnical and 

molecular microbiology characterisation elucidating BRCs’ morphology, origin and role in arid cavernous weathering.  

2 Materials and Methods 

2.1 Study site 

We focused on two sites in the Negev Desert, Israel: Sede-Boqer – an arid site and Uvda Valley – a hyperarid site (Fig. S1, 40 

Table S1). Both sites are rocky terrains underlined predominantly by carbonate rock slopes consisting of limestone, 
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dolomite, chalk, marl, clay and chert from the Cretaceous to Eocene age. Our analyses compared samples from the limey 

Turonian age Shivta Formation located in the arid region with samples from the dolomitic Turonian age Gerofit Formation 

located in the hyperarid environment. The Negev Desert, Israel, maintains arid to hyperarid conditions since the Holocene 

and has an aridity index (P/PET) of 0.05-0.005 (Amit et al., 2010; Bruins, 2012) similar to other arid and hyperarid areas 

worldwide, e.g., the Namib and Atacama Deserts (Azua-Bustos et al., 2012; Viles and Goudie, 2007). The long-term aridity 5 

of the Negev Desert makes it a reliable site for testing the cross-influence between BRCs and geological substrates. 

2.2 Field sampling 

Twenty-four rock samples were collected along rocky slopes facing northward, comprising: twelve limestone samples from 

the limey Turonian age Shivta Formation at the arid site (30.88N34.78E, WGS 84 Grid; samples named: SB 1 -12) and 

twelve dolomite samples from limey-dolomitic Turonian age Gerofit Formation at the hyperarid site (29.94N34.97E, WGS 10 

84 Grid; samples named: UV 1-12) during November and December, 2014. Concomitantly, six soil samples (ca. 500 g each) 

were collected, half from the arid (named: SBSoil 1-3) and a half from the hyperarid (named: UVSoil 1-12) sites. Each rock 

or soil sample is a composite of four sub-samples that were pooled and homogenised in the lab.  

We also collected settled dust samples using glass beads traps (Goossens and Rajot, 2008). The traps were placed on 

December 2013 and collected three months later in the arid (samples named: SBDust 1 -2) and hyperarid (samples named: 15 

UVDust 1-2) sites. Each dust sample was a composite of two sub-samples that were pooled and homogenised in the lab.  

2.3 Geological analyses 

The geological methods used in this study are based on direct field observations and detailed characterisation of the 

subjected lithologies (i.e., Limestone and Dolomite) which included morphology (thin sections), mineral components [X-ray 

powder diffraction (XRD)], porosity and permeability (Automatic Gas Permeameter Porosimeter), and elastic properties 20 

(Schmidt hammer): Petrographic thin sections, 30 µm thick, were prepared for each lithology to test the main components in 

both the BRC and host rocks examined under a light microscope (Zeiss, Oberkochen, Germany). XRD analysis of mineral 

components (Sandler et al., 2015) was conducted on the BRC and host rocks using three replicates each. Powdered samples 

were scanned using X’Pert
3
 Powder diffractometer equipped with a PIXcel detector (Panalytical Malvern, Almelo, 

Netherlands). Scanning range was: 3 – 70° 2θ, step size 0.013°, speed 70.1 s per step.  Total effective porosity (ɸ) and 25 

permeability (k) tests (Scherer, 1999) were performed using Automatic Gas Permeameter Porosimeter (Core Laboratories, 

Houston, Texas, USA) on twelve rock core cylinder samples, with 18.5 mm radius and 26.5 mm height. Six samples were 

taken from each lithology, each set of six samples were prepared in two orthogonal directions providing the normal to 

bedding and parallel to bedding. Before testing porosity and permeability, samples were oven dried at a temperature of 110°c 

for 24 h. Schmidt hammer (Lassen, Aarhus, Denmark) tests were applied in the field (Goudie, 2016; Viles et al., 2011). 30 

Twenty measurements were carried out for each lithology. 

