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Reply to comments by Petr Capek (RC1) 
 
General comments  
Zhao and co-authors present very interesting world-wide statistical analysis of soil physical 
and chemical characteristics variability in respect to climatic drivers. They create “biome” 
plots and maps of soil properties. The selected statistical approach is very innovative, which 
makes the manuscript sound and worth publishing. I am very skeptical about the direct 
causality. This issue is, however, relatively well covered in the discussion section of the 
manuscript. Nevertheless, there is one issue that is not covered in the discussion section at all 
and that is very important according to my opinion. Authors completely ignore soil orders and 
associated soil horizons. They report data for top 30 cm of soil. These 30cm can contain either 
single horizon or several very different horizons with very different physical and chemical 
properties.  My major concern surrounds the results presentation. Authors need to provide 
more information about the various statistical analyses they used to make Figures 4 – 6 and 
they also need to clarify various threshold they defined. The manuscript often contains either 
very vague or very strong statements unsupported by the results (see specific comments). For 
this type of presented results I think it is especially important to present uncertainty in 
quantitative terms. Any potential user of the extrapolated maps information/database should 
be aware of the limitations.  
Response: Thanks for your helpful comments. First, we fully agree that ignoring the role of 
soil orders and horizons might result in uncertainties. In different countries/regions, soil 
classification was originally reported based on several different soil classification systems, 
such as the Unified Soil Classification System, FAO system, USDA Soil Taxonomy, Russia 
Soil Classification system, Australian Soil Classification system, and Chinese Soil 
Classification System. These soil classification systems are based on different standards 
(Carter and Bentley, 2016) and it is difficult to harmonize them (Batjes et al., 2007) and thus 
to quantify the role of soil orders. Additional, it is the same case for data of soil horizons and 
we were not able to consider the role of soil horizons. In our database, soil depth was well 
documented, while some literature data (15% profiles) did not report horizon information. We 
thus estimated the soil properties by a fixed depth of 30 cm and the depth of 0-30 cm has been 
frequently used in the mapping and modelling of surface soil properties at regional and global 
scales (e.g., Batjes, 1997; Yang et al., 2010; Saiz et al., 2012; Wieder et al., 2013; Shangguan 
et al., 2014). In the revised manuscript we have discussed the uncertainties. Thanks for your 
understanding! 

Second, more details on the statistical analysis and the climate thresholds have been 
included for Figures 4-6 in the Methods session as follows: “For Figures 4-6, we first 
averaged soil property values for each MAT×MAP combination by a division of 1°C×100mm. 
We then plotted soil properties with climate variables. Specifically, a MAP at 500 mm is used 
to indicate a threshold for arid climates, while a MAT at 10 °C is used to separate relatively 
warmer and colder climates. The MAP threshold was based on the diagram of Holdridge life 
zone which used <500 mm to indicate arid climates (Holdridge, 1967). The threshold MAT 
was based on a universal thermal scale that used mean monthly temperature (approximately 
MAT) 10 °C to differentiate “cool” and colder from “mild” and warmer climates (Trewartha 
and Horn, 1980). 
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Additionally, we have carefully revised our manuscript according to your suggestions. 
Please see more details in our reply to your specific comments.  
 
Specific comments:  
Page 1, Lines 16 – 17: What is the “critical MAP for the transition from alkaline to acidic 
soil”? This is some model parameter?  
Response: This sentence has been modified as follows: “Our results show that soil pH 
decreases with increasing MAP. The ‘critical MAP’ here means the corresponding MAP at 
soil pH=7.0, which indicates a shift from alkaline to acidic soil”. 
 
Page 1, Line 18: two dots 
Response: Corrected. 
 
Page 1, Lines 18 – 19: I do not understand the meaning of the last sentence of the abstract. 
Can authors clarify its meaning?  
Response: Thanks for your suggestion. Our soil-climate-biome diagram implies strong effects 
of climate and biota on soil properties. Here we mean that soil properties may shift under 
global climate warming and land cover change. We have revised this sentence accordingly. 
 
