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Abstract. Surface soils interact strongly with both climate and biota and provide fundamental ecosystem services that 

maintain food, climate, and human security. However, the quantitative linkages between soil properties, climate, and biota at 10 

the global scale remain unclear. By compiling a comprehensive global soil database, we mapped eight major soil properties 

(bulk density; clay, silt, and sand fractions; soil pH; soil organic carbon [SOC] density; soil total nitrogen [STN] density; and 

soil C:N mass ratios) in the surface (0-30 cm) soil layer based on machine learning algorithms, and demonstrated the 

quantitative linkages between surface soil properties, climate, and biota at the global scale (i.e., global soil-climate-biome 

diagram). On the diagram, bulk density increased significantly with higher mean annual temperature (MAT) and lower mean 15 

annual precipitation (MAP); soil clay fraction increased significantly with higher MAT and MAP; Soil pH decreased with 

higher MAP and lower MAT, and the critical MAP for the transition from alkaline to acidic soil decreased with decreasing 

MAT; SOC density and STN density both were jointly affected by MAT and MAP,  showing an increase at lower MAT and 

a saturation tendency towards higher MAP. Surface soil physical and chemical properties also showed remarkable variations 

across biomes. The soil-climate-biome diagram suggests the co-evolution of the soil, climate, and biota under global 20 

environmental change. 

1. Introduction 

As a critical component of the Earth system, soils influence all aspects of ecosystem processes and provide fundamental 

ecosystem services that maintain food, climate, and human security (Amundson et al., 2015; Milne et al., 2015; Adhikari and 

Hartemink, 2016). Soil physical properties, such as bulk density and soil texture, are important for green water retention and 25 

the preservation of carbon (C) and nutrients (Hassink, 1997; Sposito et al., 1999; Castellano and Kaye, 2009; Stockmann et 

al., 2013), whereas soil chemical properties, such as soil acidity (pH), organic C, and nutrient contents, are essential 

regulators of biogeochemical cycles and climate feedbacks (Davidson and Janssens, 2006; Chapin et al., 2009; Milne et al., 

2015). As the most biogeochemically active soil layer, surface soil dominates the soil function and interacts strongly with 

climate and vegetation (Jenny, 1941; Weil and Brady, 2016). Therefore, assessing the physical and chemical properties in 30 
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surface soil could provide insights of global soil functions and support soil stewardship for societal well-being in the context 

of unprecedented pressure on soils (Batjes, 2009; Sanchez et al., 2009; Koch et al., 2013).  

  

In the context of rapid environmental change, there is an increasing need for high-quality, high-resolution, and timely 

updated global mapping of soil properties (Grunwald et al., 2011). Based on global database of soil properties (e.g., the 5 

Harmonized World Soil Database [HWSD]), multiple linear regression models have been widely used for soil mapping 

(Batjes 2009; Hengl et al. 2014). Although recent progress has been made by compiling larger numbers of soil profiles and 

performing accuracy assessments, the corresponding maps of global soil properties are subject to weak relationships between 

soil properties and explanatory variables (Hengl et al., 2014). Moreover, some attempts have been made to predict global soil 

properties based on Earth system models, but these predictions frequently showed large variation among different models 10 

and agreed poorly with observational data (Todd-Brown et al., 2013; Tian et al., 2015). Recently, machine learning 

algorithms, such as random forest (RF) analyses have been successfully applied to develop spatially explicit estimates of soil 

organic C (SOC) (Grimm et al., 2008; Wiesmeier et al., 2011; Ding et al., 2016; Hengl et al., 2017). Compared with multiple 

linear regression models, RF analysis has several advantages, such as the ability to model non-linear relationships, handle 

both categorical and continuous predictors, and resist overfitting and noise features (Breiman, 2001). It is thus necessary to 15 

re-evaluate global patterns of soil properties using machine learning algorithms. 

