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Reply to comments by Petr Capek (RC1) 
 
General comments  
Zhao and co-authors present very interesting world-wide statistical analysis of soil physical 
and chemical characteristics variability in respect to climatic drivers. They create “biome” 
plots and maps of soil properties. The selected statistical approach is very innovative, which 
makes the manuscript sound and worth publishing. I am very skeptical about the direct 
causality. This issue is, however, relatively well covered in the discussion section of the 
manuscript. Nevertheless, there is one issue that is not covered in the discussion section at all 
and that is very important according to my opinion. Authors completely ignore soil orders and 
associated soil horizons. They report data for top 30 cm of soil. These 30cm can contain either 
single horizon or several very different horizons with very different physical and chemical 
properties.  My major concern surrounds the results presentation. Authors need to provide 
more information about the various statistical analyses they used to make Figures 4 – 6 and 
they also need to clarify various threshold they defined. The manuscript often contains either 
very vague or very strong statements unsupported by the results (see specific comments). For 
this type of presented results I think it is especially important to present uncertainty in 
quantitative terms. Any potential user of the extrapolated maps information/database should 
be aware of the limitations.  
Response: Thanks for your helpful comments. First, we fully agree that ignoring the role of 
soil orders and horizons might result in uncertainties. In different countries/regions, soil 
classification was originally based on several different soil classification systems, such as the 
Unified Soil Classification System, FAO system, USDA Soil Taxonomy, Russia Soil 
Classification system, Australian Soil Classification system, and Chinese Soil Classification 
System. These soil classification systems are based on different standards (Carter and Bentley, 
2016) and it is difficult to harmonize them (Batjes et al., 2007) and thus to quantify the role of 
soil orders. Additional, it is the same case for data of soil horizons and we are not able to 
consider the role of soil horizons. In our database, soil depth was well documented, while 
some literature data (15% profiles) did not report horizon information. We thus estimated the 
soil properties by a fixed depth of 30 cm. Nevertheless, the depth of 0-30 cm has been 
frequently used in the mapping and modelling of surface soil properties at regional and global 
scales (e.g., Batjes, 1997; Yang et al., 2010; Saiz et al., 2012; Wieder et al., 2013; Shangguan 
et al., 2014). In the revised manuscript we have added more descriptions and discussed the 
uncertainties in both Methods and Discussions sessions. Thanks for your understanding! 

Second, more details on the statistical analysis and the climate thresholds have been 
included for Figures 4-6 in the Methods session as follows: “To explore the roles of MAT and 
MAP as well as their interactions, we averaged soil property values for each MAT×MAP 
combination by a division of 1°C×100mm and explored quantitative linkages between soil 
properties and climate variables (MAT/MAP) for different climate types (humid vs. arid; 
warm vs. cold). Specifically, we used a MAP threshold of 500 mm to differentiate relatively 
humid versus arid climates (Holdridge, 1967), while a MAT threshold of 10 °C was used to 
separate relatively warm and cold climates (Trewartha and Horn, 1980). To explore the role of 
MAT in regulating the critical MAP for a shift from alkaline to acidic soil, we further plotted 
the critical levels of MAP (100 mm division) at soil pH=7.0 with MAT.”   
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Additionally, we have carefully revised our manuscript according to your suggestions. 
Please see more details in our reply to your specific comments.  
 
Specific comments:  
Page 1, Lines 16 – 17: What is the “critical MAP for the transition from alkaline to acidic 
soil”? This is some model parameter?  
Response: This sentence has been modified as follows: “Soil pH decreased with higher MAP 
and lower MAT, and the ‘critical MAP’, which means the corresponding MAP at a soil pH of 
=7.0 (a shift from alkaline to acidic soil), decreased with lower MAT.” 
 
Page 1, Line 18: two dots 
Response: Corrected. 
 
Page 1, Lines 18 – 19: I do not understand the meaning of the last sentence of the abstract. 
Can authors clarify its meaning?  
Response: Thanks for your suggestion. Our soil-climate-biome diagram implies strong effects 
of climate and biota on soil properties. Here we mean that soil properties may shift under 
global climate warming and land cover change. We have revised this sentence accordingly. 
 
Page 1, Lines 21 – 23: This is very vague statement that deserves more clarity.  
Response: Thanks. We have revised the sentence as “As a critical component of the Earth 
system, soils influence many ecological processes that provide fundamental ecosystem 
services (Amundson et al., 2015; Milne et al., 2015; Adhikari and Hartemink, 2016)”. The 
next sentences explain this statement by using specific examples: “Soil physical properties, 
such as bulk density and soil texture, are important for water retention and the preservation of 
carbon (C) and nutrients (Hassink, 1997; Sposito et al., 1999; Castellano and Kaye, 2009; 
Stockmann et al., 2013; Jilling et al.,2018), whereas soil chemical properties, such as soil 
acidity (pH), organic C, and nutrient contents, are essential regulators of nutrient availability 
and plant growth, further affecting C and nutrient cycling as well as vegetation-climate 
feedbacks (Davidson and Janssens, 2006; Chapin et al., 2009; Milne et al., 2015) ”. 
 
Page 1, Lines 25 – 26: Again, the statement is very vague. I would suggest more specific 
statement.  
Response: Thanks. We have revised the sentence as “soil chemical properties, such as soil 
acidity (pH), organic C, and nutrient contents, are essential regulators of nutrient availability 
and plant growth, further affecting C and nutrient cycling as well as vegetation-climate 
feedbacks (Davidson and Janssens, 2006; Chapin et al., 2009; Milne et al., 2015).” 
 
Page 1, Lines 29 – 30: What doesn’t mean “soil stewardship for societal well-being” 
Response: We meant soil stewardship to secure soil function and thus sustainable ecosystem 
services for the human society. We have revised this sentence accordingly. 
 
Page 2, Lines 25 – 26: Please check the superscripts.  
Response: Thank you. Typo corrected. 
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Page 2, Line 30: Third and very important soil-forming factor is the bedrock. I think authors 
should mention it right away in the introduction, not only in discussion section. 
Response: Thanks for your suggestion. We have now mentioned the role of bedrock/parental 
material in the introduction section as follows: “Although parent material (e.g., bedrock) also 
plays an important role in affecting soil properties, it affects soil formation at a relatively long 
time scale (Chesworth, 1973), particularly in the subsoil (Gentsch et al., 2018). In addition, 
our soil-climate-biome diagram thus focuses on soil properties in the surface layer, given that 
surface soils are dynamic in time and likely interacting more instantly with climate and 
vegetation than deeper soils (Weil et al., 2016).”. 
 
Page 3, Line 20: Please specify the type of pedologic data that GSD contains. Why these data 
wasn’t used in analysis? 
Response: Thanks for the suggestion. Our data base includes pedologic information on soil 
orders and soil horizons of sampled soil profiles. However, soil pedologic information were 
originally reported based on several different soil classification systems, such as the Unified 
Soil Classification System, FAO system, USDA Soil Taxonomy, Russia Soil Classification 
system, Australian Soil Classification system, and Chinese Soil Classification System. These 
soil classification systems define soil orders by different standards (Carter and Bentley, 2016) 
and it is difficult to harmonize them (Batjes et al., 2007) and thus quantify the role of soil 
orders. In our database, soil depth was well documented, while some literature data (15% 
profile) did not report horizon information. Therefore, we were not able to consider the role of 
soil horizons and simply estimated the soil properties by a fixed depth of 30 cm. In fact, the 
depth of 0-30 cm has been frequently used in the mapping and modelling of surface soil 
properties (e.g., Batjes, 1997; Yang et al., 2010; Saiz et al., 2012; Wieder et al., 2013; 
Shangguan et al., 2014). By considering essential climate (mean annual temperature, mean 
annual precipitation, seasonality of air temperature, seasonality of precipitation), vegetation 
(mean annual normalized difference vegetation index, and land use type) and topography 
factors (elevation, slope) that are key to soil formation (Jenny, 1941), our regional Random 
Forest analysis may partially constrain the uncertainties due to ignoring soil orders and 
associated soil horizons. In the revised manuscript we have discussed the uncertainties. 
Thanks for your understanding!  
 
Page 4, Line 4: Authors excluded 10% of all observations (those above and below 95% and 5% 
quantile respectively). Is there a specific reason for that? In the case of this dataset, it is very 
difficult to identify outliers. First 30 cm of soil can include one or several different soil 
horizons with very different physical and chemical properties. Values identified as outliers 
might be very likely correct and reflect the difference between different soil horizons of 
different soil orders. Quick look on Fig. 4a suggest to me that all peatlands were very likely 
removed from the dataset. For that reason I would strongly suggest to keep all data in the 
dataset. 
Response: Thanks for your suggestion. We are sorry that there is a misunderstanding for the 
proportion of data excluded as outliers. In fact, we only excluded 5% of the data as outliers. 
We understand that it is difficulty to identify outliers, but outliers were usually excluded based 
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on a certain criteria to reduce noises and improve the accuracy of prediction (Pleijsier, 1989; 
Batjes et al., 2007; Jiménez-Muñoz et al., 2015). For instance, two detection criteria are 
frequently used for outlier identification: 1) samples deviating more than three standard 
deviations from the mean (±3σ criterion, Jiménez-Muñoz et al., 2015); 2) samples falling 
outside the range above a certain upper quartile and/or below a certain lower quartile. The 
latter is useful when the dataset is not normally distributed. In our analysis, we divided the 
global land into 11 regions to overcome spatial biases of the database and samples above 97.5% 
and below 2.5% quantile were excluded in each region to obtain a robust variogram. We have 
mapped the excluded sites and found that these sites are distributed relatively random in space 
(Fig. R1). This implies that excluding the outliers doesn’t bias the datasets. In the revised 
manuscript, we have included maps for these excluded sites of observation in the 
supplements.  

As you have suggested, we have spent two weeks to conduct a reanalysis by using all 
data samples and compared the results with those excluded the outliers. We found similar 
patterns and means of global surface soil properties when using all data samples (Fig. R2; 
Table R2), but the cross-validated R2 was obviously decreased for SOCD and STND, 
especially in US and Russia (Table R1). This implies that excluding the outliers can improve 
the accuracy of prediction. We thus present the results based on the analysis excluding outliers 
in the main text and also include the results by using all data samples in the supplement. If the 
reviewer prefers to present the results based on all data samples in the revised main text, we 
will do so accordingly.  

 
Fig R1. Distribution of global soil profiles. Outliers are plotted as a) green (<2.5%), and b) 
red (>97.5%) circles (taking soil organic carbon data as an example). 
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Figure R2. Map of worldwide soil properties in the upper 30-cm soil layer based on analysis using 
whole datasets. a, BD (bulk density, g cm-3); b, Sand fraction (%); c, Silt fraction (%); d, Clay 
fraction (%); e, pH; f, SOCD (soil organic carbon density, kg m-2); g, STND (soil total nitrogen 
density, kg m-2); and h, C:N ratio. 
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Table R1 Coefficient of determination (R2) of the Random Forest models excluded the outliers and using all data samples. 
 

