
1 

 

Assessing shaded-leaf effects on photochemical reflectance index 

(PRI) for water stress detection in winter wheat 

Xin Yang1, Shishi Liu1* Yinuo Liu1, Xifeng Ren2, Hang Su1 

1School of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China 
2College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China 5 

Correspondence to: Shishi Liu (carol.shishi@gmail.com) 

Abstract. The photochemical reflectance index (PRI) has emerged to be a pre-visual indicator of water stress. However, 

whether the varying shaded-leaf fractions, which may be caused by multiple view angles or the changing crop density in the 

field, affects the performance of PRI in detecting water stress of crops is still uncertain. This study evaluated the impact of the 

varying shaded-leaf fractions on estimating relative water content (RWC) across growth stages of winter wheat using seven 10 

formulations of PRI. Results demonstrated that for the control treatment the mean PRI of sunlit leaves was slightly higher than 

those of shaded leaves, but the difference between PRI of sunlit and shaded leaves increased as water resources became more 

limiting. Despite the difference between PRI of sunlit and shaded leaves, the significance of the linear relationship between 

RWC and most studied formulations of PRI did not show obvious variations with shadow fractions, except for the 100% 

shaded-leaf condition. Among the studied formulations of PRI, PRI3 based on reflectance at 512 nm as the reference band 15 

provided the most accurate estimates of RWC with varying shaded-leaf fractions, except for the 100% shaded-leaf condition. 

The slope and the intercept of linear regression models with PRI3 also showed minimized variations with shaded-leaf fractions. 

We then applied a uniform RWC prediction model to the data of varying shaded-leaf fractions, and found that the accuracy of 

RWC predictions was not significantly affected for the mixture of sunlit and shaded leaves. However, RWC estimated with 

PRI of the 100% shaded-leaf condition had the highest RMSE, implying that PRI of the pure shaded leaves may yield 20 

inaccurate estimates of plant water status. 

1 Introduction 

Agriculture consumes about 80%-90% of fresh water worldwide (Gonzalez-Dugo, Durand, and Gastal, 2010). Water 

stress is one of the most critical abiotic stressors limiting plant growth and crop production (Chaves, Maroco, and Pereira, 

2003). Climate change, increasing worldwide shortages of water, and frequent droughts are exacerbating the agricultural water 25 

crisis and putting global food security at risk (Hirich et al. 2016; Lei et al. 2016). The assessment of water status in crops is 

critical for precision irrigation practices, balancing crop production with water supply and sustainable farming.  

Remote sensing provides a unique tool to unobtrusively, efficiently, and quantitatively assess water status in crops. Water 

stress induces plants’ stomatal closure, leading to the increasing leaf temperature due to the decreasing evaporative cooling. 
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Remotely monitoring the change in canopy temperature provides information on instantaneous transpiration status, and hence, 

thermal remote sensing has been served as an effective tool in detecting water stress for decades (Idso et al. 1981; Sayago, 

Ovando, and Bocco 2017). However, thermal remote sensing of water stress has limitations in both physiological and 

operational aspects. The physiological relationship between canopy temperature and stress is not clear for some crops 

(Villalobos, Testi, and Moreno-Perez 2009). Due to the technical reasons, the spatial resolution of thermal imaging sensors is 5 

generally coarser than the visible and infrared sensors, limiting its applications at local scales.  

In a recent decade, the photochemical reflectance index (PRI) has emerged to be a pre-visual indicator of water stress. 

PRI is a normalized difference of reflectance at 531 nm and reflectance at a reference band (e.g. 570 nm) in the visible domain. 

It was initially proposed as an indicator of the de-epoxidation state of xanthophyll pigments, which is related to photosynthesis 

(Gamon, Peñuelas, and Field 1992). When the light absorbed by the plants exceeds the photosynthetic demand, de-epoxidation 10 

of xanthophyll cycle pigments occurs,  leading to the downregulation of photosynthesis (Gamon, Peñuelas, and Field 1992). 