 

The underlying stability of soil systems is controlled by their inherent balance between mass inputs and losses of C and 

nutrients, which strongly feeds back on climate and biota (Weil and Brady, 2016; Amundson et al., 2015). By overlapping 

the global spatial distribution of climate types, biome types, and soil orders, Rohli et al. (2015) first quantified the percentage 20 

of global land surface that is covered by the combinations of climate types, biomes, and soil orders. However, appropriate 

linkages of soil properties, climate, and biota remain to be developed in a common diagram. In the context of significant 

progress in digital soil mapping techniques and the rapidly growing quantity of recorded soil information (Sanchez et al., 

2009; Grunwald et al., 2011; Arrouays et al., 2014; Hengl et al., 2014; Shangguan et al., 2014), an opportunity is present to 

assess the quantitative linkages between soil properties, climate, and biota at the global scale. 25 

 

In this study, we first compiled a global soil database (GSD, see Materials and Methods) that contains more than 28000 soil 

profiles for seven soil physical and chemical properties in surface soil layer (0-30 cm), including bulk density (g cm
-3

); sand, 

silt and clay fractions (%); soil pH; SOC density (kg m
-2

), and soil total nitrogen (STN) density (kg m
-2

). Using RF machine 

learning algorithms, we then established global soil maps for eight soil properties (the above mentioned seven soil properties 30 

plus C:N ratios, being estimated based on SOC density and STN density) at 1-km resolution and evaluated the corresponding 

uncertainties. The essential role of climate in shaping the spatial pattern of global biomes has been well demonstrated by 

Whittaker biome diagram (Whittaker, 1962). As climate and vegetation are two key soil-forming factors (Jenny, 1941), we 

further developed a global soil-climate-biome diagram by plotted each soil property on a climate basis within a modified 
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Whittaker biome diagram (Whittaker, 1962). Specifically, our objectives were to (i) map the physical and chemical 

properties of global surface soils, and (ii) determine the linkages between surface soil properties, climate and biota at the 

global scale. 

2. Materials and Methods 

2.1 Data set 5 

Soil property data were compiled to establish a comprehensive database of worldwide soil profile information (Global soil 

database, GSD). Our GSD includes existing sources of soil profile data from the International Soil Reference and 

Information Centre-World Inventory of Soil Emission (ISRIC-WISE) Potential database (version 3.2; Batjes, 2009), soil 

reference profiles of Canada (Pan et al., 2011), the Land Resources of Russia/International Institute for Applied Systems 

Analysis (IIASA) (http://nsidc.org/data/ggd601.html), the International Soil Carbon Network (ISCN 2012, 10 

http://www.fluxdata.org/nscn/Data/AccessData/SitePages/Carbonto1M.aspx), the Soil Profile Analytical Database of Europe 

(SPADE), the Northern Circumpolar Soil Carbon Database (NCSCD, Tarnocai et al., 2009), the Second State Soil Survey of 

China (National Soil Survey Office, 1998), literature-retrieved soil data on the forests of China (Yang et al., 2014), field 

campaign data on the grasslands of northern China (from our research team; Yang et al., 2008, 2010), and field survey data 

of Australia (Wynn et al., 2006) (see Table S1 for more detailed information on these data sources).  15 

 

The GSD compiled ground-truth soil data in the world and includes more than 28000 soil profiles (Fig. 1; Table S1). 

Although the total sample number and spatial distribution of the profile data are similar to those of the WISE30sec (Batjes, 

2016), the GSD includes more specific soil data from China. Nonetheless, both databases include limited profiles for some 

regions of the world, notably Australia, Sahara and the northern territories of both Canada and Russia (Fig. 1). The GSD 20 

includes observed data on four soil physical properties (bulk density [g cm
-3

]; sand, silt and clay fractions [%]) and three 

chemical properties (soil pH; SOC density [kg C m
-2

]; and STN density [kg N m
-2

] in surface soil layer (see Table S2 and Fig. 