Region 
95%  ALL DATA  

Bulk 
density  

Content 
of sand 

Content 
of clay  pH SOCD  STND   Bulk 

density 
Content of 
sand 

Content of 
clay pH SOCD STND 

Tropical 
Asia 0.56  0.27  0.28 0.67 0.37 0.33  0.56 0.33 0.31 0.71 0.42 0.32 

Mexico 0.55  0.39  0.41 0.63 0.55 0.49  0.52 0.41 0.45 0.67 0.52 0.48 
Africa 0.50  0.44  0.41 0.64 0.512 0.50  0.44 0.49 0.43 0.64 0.58 0.43 
Continental 
US 0.27  0.50 0.44 0.62 0.50 0.46  0.28 0.54 0.46 0.66 0.39 0.43 

Canada & 
Alaska 0.33  0.43 0.49 0.56 0.46 0.40  0.37 0.48 0.53 0.59 0.41 0.39 

Russia 0.28  0.21 0.39 0.48 0.29 0.10  0.24 0.25 0.44 0.47 0.16 0.06 
South 
America 0.23  0.24 0.16 0.57 0.32 0.24/  0.28 0.22 0.19 0.6 0.3 0.17 

Europe 0.29  0.20 0.36 0.49 0.32 0.20  0.23 0.25 0.37 0.53 0.15 0.08 
East Asia 0.51  0.18 0.39 0.51 0.47 0.28  0.54 0.25 0.33 0.54 0.4 0.18 
Australia 0.46  0.65 0.47 0.28 0.47 0.31  0.47 0.67 0.5 0.31 0.51 0.32 
West Asia 0.55  0.31 0.41 0.62 0.58 0.36  0.49 0.3 0.37 0.66 0.51 0.41 
Notes: Values are the averaged R2 and RMSE from test dataset of 10-fold cross-validation. 
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Table R2. Mean values of surface (0-30 cm) soil properties by biome of the world based on analysis using whole datasets.  
 

Biome 
Area Bulk density Sand Silt Clay pH SOCD STND C:N ratio SOC stock STN stock 

(106 ha) (g·cm-3) (%) (%) (%)  (kg·m-2) (kg·m-2)  (Pg) (Pg) 

TroF 1877 1.27±0.10 42.26±9.39 27.39±7.69 30.36±6.11 5.29±0.73 5.71±1.66 0.48±0.13 11.83±1.73 107±0.56 9±0.05 

TemF 992 1.28±0.21 45.47±9.27 35.08±7.15 19.45±5.62 5.82±0.81 8.84±3.48 0.64±0.19 14.09±4.33 88±0.47 6±0.04 

BF 1435 1.16±0.13 49.82±9.03 33.07±6.15 17.11±4.57 5.39±0.32 11.09±3.60 0.67±0.16 16.90±5.21 159±1.94 10±0.21 

TSG 1915 1.34±0.10 48.07±13.17 25.80±16.65 26.12±9.02 6.26±0.79 3.83±1.66 0.32±0.13 12.33±4.30 73±0.62 6±0.04 

TGS 1148 1.30±0.16 45.48±10.87 34.51±10.22 20.01±6.72 7.01±0.59 5.33±2.47 0.55±0.20 10.14±3.43 61±0.41 6±0.05 

Deserts 2674 1.40±0.12 43.89±10.49 33.22±12.87 22.89±7.27 7.50±0.63 2.80±1.11 0.33±0.13 9.00±3.14 75±1.19 9±0.10 

Tundra 644 1.16±0.17 47.76±9.00 36.86±7.43 15.38±3.18 5.40±0.32 13.68±4.55 0.82±0.21 16.95±4.85 88±2.07 5±0.10 

Croplands 1984 1.34±0.15 40.68±11.31 33.27±10.10 26.05±7.03 6.41±0.74 6.57±2.83 0.58±0.23 11.38±2.42 130±0.50 12±0.09 

PW 159 1.23±0.12 40.61±9.32 34.25±8.16 25.15±6.20 5.85±0.53 9.81±4.16 0.73±0.24 13.58±4.37 16±0.16 1±0.04 
Total 12829 1.29±0.17 45.29±10.89 32.24±10.99 22.47±7.96 6.20±1.02 6.95±4.42 0.53±0.23 12.67±4.77 797±4.10 64±0.41 
Notes: We include croplands and permanent wetlands in this table, although they are not single biomes. Abbriations: TroF, Tropical forests; TemF, Temperate forests; 
BF, Boreal forests; TSG, Tropical savannahs and grasslands; TGS, Temperate grasslands and shrublands; PW, Permanent wetlands. Spatial variability of soil 
properties within each biome was estimated as standard deviations. Uncertainties of total SOC and STN stocks were estimated as standard deviations based on10-fold 
cross-validation. 
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Page 4, Line 18: Please check the superscript.  
Response: Typo corrected. Thanks. 
 
Page 4, Lines 24 - 25: Can authors clarify the uncertainty estimation of C to N ratio? The 
uncertainty of the ratio composed of two variables, each with its uncertainty, should be 
calculated differently than the uncertainty of a single variable. 
Response: Uncertainties of SOCD and STND were both assessed based on the bootstrap 
method. Specifically, a robust estimate was derived by averaging the 10-fold cross-validation 
samples, and the uncertainty of the estimates was calculated as the standard deviation of the 
10-fold cross-validation. We only reported the uncertainties of SOCD and STND in Figure S3 
and we believe they could jointly indicate the uncertainty of soil C:N ratio, which was 
calculated based on predicted SOCD and STND. We have clarified this information in the 
revised manuscript.  
   
Page 4, 2.4. Statistical analysis: Based on presented results, this section requires more detailed 
information. Most importantly, authors should clarify the statistics reported in figures 4 – 6. 
See also the specific comments bellow. 
Response: Thanks for your suggestion. Regarding figures 4-6, we first averaged soil property 
values using a MAT division of 1°C and a MAP division of 100mm. To explore the roles of 
MAT and MAP as well as their interactions, we then plotted soil properties with climate 
variables (MAT/MAP) by roughly distinguishing climate types (humid vs arid; warm vs cold). 
Specifically, a MAP at 500 mm is used to indicate a threshold for arid climates, while a MAT 
at 10 °C is used to separate relatively warmer and colder climates (see more information in 
our reply to the general comments above). We have added this information in the revised 
manuscript.  
 
Page 5, Line 15: Can authors also report here calculated total amounts of SOC and STN (Tab. 
1)? It would be very interesting to compare this estimate with previous estimates in respect to 
chosen statistical approach in the discussion section. The estimates reported in Tab. 1 doesn’t 
seem to me very different from previous estimates. Does it mean that the approach selected by 
authors is not so different in terms of the outputs?  
Response: Thanks for your suggestion. We have reported total storage of SOC and STN in 
the revised text. We also compare these values with previous estimates in the discussion 
section. Generally, our results of global SOC and STN storage in surface soils are similar to 
previous estimates (797 vs 716 Pg, Scharlemann et al., 2014; 63 vs 63-67 Pg, Batjes, 1996). 
The regional RF analysis has several advantages over traditional approach, such as the ability 
to model non-linear relationships, handle both categorical and continuous predictors, and 
resist overfitting and noise features (Breiman, 2001). By using climate, vegetation, 
topography and land use variables as predictors, our region-specific RF approach likely 
produces more robust global maps of soil properties in a finer spatial resolution. Moreover, 
uncertainties of the prediction have also been estimated.  
 
Page 5, Line 25: “soillayer”  
Response: Typo corrected. 
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Page 5, Line 26: The “saturation curve” is mentioned here for the first time. Why saturation 
curve, what does it mean and how it was calculated/estimated? All that should be thoroughly 
explained in the statistical analysis section. Also explain the term “saturation threshold”.  
Response: Precipitation favors net primary productivity (Del Grosso et al. 2008) and thus the 
C inputs into the soil. Moreover, precipitation intensifies weathering of the parent material 
and increases soil acidification, thus increasing formation of SOC-stabilizing minerals 
(Chaplot et al., 2010; Doetterl et al., 2015) and reducing decomposition of soil organic matter 
(Meier and Leuschner, 2010). Accordingly, our results indicated that SOCD increased with 
MAP, while it didn’t exceed a certain threshold because of a constraint of C inputs (Del 
Grosso et al. 2008). Thus, we used a saturation curve to indicate the relationship between 
surface SOCD and MAP (cold climate: SOCD = 0.0737×MAP/(1+0.0049×MAP); warm 
climate: SOCD = 0.0144×MAP/(1+0.0016×MAP) ). Based on these curves, the saturation 
threshold for cold climate and warm climate were 14.5 kg C m-2 and 8.0 kg C m-2 (Fig R3), 
respectively. We have included more details in the revised manuscript. 

 
Fig R3. Changes in upper 30-cm soil organic carbon density (SOCD) with mean annual 
precipitation (MAP). We used MAT of 10 °C as a threshold of transition from cool to warm 
climate. Each dot shows the average value within each 1 °C MAT and 100 mm MAP. 
 
Page 5, Line 29: Authors should also explain the difference between “cold” and “warm” 
climates. How was the temperature threshold defined? How the arbitrary selected threshold 
affects the results? 
Response: Many thanks for your comments. We have now included more details on the 
definition and uncertainties of the MAT thresholds. In the revised manuscript, we used a MAT 
at 10 °C to separate relatively warmer and colder climates. The threshold MAT was based on 
a universal thermal scale that used mean monthly temperature (approximately MAT) 10 °C to 
differentiate “cool” and colder climate from “mild” and warmer climate (Trewartha and Horn, 
1980). We have tested the robustness of the trends by using different values of MAT (e.g., 8, 
10 and 12°C) and found similar trends (Fig. R4; taking SOC, STN and C:N ratio as an 
example). We have revised the manuscript accordingly. 
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Figure R4. Trends in SOCD (a, b, c), STND (d, e, f) and C:N (g, h, i) ratio with MAP with 
different segmentations of MAT(8, 10, and 12 °C).  
 
Page 6, Line 11 - 12: Again, this is very strong statement. Given the issues surrounding the 
true causality in the found relationships discussed in this section I would suggest to make a 
less strong statement. 
Response: We have revised the sentence as “The soil-climate-biome diagram demonstrates 
the quantitative linkages between surface soil physical properties and climate variables at the 
global scale”.  
  
Page 6, Line 30 - 31: The transition definition and calculation is not explained in statistical 
analysis section nor reported in results section. It is impossible to review these results without 
detailed explanation.  
Response: Thanks for your suggestion. Our results show that soil pH decreases with 
increasing MAP. The ‘critical MAP’ here means the corresponding MAT at soil pH=7.0, 
which indicates a shift from alkaline to acidic soil. We then plotted the critical levels of MAP 
(100 mm division) at soil pH=7.0 with MAT. We have included these details in the revised 
statistical analysis section. 
  
Page 7, Line 10: Please check the subscript.  
Response: Typo corrected. 
 
Page 7, Line 12 - 20: C to N ratio does not represent very good proxy for substrate quality so 
the discussion is very speculative at this point.  