Page 1, Lines 21 – 23: This is very vague statement that deserves more clarity.  
Response: Thanks. We have revised the sentence as “As a critical component of the Earth 
system, soils influence many ecological processes which provide fundamental ecosystem 
services.” The next sentences explain this statement by using specific examples. “Soil 
physical properties, such as bulk density and soil texture, are important for green water 
retention and the preservation of carbon (C) and nutrients (Hassink, 1997; Sposito et al., 1999; 
Castellano and Kaye, 2009; Stockmann et al., 2013), whereas soil chemical properties, such 
as soil acidity (pH), organic C, and nutrient contents, are essential regulators of nutrient 
availability and plant growth, further affecting biogeochemical cycles as well as 
vegetation-climate feedbacks (Davidson and Janssens, 2006; Chapin et al., 2009; Milne et al., 
2015)”. 
 
Page 1, Lines 25 – 26: Again, the statement is very vague. I would suggest more specific 
statement.  
Response: Thanks. We have revised the sentence as “soil chemical properties, such as soil 
acidity (pH), organic C, and nutrient contents, are essential regulators of nutrient availability 
and plant growth, further affecting C and nutrient cycling as well as vegetation-climate 
feedbacks”. 
 
Page 1, Lines 29 – 30: What doesn’t mean “soil stewardship for societal well-being” 
Response: We meant soil stewardship to secure soil function and thus sustainable ecosystem 
services for the human society. We have revised this sentence accordingly. 
 
Page 2, Lines 25 – 26: Please check the superscripts.  
Response: Thank you. Typo corrected. 
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Page 2, Line 30: Third and very important soil-forming factor is the bedrock. I think authors 
should mention it right away in the introduction, not only in discussion section. 
Response: Thanks for your suggestion. We have now mentioned the role of bedrock in the 
introduction section as follows: “Although parent material (e.g., bedrock) also plays an 
important role after climate and vegetation, it generally affects soil formation at a relatively 
long time scale (Chesworth, 1973) and particularly in the subsoil (Gentsch N et al., 2018). 
However, surface soils are dynamic in time and likely interacting more instantly with climate 
and vegetation (Weil et al., 2016)”. 
 
Page 3, Line 20: Please specify the type of pedologic data that GSD contains. Why these data 
wasn’t used in analysis? 
Response: Thanks for the suggestion. Our data base includes pedologic information on soil 
orders and soil horizons of sampled soil profiles. However, soil types were originally reported 
based on several different soil classification systems, such as the Unified Soil Classification 
System, FAO system, USDA Soil Taxonomy, Russia Soil Classification system, Australian 
Soil Classification system, and Chinese Soil Classification System. These soil classification 
systems define soil orders by different standards (Carter and Bentley, 2016) and it is difficult 
to harmonize them (Batjes et al., 2007) and thus quantify the role of soil orders. In our 
database, soil depth was well documented, while some literature data (15% profile) did not 
report horizon information. Therefore, we were not able to consider the role of soil horizons 
and simply estimated the soil properties by a fixed depth of 30 cm. In fact, the depth of 0-30 
cm has been frequently used in the mapping and modelling of surface soil properties (e.g., 
Batjes, 1997; Yang et al., 2010; Saiz et al., 2012; Wieder et al., 2013; Shangguan et al., 2014). 
By considering essential climate (mean annual temperature, mean annual precipitation, 
seasonality of air temperature, seasonality of precipitation), vegetation (mean annual 
normalized difference vegetation index, and land use type) and topography factors (elevation, 
slope) that are key to soil formation (Jenny, 1941), our regional Random Forest analysis is 
may partially constrain the uncertainties due to ignoring soil orders and associated soil 
horizons. In the revised manuscript we have discussed the uncertainties. Thanks for your 
understanding!  
 