Multiple abiotic stress, including nutrient deficiency (Shrestha, Brueck, and Asch 2012; Magney et al. 2016), excessive heat 

(Dobrowski et al. 2005), and water deficit (Muller 2001; Sun et al. 2008; Sarlikioti, Driever, and Marcelis 2010; Zarco-Tejada 

et al. 2013; Magney et al. 2016), has been shown to trigger the xanthophyll cycle, resulting in the apparent drop in reflectance 

at 531 nm. 15 

As a promising alternative to thermal remote sensing for monitoring plant water stress, several previous studies have 

investigated the feasibility of assessing plant water status at leaf level and canopy level using PRI. At leaf level, a number of 

studies demonstrate a close relationship between PRI and physiological indicators of water stress (Thenot, Méthy, and Winkel, 

2002; Shahenshah et al., 2010), but some other studies report a poorer relationship due to the confounding environmental 

factors (Sarlikioti, Driever, and Marcelis, 2010) or the changes in pigment pools (Sun et al., 2008). At canopy level, studies 20 

show stronger correlations between changes in physiological indicators of water stress and PRI, in comparisons with the other 

indices (e.g. normalized difference vegetation index (NDVI)) (Suárez et al. 2008; Rossini et al. 2013; Zarco-Tejada et al. 2013). 

However, the performance of canopy PRI in the water stress detection is affected by canopy structure, canopy cover, and 

viewing geometry (Rossini et al. 2013; Panigada et al., 2014). Particularly, at seasonal and inter-annual time scales, 

physiological changes, such as relative water content and pigment pools, concurrently occur with structural changes, such as 25 

leaf area index (LAI). Canopy PRI is sensitive to the structural changes during the growth season (Gitelson, Gamon, and 

Solovchenko, 2017). To minimize the impact of canopy structures on PRI, transformations of PRI are developed using the 

band insensitive to the canopy structure (Hernández-Clemente et al., 2011), the structural vegetation indices for the 

normalization (Zarco-Tejada et al., 2013; Gitelson, Gamon, and Solovchenko, 2017), or the radiative transfer modeling results 

(Hernández-Clemente et al., 2011). 30 

PRI is primarily driven by the xanthophyll cycle at the short time scale (e.g. a few hours, two to three days), but shaded 

leaves may not experience de-epoxidation of the xanthophyll cycle as the sunlit leaves do. As PRI is expected to be applied to 

monitoring water stress at large scale, canopy PRI derived from satellite data includes contributions from both the sunlit leaves 

and shaded leaves. Hall et al. (2008) and Hilker et al. (2010) found that canopy PRI was strongly dependent on canopy shadow 
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fractions, because the xanthophyll cycle status was affected by incident PAR, which was in turn affected by the level of self-

shading within a canopy. Cheng et al. (2009) examined the contributions of variable sunlit/shaded canopy ratios to the 

simulation of canopy PRI with the two-layer Markov chain analytical canopy reflectance model, confirming the importance 

of adding shaded leave in the simulation. Takala and Mõttus (2016) demonstrated that the illumination-induced shadowing 

effects explained the observed dynamic range of apparent canopy PRI derived from the high spatial resolution airborne imaging 5 

spectroscopy data. Zhou et al. (2017) examined PRI of rice leaves and panicles in sunlit and shaded portions of canopies, and 

they found that the correlations between canopy chlorophyll content and PRI of shaded leaves were much higher than those of 

sunlit leaves.  

Previous studies have shown that within-canopy shadowing effects directly affect PRI of a canopy, but whether the 

proportion of shaded leaves further influences the performance of detecting water stress in the growth season of a crop using 10 

PRI is still uncertain. The objective of this study is to analyze the impact of varying shaded-leaf fractions on the performance 

of canopy PRI in detecting water stress during the growth season of winter wheat using a hyperspectral imager. To accomplish 

this objective, we conducted water stress experiments on winter wheat for two consecutive years. Reflectance of shaded and 

sunlit leaves derived from hyperspectral imagery was mixed with varying fractions to quantify the impacts of shaded leaves 

on different formulations of PRI in detecting water stress during the growth season.  15 

2 Materials and Methods 

2.1. Study site and experimental design  

During the growth seasons of 2016 and 2017, two water stress experiments were conducted in the facilities at Huazhong 

Agricultural University, China (30°28′N, 114°22′E). The mean annual temperature is approximately 17.0 °C and the mean 

annual total precipitation is around 1256 mm. The seeds of cultivar ‘Zheng 9023’, which is widely planted in central China, 20 

were used in the experiment. Seeds were sown on November 2nd, 2015 and November 26th, 2016 respectively, in a rectangular 

plastic pot (L70cm×W40cm×H35cm) with the density of approximately 250-300 seeds/pot. The soil was silt loam, with a 

volumetric water content of 26% at the field capacity. Sufficient NPK (5:4:1) fertilizers were applied in the soil before sowing. 