11 
 

Response: Thanks for your comments. We fully agree that C:N ratio in soil organic matter is 
not a good proxy of substrate quality. We have thus removed this speculative statement in the 
revised manuscript. 
 
Page 7, Line 21 - 24: This is very speculative. Isn’t the correlation simple given by the fact 
that plant derived organic material always contain C and N no matter what the limitation is?  
Response: Thanks for your comments. We revised the sentence as “Previous meta-analyses 
indicated that C:N ratio in the soil was well-constrained at the global scale (Cleveland and 
Liptzin, 2007). Accordingly, our results indicated a strong correlation between STN density 
and SOC density (Fig. 8) and demonstrated a similar pattern of STN density as SOC density 
across biome and climate regimes (Figs. 3 & 6)” (Page 9, line 21-23). 
. 
 
Page 8, 4.4 Uncertainties in mapping soil properties at the global scale: Can authors quantify 
the uncertainty? According to Tab. S4, statistical model explains sometimes less than 20% of 
variability. In addition, 10% of all data were removed. I believe that the uncertainty is very 
important to state unambiguously so any potential user of the database and maps knows the 
limitations.  
Response: Thanks for your suggestions. Modelling uncertainty was calculated as the standard 
deviation (SD) of the 10-fold cross-validation. Figure R5 shows that uncertainties were 
relatively higher in regions with less recorded soil profiles, such as high-latitude Russia and 
Canada. Moreover, soil property data below 2.5% quantile and above 97.5% quantile were 
excluded as outliers and we have mended our description (see our reply above). Although the 
values of R2 is acceptable in most cases, we have also mentioned that our approach sometimes 
explains less than 20% of the variability due to several potential reasons, including limited 
sample size for some regions, data quality of original data, and limited independent variables 
used for modelling analysis. This uncertainty has been discussed in detail in the revised 
manuscript. 



12 
 

 
Figure R5. Spatial pattern of uncertainties (standard deviation, SD, n=10) of soil properties in 
the upper 30-cm layer estimated by 10-fold cross-validation. a: Bulk density (g·cm-3); b: Sand 
(%); c: Clay (%); d: pH e: SOCD (kg·m-2); f: STND (kg·m-2). 
 
Page 8, Line 28: “Ourregion-specific”  
Response: Thanks. Typo corrected. 
 
Page 8 and 9, Conclusions: Again, very strong statements unsupported by the analysis.  
Response: We have avoided strong statements and revised the concluding paragraph as “By 
compiling a comprehensive global soil database, we mapped eight surface soil properties 
based on machine learning algorithms and assessed the quantitative linkages between soil 
properties, climate, and biota at the global scale. Our region-specific random forest model 
generated high-resolution (1km) predictions of surface soil properties, which can be 
potentially used as inputs for regional and global biogeochemical models. Our results also 
produced a global soil-climate-biome diagram, which indicates the quantitative linkages 
between soil, climate, and biomes. Given that significant changes in major soil properties may 
occur in view of global environmental change (Trumbore and Czimczik, 2008; Chapin et al., 
2009; Todd-Brown et al., 2013; Luo et al., 2016, 2017), more efforts should be made in future 
to understand the dynamics of the global soil-climate-biome diagram.” 
   
Tables:  
I would suggest to show only R2 in table S4. It would improve the table alignment and 
reading.  
Response: Thanks for your suggestions. We would like to keep both because they are 
essential indicators of model prediction accuracy. 
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Figures:  
Fig. 4: I have concerns regarding MAP and MAT thresholds. Authors should clarify their 
definition and use. Specifically, arctic have typically low MAP but because of low MAT, their 
soils are very often water saturated. 
Response: We have now included more details on the definition and uncertainties of these 
thresholds. In the revised manuscript, we have now used a MAP at 500 mm to roughly 
indicate a threshold for humid and arid climates, and a MAT at 10 °C to separate relatively 
warmer and colder climates (see our reply above). The MAP threshold was based on the 
diagram of Holdridge life zone which used <500 mm to indicate arid climates (Holdridge, 
1967). The threshold MAT was based on a universal thermal scale that used mean monthly 
temperature (approximately MAT) 10 °C to differentiate “cool” and colder from “mild” and 
warmer climates (Trewartha and Horn, 1980). These thresholds were defined at global scale 
and we understand that these thresholds are not precise in some cases because of interactions 
between temperature and precipitation. For instance, soils can be relatively wet in regions 
with low MAP if low MAT doesn’t result in too much evaporation (e.g., arctic ecosystems). 
Nevertheless, using these thresholds can help us to demonstrate the interactions of MAT and 
MAP in affecting soil properties (Figs. 4, 5, 6 in the revised manuscript). Thanks for your 
understanding. 
   
Fig. 5: Please explain the part c of the figure in statistical analysis section. 
Response: Thanks for your comments. Our results show that soil pH decreases with 
increasing MAP. The “critical MAP” here means the corresponding MAT at soil pH=7.0, 
which indicates a shift from alkaline to acidic soil. To explore the role of MAT in regulating 
the critical MAP, we then plotted the critical levels of MAP (100 mm division) at soil pH=7.0 
with MAT. We have described this in the revised section of statistical analysis. 
   
Fig. 7: Results presented in this figure also require more information. How it was calculated? 
Was the increase of explained variability by a specific explanatory variable compared to null 
or some standard model?  
Response: Thanks for your comments. We have added the more detailed description in the 
methods section. Figure 7 indicated the relative importance of variables, denoted by the 
percent increase in mean-squared error (%IncMSE), which is estimated based on a permuting 
out-of-bag (OOB) method (Strobl et al., 2009 a &b). For each tree of the random forest, we 
compared the prediction error on the OOB portion of the data (MSE for regression) with that 
after permuting each predictor variable. The difference are then averaged over all trees, and 
normalized by the standard deviation of the differences. The relative percent (mean/SD) 
increase in MSE as compared to the out-of-bag rate (with all variables intact) was used to 
indicate the relative importance of each variable (Breiman, 2001). The results indicate that 
climates (MAT, MAP, TS, PS) and elevation are the most important variables for the 
prediction of each soil properties.  
 
 
Fig. 8: I did not find any reference to this figure in the main text. 
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Response: Thanks a lot. We have referred Figure 8 in the revised manuscript. For instance, 
“Our results demonstrate that STND as SOCD showed a similar pattern (Figs. 3, S6) and a 
tight link (Fig. 8) across the global scale”. 
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Reply to comments by Anonymous Referee #4 (RC2) 
 
Comment #1: The article by Zhao et al., present an interesting global dataset for some soil 
parameters, linking these properties with climate and biota. Nevertheless, there are several 
issues that should be clarified and discussed in much more details. The mentioned databases 
report row data for soil profiles, while the authors use also some parameters which are 
derived from these data (e.g. SOC and SON stocks). How these data were derived and 
harmonized should be better explained, since in the paper they are used to derive the linkages 
between soil, climate and biota. For the soil profiles in the different databases, were used only 
the soil layers having all the necessary parameters useful to calculate the stocks of C and N? I 
am referring in particular to Bulk density and rock fragments content. If not, how the authors 
were dealing with this fact? They were using pedotransfer functions to derive bulk density? 
And if rock fragments content was missing? Since these two parameters are affecting very 
much the stock the authors should make an effort in explaining how the database were 
harmonized. The discussion is sometimes weak. For instance the authors found a correlation 
between bulk density, MAT and MAP. Similarly the all variation in relation to MAT and 
MAP? The discussion on the observed differences between ecosystems is quite poor. Not so 
many recent references are considered for the discussion. The effect of the vegetation on the 
selected soil parameters should be better considered and discussed. 
Response: Thanks for your helpful comments. We have revised the manuscript according to 
your suggestions: 

First, we have included more details on the method to compile our global soil database 
(also see our reply to comment #2). Specially, SOC/SON stocks were calculated based on 
bulk density and concentrations of SOC/SON. We directly calculated the stocks of SOC and 
SON when all the necessary parameters were available. In the case that bulk density was not 
measured while SOC content was reported, we made estimates of bulk density based on 
regional-specific pedotransfer functions (Yang et al. 2007; Abdelbaki, 2018) and further 
estimated SOC/SON stocks. We first established empirical relationship between bulk density 
and SOC content in each regions (Table R1) and further estimated bulk density based on 
measured SOC for the soil profiles with missing data for bulk density. Overall, there were 42% 
profiles with measured data on bulk density and 58% profiles with estimated data on bulk 
density. We agree that correction for rock fragment is important to estimate soil C stocks, but 
it remains a global challenge because existing databases usually contain limited information 
on gravel fractions than bulk density and SOC concentrations (Jandl et al., 2014). 
Nevertheless, the inclusion of gravel and roots > 2 mm has been evidenced to exert a 
relatively low influence on the calculation of SOC stocks in the surface soil layer (0-30 cm), 
mainly due to the fact that surface soil usually contains a low proportion of gravels (Saiz et al., 
2012). Currently, we assumed no rock fragment or rock issue had been handled if it was not 
reported, but we might use the mean gravel fractions of each vegetation type or soil orders as 
a potential correction factor. Nevertheless, this approach might also result in new uncertainty 
if used at the global scale. We may conduct such an analysis to deal with the gravel issue if 
the reviewer support this idea.  

Second, we have improved the discussion section by 1) discussing the potential causes 
for the correlations between soil physical properties (bulk density and soil texture) and 



climate (MAT and MAP), 2) discussing the shifts of soil properties across biomes and the 
interactions between soil and vegetation, and 3) including more recent references. Please find 
more details in our reply to comments #6, 7, 8, 10 and associated references. 
 
Table R1 Empirical regression models for relationship between bulk density (BD, g cm-3) and soil 
organic carbon content (SOC, %) for each region. 
Region Model R2 Num 
Tropical Asia BD = 1.336e- 0.054 SOC 0.26 765 
Mexico BD = 1.380e-0.061 SOC 0.63 1243 
Africa BD = 1.480e-0.073 SOC 0.30 3770 
Continental 
US 

BD = -0.173ln(SOC) + 1.382 0.45 1239 

Canada BD = 1.507e-0.027 SOC 0.20 163 
Russia BD = -0.222ln(SOC) + 1.287 0.59 777 
South 
America 

BD = -0.07ln(SOC) + 1.233 0.15 2105 

Europe BD = 1.4661e-0.041 SOC 0.60 2391 
East Asia BD = 1.4719e-0.08 SOC 0.35 634 
Australia BD = 1.3319e-0.062 SOC 0.74 167 

 
Comment #2: Specific comment: Page 3 Line 5-10: “Compiled”. And what about 
harmonization of the data? 
Response: Thanks for your reminder! We have included more details on the methods of data 
screening and compiling in the revised manuscript and supplement. Along with ground-truth 
soil profile data (Table S1), we have also derived general information of soil sampling (site 
location, sampling time, source of data), pedologic information on soil orders and the 
horizons of the sampled soil profiles, mean annual temperature (MAT), mean annual 
precipitation (MAP), seasonality of air temperature (TS, calculated as 
100×SDmonthly/Meanmonthly), seasonality of precipitation (PS), mean annual normalized 
difference vegetation index (NDVI), elevation (global digital elevation map [DEM]), slope, 
and land use type for each recorded site (Table R1). Specifically for each profile, we recorded 
data on the number of horizon, top and bottom depth, and values of soil physical properties 
(sand/silt/clay fraction [%], gravel content [>2mm, %], bulk density [g/cm3]), and chemical 
properties (pH, organic carbon content [%]; and total nitrogen content [%]) (Table R2).  
 