Page 4, Line 4: Authors excluded 10% of all observations (those above and below 95% and 5% 
quantile respectively). Is there a specific reason for that? In the case of this dataset, it is very 
difficult to identify outliers. First 30 cm of soil can include one or several different soil 
horizons with very different physical and chemical properties. Values identified as outliers 
might be very likely correct and reflect the difference between different soil horizons of 
different soil orders. Quick look on Fig. 4a suggest to me that all peatlands were very likely 
removed from the dataset. For that reason I would strongly suggest to keep all data in the 
dataset. 
Response: Thanks for your suggestion. We are sorry that there is a misunderstanding for the 
proportion of data excluded as outliers. We understand that it is difficulty to identify outliers. 
Outliers were usually excluded based on a certain criteria to reduce noises and improve the 
accuracy of prediction (Pleijsier, 1989; Batjes et al., 2007; Jiménez-Muñoz et al., 2015). For 
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instance, two detection criteria are frequently used for outlier identification: 1) samples 
deviating more than three standard deviations from the mean (±3σ criterion, Jiménez-Muñoz 
et al., 2015); 2) samples falling outside the range above a certain upper quartile and/or below 
a certain lower quartile. The latter is useful when the dataset is not normally distributed. In 
our analysis, we divided the global land into 11 regions to overcome spatial biases of the 
database and samples above 97.5% and below 2.5% quantile were excluded in each region to 
obtain a robust variogram. In fact, we only excluded 5% of the data as outliers. We have 
mapped the excluded sites and found that these sites are distributed relatively random in space 
(Fig. R1). This implies that excluding the outliers doesn’t bias the datasets. In the revised 
manuscript, we have included maps for these excluded sites of observation in the 
supplements.  

As you have suggested, we have spent two weeks to conduct a reanalysis by using all 
data samples and compared the results with those excluding outliers. We found similar 
patterns and means of global surface soil properties based on all data samples (Fig. R2; Table 
R2), but the cross-validated R2 was obviously decreased for SOCD and STND, especially in 
US and Russia (Table R1). This implies that excluding outliers can improve the accuracy of 
prediction. We thus present the results based on the analysis excluding outliers in the main 
text and will also include the results by using all data samples in the supplement. If the 
reviewer prefers to present the results based on all data samples in the revised main text, we 
will do so accordingly.  

 
Fig R1. Distribution of global soil profiles. Outliers are plotted as a) green (<2.5%), and b) 
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red (>97.5%) circles (taking soil organic carbon data as an example). 

 
Figure R2. Map of worldwide soil properties in the upper 30-cm soil layer based on analysis using 
whole datasets. a, BD (bulk density, g cm-3); b, Sand fraction (%); c, Silt fraction (%); d, Clay 
fraction (%); e, pH; f, SOCD (soil organic carbon density, kg m-2); g, STND (soil total nitrogen 
density, kg m-2); and h, C:N ratio. 
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Table R1 Coefficient of determination (R2) of the Random Forest models. 
 

Region 
95%  ALL DATA  

Bulk 
density  

Content 
of sand 

Content 
of clay  pH SOCD  STND   Bulk 

density 
Content of 
sand 

Content of 
clay pH SOCD STND 

Tropical 
Asia 0.56  0.27  0.28 0.67 0.37 0.33  0.56 0.33 0.31 0.71 0.42 0.32 

Mexico 0.55  0.39  0.41 0.63 0.55 0.49  0.52 0.41 0.45 0.67 0.52 0.48 
Africa 0.50  0.44  0.41 0.64 0.512 0.50  0.44 0.49 0.43 0.64 0.58 0.43 
Continental 
US 0.27  0.50 0.44 0.62 0.50 0.46  0.28 0.54 0.46 0.66 0.39 0.43 

Canada & 
Alaska 0.33  0.43 0.49 0.56 0.46 0.40  0.37 0.48 0.53 0.59 0.41 0.39 

Russia 0.28  0.21 0.39 0.48 0.29 0.10  0.24 0.25 0.44 0.47 0.16 0.06 
South 
America 0.23  0.24 0.16 0.57 0.32 0.24/  0.28 0.22 0.19 0.6 0.3 0.17 

Europe 0.29  0.20 0.36 0.49 0.32 0.20  0.23 0.25 0.37 0.53 0.15 0.08 
East Asia 0.51  0.18 0.39 0.51 0.47 0.28  0.54 0.25 0.33 0.54 0.4 0.18 
Australia 0.46  0.65 0.47 0.28 0.47 0.31  0.47 0.67 0.5 0.31 0.51 0.32 
West Asia 0.55  0.31 0.41 0.62 0.58 0.36  0.49 0.3 0.37 0.66 0.51 0.41 
Notes: Values are the averaged R2 and RMSE from test dataset of 10-fold cross-validation. 
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Table R2. Mean values of surface (0-30 cm) soil properties by biome of the world based on analysis using whole datasets.  
 