2.4 FTIR and stable isotope analysis 

Fourier transform infrared spectroscopy (FTIR) analysis was conducted for testing the presence of extracellular polymeric 

substances (EPS) on the rock surfaces while the host rock was used for comparison. The spectra were recorded using a 

Vertex 70 FTIR spectrometer (Bruker, Billerica, MA, USA) with a 4 cm
-1

 scan resolution. One to two mg of pulverised rock 35 

was taken from each sample (n = 2), and the spectra were measured twice collected over a wavenumber range 4000-600 cm
-

1
, and a baseline correction was carried out. The spectral absorption bands, indicative for EPS, were identified according to 

published information (Ferrando et al., 2018). 
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For δ
 13

C and δ
 18

O analysis, 1-2 mg of rock surface powder (i.e., calcite or dolomite) was obtained using a Microdrill 

(Dremel, Racine, WI, USA) along with a cross-section of the rock crust and its host rock. Four profiles measurements of δ
 

13
C and δ

 18
O were performed on samples UVSL 5-6 from the hyperarid site and NWSH 1-2 from the arid site. 

Measurements (in duplicate) of δ
18

O-H2O and δ
13

C-DIC were performed on gas source isotope ratio mass spectrometer (GS-

IRMS; Thermo Fisher Scientific, Waltham, MA, USA) coupled to a Gas Bench II interface (Thermo) after CO2 equilibration 5 

or CO2 extraction by acidification for δ
18

O-H2O and δ
13

C-DIC, respectively. The samples were calibrated against internal 

laboratory standards: Vienna Standard Mean Ocean Water (VSMOW) and carbonate standard NBS19. δ
13

C values were also 

referenced against VSMOW and valued for carbonate relative to Vienna PeeDee Belemnite (VPDB) standard as previously 

described (Uemura et al., 2016) with SD of 0.1‰. All values are reported in per-mil (‰). 

2.5 Desiccation experiment 10 

To test the effect of biological rock crusts on water transport rates in the rock, clogging and desiccation experiments were 

performed on sixteen rock core cylinders from both lithologies (limestone and dolomite). Rock cylinders (⌀ 37 mm, 6.5 cm) 

were drilled using a rock core drill. Each set of eight rock cores from the two different lithologies included four rock cores 

that were kept intact, and four rock cores that their BRC was mechanically removed using a diamond saw (Dremel, Racine, 

WI, USA) to a depth of 5 cm. Each cylinder was immersed in distilled water for 72 h, covered with epoxy (Devcon) and 15 

aluminium foil, leaving only the upper base of the crusted and bare cylinders uncovered to allow evaporation. The cylinders 

were then weighed (t=0), incubated in an oven dried at a temperature of 44 °C for 48 h and weighed every 2 h during the first 

12 h and then every 6 h to determine the residual water content. Second-degree polynomial functions were fitted using 

function stats::lm to determine evaporation rates and compared using  ANOVA in R. 

2.6 DNA Extraction PCR amplification and sequencing 20 

For DNA extraction from all rocks, the surface (ca. 100 cm
2
) was scraped using a rasp (66-67 HRC hardness; Dieter Schmid, 

Berlin, Germany) that was cleaned with 70% technical-grade ethanol before each sampling. DNA was then extracted from 

0.5 g of the homogenised sample using bead-beating in the presence of a CTAB buffer and phenol, according to a previously 

published extraction protocol (Angel et al., 2012). A 466-bp fragment of the 16S rRNA gene was amplified using the 

universal bacterial primers 341F (CCTAYGGGRBGCASCAG) and 806R (GGACTACNNGGGTATCTAAT) flanking the 25 

V3 and V4 region (Klindworth et al., 2012). Library construction and sequencing were performed at a DNA Services 

Facility (University of Illinois at Chicago, USA) using a MiSeq sequencer (Illumina, San Diego, CA, USA) in the 2 × 250 

cycle configuration (V2 regent kit). The raw sequencing data were deposited into the EMBL-ENA SRA database 

(https://www.ebi.ac.uk/ena/) and can be found under study accession PRJNA381483. 