Data harmonization was conducted by four steps. First, we screened sampling and 
measurement approaches of each soil property and excluded data those were not comparable 
to others in methodology. For instance, geographic coordinate data were included only when 
WGS84 or a geographic coordinate system that could be converted to WGS84 projection was 
used; Soil texture data were included only when the internationally accepted particle size 
class were used (clay < 2 μm < silt < 50 μm < sand < 2000 μm). This allowed us to construct 
a database of soil properties with comparable methodology. Second, we excluded records 
with no information on the target soil depth (0-30cm). In case that soil organic matter was 
measured instead of SOC, we used a Bemmelen index (0.58) to convert soil organic matter 



into SOC. If data of bulk density were not provided, we estimated them based on 
regional-specific pedotransfer functions (Schaap and Leij, 1998; Yang et al., 2007; Abdelbaki, 
2018) (Table R1). Specifically, we established empirical relationship between bulk density 
and SOC content to estimate bulk density based on measured SOC for those cases with 
missing data of bulk density. There were 42% profiles with measured data on bulk density 
and 58% profiles with estimated data on bulk density. It is true that the correction for rock 
fragment is important for the estimation of soil C stocks, but it remains a global challenge 
because existing databases usually contain limited information on gravel fractions (Jandl et al., 
2014). Nevertheless, the inclusion of gravel has been evidenced to exert a relatively low 
impact on the calculation of SOC stocks in the surface soil layer (0-30 cm), mainly due to the 
fact that surface soil usually contains a low proportion of gravels (Saiz et al., 2012). Therefore, 
we assumed no rock fragment or the rock issue had been handled once it was not reported. 
Finally, we extracted data on soil properties of the 0-30cm soil depth and calculated the 
means of each soil property. SOC (STN) density was calculated based on bulk density and 
SOC (STN) content. We have also revised the section on data set in the revised manuscript. 

 
Table R2 Information recorded in GSD. 

Site Data  Horizon Data 

Profile IDa Profile ID & Horizon Idb 
  
General: General: 
Source of data Horizon number 
Description of year depth, top 
Soil classification depth, bottom 
  
Site location and information: Physical attributes: 
Location (description, region/ country) Sand/Silt/Clay fraction (%) 
Latitude & Longitude Gravel content (>2mm, %) 
Climate (MAT & MAP) Bulk density (g/cm3) 
Elevation/ slope/ aspect  
Parent material Chemical attributes: 
Land use Organic carbon (%) 
 Total Nitrogen (%) 
 pH-H2O 

a. unique identifier for profile in GSD. b. Unique reference number for horizon within a 
profile. c. sand, 2.0-0.05mm; silt, 0.05-0.002mm, and clay, <0.002mm. 
 
Comment #3: Page 3 Line 20-30: Since most of the soil profiles were collected a very 
different range of years, how the climate was related to the properties? What you mean with 
pedological information? The fact the soil profiles data are presented by horizons? 
Response: Thanks for your comments. First, we know that soil profile data were measured 
across a very different range of years, and we used multiple-year mean values of climate 
variables in our analysis because soil properties were formed by subjecting to a climate for a 



long term. As 96% of soil profiles in GSD were sampled during 1950 to 2000, we used 
multiple-year (1950-2010) averages of climatic variables from WorldClim database. Second, 
our database includes pedological information on soil orders and soil horizons of sampled soil 
profiles. We calculated surface soil properties (0-30 cm) based on data for each horizon. We 
have extended the discussion accordingly in the revised manuscript. 
 
Comment #4: Page 5 line 20-25: What is the meaning of providing a mean global value for 
SOC and SON? 
Response: We realized that this sentence doesn’t belong here because this paragraph presents 
results on spatial patterns of soil properties. In the revised manuscript, we have moved this 
sentence to the end paragraph of section 3.2, which demonstrated results of the density and 
stocks of SOC and STN at global scale. 
 
Comment #5: Page 6 line 5: In brackets (MAT < 400 mm) is probably MAP rather than 
MAT?  
Response: Typo corrected. 
 
Comment #6: Page 6 line 20-30: the fact that bulk density is affected by precipitation and 
temperature should be better discussed. Similarly the increases in clay content in relation to 
MAT and MAP. How soil erosion affect the clay fraction? Is soil erosion selective for the 
clay? And Silt and Sand? An effect of the actual land use on bulk density should also be 
pointed out in the discussion.  
Response: Thanks for your comments and suggestions. In the revised manuscript, we have 
discussed the effects of climate, soil erosion and land use on soil physical properties (e.g., 
bulk density and soil texture).  

First, the increase of bulk density with higher MAT and lower MAP is likely due to an 
accompanying decrease of SOCD (Ruehlmann and Körschens, 2009), which is jointly 
regulated by MAT and MAP (Fig. R1; see more discussion on the effect of climate on SOCD 
in section 4.3; Wiesmeier et al., 2019). Higher MAT and MAP can accelerate the rate of 
weathering (Jenny, 1941; Lal, 2018), thus resulting in lower sand fraction and higher soil clay 
fraction. 

Second, previous studies indicate that silt is most sensitive to soil erosion, while sand is 
less mobile due to high weight and clay is protected by soil aggregates (Wischmeier and 
Mannering, 1969; Torry et al., 1997; Wang et al., 2013).  

Third, the effect of land use is important at a local scale. For instance, a change of forest 
or grassland to croplands can significantly decrease SOCD and thus decrease soil bulk density, 
while reforestation generally increases SOCD and thus decreases soil bulk density (Don et al., 
2011). However, our static mapping of global soil properties is not able to account for the 
effect of temporal land use change.  



 
Figure R1. Changes in SOCD with MAT and MAP. 

 
Comment #7: Page 7 line 5-10: The fact that in the tropical area Clay and bulk density 
decrease with altitude how can be explained? Which is the meaning of this decrease?  
Response: Thanks for your suggestion. We have discussed the possible causes for the 
altitudinal trends of bulk density and clay, which is similar to the trends across latitudes. First, 
the decrease of clay fraction with higher altitude is likely due to 1) a younger soil age (Waite 
and Sack, 2011), 2) lower weathering rate under lower temperature (Grieve et al., 1990; 
Kramer and Chadwick, 2016), and 3) a downslope translocation of surface soil to lower 
altitude. Second, the decrease of bulk density with altitude is likely due to an increase in SOC 
retention (Fig. R2f), which mainly results from low rate of decomposition along with lower 
temperature (Grieve et al., 1990 ; Kramer and Chadwick, 2016).  
 

 
Figure R2. Changes in surface soil properties with elevation in tropical regions. a: Bulk 
density (g·cm-3); b: Sand (%); c: Silt (%); d: Clay (%); e:Ph; f: SOCD (kg C·m-2); g: 
STND (kg N·m-2); h: C:N ratio. 
 
Comment #8: Figure 2: SOC density box Looking at the SOC density it appear that there is 
quite a lot of C in the North Mediterranean area, which is usually quite poor in SOC due to 
the continuous use of the land for agricultrue since millennia. On the other side also the area 
covered by tropical primary forests in Africa (e.g. Congo basis) seems to be relatively poor? 
How they authors can explain these facts?  
Response: Thanks for your comments. We have mapped the original records of SOCD on the 
map in North Mediterranean croplands and found similar results as the mapped values (Fig. 



R3). As indicated by a meta-analysis, croplands have significantly lower SOCD as compared 
with local plantation, forest and grassland (Don et al., 2011). In the North Mediterranean 
region, an increase in the area of olive plantation and vineyard in last decades might have 
contributed to the relatively high values of SOCD (Parras-Alcántara et al., 2013). We have 
separately mapped SOCD for global croplands (Fig. R3) and the values of SOCD in North 
Mediterranean area were not as high as the impression by Figure 2 in the manuscript. This is 
likely a visual illusion due to a mix of croplands with natural vegetation.  

Due to fast turnover with rapid decomposition of organic matter, SOC content has been 
evidenced to be relatively poor in tropical forests (e.g., Congo and Amazon tropical forests) 
(Wang et al., 2018). Accordingly, previous mappings of SOCD have also shown relatively 
low values in tropical forests (Köchy et al., 2015; Jackson et al., 2017). 

 

Figure. R3. Site records (a) and spatial variations (b) of SOCD in croplands. 
 
Comment #9: Bulk density box How the authors explain the very high values of BD for the 
United states? Why they are so high compared to other regions. Apparently in the USA there 
are not so many differences in BD in relation to the different ecosystems (e.g. Forests vs. 
grassland vs cropland)  
Response: Thanks for the comments. We have summarized the original records of bulk 
density for each 11 regions (Table R3). The results showed that mean regional bulk density 
was also relatively high in the continental United States. We have further summarized the 



original records of bulk density for forests, grassland and cropland in the US. We also found 
that bulk density of forests, grassland and cropland didn’t show much difference (Table R4). 
Overall, our mapping of bulk density is in consistent with the pattern based on raw data and is 
similar to previous mapping on global bulk density (Hengl et al., 2014; Shangguan et al., 
2014 ).  
 

Table R3 Mean values of sampled bulk density data for each region in the GSD. 
 Bulk density (g·cm-3) 
Region Mean SD Number 
Tropical Asia 1.33 0.23 860 
Mexico 1.22 0.26 316 
Africa 1.37 0.16 3740 
Continental US 1.57 0.22 9322 
Canada 1.25 0.32 790 
Russia 1.12 0.28 386 
South America 1.21 0.19 1764 
Europe 1.27 0.30 1527 
East Asia 1.29 0.20 2762 
Australia 1.12 0.27 162 
West Asia 1.48 0.20 333 
Alaska 1.07 0.35 79 
Total 1.33 0.23 860 

 
Table R4 Mean values of sampled bulk density data for each biomes in the Continental US. 

 Bulk density (g·cm-3) 
Continental US Mean SD Number 
Forest 1.57 0.28 1588 
Shrub 1.64 0.27 1096 
Grassland 1.56 0.20 2560 
Cropland 1.54 0.15 3084 
All* 1.57 0.22 9322 
Note: Mean measured bulk density was not shown for savanna, wetlands and sparse vegetation 
because of limited sample size (<100). However, these biomes were also used to calculated 
regional mean of all biomes. 
 