Biome 
Area Bulk density Sand Silt Clay pH SOCD STND C:N ratio SOC stock STN stock 

(106 ha) (g·cm-3) (%) (%) (%)  (kg·m-2) (kg·m-2)  (Pg) (Pg) 

TroF 1877 1.27±0.10 42.26±9.39 27.39±7.69 30.36±6.11 5.29±0.73 5.71±1.66 0.48±0.13 11.83±1.73 107±0.56 9±0.05 

TemF 992 1.28±0.21 45.47±9.27 35.08±7.15 19.45±5.62 5.82±0.81 8.84±3.48 0.64±0.19 14.09±4.33 88±0.47 6±0.04 

BF 1435 1.16±0.13 49.82±9.03 33.07±6.15 17.11±4.57 5.39±0.32 11.09±3.60 0.67±0.16 16.90±5.21 159±1.94 10±0.21 

TSG 1915 1.34±0.10 48.07±13.17 25.80±16.65 26.12±9.02 6.26±0.79 3.83±1.66 0.32±0.13 12.33±4.30 73±0.62 6±0.04 

TGS 1148 1.30±0.16 45.48±10.87 34.51±10.22 20.01±6.72 7.01±0.59 5.33±2.47 0.55±0.20 10.14±3.43 61±0.41 6±0.05 
Deserts 2674 1.40±0.12 43.89±10.49 33.22±12.87 22.89±7.27 7.50±0.63 2.80±1.11 0.33±0.13 9.00±3.14 75±1.19 9±0.10 

Tundra 644 1.16±0.17 47.76±9.00 36.86±7.43 15.38±3.18 5.40±0.32 13.68±4.55 0.82±0.21 16.95±4.85 88±2.07 5±0.10 

Croplands 1984 1.34±0.15 40.68±11.31 33.27±10.10 26.05±7.03 6.41±0.74 6.57±2.83 0.58±0.23 11.38±2.42 130±0.50 12±0.09 

PW 159 1.23±0.12 40.61±9.32 34.25±8.16 25.15±6.20 5.85±0.53 9.81±4.16 0.73±0.24 13.58±4.37 16±0.16 1±0.04 
Total 12829 1.29±0.17 45.29±10.89 32.24±10.99 22.47±7.96 6.20±1.02 6.95±4.42 0.53±0.23 12.67±4.77 797±4.10 64±0.41 
Notes: We include croplands and permanent wetlands in this table, although they are not single biomes. Abbriations: TroF, Tropical forests; TemF, Temperate forests; 
BF, Boreal forests; TSG, Tropical savannahs and grasslands; TGS, Temperate grasslands and shrublands; PW, Permanent wetlands. Spatial variability of soil 
properties within each biome was estimated as standard deviations. Uncertainties of total SOC and STN stocks were estimated as standard deviations based on10-fold 
cross-validation. 
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Page 4, Line 18: Please check the superscript.  
Response: Typo corrected. Thanks. 
 
Page 4, Lines 24 - 25: Can authors clarify the uncertainty estimation of C to N ratio? The 
uncertainty of the ratio composed of two variables, each with its uncertainty, should be 
calculated differently than the uncertainty of a single variable. 
Response: Uncertainties of SOCD and STND were both assessed based on the bootstrap 
method. Specifically, a robust estimate was derived by averaging the 10-fold cross-validation 
samples, and the uncertainty of the estimates was calculated as the standard deviation (SD) of 
the 10-fold cross-validation. We only reported the uncertainties of SOCD and STND in Figure 
S3 and we believe they could jointly indicate the uncertainty of soil C:N ratio, which was 
calculated based on predicted SOCD and STND. We have clarified this information in the 
revised manuscript.  
   