2.7 Sequence processing and analysis of bacterial communities 30 

Paired reads generated by the MiSeq platform were quality filtered and clustered into OTUs using the UPARSE pipeline 

(Edgar, 2013), with modifications. Contig assembly was done using the fastq_mergepairs command. Then, contigs were 

dereplicated with the derep_fullength command, and singleton sequences were removed. OTU centroids were then 

determined with the cluster_otus command (set at 3% radius). Abundances of OTUs were determined by mapping the 

filtered contigs (before dereplication, including singletons) to the OTU centroids using the usearch_global command (set at 35 

0.97% identity). Following these steps, a total of ca. 1.4 G reads remained. OTU representatives were classified using 

mothur’s implementation of a Naïve Bayesian sequence classifier (Schloss et al., 2009; Wang et al., 2007) against the 

SILVA 119 SSU NR99 database (Quast et al., 2013). All downstream analyses were performed in R V3.4.4 (R Core Team, 

2016). Data handling and manipulation were done using package phyloseq (McMurdie and Holmes, 2013). For alpha-

diversity analysis, all samples were subsampled (rarefied) to the minimum sample size using bootstrap subsampling at 1000 40 

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA381483
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iterations, to account for library size differences, while for beta-diversity analysis library size normalisation was done using 

GMPR (Chen et al., 2018). The ACE richness estimate (O’Hara, 2005) and Shannon’s H diversity index were calculated 

using function EstimateR in the vegan package (Oksanen et al., 2018) and tested using ANOVA and Tukey HSD in the stats 

package. Variance partitioning and testing were done using PERMANOVA (McArdle and Anderson, 2001) function 

vegan::adonis using Horn-Morisita distances. Differences in phyla composition between the sample types were tested using 5 

the non-parametric Scheirer Ray Hare Test (Mangiafico, 2018); function rcompanion::scheirerRayHare) followed by the post 

hoc Mann-Whitney Test (function stats::wilcox.test) and FDR corrected using the Benjamini -Hochberg method (Ferreira and 

Zwinderman, 2006); function stats::p.adjust). Detection of differentially abundant OTUs was done using ALDEx2 

(Fernandes et al., 2014). Plots were generated using packages ggplot2 (Wickham, 2016) and ggtern (Hamilton, 2017). 

3 Results and discussion 10 

3.1 Field and mineralogical observations 

Weathering features were observed in about 30% of exposed rocks sampled from both arid and hyperarid sites. Neither the 

prevalence of weathering nor its morphology seemed to differ between sites despite th e different climates and underlying 

geology. In all cases, weathering type was classified as tafoni or honeycomb weathering (Goudie et al., 1997; Groom et al., 

2015); Fig. 1A1a), and it was coupled with the presence of sub-aerial biofilm, burrowed underneath the surface and 15 

protected by sedimentary deposits (Fig. 1B1b). The weathering and presence of the crusts were restricted to the 

atmospherically exposed parts of the rock. The presence of identical weathering morphology and prevalence in different 

climates and lithologies challenges the current model, which assumes that surface permeability, moisture and the presence of 

salts as primary factors control weathering rates (Goudie et al., 2002; Smith, 1988; Smith et al., 2005). However, the lack of 

correlation between tafoni weathering magnitude and climate has already been reported (Brandmeier et al., 2011). 20 

To study the possible differences between these sites, we performed geological characterisation of 10 limestone and 

dolomite rocks collected from the arid and hyperarid sites, respectively, testing for mineral content, porosity, permeability 

and elasticity. As expected, our results showed different lithological parameters between the limestone and dolomite rocks 