Comment #10: Table 1. The BD of cropland appear to be similar to those of savanna and 
grassland. How it can be explained? Similarly, concerning the SOC stock how it can be 
explained that cropland have similar values of tropical forests? 
Response: Thanks. Table 1 shows global means of soil property across biomes. However, 
bulk density shows significant spatial variation within savanna and grasslands (Fig. R4a) as 
well as croplands (Fig. R4b). Generally, bulk density ranged from ~1.0 to ~1.7 g·cm-3 in 
savanna and grasslands (Fig. R4a), and it ranged from ~1.1 to ~1.7 g·cm-3 in croplands (Fig. 
R4b). Considering the large spatial variation in soil properties and limited overlap in spatial 
distribution, it is difficult to attribute reasons to the difference of global means between 



croplands and other biomes. This is the same for the comparison of global mean SOCD 
between croplands and tropical forests (Fig. R5). SOCD in tropical forests generally ranged 
from 3 to 10 kg·m-2, while it ranged from 2 to 12 kg·m-2 in croplands. When comparing values 
at a same region (e.g., southeast Asia), SOCD is obviously lower in croplands than in tropical 
forests (compare Fig. 5a and Fig. 5b). This difference has been also evidenced by 
meta-analysis based on field observations (Don et al., 2011). 

 

Figure. R4. Spatial variations of bulk density in (a) savanna and grassland, and (b) croplands.   
 



 
Figure. R5. Spatial variations of SOCD in (a) tropical forests, and (b) croplands.   
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Abstract. Surface soils interact strongly with both climate and biota and provide fundamental ecosystem services that 

maintain food, climate, and human security. However, the quantitative linkages between soil properties, climate, and biota at 10 

the global scale remain unclear at the global scale. By compiling a comprehensive global soil database, we mapped eight 

major soil properties (bulk density; clay, silt, and sand fractions; soil pH; soil organic carbon [SOC] density; soil total 

nitrogen [STN] density; and soil C:N mass ratios) in the surface (0-30 cm) soil layer (0-30 cm) based on machine learning 

algorithms, and demonstrated the quantitative linkages between surface soil properties, climate, and biota at the global scale, 

which we call (i.e., the global soil-climate-biome diagram). On the diagram, bulk density increased significantly with higher 15 

mean annual temperature (MAT) and lower mean annual precipitation (MAP); soil clay fraction increased significantly with 

higher MAT and MAP; Soil pH decreased with higher MAP and lower MAT, and the ‘critical MAP’, which means the 

corresponding MAP at a soil pH of =7.0 (a shift from alkaline to acidic soil), for the transition (pH=7) from alkaline to acidic 

soil decreased with decreasinglower MAT; SOC density and STN density both were jointly affected by MAT and MAP,  

showing an increase at lower MAT and a saturation tendency towards higher MAP. Surface soil physical and chemical 20 

properties also showed remarkable variations across biomes. The soil-climate-biome diagram suggests the co-evolution of 

the a the shifts in soil properties, climate, and biota under global warmingclimate and land cover environmental change. 

1. Introduction 

As a critical component of the Earth system, soils influence many ecological processes whichthat provide fundamental 

ecosystem services soils influence all aspects of ecosystem processes and provide fundamental ecosystem services that 25 

maintain food, climate, and human security (Amundson et al., 2015; Milne et al., 2015; Adhikari and Hartemink, 2016). Soil 

physical properties, such as bulk density and soil texture, are important for green water retention and the preservation of 

carbon (C) and nutrients (Hassink, 1997; Sposito et al., 1999; Castellano and Kaye, 2009; Stockmann et al., 2013; Jilling et 

al.,2018), whereas soil chemical properties, such as soil acidity (pH), organic C, and nutrient contents, are essential 

regulators of nutrient availability and plant growth, further affecting C and nutrient cycling as well as vegetation-climate 30 

feedbacks biogeochemical cycles and climate feedbacks (Davidson and Janssens, 2006; Chapin et al., 2009; Milne et al., 

2015). As the most biogeochemically active soil layer, surface soil dominates the soil function and interacts strongly with 
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climate and vegetation (Jenny, 1941; Alexander, 2013; Weil and Brady, 2016). Therefore, assessing the physical and 

chemical properties in surface soil could provide insights of global soil functions and support soil stewardship to secure 

sustainable ecosystem services for societal well-being in the context of unprecedented pressure on soils (Batjes, 2009; 

Sanchez et al., 2009; Koch et al., 2013).  

  5 

In the context of rapid environmental change, there is an increasing need for high-quality, high-resolution, and timely 

updated global mapping of soil properties (Grunwald et al., 2011). Based on the global database of soil properties (e.g., the 

Harmonized World Soil Database [HWSD]), multiple linear regression models have been widely used for soil mapping 

(Batjes 2009; Hengl et al. 2014). Although recent progress has been made by compiling larger numbers of soil profiles and 

performing accuracy assessments, the corresponding maps of global soil properties are subject to weak relationships between 10 

soil properties and the corresponding explanatory variablespredictors (Hengl et al., 2014). Moreover, some attempts have 

been made to predict global soil properties based on Earth system models, but these predictions frequently showed large 

variation among different models and agreed poorly with observational data (Todd-Brown et al., 2013; Tian et al., 2015). 

Recently, machine learning algorithms, such as random forest (RF) analyses have been successfully applied to develop 

spatially explicit estimates of soil organic C (SOC) (Grimm et al., 2008; Wiesmeier et al., 2011; Ding et al., 2016; Hengl et 15 

al., 2017). Compared with multiple linear regression models, RF analysis has several advantages, such as the ability to model 

non-linear relationships, handle both categorical and continuous predictors, and resist overfitting and noise features (Breiman, 

2001). It is thus necessary to re-evaluate global patterns of soil properties using machine learning algorithms. 

 

The underlying stability of soil systems is controlled by their inherent balance between mass inputs and losses of C and 20 

nutrients, which strongly feeds back on climate and biota (Amundson et al., 2015; Weil and Brady, 2016; Amundson et al., 

2015). By overlapping the global spatial distribution of climate types, biome types, and soil orders, Rohli et al. (2015) first 

quantified the percentage of global land surface that is covered by the combinations of climate types, biomes, and soil orders. 

However, appropriate quantititivequantitative linkages of soil properties, climate, and biota remain to behave not yet been  

developed in a common diagram. In the context ofEncouragingly, significant progress in digital soil mapping techniques and 25 

the rapidly growing quantity of recorded soil information (Sanchez et al., 2009; Grunwald et al., 2011; Arrouays et al., 2014; 

Hengl et al., 2014; Shangguan et al., 2014), provide an great opportunity is present to assess the quantitative linkages 

between soil properties, climate, and biota at the global scale. 

 

In this study, we first compiled a global soil database (GSD, see Materials and Methods) that contains more than 28000 soil 30 

profiles for seven soil physical and chemical properties in surface soil layer (0-30 cm), including bulk density (g cm-3); ), 

sand, silt and clay fractions (%); (%), soil pH; , SOC density (kg m-2), and soil total nitrogen (STN) density (kg m-2). Using 

Using regional RF machine learning algorithms, we then established global soil maps for eight soil properties (the above 

mentioned seven soil properties plus C:N ratios, being estimated based on SOC density and STN density) at a 1-km 
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resolution and evaluated their corresponding uncertainties. On the basis of Whittaker biome diagram which illustrates Tthe 

essential role of climate in shaping the spatial pattern of global biomes has been well demonstrated by Whittaker biome 

diagram (Whittaker, 1962). As climate and vegetation are two key soil-forming factors (Jenny, 1941), we further developed 

a global soil-climate-biome diagram by plotted plotting each soil property on a climate basis within a modified Whittaker 

biome diagram as climate and vegetation are two key soil-forming factors (Jenny, 1941)(Whittaker, 1962). Although parent 5 

material (e.g., bedrock) also plays an important role in affecting soil properties, it affects soil formation at a relatively long 

time scale (Chesworth, 1973), particularly in the subsoil (Gentsch et al., 2018). In addition, our soil-climate-biome diagram 

thus focuses on soil properties in the surface layer, However,given that surface soils are dynamic in time and likely 

interacting more instantly with climate and vegetation than deeper soils (Weil et al., 2016). SpecificallyOverall, our 

objectives were to (i) map the physical and chemical properties of global surface soils, and (ii) determine the linkages 10 

between surface soil properties, climate and biota at the global scale. 

2. Materials and Methods 

2.1 Data set 

We compiled ground-truth Ssoil property data were compiled to establish a comprehensive database of worldwide soil 

profile information (Global soil database, GSD). Our GSD includes existing sources of soil profile data from the 15 

International Soil Reference and Information Centre-World Inventory of Soil Emission (ISRIC-WISE) Potential database 

(version 3.2; Batjes, 2009), soil reference profiles of Canada (Pan et al., 2011), the Land Resources of Russia/International 

Institute for Applied Systems Analysis (IIASA) (http://nsidc.org/data/ggd601.html), the International Soil Carbon Network 

(ISCN 2012, http://www.fluxdata.org/nscn/Data/AccessData/SitePages/Carbonto1M.aspx), the Soil Profile Analytical 

Database of Europe (SPADE), the Northern Circumpolar Soil Carbon Database (NCSCD, Tarnocai et al., 2009), the Second 20 

State Soil Survey of China (National Soil Survey Office, 1998), literature-retrieved soil data on the forests of China (Yang et 

al., 2014), field campaign data on the grasslands of northern China (from our research team; Yang et al., 2008, 2010), and 

field survey data of Australia (Wynn et al., 2006) (see Table S1 for more detailed information on these data sources). Overall, 

Tthe GSD compiled ground-truth soil data in the world and includes more than 28000 soil profiles (Fig. 1; Table S1). 

Although the total sample number and spatial distribution of the profile data are similar to those of the WISE30sec (Batjes, 25 

2016), the GSD includes more specific soil data from China. Nonetheless, both databases include limited profiles for some 

regions of the world, notably Australia, Sahara and the northern territories of both Canada and Russia (Fig. 1).  

 

The GSD includes observedfield measured data on of four soil physical properties (bulk density [g cm-3];, and sand, silt and 

clay fractions [%]) and, three chemical properties (soil pH,; SOC density [kg C m-2];, and STN density [kg N m-2]) in the 30 

surface soil layer (see Table S2 and Fig. S1 for more detailsed information), and general information onf soil sampling (site 

location, sampling time, and data source of data). Data harmonization was conducted by threefour steps. First, we screened 
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sampling and measurement approaches of each soil property and excluded data those were not comparable to others in 

methodology. For instance, geographic coordinate data were included only when WGS84 or a geographic coordinate system 

that could be converted to WGS84 projection was used; Soil texture data were included only when the internationally 

accepted particle size class were used (clay < 2 μm < silt < 50 μm < sand < 2000 μm). This allowed us to construct a 

database of soil properties with comparable methodology. Second, we excluded records with no measured datainformation 5 

on the target soil depth (0-30cm). In case that soil organic matter was measured instead of SOC, we used a Bemmelen index 

(0.58) to convert soil organic matter into SOC. If data of bulk density were not measureprovided, we made estimatesd them 

based on regional-specific pedotransfer functions (Schaap and Leij, 1998; Yang et al., 2007; Abdelbaki, 2018) (Table S3). 