Page 4, 2.4. Statistical analysis: Based on presented results, this section requires more detailed 
information. Most importantly, authors should clarify the statistics reported in figures 4 – 6. 
See also the specific comments bellow. 
Response: Thanks for your suggestion. Regarding figures 4-6, we first averaged soil property 
values using a MAT division of 1°C and a MAP division of 100mm. To explore the roles of 
MAT and MAP as well as their interactions, we then plotted soil properties with climate 
variables (MAT/MAP) by roughly distinguishing climate types (humid vs arid; warm vs cold). 
Specifically, a MAP at 500 mm is used to indicate a threshold for arid climates, while a MAT 
at 10 °C is used to separate relatively warmer and colder climates (see more information in 
our reply to the general comments above). We have added this information in the revised 
manuscript.  
 
Page 5, Line 15: Can authors also report here calculated total amounts of SOC and STN (Tab. 
1)? It would be very interesting to compare this estimate with previous estimates in respect to 
chosen statistical approach in the discussion section. The estimates reported in Tab. 1 doesn’t 
seem to me very different from previous estimates. Does it mean that the approach selected by 
authors is not so different in terms of the outputs?  
Response: Thanks for your suggestion. We have reported total storage of SOC and STN in 
the revised text. We also compare these values with previous estimates in the discussion 
section. Generally, our results of global SOC and STN storage in surface soils are similar to 
previous estimates (797 vs 716 Pg, Scharlemann et al., 2014; 63 vs 63-67 Pg, Batjes, 1996). 
By using climate, vegetation, topography and land use variables as predictors, our 
region-specific RF approach likely produces more robust global maps of soil properties in a 
finer spatial resolution. Moreover, uncertainties of the prediction have also been estimated. 
The regional RF analysis has several advantages over traditional approach, such as the ability 
to model non-linear relationships, handle both categorical and continuous predictors, and 
resist overfitting and noise features (Breiman, 2001).  
 
Page 5, Line 25: “soillayer”  
Response: Typo corrected. 
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Page 5, Line 26: The “saturation curve” is mentioned here for the first time. Why saturation 
curve, what does it mean and how it was calculated/estimated? All that should be thoroughly 
explained in the statistical analysis section. Also explain the term “saturation threshold”.  
Response: Precipitation favors net primary productivity (Del Grosso et al. 2008) and thus the 
C inputs into the soil. Moreover, precipitation intensifies weathering of the parent material 
and increases soil acidification, thus increasing formation of SOC-stabilizing minerals 
(Chaplot et al., 2010; Doetterl et al., 2015) and reducing decomposition of soil organic matter 
(Meier and Leuschner, 2010). Our results thus indicate that SOCD increased with MAP, while 
it didn’t exceed a certain threshold because of a constraint of C inputs (Del Grosso et al. 
2008). Thus, we used a saturation curve to indicate the relationship between surface SOCD 
and MAP (cold climate: SOCD = 0.0737×MAP/(1+0.0049×MAP); warm climate: SOCD = 
0.0144×MAP/(1+0.0016×MAP) ). Based on these curves, the saturation threshold for cold 
climate and warm climate were 14.5 kg C m-2 and 8.0 kg C m-2 (Fig R3), respectively. We 
have included more details in the revised manuscript. 

 
Fig R3. Changes in upper 30-cm soil organic carbon density (SOCD) with mean annual 
precipitation (MAP). We used MAT of 10 °C as a threshold of transition from cool to warm 
climate. Each dot shows the average value within each 1 °C MAT and 100 mm MAP. 
 
Page 5, Line 29: Authors should also explain the difference between “cold” and “warm” 
climates. How was the temperature threshold defined? How the arbitrary selected threshold 
affects the results? 
Response: Many thanks for your comments. We have now included more details on the 
definition and uncertainties of the MAT thresholds. In the revised manuscript, we used a MAT 
at 10 °C to separate relatively warmer and colder climates. The threshold MAT was based on 
a universal thermal scale that used mean monthly temperature (approximately MAT) 10 °C to 
differentiate “cool” and colder climate from “mild” and warmer climate (Trewartha and Horn, 
1980). We have tested the robustness of the trends by using different values of MAT (e.g., 8, 
10 and 12°C) and found similar trends (Fig. R4; taking SOC, STN and C:N ratio as an 
example). We have revised the manuscript accordingly. 
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Figure R4. Trends in SOCD (a, b, c), STND (d, e, f) and C:N (g, h, i) ratio with MAP with 
different segmentations of MAT(8, 10, and 12 °C).  
 