(Table S21), yet they displayed similar weathering features. Moreover, petrographic thin section analysis showed that on 

both rock types, crusts had developed to a similar thickness of 1-6 mm, irrespective of climatic conditions including mean 25 

annual precipitation (Fig. 1C1c). However, microclimatic conditions, like dew or surface temperature may impact local 

morphologies. Also, the thin sections showed that the crusts are composed of masses of micritic to microsparitic minerals 

that form laminated structure (Fig. 1C1c). Such laminated structures indicate that the crusts are stage four terrestrial calcretes 

and dolocretes, suggesting a mature crust phase (Alonso-Zarza and Wright, 2010). The calcretes and dolocretes identified on 

the rocks’ surface reject previously suggested impact of mineralised networks or case hardening (McBride and Picard, 2004). 30 

In fact, the detection of mature calcretes could serve as an indication of atmospheric exposure but was also suggested to 

result from biogenic activity (Alonso-Zarza and Wright, 2010; Goudie, 1996).  

3.2 Composition and chemical characteristics of the rock crusts 

To test our hypothesis that the crusts are biogenic and involved in rock weathering processes, we characterised their origin 

and nature. An XRD analysis of the crust layers and bedrocks showed that the crusts are composed of similar mineralogy as 35 

their respective host rocks, indicating that local weathering, rather than dust deposition, is the source of crust generation 

(Table 1S2).  

The biogenic nature of the crusts was confirmed using a cross-section analysis of the stable carbon and oxygen isotopes 

ratios in the crust and host rock (Fig. 2A2a). For both limestone and dolomite, values of δ
13

C increased between the crust and 

the host rock layers and ranged from -4.1‰ in the calcrete to -0.9‰ in the limestone bed, and from 0.2‰ in the dolocrete to 40 
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2.0‰ in the dolomite bed. Such values are typical indicators to carbon isotope exchange of primary marine CaCO3 

(abundant in the bedrock) with CO2 released by microbial respiration (i.e. of carbon originating from photosynthesis) with 

subsequent precipitation of pedogenic calcrete (Brlek and Glumac, 2014; Mora et al., 1991). Analysing δ
13

C, together with 

δ
18

O, compositions of pedogenic carbonates is a useful way of reconstructing paleo -vegetation (e.g., C3/C4 plant ratio 

(Ehleringer et al., 1997; Mora et al., 1991). Our δ
13

C results go along with δ
13

C values collected from speleothems 5 

(secondary mineral deposits formed in caves) collected in the central and southern Negev Desert (Vaks et al., 2010) that 

were also dated to end of the Pliocene (the past 2.5 million years). The low ratio detected here (Fig . 2A2a) and by Vaks et al. 

(2010) suggest that the Negev region has been able to support only limited vegetation for at least 2.5 Ga, if so then the role 

of the crust in shaping the morphology of the rock surfaces was considerable.  These results support the hypothesis that 

calcretes and dolocretes are of biogenic origin, and therefore the crust can be referred to as BRC. Moreover, they indicate 10 

similar developmental trajectory for both the calcretes and dolocretes that is independent of aridity or lithological 

parameters.  

In contrast, the trend in values of δ
18

O differed between rock types. In the limestone rocks, the ratio ranged from -3.0‰ to -

6.8‰ between the BRC and the host rock, while in the dolomite it was higher, ranging from -5.4‰ to -0.6‰. The decrease 

in δ
18

O in the host limestone rock could be explained by meteoric water substitution (Sandler, 2006). In contrast, the more 15 

negative δ
18

O values in the dolocrete compared to the host dolomite are attributed to isotopic differentiation of meteoric 

water due to condensation (Rayleigh distillation) and could result from the large distance from the Mediterranean Sea (that i s 

the primary source of rainfall in the area) compared to closer limestone rocks. In speleothems, similar patterns in δ
18

O values 

were reported in the central and southern Negev Desert (Vaks et al., 2010). The results suggest that the calcrete and 

dolocrete studied here have been experiencing arid to hyperarid climates since the Pleistocene, alluding to the possible 20 

source of rain. A similar study conducted in the Thar Desert in India also inferred sedimentary rocks stable isotope patterns 

to paleoclimate (Andrews et al., 1998).  