Specifically, Wwe first established empirical relationship between bulk density and SOC content and to further estimated 

bulk density based on measured SOC infor those cases with data were missing data ofor bulk density. There were 42% 10 

profiles with measured data on bulk density and 58% profiles with estimated data on bulk density. It is true that the 

correction for rock fragment is important for the estimation of soil C stocks, but it remains a global challenge because 

existing databases usually contain limited information on gravel fractions (Jandl et al., 2014). Nevertheless, the inclusion of 

gravel has been evidenced to exert a relatively low impact on the calculation of SOC stocks in the surface soil layer (0-30 

cm), mainly due to the fact that surface soil usually contains a low proportion of gravels (Saiz et al., 2012). Therefore, we 15 

assumed no rock fragment or the rock issue had been handled once it was not reported. ThirdFinally, we extracted data on 

soil properties of the 0-30cm soil depth based on their horizon in a profile and calculated the means forof each soil property. 

SOC (STN) density was calculated based on bulk density and contents of SOC (STN) content. Finally, we divided the global 

land into 11 regions to lower spatial biases of the database and samples above 97.5% and below 2.5% quantile were 

excluded in each region to obtain a robust variogram (Pleijsier, 1989; Jiménez-Muñoz et al., 2015). We have mapped the 20 

excluded sites and found that these sites are distributed relatively random in space (Fig. S2) . ). The remaining data were 

used for statistical analyses in order to reduce the influence of outliers.  

 

The GSD also contains pedologic information on soil orders and the horizons of the sampled soil profiles, mean annual 

temperature (MAT), mean annual precipitation (MAP), seasonality of air temperature (TS, calculated as 25 

100×SDmonthly/Meanmonthly) (Xu & Hutchinson, 2011), seasonality of precipitation (PS), mean annual normalized difference 

vegetation index (NDVI), elevation (global digital elevation map [DEM]), slope, and land use type for each recorded site 

(see Table S3 S4 for more details). Data on soil orders were originally reported based on several different soil classification 

systems with different standards (Carter and Bentley, 2016), so Notably, it was difficult for us to harmonize data of soil 

ordersthem and further quantify their roles, of soil orders because data on soil orders were originally reported based on 30 

several different soil classification systems with different standards (Carter and Bentley, 2016). It was the same case for and 

soil horizon. Additionally, horizon information was not reported in some cases (accounting for 15% profile), while soil depth 

was well documented in our database. Therefore, we were not able to consider the role of soil horizons and instead we 

simply estimated the mean soil properties by a fixed depth of 30 cm. Nevertheless, the depth of 0-30 cm has been frequently 
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used in the mapping and modelling of surface soil properties at regional and global scales (e.g., Batjes, 1997; Yang et al., 

2010; Saiz et al., 2012; Wieder et al., 2013; Shangguan et al., 2014). As 96% of soil profiles in GSD were sampled during 

1950 to 2000, we thus used multiple-year (1950-2010) averages of climatic variables from WorldClim database. For sites 

with missing reports on climate or topographical data, profile coordinates were used to derive data at each site using a 

selection of GIS layers, from the WorldClim database for MAT and MAP and GTOP30 DEM-derived surfaces.  5 

 

2.2 Region-specific random forest model 

The random forest (RF) model is a data mining algorithm to make predictions based on an ensemble of randomized 

classification and regression trees (Breiman, 2001). We mapped soil properties based on a region-specific RF approach that 

yields spatially explicit estimates of each pixel (see Fig. S32 for more details on the workflow of this approach). To 10 

overcome spatial biases of the database (for example, heavy sampling in the USA), we divided the global land into 11 

regions: Africa, Australia, Canada and Alaska, East Asia, Europe, Mexico, Russia, South America, tropical Asia, the USA, 

and West Asia (Table S2). In each region, we first constructed a RF model using the regional datasets of GSD and then used 

the model to estimate the spatial distribution of each soil property at a resolution of 1 km. Predictions were based on eight 

environmental variables, including MAT, MAP, TS, PS, vegetation cover conditions (NDVI), elevation, slope, and land use 15 

type (see Table S3 S4 for more details on the data sources of each variable). To obtain a robust variogram, Soil soil property 

data below 2.5% quantile and above 97.5% quantile were excluded as outliers and were not used for modeling in each region 

(Pleijsier, 1989; Jiménez-Muñoz et al., 2015). Notably, these excluded samples were distributed relatively randomly in space 

(Fig. S3). By conducting an analysis using all data samples and comparing the results with those excluding outliers, we 

found similar spatial patterns and means of global surface soil properties (Fig. 2 & Fig. S4) but lower cross-validated R2 20 

when including all samples (Table 6 & Table S5). This implies an improvement of prediction by excluding outlier 

samples.In addition, soil C:N ratio for each pixel was calculated based on predicted SOC and STN densities. 

 

Because a large number of regression trees are constructed, one major advantage of RF model is that the risk of overfitting 

can be reduced. Another advantage is that the prediction depends on only three user-defined parameters: the number of trees 25 

(ntree), the minimum number of data points at each terminal node (nodesize), and the number of features sampled for 

splitting at each node (mtry). We used ntree = 1000 (default ntree = 500) in order to achieve more stable results (Grimm et 

al., 2008). For nodesize and mtry, we used the default set for RF regression. Also called a “black box” approach, one major 

disadvantage of RF model is that the relationships between the response and predictor variables cannot be interpreted 

individually for every RF tree. The relative importance of variables, denoted by the percent increase in mean-squared error 30 

(%IncMSE), was estimated based on a permuting out-of-bag (OOB) method (Strobl et al., 2009 a & b). For each tree of the 

random forest, we compared the prediction error on the OOB portion of the data (MSE for regression) with that after 

permuting each predictor variable. The differences awere then averaged over all trees, and normalized by the standard 
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deviation of the differences. The relative percent (mean/SD) increase in MSE as compared to the out-of-bag rate (with all 

variables intact) was used to indicate the relative importance of each variable (Breiman, 2001). Nevertheless, the importance 

of each environmental variable was estimated by the mean change in prediction accuracy before and after permuting each 

variable. 

2.3 Uncertainty analysis 5 

In each region, we used 10-fold cross-validation to estimate the average mapping accuracy for each target soil property. The 

modelling accuracy for each bootstrap sample was evaluated by the amount of variation explained by the models (R2) and by 

the root mean square error (RMSE) calculated based on the observational and predicted soil property in the independent 

validation dataset (Table S4S5). Model uncertainties were assessed based on the bootstrap method. A robust estimate was 

derived by averaging the 10-fold cross-validation samples, and the uncertainty of the estimates was calculated as the 10 

standard deviation (SD) of the 10-fold cross-validation (Fig. S3S4). 

2.4 Statistical analysis 

Based on the results of the ensemble models, the spatial distribution ofwe mapped each soil property (bulk density, sand, silt, 

clay, pH, SOC density, and STN density and C:N ratio) and their uncertainty were mapped at a resolution of 1 km. Soil C:N 

ratios were mapped based on values of SOCD and STND, and itsThe uncertainty of C:N ratio can could be jointly indicated 15 

by the uncertainties of SOCD and STND. We also plotted each soil property on a climate space illustrated by a modified 

Whittaker biome diagram. Moreover, we explored quantitative linkages between each soil property and climate parameters. 

To explore the roles of MAT and MAP as well as their interactions, wWe averaged soil property values for each MAT×MAP 

combination by a division of 1°C×100mm and explored quantitative linkagesplotted between soil properties withand climate 

variables (MAT/MAP) for differentby roughly distinguishing climate types (humid vs. arid; warm vs. cold). Specifically, we 20 

used a MAP threshold of at 500 mm to differentiate relatively humid versus arid climatesis used to indicate a threshold for 

arid climates (Holdridge, 1967), while a MAT threshold ofat 10 °C iswas used to separate relatively warmer and colder 

climates (Trewartha and Horn, 1980). To explore the role of MAT in regulating the critical MAP for a shift from alkaline to 

acidic soil, we further plotted the critical levels of MAP (100 mm division) at soil pH=7.0 with MAT. We further then 

compared these the soil properties across main biomes, including tropical forest, temperate forest, boreal forests, tropical 25 

savannahs and grasslands, temperate grasslands and shrublands, tundra, permanent wetlands, deserts and croplands. All 

statistical analyses were performed using Matlab 2015a (The MathWorks Inc., Natick, MA, USA). Values wereare presented 

as mean ± standard deviations, if not specially noted. 
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3. Results 

3.1 Global mapping of soil properties 

Our results indicate that model predictions (Fig. S3S4) agreed well with the observed data across most regions (Fig. S5), and 

that the ensemble models generally explained 30~60% of the variation in soil properties (Table S4S5). The eight soil 

properties showed great spatial heterogeneity across the globe in the upper 30-cm layer (Fig. 2). For instance, bulk density 5 

showed low values in the northern latitudes in the Eurasian continent, whereas high values occurred in the USA, North 

Africa, West Asia, and India (Fig. 2a). The clay fraction exhibited lower values at higher latitudes, whereas higher levels of 

sand fraction occurred at lower latitudes (Figs. 2b, 2c). The pH value of the surface soil was high (generally > 7.0) in arid 

regions and it was relatively low (generally < 6.0 ) in most forested regions (Fig. 2e). The spatial patterns of SOC density 

and STN density were generally similar,; both showinged greater values at higher latitudes in the northern hemisphere and 10 

no consistent change with latitude in the southern hemisphere (Figs. 2f, 2g). Specifically, SOCD and STND both showed 

highest values in the northern high latitudes, while low values occurred in semiarid and desert regions. Soil C:N ratio 

showed the highest values at high latitudes in northern hemisphere, while it was the lowest values occurred in arid regions in 

Northern Africa, West Asia and Southern Europe (Fig. 2h). On average, the global means of SOC density and STN density 

were 6.94 (SD= 4.42) kg C m-2 and 0.53 (SD= 0.23) kg N m-2 in surface soils, respectively (Table 1). In the surface soil layer, 15 

global stocks of SOC and STN were estimated to be summing up to a global total storage of 797 ± 4.1 Pg C (1015 g, or 

billion tons) and 64 ± 0.4 Pg N, respectively (Table 1).  

 

3.2 Global soil-climate-biome diagram 

By puttingplacing data of surface soil properties on the Whittaker climate-biome diagram (Whittaker, 1962), we then 20 

documented the linkages between soil properties and climate across global biomes. We call this as the global soil-climate-

biome diagram (Fig. 3). As showed in Fig. 3Specifically, bulk density generally decreased with lower MAT and higher MAP 

(Fig. 3a, also see , Figs. 4a, 4b); sand fraction was inversely related to MAP and MAT (Fig. 3b; also , Figs. 4c, 4d), whereas 

the clay fraction showed an opposite pattern (Fig. 3c, Figs. 4e, 4f); and soil pH increased with higher MAT in arid climate 

(MAT ≤ 400 500 mm) (Figs. 3e, 5a), while it decreased significantly with higher MAP both in cold (MAT ≤ 10°C) and 25 

warm (MAT > 10°C) climates (Figs. 3e, 5b). The critical MAP for the transition from alkaline to acidic soil (pH = 7.0) 

showed a non-linear increase with MAT and reached to a maximum of 400-500 mm when MAT exceeded 10 °C (Fig. 5c).  