Page 6, Line 11 - 12: Again, this is very strong statement. Given the issues surrounding the 
true causality in the found relationships discussed in this section I would suggest to make a 
less strong statement. 
Response: We have revised the sentence as “The soil-climate-biome diagram demonstrates 
the quantitative linkages between surface soil physical properties and climate variables at the 
global scale”.  
  
Page 6, Line 30 - 31: The transition definition and calculation is not explained in statistical 
analysis section nor reported in results section. It is impossible to review these results without 
detailed explanation.  
Response: Thanks for your suggestion. Our results show that soil pH decreases with 
increasing MAP. The “critical MAP” here means the corresponding MAT at soil pH=7.0, 
which indicates a shift from alkaline to acidic soil. We then plotted the critical levels of MAP 
(100 mm division) at soil pH=7.0 with MAT. We have included these details in the revised 
statistical analysis section. 
  
Page 7, Line 10: Please check the subscript.  
Response: Typo corrected. 
 
Page 7, Line 12 - 20: C to N ratio does not represent very good proxy for substrate quality so 
the discussion is very speculative at this point.  
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Response: Thanks for your comments. We agree that C:N ratio in soil organic matter is not a 
good proxy of substrate quality. Instead, C:N ratio in soil organic matter is a result of 
long-term litter decomposition. The biological decomposition of litter is mainly carried out by 
microbial decomposers, including bacteria and fungi, and their grazers, which have lower C:N 
values compared with most litter types. This creates a high N demand by decomposers while a 
considerable fraction of assimilated C is respired during decomposition. Based on a synthesis 
of long-term experimental results, Manzoni et al., (2008) demonstrated that the C:N ratio of 
the litter decreased throughout decomposition. Therefore, we now use C:N ratios of soil 
organic matter to indicate the degree of decomposition. We have also revised the discussion 
accordingly (Page 9, line 22-26). 
 
Page 7, Line 21 - 24: This is very speculative. Isn’t the correlation simple given by the fact 
that plant derived organic material always contain C and N no matter what the limitation is?  
Response: Thanks for your comments. We have removed the speculative statements. We 
revised the sentence as “Previous meta-analyses indicate that C:N ratio in the soil is 
well-constrained at the global scale (Cleveland and Liptzin, 2007). Accordingly, our results 
indicate a strong correlation between STN density as SOC density (Fig. 8) and demonstrate a 
similar pattern of STN density as SOC density across space and climate regimes (Figs. 3 & 6)” 
(Page 9, line 20-25). 
 
Page 8, 4.4 Uncertainties in mapping soil properties at the global scale: Can authors quantify 
the uncertainty? According to Tab. S4, statistical model explains sometimes less than 20% of 
variability. In addition, 10% of all data were removed. I believe that the uncertainty is very 
important to state unambiguously so any potential user of the database and maps knows the 
limitations.  
Response: Thanks for your suggestions. Modelling uncertainty was calculated as the standard 
deviation (SD) of the 10-fold cross-validation. Figure R5 shows that uncertainties were 
relatively higher in regions with less recorded soil profiles, such as high-latitude Russia and 
Canada. Moreover, soil property data below 2.5% quantile and above 97.5% quantile were 
excluded as outliers and we have mended our description (see our reply above). Although the 
values of R2 is acceptable in most cases, we have also mentioned that our approach sometimes 
explains less than 20% of the variability due to several potential reasons, including limited 
sample size for some regions, data quality of original data, and limited independent variables 
used for modelling analysis. This has been discussed in detail in the revised manuscript. 
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Figure R5. Spatial pattern of uncertainties (standard deviation, SD, n=10) of soil properties in 
the upper 30-cm layer estimated by 10-fold cross-validation. a: Bulk density (g·cm-3); b: Sand 
(%); c: Clay (%); d: pH e: SOCD (kg·m-2); f: STND (kg·m-2). 
 
Page 8, Line 28: “Ourregion-specific”  
Response: Thanks. Typo corrected. 
 