The experiments consisted of 28 pots in 2015-2016 and 15 pots in 2016-2017. Pest and disease control were conducted in the 

same time during the growth period, in order to avoid additional stress other than different levels of water stress.  25 

Seedlings were grown outdoor under the natural condition before the water stress experiments started. Soil water content 

was measured every 4-5 days using time domain reflectometry (TDR300, Spectrum Technology Inc., USA), and tap water 

was supplied if soil water content was  70% off field capacity. Water stress treatments started at the end of February, which 

was during the tiller initiation stage.  Pots were moved to a rain-out shelter to prevent external water supply. In 2015-2016, 28 

pots were divided into five groups. A group of four pots was used as the control, which had sufficient water supplies throughout 30 

the experiment. The other four groups (with six pots for each group) stopped watering on Feb 24th, March 6th, March 28th, and 

April 8th respectively. In 2016-2017, 15 pots were divided into five groups. A group of three pots was used as the control, 
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which had sufficient water supplies throughout the experiment. The other four groups (with three pots for each group) stopped 

irrigation on March 15th, March 22th, March 29th, and April 12th respectively. After irrigation stopped, soils of the treated pots 

were left to dry to analog the natural drought condition. In 2016, measurements were taken every two to five days depending 

on the weather conditions until immature senescence occurred. For the water treatment group, three pots of winter wheat were 

used for capturing hyperspectral images, and the other three pots were used to collect samples. In 2017, measurements were 5 

taken every four to six days until immature senescence occurred. For the water treatment groups, one pot of winter wheat was 

used for capturing hyperspectral images, and the other two pots were used to collect samples. In both years, physiological and 

spectral measurements were taken in control groups during the whole experiment.  

2.2 Physiological measurements 

In this study, we used relative water content (RWC) as the indicator of water stress, because RWC was recommended by 10 

previous studies as an effective physiological indicator of water status (Hewitt et al., 1985; Siddique, Hamid, and Islam, 2000). 

We randomly chose three plants in the sampled pot, and top three leaves of the sampled plants were cut from the stem. Leaves 

were cut into ten small round pieces with a puncher and put into a zip lock bag. Leaf samples were enclosed in a cooler and 

brought to the laboratory to measure RWC. In the laboratory, fresh weight was measured with an electronic balance. The leaf 

samples were immersed in distilled water for 16-18 hours. We dried the surface moisture and weighed the turgid weight. 15 

Afterward, all samples were put into aluminum boxes to dry in the oven at 105 °C for 15-20 minutes, and then dried at 80 °C 

for about 10 hours when a constant dry weight was reached. The RWC of leaf samples was calculated as: 

                                                                      𝑅𝑊𝐶 =
𝑊𝐹−𝑊𝐷

𝑊𝑇−𝑊𝐷
  （%）                                  （1）                                                                                                                                                        

where WF is the fresh weight, WT is the turgid weight, and WD is the dry weight. 

2.3 Spectral data 20 

2.3.1 Hyperspectral image acquisition 

Hyperspectral images were recorded in situ using the SOC710VP Portable Hyperspectral Imager (Surface Optics 

Corporation, USA). The imager has 640×640 pixels and 128 bands in the range of 379-1039 nm, with a spectral resolution of 

4.6875 nm and a 25° field of view. The transparent shed was open half an hour before measuring began. The imager was set 

up with a nadir view angle and approximately 1.5 m above the canopy, resulting in the spatial resolution of approximately 1 25 

mm. Hyperspectral images were recorded under sunny and cloudless conditions around midday (12:00-14:00) local time. 