 

Generally, SOC density in the upper 30-cm soil layer decreased significantly with MAT at both arid (MAT ≤ 400 500 mm) 

andor humid climates (MAT > 400 500 mm) (Figs. 3f), whereas it increased with MAP in accordance with a saturation curve 30 

(cold climate, MAT ≤ 10°C: SOCD = 0.0737×MAP/(1+0.0049×MAP); warm climate, MAT > 10°C: SOCD = 

0.0144×MAP/(1+0.0016×MAP) ), showing a higher saturation threshold (14.5 kg C m-2) in cold climates (14.5 kg C m-2) 
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(MAT ≤ 10°C) compared with that in warm climates (8.0 kg C m-2) (MAT > 10°C) (Figs. 6b). Similarly, STN density 

decreased significantly with MAT (Figs. 6c) and increased with MAP in accordance with a saturation curve (cold climate: 

STN = 0.0401×MAP/(1+0.0502×MAP); warm climate: STN = 0.0015×MAP/(1+0.0021×MAP) ), showing a higher 

saturation threshold (0.80 vs. 0.65 kg N m-2) in cold  (0.80 kg N m-2) than warm climates(0.65 kg N m-2)  (Figs. 6d). 

Combining the trends of SOC density and STN density, the C:N ratio of the upper 30-cm layer increased with MAT at a 5 

climate of MAT < 0 °C and then decreased (Fig. 6e). In contrast, the C:N ratio increased with MAP in accordance with a 

saturation curve (cold climate: C:N = 0.1450×MAP/(1+0.0080×MAP); warm climate: C:N = 

0.3781×MAP/(1+0.0308×MAP) ), showing a higher saturation threshold (18:1 vs. 12:1) in cold climates (18:1) compared 

with warm climates (12:1) (Fig. 6f).  

 10 

Soil properties showed different varied values across and within biomes throughout the world (Table 1; Fig. 3). Mean bulk 

density was lowest in the tundra and boreal forest, but and it was highest in the desert and tropical thorn scrub and woodland 

(Tables 1). Mean sand fraction was highest in boreal forest, whereas mean clay fraction was highest in the tropical 

rainforests (Tables 1). Soil pH was generally lower than 5.5 in tropical forest, boreal forest and tundra, but mean pH values 

could approach and even exceed 7.0 in dry biomes, such as the desert, grassland and savanna (Table 1). Moreover, means of 15 

SOC and STN densities both showed high values in boreal forest and tundra, but they were extremely low in the desert and 

tropical thorn scrub and woodland (Table 1). Overall, mean Mean soil C:N ratio showed the highest values in tundra and 

boreal forest (> 15:1), while it was lowest in desert, temperate shrubs and grasslands (≤ 10:1) (Table 1; Figs. 3h). On average, 

the global means of SOC density and STN density were 6.94 (SD= 4.42) kg C m-2 and 0.53 (SD= 0.23) kg N m-2 in surface 

soils, summing up to a global total storage of 797 ± 4.1 Pg C (1015 g, or billion tons) and 64 ± 0.4 Pg N, respectively (Table 20 

1).  

4. Discussion 

4.1 Global soil-climate-biome diagram forLinkages between climate and surface soil physical properties 

The soil-climate-biome diagram demonstratesd strong the quantitative linkages between surface soil physical properties and 

climate variables at the global scale. Compared with variables associated with topography (e.g., elevation and slope), 25 

vegetation activity (i.e., NDVI) and land cover (i.e., land use type), climate variables (such as MAT, MAP, TS and PS) 

wereare stronger predictors of bulk density and soil texture (Fig. 7a-c). This wais likely due to the essential effect role of 

temperature and precipitation on in physical, chemical and biological processes during soil formation (Weil and Brady, 

2016). For instance,Specifically, bulk density showed an increase with higher MAT and lower MAP, being likely due to an 

accompanying decrease of SOCD (Ruehlmann and Körschens, 2009) which was driven by stronger microbial decomposition 30 

under warmer and wetter conditionsas jointly regulated by MAT and MAP (Fig. 6; see more discussion on the effect of 

climate on SOCD in section 4.3; Wiesmeier et al., 2019). In addition, Hhigher MAT and MAP can accelerate the rate of 
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weathering (Jenny, 1941; Lal, 2018), thus resulting in lower sand fraction and higher soil clay fraction (Fig. 4). Along with 

topographical variables, climate may also affect soil physical properties via erosion processes. For exampleinstance, soil 

erosion is highly selective to silt, while sand is less mobile due to high weight and clay is protected by soil aggregates 

(Wischmeier and Mannering, 1969; Torry et al., 1997; Wang et al., 2013).  

 5 

 

Other factors, such as historical tectonics, glaciations and soil ages, could also affect soil physical properties (Jenny, 1941; 

Weil and Brady, 2016), but they are often spatially correlated with current climate variables and biome distribution, making 

it difficult to separate their role from the latter. For instance, the effect of glaciations is stronger, the soil age is younger and 

air temperature is lower towards higher latitudes. Likewise, the role of tectonics in rejuvenating younger soils might also be 10 

mixed by corresponding climateic conditions across altitudinal gradients. By exploring variations in soil physical properties 

with elevation iIn tropical regions, we found a significant decrease in bulk density and clay fraction with higher elevation 

(Fig. S4S56a&d). Thise decrease of bulk density with along the altitude gradient iwas likely due to an increase in SOC 

retention (Fig. S56f), which mainlybeing resulteds from low rates of soil organic matter decomposition along with lower 

temperature (Grieve et al., 1990; Kramer and Chadwick, 2016). Meanwhile, Tthe decrease of clay fraction with higher 15 

altitude iwas likely due to a younger soil age (Waite and Sack, 2011), lower weathering rate under lower temperature 

(Grieve et al., 1990; Kramer and Chadwick, 2016), and a downslope translocation of surface soil to lower altitude. 

Interestingly, Tthese altitudinal gradients were consistent with the results of field studies (Dieleman et al., 2013) and also 

mirrored a similar trend across latitudes. 

4.2 Key role of climate in determining global patterns of surface soil pHchemical properties 20 

Our results indicated that MAP was the most important surrogate for soil pH prediction (Fig. 7d). Such a pattern maymight 

be due to the increased leaching of exchangeable base cations across large-scale precipitation gradients (Jenny et al., 1941). 

Interestingly, our further analysis showed that the critical levels of MAP for the transition from alkaline to acidic soil 

decreased non-linearly with lower MAT owing to changing water balance (Fig. 5). Specifically, the critical MAP ranged 

from 400-500 mm when the MAT exceeded 10 °C and could decrease to 50-100 mm when MAT was close to 0 °C, 25 

highlighting significant interactions between MAP and MAT. Such a pattern was supported by a recent study, which 

revealed that the transition from alkaline to acidic soil occurred when the MAP began to exceed the mean annual potential 

evapotranspiration (Slessarev et al., 2016). It should be noted that, other factors besides climate variables, such as acid 

deposition may also contribute to regional-scale patterns of soil pH, especially in Europe, eastern North America and 

southern China, where have received high-level acid deposition (Bouwman et al., 2002; Vet et al., 2014).  30 
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4.3 Climate as drivers of SOC and STN in global surface soils 

Our analysis also indicateds that climate variables (e.g., MAT, MAP) awere the strongest predictors of SOC density (Fig. 7e) 

SOC density with higher MAP and lower MAT (Fig. 6), being in agreement with the pattern findings of previous estimates 

studies (Post et al., 1982; Gray et al., 2009). Such a pattern reflects the fact that soil C stock depends on the balance between 

plant inputs (i.e.g., litterfall and other plant debris) and microbially mediated metabolic losses of CO2 to atmosphere 5 

(Stockmann et al., 2013), which weare strongly controlled by climate (Davidson and Janssens, 2006; Bond-Lamberty and 

Thomson, 2010). For instanceIn general, precipitation favorsfavours net primary productivity (Del Grosso et al. 2008) and 

the consequent C inputs into the soil, while it intensifies weathering of the parent material and soil acidification, thus 

increasing formation of SOC-stabilizing minerals (Chaplot et al., 2010; Doetterl et al., 2015) and reducing decomposition of 

soil organic matter (Meier and Leuschner, 2010). These processes could then explain theOur results thus indicate that 10 

increase of SOCD increased with MAP (Fig. 6), while it did n’ot exceed a certain threshold because of a constraint of C 

inputs (Del Grosso et al., 2008). Compared with precipitation, Ttemperature largely affects the rate and degree of microbial 

decomposition of soil organic matter (Wiesmeier et al., 2019). Our results indicate thatConsequently, SOCD increased with 

lower MAT (Fig. 6), while it reached saturation due to a threshold of SOM stabilization (Doetterl et al., 2015).  

 15 

Further analysis also evidencesrevealed an interaction between MAT and MAP in shaping the patterns of SOC density 

density. For instance, SOC density showed a tendency of saturation with higher MAP, while the saturation thresholds were 

higher under MAT ≤ 10 °C compared with MAT > 10 °C (Fig. 6). Specifically, the saturation threshold for SOC density 

under MAT ≤ 10 °C (14.5 kg C m-2) were nearly twice of that under MAT > 10 °C (8.0 kg C m-2)  (Fig. 6b). These critical 

levels of SOCD imply a saturation threshold of SOC stocks under certain climate regime (Stewart et al., 20107). Soil C 20 

saturation has also been evidenced by experimental studies, which indicate that the SOC pool has an upper limit with respect 

to C input levels because of a threshold of SOM stabilization efficiency (Stewart et al., 2008; Kimetu et al., 2009).  These 

thresholds of soil C saturation can help to estimate soil C sequestration potential and provide important guidelines for 

regional soil steward and ecosystem management. 

 25 

Previous meta-analyses indicated that C:N ratio in the soil iwas well-constrained at the global scale (Cleveland and Liptzin, 

2007). Due to a prevailing N limitation in terrestrial ecosystems, the C and N cycles are tightly linked (LeBauer and Treseder, 

2008; Gruber and Galloway, 2008; Chapin et al., 2009). Accordingly, our results indicated a strong correlation between STN 

density as and SOC density (Fig. 8) and demonstrated a similar pattern of STN density as SOC density across spacebiome 

and climate regimes (Figs. 3 & 6). Based on a synthesis of long-term experimental results, Manzoni et al. (2008) 30 

demonstrated that the C:N ratio of the litter decreased throughout decomposition. Because soil organic matter is a result of 

long-term decomposition, surface soil C:N ratio is thus negatively correlated with decomposition degree while positively 
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correlated with SOC content and turnover time (Carvalhais et al., 2014). Accordingly, oOur analysis also indicated that 

higher soil C:N ratios was associated with higher SOC density was associated with higher soil C:N ratios (Figs. 2, 3).  