Page 8 and 9, Conclusions: Again, very strong statements unsupported by the analysis.  
Response: We have revised the concluding paragraph as “By compiling a comprehensive 
global soil database, we mapped eight soil properties based on machine learning algorithms 
and assessed the quantitative linkages between soil properties, climate, and biota at the global 
scale. Our region-specific random forest model generated high-resolution (1km) predictions 
of soil properties, which can be potentially used as inputs for regional and global 
biogeochemical models. Our results also produced a global soil-climate-biome diagram, 
which indicates the quantitative linkages between soil, climate, and biomes. Given that 
significant changes in major soil properties may occur in view of global environmental 
change (Trumbore and Czimczik, 2008; Chapin et al., 2009; Todd-Brown et al., 2013; Luo et 
al., 2016, 2017), more efforts should be made to understand the dynamics of the global 
soil-climate-biome diagram”. 
   
Tables:  
I would suggest to show only R2 in table S4. It would improve the table alignment and 
reading.  
Response: Thanks for your suggestions. We would like to keep both because they are 
essential indicators of model prediction accuracy. 



13 
 

   
Figures:  
Fig. 4: I have concerns regarding MAP and MAT thresholds. Authors should clarify their 
definition and use. Specifically, arctic have typically low MAP but because of low MAT, their 
soils are very often water saturated. 
Response: We have now included more details on the definition and uncertainties of these 
thresholds. In the revised manuscript, we have now used a MAP at 500 mm to roughly 
indicate a threshold for humid and arid climates, and a MAT at 10 °C to separate relatively 
warmer and colder climates (see our reply above). The MAP threshold was based on the 
diagram of Holdridge life zone which used <500 mm to indicate arid climates (Holdridge, 
1967). The threshold MAT was based on a universal thermal scale that used mean monthly 
temperature (approximately MAT) 10 °C to differentiate “cool” and colder from “mild” and 
warmer climates (Trewartha and Horn, 1980). These thresholds were defined at global scale 
and we understand that these thresholds are not precise in some cases because of interactions 
between temperature and precipitation. For instance, soils can be relatively wet in regions 
with low MAP if low MAT doesn’t result in too much evaporation (e.g., arctic ecosystems). 
Nevertheless, using these thresholds can help us to demonstrate the interactions of MAT and 
MAP in affecting soil properties (Figs. 4, 5, 6 in the revised manuscript). Thanks for your 
understanding. 
   
Fig. 5: Please explain the part c of the figure in statistical analysis section. 
Response: Thanks for your comments. Our results show that soil pH decreases with 
increasing MAP. The “critical MAP” here means the corresponding MAT at soil pH=7.0, 
which indicates a shift from alkaline to acidic soil. To explore the role of MAT in regulating 
the critical MAP, we then plotted the critical levels of MAP (100 mm division) at soil pH=7.0 
with MAT. We have described this in the revised section of statistical analysis. 
   
Fig. 7: Results presented in this figure also require more information. How it was calculated? 
Was the increase of explained variability by a specific explanatory variable compared to null 
or some standard model?  
Response: Thanks for your comments. We have added the more detailed description in the 
methods section. Figure 7 indicated the relative importance of variables, denoted by the 
percent increase in mean-squared error (%IncMSE), which is estimated based on a permuting 
out-of-bag (OOB) method (Strobl et al., 2009 a &b). For each tree of the random forest, we 
compared the prediction error on the OOB portion of the data (MSE for regression) with that 
after permuting each predictor variable. The difference are then averaged over all trees, and 
normalized by the standard deviation of the differences. The relative percent (mean/SD) 
increase in MSE as compared to the out-of-bag rate (with all variables intact) was used to 
indicate the relative importance of each variable (Breiman, 2001). The results indicate that 
climates (MAT, MAP, TS, PS) and elevation are the most important variables for the 
prediction of each soil properties.  
 
 
Fig. 8: I did not find any reference to this figure in the main text. 
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Response: Thanks a lot. We have referred Figure 8 in the revised manuscript. For instance, 
“Our results demonstrate that STND as SOCD showed a similar pattern (Figs. 3, S6) and a 
tight link (Fig. 8) across the global scale”. 
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