According to Magney et al. (2016)’s study on white spring wheat, PRI showed pronounced diurnal variations, but PRI 

measured during peak irradiance, which was approximately between 12:00 and 14:00, showed minimal variations. A reference 

spectral panel was placed on the pot for each measurement. Spectra of the panel were used to correct radiation variations due 

to differences in solar illumination. The spectral data was acquired by LuCamSoftware Camera Drivers and the HyperScanner 30 



5 

 

Software platform. After image acquisition, radiometric calibration was performed using the SOC’s Spectral Radiance 

Analysis Toolkit (SRAnal), converting the raw DN values of the hyperspectral image to reflectance. 

2.3.2 Spectral reflectance extraction and preprocessing 

We manually selected region of interests (ROIs) of the most deeply shaded leaves and the brightest sunlit leaves in each 

image using ENVI 5.1 (The Environment for Visualizing Images) (Figure 1). Reflectance within ROIs were averaged and used 5 

as reflectance of sunlit and shaded leaves respectively. Based on the assumption of the linear mixture of shadow and sunlit 

leaves, we mixed different fractions of shaded-leaf reflectance with sunlit-leaf reflectance to evaluate the impact of shaded 

leaves on detecting water stress with PRI.  

The derived spectral data was interpolated to 1 nm band width using the cubic spline interpolation function in MATLAB 

(R2011a) software. Seven formulations of PRI were calculated for both sunlit leaves and shaded leaves (Table 1). In addition, 10 

we calculated the difference (∆PRI) between PRI of sunlit leaves (PRI_sunlit) and PRI of shaded leaves (PRI_shaded): 

                                               ∆PRI = PRI_sunlit − PRI_shaded                                                (2)                                                                                                                                                   

 

 

Figure 1. The original hyperspectral image shown as an RGB image. Region of interests (ROIs) A are the sunlit leaves, 15 

ROIs B are the shaded leaves, and ROI C is the reference spectral panel. 
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Table 1. Seven PRI formulations used in this study. R is the reflectance at the specified wavelength in nm.  

Index Equation Reference 

PRI570 (R531-R570)/(R531+R570) Gamon, Peñuelas, and Field (1992) 

PRI1 (R528-R567)/(R528+R567) Gamon, Filella, and Penuelas (1993) 

PRI2 (R539-R570)/(R539+R570) Penuelas, Filella, and Gamon (1995) 

PRI3 (R531-R512)/(R531+R512) Hernández-Clemente et al. (2011) 

PRI4 (R531-R600)/(R531+R600) Gamon, Filella, and Penuelas (1993) 

PRI5 (R531-R670)/(R531+R670) Gamon, Filella, and Penuelas (1993) 

PRI6 
RDVI=(R800-R670)/(R800+R670) ^0.5  

PRI570/[RDVI*(R700/R670)] Zarco-Tejada et al. (2013) 

2.4. Statistical Analysis 

Measurements taken from pots that had the same water treatments were averaged and used in the analysis. The maximum, 

minimum, coefficient of variation (CV), and standard deviation were used to describe the range and the variation of 5 

observations. To analyse the variations of PRI in sunlit and shaded leaves during the water stress treatment, we divided all the 

data into seven groups according to RWC values (RWC between 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, and >0.8). 

The mean and the standard deviation were calculated to evaluate the variations of PRI against RWC. The least-square linear 

regression model was established to estimate RWC with PRI of sunlit leaves and shaded leaves. The quadratic function was 

used to describe the relationships between shaded-leaf fractions and the slope/intercept of the linear regression model between 10 

PRI and RWC. R2 was used to evaluate the significance of the regression model, and the root mean square error (RMSE) was 

used to measure the actual average differences between measurements and predictions. Statistical analyses were performed in 

MATLAB (R2011a) software. 

3 Results 

3.1 PRI of sunlit leaves and shaded leaves 15 

The spectra of sunlit leaves and shaded leaves are presented in Figure 2. The reflectance of the shaded leaves was lower 

than that of the sunlit leaves. Unlike the spectra of sunlit leaves, the green peak of shaded leaves was not obvious.  