S1 for more detailed information). Moreover, the GSD contains pedologic information on the sampled soil profiles, mean 

annual temperature (MAT), mean annual precipitation (MAP), seasonality of air temperature (TS, calculated as 

100×SDmonthly/Meanmonthly) (Xu & Hutchinson, 2011), seasonality of precipitation (PS), mean annual normalized 25 

difference vegetation index (NDVI), elevation (global digital elevation map [DEM]), slope, and land use type for each 

recorded site (see Table S3 for more details). For sites with missing reports on climate or topographical data, profile 

coordinates were used to derive data at each site using a selection of GIS layers, from the WorldClim database for MAT and 

MAP and GTOP30 DEM-derived surfaces. 

 30 
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2.2 Region-specific random forest model 

The random forest (RF) model is a data mining algorithm to make predictions based on an ensemble of randomized 

classification and regression trees (Breiman, 2001). We mapped soil properties based on a region-specific RF approach that 

yields spatially explicit estimates of each pixel (see Fig. S2 for more details on the workflow of this approach). To overcome 

spatial biases of the database (for example, heavy sampling in the USA), we divided the global land into 11 regions: Africa, 5 

Australia, Canada and Alaska, East Asia, Europe, Mexico, Russia, South America, tropical Asia, the USA, and West Asia 

(Table S2). In each region, we first constructed a RF model using the regional datasets of GSD and then used the model to 

estimate the spatial distribution of each soil property at a resolution of 1 km. Predictions were based on eight environmental 

variables, including MAT, MAP, TS, PS, vegetation cover conditions (NDVI), elevation, slope, and land use type (see Table 

S3 for more details on the data sources of each variable). Soil property data below 5% quantile and above 95% quantile were 10 

excluded as outliers and were not used for modeling. In addition, soil C:N ratio for each pixel was calculated based on 

predicted SOC and STN densities. 

 

Because a large number of regression trees are constructed, one major advantage of RF model is that the risk of overfitting 

can be reduced. Another advantage is that the prediction depends on only three user-defined parameters: the number of trees 15 

(ntree), the minimum number of data points at each terminal node (nodesize), and the number of features sampled for 

splitting at each node (mtry). We used ntree = 1000 (default ntree = 500) in order to achieve more stable results (Grimm et 

al., 2008). For nodesize and mtry, we used the default set for RF regression. Also called a “black box” approach, one major 

disadvantage of RF model is that the relationships between the response and predictor variables cannot be interpreted 

individually for every RF tree. Nevertheless, the importance of each environmental variable was estimated by the mean 20 

change in prediction accuracy before and after permuting each variable. 

2.3 Uncertainty analysis 

In each region, we used 10-fold cross-validation to estimate the average mapping accuracy for each target soil property. The 

modelling accuracy for each bootstrap sample was evaluated by the amount of variation explained by the models (R
2
) and by 

the root mean square error (RMSE) calculated based on the observational and predicted soil property in the independent 25 

validation dataset (Table S4). Model uncertainties were assessed based on the bootstrap method. A robust estimate was 

derived by averaging the 10-fold cross-validation samples, and the uncertainty of the estimates was calculated as the 

standard deviation (SD) of the 10-fold cross-validation (Fig. S3). 

2.4 Statistical analysis 

Based on the results of the ensemble models, the spatial distribution of each soil property (bulk density, sand, silt, clay, pH, 30 

SOC density, STN density and C:N ratio) and their uncertainty were mapped at a resolution of 1 km. We also plotted each 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-449
Manuscript under review for journal Biogeosciences
Discussion started: 29 January 2019
c© Author(s) 2019. CC BY 4.0 License.



5 

 

soil property on a climate space illustrated by a modified Whittaker biome diagram. Moreover, we explored quantitative 

linkages between each soil property and climate parameters, including MAP, MAT, temperature seasonality and 

precipitation seasonality. We further compared these soil properties across main biomes, including tropical forest, temperate 

forest, boreal forests, tropical savannahs and grasslands, temperate grasslands and shrublands, tundra, permanent wetlands, 

deserts and croplands. All statistical analyses were performed using Matlab 2015a (The MathWorks Inc., Natick, MA, USA). 5 

Values are presented as mean ± standard deviations, if not specially noted. 