 

4.43 Shifts in soil properties across biomes and land use types 

Our analysis indicatesd that soil properties varyied significantly global across global biomes (Table 1). For exampleinstance, 5 

SOC density showed high values in boreal forests and tundra due to the slower microbial decomposition compared with 

biomass inputs (Hobbie et al., 2000; Hashimoto et al., 2015; Bloom et al., 2016), but these values were extremely low in 

drylands due to low plant cover and productivity (Delgado-Baquerizo et al., 2013). Due to fast turnover with rapid 

decomposition of organic matter, SOC content is relatively poor in tropical forests (e.g., Congo and Amazon tropical forests 

in Fig. 2f) (Carvalhais et al., 2014; Wang et al., 2018). Accordingly, previous mappings of SOCD density have also shown 10 

relatively low values in tropical forests (Köchy et al., 2015; Jackson et al., 2017). In view of a strongly and negative 

correlation between SOC and bulk density, bulk density showed an opposite shifts across biomes (Table 1). Moreover, we 

also found an increase in SOC density and a decrease of soil bulk density with elevation (Fig. S56a & Fig. S6f), likely due to 

a shift in climate regime and vegetation type.  

 15 

The effect of land use is important for the SOC stock at a regional to local scale. For instance, aA change of forest or 

grassland to croplands can significantly decrease SOC density and thus decrease soil bulk density, while reforestation 

generally increases SOC density and thus decreases soil bulk density (DeGryze et al., 2004; Machmuller et al., 2015). When 

comparing values at athe same region (e.g., Southeast Asia), SOC density is obviously lower in croplands than in forests 

(compare Fig. S67a and Fig. S67b). This difference has been also evidenced by meta-analysis based on field observations 20 

(Don et al., 2011). In the the Mediterranean region, an increase in the area of olive plantation and vineyard in last decades 

have likely contributed to a consequent increase of SOC density (Parras-Alcántara et al., 2013). Moreover, an rencent 

assessment indicates that ecological restoration projects (e.g., Three-North Shelter Forest Program, Natural Forest Protection 

Project, Grain for Green Program, Returning GrazingLand to Grassland Project) in China has substantinalysubstantially 

increased soil and biomass C storage in the corresponding regions (Lu et al. 2018). However, our static mapping of global 25 

soil properties is not able to account for the effect of temporal land use change on SOC density. 

4.4 Global carbon and nitrogen stocks in surface soils 

Earlier estimates of global SOC and STN stocks were based on either an area-weighted extrapolation or an empirical model 

of the soil profile data according to climate, vegetation type or soil order (Post et al. 1982, Batjes, 1996; Batjes 2009; Hengl 

et al. 2014; Scharlemann et al. 2014). In the range of these estimates, our results based on RF modeling indicated that the 30 

global stocks of SOC were 788 ± 39.4 Pg in the upper 30-cm soil layer.  Reports of global STN stocks are relatively rare 

compared with those of SOC stocks. Based on information on measured soil profiles, Batjes (1996) estimated global STN 
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stocks to be 63-67 Pg N in the upper 30-cm layers. Similar to the estimates by Batjes (1996), our results indicate that global 

STN stocks were 63 ± 3.3 Pg in the upper 30-cm soil layer (Table 1). Despite similar estimation of global total SOC and 

STN stocks, our regional RF analysis has several advantages, such as the ability to model non-linear relationships, handle 

both categorical and continuous predictors, and resist overfitting and noise features (Breiman, 2001). By using climate, 

vegetation, topography and land use variables as predictors, our region-specific RF approach likely produces more robust 5 

global maps of soil properties at a finer spatial resolution. 

 

4.5 Uncertainties in mapping surface soil properties at the global scale 

In this study, we used machine learning algorithms to map global surface soil properties at a 1-km resolution. Although this 

approach could overcome uncertainties derived from large variations in mapping unit, several limitations still existed in our 10 

analysis. First, the limited sample size in certain area may lead to estimation uncertainties. Particularly, the accuracy of the 

region-specific RF model partially depends on the number of sampling sites and the evenness of the spatial pattern. The 

limited number and uneven distribution of the soil profile may thus constrain the accuracy of region-specified RF models, 

especially in regions such as Russia and South America (Fig. S3Table S45). 

 15 

Second, the various approaches used to measure soil properties among regions and nations may also generate uncertainties in 

global-scale mapping. Specifically, soil properties were have been measured using various approaches and compiled for 

several decades, and while there are no straightforward solutions exist for to accurately harmonizeing the data at the global 

level (Maire et al., 2015; Batjes, 2016). Similar to other studies, tThe errors due to varied sampling and measurement 

methods across over time may lead to uncertainties in our analysis and also hinder reliable hindcast and forecast estimates at 20 

the global scale (Grunwald et al., 2011). Moreover, Oour data base includes pedologic information on soil orders and soil 

horizons of sampled soil profiles. However, and these data were originally reported based on several different soil 

classification systems based onusing different standards (Batjes et al., 2007; Carter and Bentley, 2016).  and iIt is thus a 

challenge for us difficult to harmonize the data on soil orders and soil horizons and quantify their impacts on surface soil 

properties. Nevertheless, the depth of 0-30 cm has been frequently used in the mapping and modelling of surface soil 25 

properties at regional and global scales (e.g., Batjes, 1997; Yang et al., 2010; Saiz et al., 2012; Wieder et al., 2013; 

Shangguan et al., 2014)(e.g., Batjes, 1997; Wieder et al., 2013). By considering essential climateic variables (mean annual 

temperatureMAT, mean annual precipitationMAP, seasonality of air temperature, seasonality of precipitation), vegetation 

parameters (mean annual NDVI, and land use type), and topographyic factors (elevation, slope) that are key to soil formation 

(Jenny, 1941), our Random Forest analysis is may have partially constrained the uncertainties due to ignoring the lack of 30 

information on soil orders and associated soil horizons.  
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Finally, the uncertainties may also arise from the limited independent variables used in this study. Although essential 

surrogate variables of climate, topography, vegetation activity, and land cover (see method section) were incorporated in our 

analysis, we still could not account for the role of soil horizons, soil ages and parental material characteristics due to the lack 

of global-scale dataset. For instance, surface soil (top 30 cm) can contain either a single horizon or several very different 

horizons with very different physical and chemical properties. Due to an absence of global data for soil horizons, we were 5 

not able to consider soil horizons in our global soil mapping. soilSoil mineralogy, being a function of parent material, 

climate and soil age (Jenny, 1941), has been demonstrated to be important in determining the quantity of SOC storage and its 

turnover time during long-term soil development (Torn et al., 1997). Soil age may also play an important role in forming soil 

property (Jenny, 1941), but it is hard to evaluate its individual role in regulating spatial patterns of soil properties due to its 

strong interactions with climate variables. Therefore, future studies should make more efforts to consider these variables 10 

when predicting spatial patterns of soil physical and chemical properties at the global scale. 

5. Conclusion 

By compiling a comprehensive global soil database, we mapped eight surface soil properties based on machine learning 

algorithms and assessed the quantitative linkages between soil properties, climate, and biota at the global scale. Our region-

specific random forest model generated high-resolution (1km) reliable predictions of surface soil properties, which can be 15 

potentially used as inputs for, and can thus provide useful inputs to regional and global biogeochemical models. Our results 

also produced a global soil-climate-biome diagram, which indicates the quantitative linkages improved the understanding of 

the strong correspondence between soil, climate, and biomesbiota. Given that significant changes in major soil properties 

may have occurred and will continue due to in view of global environmental change (Trumbore and Czimczik, 2008; Chapin 

et al., 2009; Todd-Brown et al., 2013; Luo et al., 2016, 2017), more efforts should be made in future to understand the 20 

dynamicsthe co-evolution of soil, climate and biota in view of the global soil-climate-biome diagram. 
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Table 1. Mean values of surface (0-30 cm) soil properties by across terrestrial biomes of the world.  

Biome Area Bulk 

density 

Sand Silt Clay pH SOCD STND C:N ratio SOC 

stock 

STN 

stock 

(106 ha) (gꞏm-3) (%) (%) (%)  (kgꞏm-2) (kgꞏm-2)  (Pg) (Pg) 

TroF 1877 
1.27±0.1

0 
42.42±9.37 27.05±7.25 

30.53±5.9

7 

5.30±0.7

4 
5.67±1.62 

0.48±0.1

3 

11.79±1.5

3 

107±0.5

6 
9±0.05 

TemF 992 
1.28±0.2

1 
45.43±8.94 34.97±6.89 

19.59±5.6

5 

5.80±0.8

0 
8.82±3.46 

0.64±0.1

8 

13.99±4.0

7 
87±0.47 6±0.04 

BF 1435 
1.16±0.1

2 
50.01±8.77 32.77±6.03 

17.22±4.5

2 

5.36±0.3

1 

11.11±3.5

6 

0.66±0.1

5 

17.07±4.9

8 

159±1.9

4 

10±0.2

1 

TSG 1915 
1.34±0.1

0 

47.92±13.0

6 

25.64±16.6

8 

26.44±9.0

5 

6.25±0.8

0 
3.82±1.65 

0.32±0.1

3 

12.28±4.0

5 
73±0.62 6±0.04 

TGS 1148 
1.30±0.1

6 

45.14±11.1

3 

34.71±10.6

8 

20.15±6.7

3 

6.97±0.5

8 
5.36±2.45 

0.55±0.2

0 

10.19±3.2

7 
62±0.41 6±0.05 

Deserts 2674 
1.40±0.1

2 

43.28±10.6

6 

33.67±12.8

9 

23.05±6.8

0 

7.45±0.6

3 
2.78±1.09 

0.34±0.1

2 
8.64±2.47 74±1.19 9±0.10 

Tundra 644 
1.16±0.1

6 
47.57±8.92 37.02±7.35 

15.41±3.1

2 

5.44±0.3

4 

13.78±4.5

1 

0.81±0.1

9 

17.18±5.0

6 
89±2.07 5±0.10 

Cropland

s 
1984 

1.34±0.1

5 

40.70±11.0

8 
33.13±9.87 

26.16±7.0

4 

6.40±0.7

4 
6.54±2.80 

0.58±0.2

2 

11.36±2.1

9 

130±0.5

0 

11±0.0

9 

PW 159 
1.23±0.1

2 
41.24±8.74 33.45±7.59 

25.31±6.1

6 

5.83±0.5

3 
9.77±4.16 

0.72±0.2

3 

13.62±4.1

1 
16±0.16 1±0.04 

Total 
1282

9 

1.29±0.1

6 

45.20±10.8

4 

32.17±10.9

7 

22.63±7.8

9 

6.18±1.0

1 
6.94±4.42 

0.53±0.2

3 

12.63±4.6

8 

797±4.1

0 

64±0.4

1 

Notes: We include croplands and permanent wetlands in this table, although they are not single biomes. AbbriationsAbbreviations: TroF, Tropical 

forests; TemF, Temperate forests; BF, Boreal forests; TSG, Tropical savannahs and grasslands; TGS, Temperate grasslands and shrublands; PW, 

Permanent wetlands. Spatial variability of soil properties within each biome was estimated as standard deviations. Uncertainties of total SOC and 

STN stocks were estimated as standard deviations based on10-fold cross-validation. 5 
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