We calculated the difference (△PRI) between PRI of sunlit leaves and shaded leaves for the control treatment and water 

stress treatment separately (Table 2). For both the control treatment and water stress treatment, the positive mean value of △

PRI indicated that PRI of sunlit leaves were higher than those of shaded leaves, but the mean △PRI was much larger for the 20 

water stress treatment. Take PRI570 as an example, PRI570 of sunlit leaves and shaded leaves declined as water resource 
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became limiting after irrigation stopped (Figure3). △PRI570 became pronounced at RWC smaller than 0.5, and △PRI570 

was minimized at RWC higher than 0.8.  

 

 

Figure 2. Spectra of sunlit and shaded leaves. The solid lines are the mean reflectance of the samples and the shadings 5 

are the standard deviation.  

 

Table 2. The maximum, minimum, mean, CV and range of the difference (△PRI) between PRI of sunlit leaves and PRI of 

shaded leaves for the control treatment (a) and the water stress treatment (b).  

(a) 10 

  Maximum Minimum Mean CV Range 

△PRI570 0.0519  -0.0178  0.0192  1.1877  0.0696  

△PRI1 0.0425  -0.0287  0.0106  2.1840  0.0713  

△PRI2 0.0585  -0.0042  0.0227  0.7684  0.0627  

△PRI3 0.0976  -0.0565  0.0047  0.9691  0.1541  

△PRI4 0.1413  -0.0041  0.0643  0.6256  0.1454  

△PRI5 0.3075  0.0327  0.1698  0.5289  0.2748  

△PRI6 0.1549  -0.0152  0.0515  1.0431  0.1701  

 

 

 

 

 15 
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(b) 

  Maximum Minimum Mean CV Range 

△PRI570 0.1050  -0.0170  0.0441  0.8095  0.1220  

△PRI1 0.0835  -0.0172  0.0253  1.1064  0.1007  

△PRI2 0.1109  -0.0192  0.0519  0.7221  0.1301  

△PRI3 0.1660  -0.1035  0.0374  1.5302  0.2695  

△PRI4 0.2608  -0.0398  0.1362  0.6363  0.3006  

△PRI5 0.6119  -0.0061  0.3084  0.5196  0.6180  

△PRI6 1.3637  -0.0352  0.2596  1.2326  1.3989  

 

 

Figure 3. The mean and the standard deviation of PRI570 in sunlit leaves and shaded leaves against RWC. Data were 

divided into seven groups according to RWC values (RWC between 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-0.8, 5 

and >0.8). 

 

3.2 The impact of shaded leaves on water stress detection 

To assess the impact of shaded leaves on detecting water stress with PRI, we mixed different fractions of shaded-leaf 

reflectance with sunlit-leaf reflectance, and analyzed the relationship between RWC and PRI calculated from the mixed 10 

reflectance of shaded and sunlit leaves. Different formulations of PRI were all positively correlated with RWC (Table 3). 

Among the studied formulations of PRI2, PRI3, PRI4, and PRI6 showed significant correlations with RWC in winter wheat 

with the varying shaded-leaf fractions, except for the 100% shaded-leaf condition. R2 of the linear regression models between 

RWC and PRI2, PRI3, PRI4, and PRI6 did not show pronounced differences with varying shaded-leaf fractions. For PRI570, 

PRI1, and PRI5, R2 increased slightly with the increasing shaded-leaf fraction. Figure 4 illustrated examples of the significant 15 

relationships between RWC and PRI of sunlit leaves and shaded leaves, respectively.  
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We further analyzed the impact of shaded-leaf fractions on the slope and intercept of the linear regression model 

between PRI and RWC. The slope and intercept of the linear regression models between different formulations of PRI and 

RWC were strongly correlated with fractions of shaded leaves (Table 4).  The quadratic function was applied to describe the 

non-linear relationship between shaded-leaf fractions and the slope/intercept. Examples of non-linear relationships for 

PRI570 and PRI3 are shown in Figure 5. For all the studied formulations of PRI, the intercept remained relatively stable 5 

under different shaded-leaf fractions, except for the 100% shaded-leaf fraction. The slope increased non-linearly with 

shaded-leaf fractions for most of the studied PRI, but PRI3 did not show obvious variations in the slope under the shaded-

leaf fractions below 70% (Figure 5(d)).  