3. Results 

3.1 Global mapping of soil properties 

Our results indicate that model predictions (Fig. S3) agreed well with the observed data across most regions, and that the 

ensemble models generally explained 30~60% of the variation in soil properties (Table S4). The eight soil properties showed 10 

great spatial heterogeneity across the globe in the upper 30-cm (Fig. 2). For instance, bulk density showed low values in the 

northern latitudes in the Eurasian continent, whereas high values occurred in the USA, North Africa, West Asia, and India 

(Fig. 2a). The clay fraction exhibited lower values at higher latitudes, whereas higher levels of sand fraction occurred at 

lower latitudes (Figs. 2b, 2c). The pH value of the surface soil was high (generally > 7.0) in arid regions and it was relatively 

low (generally < 6.0 ) in most forested regions (Fig. 2e).  15 

 

The spatial patterns of SOC density and STN density were generally similar; both showed greater values at higher latitudes 

in the northern hemisphere and no consistent change with latitude in the southern hemisphere (Figs. 2f, 2g). Specifically, 

SOCD and STND both showed highest values in the northern high latitudes, while low values occurred in semiarid and 

desert regions. Soil C:N ratio showed the highest values at high latitudes in northern hemisphere, while it was the lowest 20 

values in arid regions in Northern Africa, West Asia and Southern Europe (Fig. 2h). On average, the global means of SOC 

density and STN density were 6.94 (SD= 4.42) kg C m
-2

 and 0.53 (SD= 0.23) kg N m
-2

 in surface soils, respectively (Table 

1). In the surface soil layer, global stocks of SOC and STN were estimated to be 797 ± 4.1 Pg C (10
15

 g, or billion tons) and 

64 ± 0.4 Pg N, respectively (Table 1).  

 25 

3.2 Global soil-climate-biome diagram 

By putting data of surface soil properties on the Whittaker climate-biome diagram (Whittaker, 1962), we then documented 

the linkages between soil properties and climate across global biomes. We call this as the global soil-climate-biome diagram 

(Fig. 3). As showed in Fig. 3, bulk density generally decreased with lower MAT and higher MAP (Fig. 3a, also see Fig. 4a, 

4b); sand fraction was inversely related to MAP and MAT (Fig. 3b; also Fig. 4c, 4d), whereas the clay fraction showed an 30 

opposite pattern (Fig. 3c, Fig. 4e, 4f); and soil pH increased with higher MAT in arid climate (MAT ≤ 400 mm) (Figs. 3e, 
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5a), while it decreased significantly with higher MAP both in cold (MAT ≤ 10°C) and warm (MAT > 10°C) climates (Figs. 

3e, 5b). The critical MAP for the transition from alkaline to acidic soil (pH = 7.0) showed a non-linear increase with MAT 

and reached to a maximum of 400-500 mm when MAT exceeded 10 °C (Fig. 5c).  

 

Generally, SOC density in the upper 30-cm soil layer decreased significantly with MAT at arid (MAT ≤ 400 mm) or humid 5 

climates (MAT > 400 mm) (Figs. 3f), whereas it increased with MAP in accordance with a saturation curve, showing a 

higher saturation threshold (14.5 vs. 8.0 kg C m
-2

) in cold climates (MAT ≤ 10°C) compared with warm climates (MAT > 

10°C) (Figs. 6b). Similarly, STN density decreased significantly with MAT (Figs. 6c) and increased with MAP in 

accordance with a saturation curve, showing a higher saturation threshold (0.80 vs. 0.65 kg N m
-2

) in cold than warm 

climates (Figs. 6d). Combining the trends of SOC density and STN density, the C:N ratio of the upper 30-cm layer increased 10 

with MAT at a climate of MAT < 0 °C and then decreased (Fig. 6e). In contrast, the C:N ratio increased with MAP in 

accordance with a saturation curve, showing a higher saturation threshold (18:1 vs. 12:1) in cold climates compared with 

warm climates (Fig. 6f). 