To study the potential role of the BRC in the weathering process, its composition was characterised using FTIR as was 

previously reported (Sheng et al., 2010). We focused on the functional groups and element compositions in EPS or microbial 

aggregates and found a distinct peak in the BRC layers ranging between 1020 -1040 cm
-1

 in both limestone and dolomite 25 

rocks that was absent from the host rocks (Fig. 2B2b). This peak is indicative of the presence of EPS from bacterial origin 

(Shirshova et al., 2006), pointing to the significant components of asymmetric and symmetric stretching of PO2
-
 and P(OH)2 

in phosphate as well as vibrations of C-OH and C-C bonds found in polysaccharides and alcohols (Jiang et al., n.d.2004). 

These results provide a strong support for the biogenic nature of the crust, since EPS is a common feature of many if not 

most biofilms (Drews et al., 2006). The detected EPS could serve several functions in BRC such as dust -particle trap to 30 

collect the dust and its nutrients, a binding agent to individual members of the biofilm (Davey and O’toole, 2000), or a 

protective agent by decreasing evaporation and retaining moisture and shielding from radiation (Or et al., 2007; Roberson 

and Firestone, 1992). 

Based on these findings, we hypothesised that BRC could in fact act as a mitigator during the weathering process by 

clogging the pores on the surface of the rock and thereby minimising capillary rise. Consequently, crystallisation of 35 

dissolved salts, considered to be the primary mechanism for rock weathering, is mitigated. To test this hypothesis, we 

performed a desiccation experiment to estimate water loss from the rock surfaces covered with BRC. The results suggest that 

both in limestone and dolomite rocks water moves through the rock and is lost to evaporation two or three times faster in the 

absence of BRC than when it is present (Fig. 3). Considering that salt transport due to hydraulic movement is a dominant 

weathering mechanism (Huinink et al., 2004), reduced evaporation due to BRC coverage will also inevitably lead to decrease 40 

weathering rate. Moreover, the obtained results stand in contrast to similar measurements performed o n temperate sandy 

stones that showed no significant effect of BRC on water transport rates (Slavík et al., 2017).  

3.3 The microbial composition and origin of the BRCs 
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To elucidate the identity of the bacterial communities on the limestone and dolomite BRCs, we applied a multiplexed 

barcoded amplicon sequencing of the small subunit RNA gene (SSU rRNA). In addition, we compared the BRC 

communities to those of samples of the surrounding soil and settled dust in order to deduce the origin for the rock biofilm. 

As expected, we found poor and low-diversity of the BRC communities. The communities of the BRC showed an average of 

182 and 129 observed, 354 and 315 predicted phylotypes, and Shannon’s H was 3.8 and 3.3 (Fig. 4A4a; Table S23), for arid 5 

limestone and 129 observed, 315 predicted phylotypes and Shannon’s H was 3.3 for hyperarid dolomite, respectively, with 

no significant difference between the rock types.  

The surrounding soil was significantly richer and more diverse (P < 0.05) in the arid site (416 and 746 observed and 

predicted OTUs and Shannon’s H = 5.6 on average), and equally rich but slightly more diverse in the hyperarid site (221 and 

466 observed and predicted OTUs and Shannon’s H = 3.8, on average. The diversity of the dust samples were was as poor as 10 

the BRC’s (169 and 107 observed and predicted OTUs and Shannon’s H = 3.0 and 1.5, on average) and did not differ 

between sites (Fig. 4A4a; Table S32). The number of observed OTUs in the soil and their diversity scores were somewhat 

lower in this study compared to reports from similar environments (Barberán et al., 2014; Lang‐Yona et al., 2018; Šťovíček 

et al., 2017) however these could be due to sequencing technologies and depth. The lower richness and diversity in hyperarid 

vs arid samples and the BRC and dust vs. soil samples is expected and comparable with trends reported in other works 15 

(Angel and Conrad, 2013; Barberán et al., 2014; Lang ‐Yona et al., 2018).  