To evaluate if these changes in the values of linear regression parameters affected the accuracy of RWC estimates, we 

applied the linear regression model derived from the PRI of the generally applicable sunlit/shaded leaves ratio of 50/50 to 10 

detect water stress using PRI of the varying sunlit leaves/shadow ratio. We also evaluated the accuracy of RWC estimated with 

the linear regression models geared towards the known shaded-leaf fractions. Given the known shaded-leaf fractions, the slope 

and intercept of the linear regression models were estimated with the quadratic functions shown in Figure 5. Results showed 

that RMSE of RWC estimates did not vary significantly with shaded-leaf fractions, except for PRI1 (Figure 6). RMSE in RWC 

estimated with PRI1 was decreased with the increased shaded-leaf fractions, probably because the reference band (567 nm) in 15 

PRI1 was more sensitive to the change in the chlorophyll content of shaded leaves. However, for all the studied formulations 

of PRI, RWC estimated with PRI of 100% shaded leaves had the highest RMSE, implying that PRI of the pure shaded leaves 

may yield inaccurate estimates of plant water status. 
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Table 3. R2 of the linear relationship between RWC and different formulations of PRI calculated by reflectance of varying ratio of sunlit leaves to 

shaded leaves in winter wheat during the study period. 

RWC 

Shaded 

0% 

sunlit100% 

Shaded 

10%sunlit 

90% 

Shaded 

20%sunlit 

80% 

Shaded 

30%sunlit 

70% 

Shaded 

40%sunlit 

60% 

Shaded 

50%sunlit 

50% 

Shaded 

60%sunlit 

40% 

Shaded 

70%sunlit 

30% 

Shaded 

80%sunlit 

20% 

Shaded 

90% 

sunlit10% 

Shaded 

100% 

sunlit0% 

PRI570 0.17* 0.18* 0.19** 0.19** 0.20** 0.22** 0.23** 0.25** 0.28** 0.31** 0.31** 

PRI1 0.07 0.07 0.07 0.08 0.09 0.10 0.12* 0.14* 0.18* 0.25** 0.33** 

PRI2 0.31** 0.31** 0.32** 0.32** 0.33** 0.34** 0.35** 0.36** 0.36** 0.35** 0.28** 

PRI3 0.61** 0.62** 0.63** 0.64** 0.66** 0.67** 0.67** 0.67** 0.62** 0.49** 0.20** 

PRI4 0.29** 0.30** 0.30** 0.31** 0.32** 0.33** 0.34** 0.35** 0.35** 0.34** 0.27** 

PRI5 0.03 0.03 0.04 0.05 0.06 0.07 0.09 0.11 0.13* 0.14* 0.12* 

PRI6 0.22** 0.23** 0.23** 0.23** 0.23** 0.24** 0.24** 0.23** 0.22** 0.16* 0.04 

 

**. Correlation coefficient significant at p＜0.01. 

*. Correlation coefficient significant at p＜0.05. 5 

 

Table 4. R2 of the quadratic function between shaded-leaf fractions and the slope and intercept of the linear regression models that are used to 

estimate RWC with different formulations of PRI. 

  PRI570 PRI1 PRI2 PRI3 PRI4 PRI5 PRI6 

Slope 0.57*  0.53*  0.79**  0.70**  0.81**  0.66*  0.59*  

Intercept 0.99**  0.88**  0.94**  0.74**  0.93**  0.88**  0.93**  

 

**. Correlation coefficient significant at p＜0.01. 10 

*. Correlation coefficient significant at p＜0.05. 
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Table 5. RMSE of RWC estimated by the linear regression models derived from the PRI of the generally applicable sunlit leaves/shadow ratio of 

50/50, using PRI calculated with reflectance of varying ratios of sunlit leaves to shaded leaves in winter wheat during the study period. 