 

Soil properties showed different values across and within biomes throughout the world (Table 1; Fig. 3). Mean bulk density 15 

was lowest in the tundra and boreal forest but it was highest in the desert and tropical thorn scrub and woodland (Tables 1). 

Mean sand fraction was highest in boreal forest, whereas mean clay fraction was highest in the tropical rainforests (Tables 1). 

Soil pH was generally lower than 5.5 in tropical forest, boreal forest and tundra, but mean pH values could approach and 

even exceed 7.0 in dry biomes, such as the desert, grassland and savanna (Table 1). Moreover, means of SOC and STN 

densities both showed high values in boreal forest and tundra, but they were extremely low in the desert and tropical thorn 20 

scrub and woodland (Table 1). Overall, mean soil C:N ratio showed the highest values in tundra and boreal forest (> 15), 

while it was lowest in desert, temperate shrubs and grasslands (≤10) (Table 1; Figs. 3h). 

4. Discussion 

4.1 Global soil-climate-biome diagram for soil physical properties 

The soil-climate-biome diagram demonstrates strong quantitative linkages between surface soil physical properties and 25 

climate variables at the global scale. Compared with variables associated with topography (e.g., elevation and slope), 

vegetation activity (i.e., NDVI) and land cover (i.e., land use type), climate variables (such as MAT, MAP, TS and PS) are 

stronger predictors of bulk density and soil texture (Fig. 7a-c). This is likely due to the essential effect of temperature and 

precipitation on physical, chemical and biological processes during soil formation (Weil and Brady, 2016). For instance, clay 

fraction increased significantly with MAT and MAP (Figs. 4) due to an enhancement of soil erosion, weathering and 30 

leaching processes (Jenny, 1941). 
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Other factors, such as historical tectonics, glaciations and soil ages, could also affect soil physical properties (Jenny, 1941; 

Weil and Brady, 2016), but they are often spatially correlated with current climate variables and biome distribution, making 

it difficult to separate their role from the latter. For instance, the effect of glaciations is stronger, the soil age is younger and 

air temperature is lower towards higher latitudes. Likewise, the role of tectonics in rejuvenating younger soils might also be 

mixed by corresponding climate conditions across altitudinal gradients. By exploring variations in soil physical properties 5 

with elevation in tropical regions, we found a significant decrease in bulk density and clay fraction (Fig. S4). These 

altitudinal gradients were consistent with the results of field studies (Dieleman et al., 2013) and also mirrored a similar trend 

across latitudes. 

4.2 Key role of climate in determining global patterns of surface soil pH 

Our results indicated that MAP was the most important surrogate for soil pH prediction (Fig. 7d). Such a pattern may be due 10 

to the increased leaching of exchangeable base cations across large-scale precipitation gradients (Jenny et al., 1941). 

Interestingly, our further analysis showed that the critical levels of MAP for the transition from alkaline to acidic soil 

decreased non-linearly with lower MAT owing to changing water balance (Fig. 5). Specifically, the critical MAP ranged 

from 400-500 mm when the MAT exceeded 10 °C and could decrease to 50-100 mm when MAT was close to 0 °C, 

highlighting significant interactions between MAP and MAT. Such a pattern was supported by a recent study, which 15 

revealed that the transition from alkaline to acidic soil occurred when the MAP began to exceed the mean annual potential 

evapotranspiration (Slessarev et al., 2016). It should be noted that, other factors besides climate variables, such as acid 

deposition may also contribute to regional-scale patterns of soil pH, especially in Europe, eastern North America and 

southern China, where have received high-level acid deposition (Bouwman et al., 2002; Vet et al., 2014; Du et al., 2015). 