Beta-diversity analysis, using variance partitioning, showed statistically significant differences between samples on the 

OTU-level bybased on climate, sample type (i.e. rock, soil or dust), and to a small extent also via their interaction, using 

variance partitioning. These parametersvariables were found to significantly contribute to the differences in bacterial 

communities accounting for 22%, 40% and 3.8% of the total variance, respectively (Fig. 4B4b, Table S43). Pairwise 20 

comparisons further showed that the two BRCs significantly differed from one another (P < 0.01) and also from their 

surrounding soil and dust samples (P < 0.05 in all cases; Table S43). The bacterial community in the samples was typical for 

drylands, mostly dominated by members of the phyla Proteobacteria, and Actinobacteria followed by Deinococcus–

Thermus, Chloroflexi, Bacteroidetes, Cyanobacteria, Acidobacteria, Firmicutes, and Gemmatimonadetes (Fig . 4C4c, Table 

S45). Similar communities have repeatedly been reported for arid and hyperarid soils and rocks (Angel and Conrad, 2013; 25 

Barberán et al., 2014; Lang‐Yona et al., 2018). While cyanobacteria are typically the main primary producers in the soil and 

rock communities (Weber et al., 2016), recent studies showed that other autotrophs may also contribute significantly to the 

energy balance of these biofilms (Ji et al., 2017).  

The BRCs of the two rock types differed in the relative abundance and composition of major phyla. Most notably, 

Proteobacteria were significantly more dominant in the hyperarid compared to the arid sampl es (P = 0.02) comprising on 30 

average 21% and 44% of the community in the limestone and dolomite BRC, respectively. In contrast, the Actinobacteria 

showed an opposite trend (P = 0.03) comprising on average 42% and 21% of the community in the limestone and do lomite 

BRC, respectively. The two BRCs also differed in their composition of Firmicutes, Gemmatimonadetes and Chloroflexi (P < 

0.03; Fig. 4C4c, Table S45).  

The soil samples generally showed similar trends on the gross taxonomic level as their respective B RC samples. While none 35 

of the phyla differed significantly between the hyperarid BRC and the soil, the phyla Deinococcus–Thermus, Acidobacteria, 

Firmicutes, and Gemmatimonadetes significantly differed between limestone BRC and the surrounding arid soil (P < 0.04; 

Table S54). Lastly, the arid and hyperarid dust samples were dominated by members of the Proteobacteria, with other phyla 

comprising only a minor fraction of the community (with a notable exception of Bacteroidetes that dominated one of the dust 

samples). However, these differences were not significant, probably due to the small sample size (Table S45).  40 

Despite the general similarities in community composition between samples on the phylum level, many of the OTUs found 

in each sample were unique to the BRC, soil or dust as evident by the ternary diagrams (Fig. 4D4d). Direct analysis of the 

differences in the OTUs detected 130 (10%) differentially abundant OTUs in the dolomite BRC and 74 (6%) differentially 

abundant OTUs in the limestone BRC (Fig. 5S2). Similarly, several differentially abundant OTUs were also detected when 
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comparing the BRCs to their respective soil and dust samples. However, these differentially abundant OTUs were fewer, 

probably due to the small dust sample size (Fig. 5S2).  

The BRC bacterial communities were previously described (Kuhlman et al., 2006; Lang‐Yona et al., 2018; Wong et al., 

2010a, 2010b) but their origin and role in geomorphological processes were not considered. Our results su ggest that despite 

the similarity in morphology and magnitude of rock weathering features in the arid limestone and hyperarid dolomites, the 5 

two BRCs harboured distinct microbial communities, differing in over 16% of the OTUs and their composition at the 

phylum level. Moreover, despite the spatial proximity and continuous interaction between the limestone and dolomite 

surface to their respective surrounding soils and dust particles, the bacterial communities of the BRCs were distinct. The 

abilities of bacteria to disperse, settle and persist in a given location could be an important factor resulting in the 

biogeographic patterns observed here. The difference between arid and hyperarid soil communities could result from the 10 

local contribution of aeolian material that might affect the loess soil diversity (Crouvi et al., 2008). Alternatively, the 