 

 
Shaded 

0% 

sunlit100% 

Shaded 

10%sunlit 

90% 

Shaded 

20%sunlit 

80% 

Shaded 

30%sunlit 

70% 

Shaded 

40%sunlit 

60% 

Shaded 

50%sunlit 

50% 

Shaded 

60%sunlit 

40% 

Shaded 

70%sunlit 

30% 

Shaded 

80%sunlit 

20% 

Shaded 

90% 

sunlit10% 

Shaded 

100% 

sunlit0% 

PRI570 0.1826 0.1820 0.1813 0.1804 0.1794 0.1782  0.1768 0.1753 0.1743 0.1783 0.2366 

PRI1 0.1980 0.1974 0.1968 0.1960 0.1950 0.1937  0.1920 0.1897 0.1865 0.1825 0.1935 

PRI2 0.1711 0.1705 0.1699 0.1691 0.1683 0.1674  0.1666 0.1662 0.1680 0.1803 0.2786 

PRI3 0.1584 0.1578 0.1571 0.1563 0.1555 0.1546  0.1539 0.1539 0.1567 0.1720 0.2808 

PRI4 0.1747 0.1738 0.1728 0.1717 0.1706 0.1693  0.1683 0.1683 0.1718 0.1902 0.3037 

PRI5 0.1990 0.1982 0.1973 0.1964 0.1953 0.1943  0.1933 0.1929 0.1949 0.2061 0.2772 

PRI6 0.1962 0.1959 0.1956 0.1953 0.1949 0.1945  0.1939 0.1931 0.1918 0.1908 0.2346 
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Figure 4. Examples of the linear relationship between PRI of sunlit leaves (PRI2 (a), PRI3 (b)) and RWC, and the linear 

relationship between PRI of shaded leaves (PRI2 (c), PRI3 (d)) and RWC. 

 5 
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Figure 5. Relationships between shaded-leaf fractions and the slope of the linear regression models of RWC and PRI570 (a) 

and PRI3 (b); and relationships between shaded-leaf fractions and the intercept of the linear regression models of RWC and 

PRI570 (c) and PRI3 (d). 

 5 
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Figure 6. RMSE of RWC estimated with PRI570 (a), PRI1(b), PRI2(c) , PRI3(d) , PRI4(e) , PRI5(f) , PRI6(g) under 

different shaded-leaf fractions. RMSE-1 means RMSE of RWC estimated with the linear regression model derived from the 

PRI of the sunlit/shaded leaves ratio of 50/50; RMSE-2 means RMSE of RWC estimated with the linear regression models 5 

geared towards the known shaded-leaf fractions. Given the known shaded-leaf fractions, the slope and intercept of the linear 

regression models were estimated with the quadratic functions. 

 

4. Discussion 

Theoretically, sunlit leaves are more likely to experience high light-induced environmental stress than shaded leaves 10 

(Hilker et al., 2008; Middleton et al., 2009; Cheng et al., 2012). Data from previous field samplings and model simulations, 

although limited, confirmed the impact of shaded-leaf fractions on PRI values (Middleton et al., 2009; Cheng et al., 2012; 

Takala and Mõttus, 2016). While interests of detecting plant water stress with PRI are increasing, studies rarely analyzed the 

impact of shaded leaves on the performance of PRI in water stress detection. This study quantified the differences between 

PRI of sunlit and shaded leaves in winter wheat under control and water stress conditions, and investigated the impact of 15 
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varying shaded-leaf fractions on water stress detection during the growth season, using different formulations of PRI derived 

from hyperspectral images.  

Our results showed that for the control treatment the mean PRI of sunlit leaves was slightly higher than that of shaded 

leaves. Take PRI570 for example, ΔPRI570 ranged from -0.0178 to 0.0519, roughly agreed with results presented in previous 

studies. Takala and Mõttus (2016) reported the range of ΔPRI without a shadow correction was -0.01 – 0.10 at the boreal forest. 5 

Middleton et al. (2009) reported ΔPRI of -0.035 at a Douglas-fir forest in Canada. Cheng et al. (2012) demonstrated that the 

average PRI values varied from -0.008 to 0.005 for sunlit leaves and from 0.002 to 0.022 for shaded leaves measured in the 

corn field. Mõttus et al. (2015) presented the difference between canopy PRI (including PRI of shaded leaves) and PRI of 

sunlit leaves ranged from -0.025 to 0.073 for pine, spruce and birch. In summary, both positive values and negative values of 

ΔPRI570 can be found in previous studies  (Hilker et al., 2008; Middleton et al., 2009; Cheng et al., 2012), but the difference 10 

between PRI of sunlit leaves and shaded leaves was small for healthy vegetation.  