4.3 Climate as drivers of SOC and STN in global surface soils 20 

Our results indicate an increase in SOC density with higher MAP and lower MAT (Fig. 6), which is in agreement with the 

pattern of previous estimates (Post et al., 1982; Gray et al., 2009). Such a pattern reflects the fact that soil C stock depends 

on the balance between plant inputs (e.g., litterfall and other plant debris) and microbially mediated metabolic losses of CO2 

to atmosphere (Stockmann et al., 2013), which were strongly controlled by climate (Davidson and Janssens, 2006; Bond-

Lamberty and Thomson, 2010). Our analysis indicates that climate variables (e.g., MAT, MAP) are the strongest predictors 25 

of SOC density (Fig. 7e). Besides climatic variables, substrate quality (e.g., C:N ratio) is another important factor that affects 

SOC accumulation (Fierer et al., 2005). Our analysis indicates that higher SOC density is associated with higher soil C:N 

ratios (Figs. 2, 3). Across global terrestrial biomes, SOC density showed high values in boreal forests and tundra due to the 

slower decomposition compared with biomass inputs (Hobbie et al., 2000; Hashimoto et al., 2015; Bloom et al., 2016), but 

these values were extremely low in drylands due to low plant cover and productivity (Delgado-Baquerizo et al., 2013). This 30 

pattern can be partially attributed to the fact that soil substrate quality, as indicated by C:N ratio (Jensen et al., 2005; Craine 

et al., 2007), is more favourable for C storage in tundra and boreal forest (C:N ratio > 16:1) compared with desert and 
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temperate shrubs and grasslands (C:N ratio ≤ 10:1) (Table 1). As an overall effect of climate shifts and substrate quality, 

SOC accumulation increases poleward with longer C turnover time (Carvalhais et al., 2014). Similarly, we also found an 

increase in SOC density with elevation (Fig. S4f), likely due to a shift in climate regime and vegetation type. 

 

Due to a prevailing N limitation in terrestrial ecosystems, the C and N cycles are tightly linked (LeBauer and Treseder, 2008; 5 

Gruber and Galloway, 2008; Chapin et al., 2009). Accordingly, our results indicate a strong correlation between STN density 

as SOC density (Fig. 8) and demonstrate a similar pattern of STN density as SOC density (Fig. 3). Further analysis also 

evidences an interaction between MAT and MAP in shaping the patterns of SOC density and STN density. For instance, 

SOC density and STN density both showed a tendency of saturation with higher MAP, while the saturation thresholds were 

higher under MAT ≤ 10 °C compared with MAT > 10 °C (Fig. 6). Specifically, the saturation threshold for SOC density 10 

under MAT ≤ 10 °C (14.5 kg C m
-2

) were nearly twice of that under MAT > 10 °C (8.0 kg C m
-2

)  (Fig. 6b), while saturation 

threshold for STN density under MAT ≤ 10 °C (0.80 kg N m
-2

)  were slightly (23%) higher than that under MAT > 10 °C 

(0.65 kg N m
-2

)  (Fig. 6d). These critical levels of SOCD and STND imply a saturation threshold of SOC and STN stocks 

under certain climate regime (Stewart et al., 2017). Soil C saturation has also been evidenced by experimental studies, which 

indicate that the SOC pool has an upper limit with respect to C input levels because of a threshold of SOM stabilization 15 

efficiency (Stewart et al., 2008; Kimetu et al., 2009). These thresholds of soil C saturation can help to estimate soil C 

sequestration potential and provide important guidelines for regional soil steward and ecosystem management. 

4.4 Uncertainties in mapping soil properties at the global scale 

In this study, we used machine learning algorithms to map global soil properties at a 1-km resolution. Although this 

approach could overcome uncertainties derived from large variations in mapping unit, several limitations still existed in our 20 

analysis. First, the limited sample size in certain area may lead to estimation uncertainties. Particularly, the accuracy of the 

region-specific RF model partially depends on the number of sampling sites and the evenness of the spatial pattern. The 

limited number and uneven distribution of the soil profile may thus constrain the accuracy of region-specified RF models, 

especially in regions such as Russia and South America (Fig. S3). 

 25 

Second, the various approaches used to measure soil properties among regions and nations may also generate uncertainties in 

global-scale mapping. Specifically, soil properties were measured using various approaches and compiled for several 

decades, and no straightforward solutions exist for harmonizing the data at the global level (Maire et al., 2015; Batjes, 2016). 