hyperarid site experience slow pedological processes while arid soil formation was enhanced (Amit et al., 2011) resulting in 

disparate bacterial communities. The three matrices (BRC, soil and settled dust) studied here sparsely shared their bacterial 

communities and specifically, the BRC community had little in common with the soil or dust communities (Fig . 4). This 

demonstrates the ecological filtering effect of the rock surfaces, which imposes unique abiotic challenges on the microbes 15 

living on it (Horner-Devine & Bohannan, 2006). This also suggests that the BRCs cannot be regarded as passive deposits of 

microbial cells originating from the surrounding soil or dust, but rather it is a specific subset of adapted microbes that can 

persist and form a biofilm under these unique conditions.  

3.4 The role of BRC in arid rock weathering - synthesis 

Honeycomb weathering patterns are prevalent worldwide and are found in both humid and dry ecosystems. According to 20 

contemporary models, this form of weathering is the result of the transport of dissolved salts through the rock and their 

eventual crystallisation in surface pores, leading to fractures and eventual flaking of rock material (Rodriguez-Navarro et al., 

1999). In this study, we found that weathering patterns and magnitude are similar on rocks from both arid and hyperarid 

sites, despite the differences in precipitation and lithologies. In arid and hyperarid regions, BRCs were shown to form once 

the rock is exposed to the atmosphere (Pointing and Belnap, 2012). A developed crust of biological origin was 25 

microscopically and isotopically apparent on all weathered rocks and was shown to be supported by EPS (Fig. 2). Similar to 

weathering magnitude, the BRCs showed no observable differences in form or depth despite the different aridity and 

lithology. Both BRCs comprised bacterial taxa that are typical for xeric environments (Pointing and Belnap, 2012) and 

included many heterotrophs but also dominant phototrophs or otherwise autotrophic membe rs (Fig. 4). The two BRCs did 

differ in their bacterial communities at the OTU and higher taxonomical levels, demonstrating a discrepancy between 30 

composition and function. The BRC communities also differed from their surrounding soil and dust, indicative o f the 

specialism specialization of the colonising taxa to rock environment. In the absence of mineralized networks or case 

hardening (i.e., addition of cementing agent to rock matrix material) we conclude that calcrete and dolocrete were formed 

through the colonisation of microorganisms and the secretion of EPS, serving as a thin biofilm (Brantley et al., 2011; Weber 

et al., 2016).  35 

Our results further suggest that this biogenic layer mitigates evaporation and reduces wat er transport, hence alleviating salt 

crystallisation pressure in the rock pours (Scherer, 2004). Crystallization of calcium sulphate and sodium chloride solutions, 

which are abundant in these soils, was shown to build pressure within pores and stress rocks (Scherer, 2004; Sperling and 

Cooke, 1985). This process is enhanced under low relative humidity and rapid evaporation and compromises the durability 

of the rocks (Rodriguez-Navarro et al., 2003; Rodriguez-Navarro and Doehne, 1999). Our results suggest that the presence 40 

of BRC decreases evaporation rates (Fig. 3) and thus attenuate the crystallisation pressure and reduces damage to the rocks. 

Moreover, the BRC may also stabilise the rock following exfoliation preserving the weathered structure.  
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Arid weathering features, which lead to debris formation result from a dynamic balance be tween the erosive salt forces and 

the mitigating effects of the BRC. The role of microbial biofilms in the protection of surfaces from mineral weathering was 

extensively studied for biomineralisation and sedimentation processes (Adams et al., 1992; Dupraz et al., 2009). Yet, the role 

of BRC in weathering processes under atmospheric conditions in the desert has not been considered before. We propose that 

microbial colonisation of mineral surfaces protects the rocks from weathering by mitigating salt crystallisation and 5 

stabilising the weathered front. Rock weathering processes are typically believed to be controlled at different scales ranging 

from the climatic scale, down to local conditions at the site and eventually the microscale (Smith, 2009; Sperling and Cooke, 

1985; Viles, 2001). The results presented here suggest that in arid environments, microscale conditions determine the 

magnitude of weathering that shape the landscape.  
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Table 1: Geological parameters of the subjected lithologies. 