Similar to other studies, the errors due to varied sampling and measurement methods across time may lead to uncertainties in 

our analysis and also hinder reliable hindcast and forecast estimates at the global scale (Grunwald et al., 2011). Therefore,  30 

future international actions are needed to survey soil properties using uniform sampling design and measurement methods to 

improve the current mapping of global soil properties. 
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Third, the uncertainties may also arise from the limited independent variables used in this study. Although essential 

surrogate variables of climate, topography, vegetation activity, and land cover (see method section) were incorporated in our 

analysis, we still could not account for the role of soil ages and parental material characteristics due to the lack of global-

scale dataset. For instance, soil mineralogy, being a function of parent material, climate and soil age (Jenny, 1941), has been 

demonstrated to be important in determining the quantity of SOC storage and its turnover time during long-term soil 5 

development (Torn et al., 1997). Soil age may also play an important role in forming soil property (Jenny, 1941), but it is 

hard to evaluate its individual role in regulating spatial patterns of soil properties due to its strong interactions with climate 

variables. Therefore, future studies should make more efforts to consider these variables when predicting spatial patterns of 

soil physical and chemical properties at the global scale. 

5. Conclusion 10 

By compiling a comprehensive global soil database, we mapped eight soil properties based on machine learning algorithms 

and assessed the quantitative linkages between soil properties, climate, and biota at the global scale. Our region-specific 

random forest model generated reliable predictions, and can thus provide useful inputs to regional and global 

biogeochemical models. Our results also produced a global soil-climate-biome diagram, which improved the understanding 

of the strong correspondence between soil, climate, and biota. Given that significant changes in major soil properties may 15 

have occurred and will continue due to global environmental change (Trumbore and Czimczik, 2008; Chapin et al., 2009; 

Todd-Brown et al., 2013; Luo et al., 2016, 2017), more efforts should be made to understand the co-evolution of soil, climate 

and biota in view of the global soil-climate-biome diagram. 
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Figure 1. Global distribution of 28222 soil profiles included in the global soil database (GSD).  
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Figure 2. Map of worldwide soil properties in the upper 30-cm soil layer. a, BD (bulk density, g m
-3

); b, Sand fraction (%); c, 

Silt fraction (%); d, Clay fraction (%); e, pH; f, SOCD (soil organic carbon density, kg m
-2

); g, STND (soil total nitrogen 

density, kg m
-2

); and h, C:N ratio. 
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Figure 3. Changes in soil properties of the upper 30-cm layer on the Whittaker biome diagram. Each square shows the 

average C density within each 1 °C of MAT and 100 mm of MAP. Each biome type in the modified Whittaker biome 

diagram is indicated by a capital letter. A, Tropical rainforest; B, Tropical seasonal forest; C, Tropical thorn scrub and 

woodland; D, Desert; E, Temperate rainforest; F, Temperate forest; G, Savanna; H, Boreal forest; I, Grassland; and J, Tundra.  5 
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Figure 4. Changes in upper 30-cm soil bulk density (BD, g·m
-3

), sand fraction (%), clay fraction (%) and silt fraction (%) 

with mean annual precipitation (MAP) and mean annual temperature (MAT). We used 400 mm of MAP as a threshold of 

transition from arid to humid climate, and 10 °C of MAT as a threshold of transition from cool to warm climate.  
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Figure 5. Changes in soil pH with climate. a, mean annual temperature (MAT); b, mean annual precipitation (MAP); and c, 

changes in critical levels of MAP at soil pH=7.0 with MAT. We used MAP of 400 mm as a threshold of transition from arid 

to humid climate, and MAT of 10 °C as a threshold of transition from cool to warm climate. 5 
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Figure 6. Changes in upper 30-cm soil organic carbon density (SOCD), soil total nitrogen density (STND) and C:N ratios 

with mean annual precipitation (MAP) and mean annual temperature (MAT). We used MAP of 400 mm as a threshold of 

transition from arid to humid climate, and MAT of 10 °C as a threshold of transition from cool to warm climate. (a) and (b), 

SOCD; (c) and (d), STND; and (e) and (f), C:N ratios. Each dot shows the average value within each 1 °C MAT and 100 mm 5 

MAP. 
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Figure 7. Importance of variables, denoted by the percent increase in mean-squared error (%IncMSE), for each soil property 

estimation RF model constructed from the training dataset in the top 30-cm layer. a, BD (bulk density, g m
-3

); b, Sand 

fraction (%); c, Clay fraction (%); d, pH; e, SOCD (soil organic carbon density, kg m
-2

); f, STND (soil total nitrogen density, 5 

kg m
-2

). MAT, MAP, TS, PS, Elev. and LU indicate mean annual temperature, mean annual precipitation, annual 

temperature seasonality, annual precipitation seasonality, elevation and land use type, respectively.  
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Figure 8. Correlation between surface soil properties. R
2
 between each two soil properties is shown in the upper plots with 

red color indicating R
2
 > 0.1. BD, SOCD, and STND indicate bulk density, soil organic carbon density, and soil total 

nitrogen density, respectively. 

 5 
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Table 1. Mean values of surface (0-30 cm) soil properties by biome of the world.  

Biome Area Bulk 

density 

Sand Silt Clay pH SOCD STND C:N ratio SOC 

stock 

STN 

stock 

(106 ha) (g·m-3) (%) (%) (%)  (kg·m-2) (kg·m-2)  (Pg) (Pg) 

TroF 1877 1.27±0.10 42.42±9.37 27.05±7.25 30.53±5.97 5.30±0.74 5.67±1.62 0.48±0.13 11.79±1.53 107±0.56 9±0.05 

TemF 992 1.28±0.21 45.43±8.94 34.97±6.89 19.59±5.65 5.80±0.80 8.82±3.46 0.64±0.18 13.99±4.07 87±0.47 6±0.04 

BF 1435 1.16±0.12 50.01±8.77 32.77±6.03 17.22±4.52 5.36±0.31 11.11±3.56 0.66±0.15 17.07±4.98 159±1.94 10±0.21 

TSG 1915 1.34±0.10 47.92±13.06 25.64±16.68 26.44±9.05 6.25±0.80 3.82±1.65 0.32±0.13 12.28±4.05 73±0.62 6±0.04 

TGS 1148 1.30±0.16 45.14±11.13 34.71±10.68 20.15±6.73 6.97±0.58 5.36±2.45 0.55±0.20 10.19±3.27 62±0.41 6±0.05 

Deserts 2674 1.40±0.12 43.28±10.66 33.67±12.89 23.05±6.80 7.45±0.63 2.78±1.09 0.34±0.12 8.64±2.47 74±1.19 9±0.10 

Tundra 644 1.16±0.16 47.57±8.92 37.02±7.35 15.41±3.12 5.44±0.34 13.78±4.51 0.81±0.19 17.18±5.06 89±2.07 5±0.10 

Croplands 1984 1.34±0.15 40.70±11.08 33.13±9.87 26.16±7.04 6.40±0.74 6.54±2.80 0.58±0.22 11.36±2.19 130±0.50 11±0.09 

PW 159 1.23±0.12 41.24±8.74 33.45±7.59 25.31±6.16 5.83±0.53 9.77±4.16 0.72±0.23 13.62±4.11 16±0.16 1±0.04 

Total 12829 1.29±0.16 45.20±10.84 32.17±10.97 22.63±7.89 6.18±1.01 6.94±4.42 0.53±0.23 12.63±4.68 797±4.10 64±0.41 

Notes: We include croplands and permanent wetlands in this table, although they are not single biomes. Abbriations: TroF, Tropical forests; 

TemF, Temperate forests; BF, Boreal forests; TSG, Tropical savannahs and grasslands; TGS, Temperate grasslands and shrublands; PW, 

Permanent wetlands. Spatial variability of soil properties within each biome was estimated as standard deviations. Uncertainties of total SOC and 

STN stocks were estimated as standard deviations based on10-fold cross-validation. 5 
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