Rock properties Limestone (arid; Shivta Formation) Dolomite (hyperarid; Gerofit Formation) 

 Dolomite Calcium Quartz Dolomite Calcium Quartz 

BRC mineralogy (%) 0 95 3 90 2 1 

Host rock mineralogy (%) 0 95 0 95 0 1 

Porosity (%) 13.5 ± 2.2 8.25 ± 1.3 

Permeability (miliDarcy) 0.1 – 3.8 0.05 – 0.41 

Surface penetration resistance (kg cm
-1

) 100 – 365 130 – 230 



 
 

 

Figure 1: (a) Comparable weathering features in the exposed limestone and dolomite rocks on both sites as noted in field 

outcrops (hammer for scale, 30 cm long). (b) Visual presence of a rock crust with similar thickness (3-6 mm) in both rock 

types. The crust’s mineralogical composition matched that of the host rock. (c) Thin-section analysis of the rocks showing 

lamination structure in the BRCs. Dashed lines indicate the interface between BRC host rocks. BRC's mineralogy includes 5 

micritic to microsparitic dolomitic or calcitic crystals. 

  



 
 

 

Figure 2: (a) Carbon and oxygen isotope-ratio depth profiles of the limestone (top) and dolomite (bottom) BRC's in 

comparison to their host rocks. Fourier Transform Infrared (FTIR) analysis of limestone (top) and dolomite (bottom) BRCs 

indicating the presence of extracellular polymeric substances (EPS) molecules through the distinctive peak ranging between 

1020-1040 cm
-1

, which was absent from the host rocks. (b) Fourier Transform Infrared (FTIR) analysis of limestone (top) 5 

and dolomite (bottom) BRCs indicating the presence of extracellular polymeric substances (EPS) molecules through the 

distinctive peak ranging between 1020-1040 cm
-1

, which was absent from the host rocks. Carbon and oxygen isotope-ratio 

depth profiles of the limestone (top) and dolomite (bottom) BRC's in comparison to their host rocks.  

  



 
 

 

Figure 3: Desiccation of rock cores in the presence and absence of BRC as a function of time, following full hydration. The 

curves indicate a second-degree polynomial line fitting (all fitted curves were statistically significant from each other in 

ANOVA tests with P values < 0.01 and R
2
 > 0.95). 



 
 

 

 

Figure 4: Microbial community features of the BRCs, the surrounding soils and settled dust in the two studied sites. (a) Comparison of the richness in the form of observed no. of OTUs 

(S obs.) and the predicted number of OTUs (ACE index), and a comparison of α-diversity (Shannon’s H Index) between the different sample types. Identical lower-case letters indicate no 

statistical difference between groups in a Tukey’s HSD test. (b) Clustering of sample types using a PCoA ordination based on Horn-Morisita distance matrix. Identical lower-case letters 5 

indicate no statistical difference between groups in a pairwise PERMANOVA test. Ellipses denote 95% confidence intervals around the arid and hyperarid samples assuming multivariate 

normal distribution. (c) Composition of bacterial phyla in the different sample types (see Table S54 for results of statistical tests in the relative abundance of different phyla between 

sample types). (d) Relative contribution of each bacterial OTU to the community composition of each sample type. Top – arid site, bottom – hyperarid site (see Figure Fig. 5S2 for 

statistical detection of preferentially abundant OTUs between each sample-type pair. 



 
 

 

Figure 5: Detection of differentially abundant OTUs between each sample-type pair using ALDEx2. Each circle denotes a single OTU and its size is its average relative abundance across 

all samples. X-axis shows the classification of each OUT while the Y-axis shows the effect size in terms of log2 fold difference in relative abundance between each sample-type pair. Red 

circles are OTUs that show significant differential abundance at P < 0.05. 