Interestingly, our results showed that △PRI was much higher for the water stress treatment than the control treatment. 

△PRI increased as water resources became more limiting, but it then decreased when prolonged drought caused premature 

senescence. The increased △PRI  might be due to the more severe chlorophyll degradation on old leaves, induced by a 

sustained water stress deficit (Bolhar-Nordenkampf, Hofer, and Lechner, 1991; Ciganda, Gitelson, and Schepers, 2012; Liu et 15 

al., 2015). As several studies proved that PRI was related to the pigment content (Suárez et al., 2009; Gitelson, Gamon, and 

Solovchenko, 2017), the early degradation of chlorophyll content in the bottom shaded leaves may influence their 

photosynthetic potential, and thus lead to the nonsynchronous change in PRI values between the top sunlit leaves and the 

bottom shaded leaves. The weaker correlation between PRI of shaded leaves and RWC (Figure 5) also supported the hypothesis 

of the nonsynchronous change in PRI values between the sunlit and shaded leaves. Both the sunlit and shaded leaves eventually 20 

wilt after the prolonged water stress, resulting in the decreased range in △PRI at the end of the water stress treatment. 

Although the PRI of shaded leaves were different from PRI of sunlit leaves under both control and water stress conditions, 

the effect of the varying fractions of shaded leaves did not lead to the substantial change in the significance of the relationship 

between PRI and RWC. We hypothesized it was because the shallow soil in the pot experiment caused the quick wilting during 

the water stress treatment, and thus the changes in leaf area and pigment content intertwined with physiological responses. 25 

Among the studied formulations of PRI proven to minimize the effect of structural change in canopies in previous studies 

(Hernández-Clemente et al., 2011; Zarco-Tejada et al., 2013), PRI3 that used reflectance at 512 nm as the reference band 

provided the most accurate estimates of RWC with varying shaded-leaf fractions, except for the 100% shaded-leaf 

fraction. PRI3 was originally developed for the needle tree based on the evidence that reflectance at 512 nm was not 

responsive to the change in xanthophyll epoxidation state (Hernández-Clemente et al. 2011). In their study, PRI3 showed 30 

the highest correlation with the stomatal conductance and water potential at the canopy level, and the lowest sensitivity 

to canopy structure, in comparison with PRI570 and NDVI. Our results also showed the superior performance of PRI3 

than the other formulations of PRI in estimating RWC, implying that for winter wheat band 512 nm might be a better 
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reference band that could maximize the physiological responses of band 531 nm. Unfortunately, we could not provide 

direct evidence of PRI3’s superior sensitivity to the change in xanthophyll epoxidation state, due to the lack of 

measurements of the xanthophyll epoxidation state and leaf area index.  

Magney et al. (2016) used the difference between the midday PRI and early morning PRI (PRI0) to disentangle the 

facultative (diurnally changing) and the constitutive (seasonally changing) components of the PRI signal, based on the 5 

assumption that the early morning PRI represented a ‘steady-state’ prior to the xanthophyll cycle de-epoxidataion. They 

found the stronger seasonal responses of PRI- PRI0 to vapor pressure deficit, suggesting that PRI- PRI0 was mainly 

facilitated by short term changes in the xanthophyll cycle as opposed to longer-term pigment changes.  Hwang et al. 

(2017) found that the ratio (sPRI) of sunlit canopy PRI (backward direction images) to shaded canopy PRI (forward 

direction images) captured drought signals in a temperate deciduous forest. Inspired by these studies, we tried to use 10 

ΔPRI and PRI_sunlit/PRI_shaded to disentangle the facultative and constitutive components. However, the correlation 

between RWC and ΔPRI or PRI_sunlit/PRI_shaded was not significant, and thus results were not shown in the 

manuscript.  

5.  Conclusion 

This study evaluated the impact of the varying shaded-leaf fractions on seasonal water stress detection in winter wheat 15 

using different formulations of PRI. Results demonstrated that for the control treatment the mean PRI of sunlit leaves was 

slightly higher than those of shaded leaves, but the difference between PRI of sunlit and shaded leaves increased as water 

resources became more limiting. Despite the difference between PRI_shadow and PRI_leaf, the significance of the linear 

relationship between RWC and different formulations of PRI did not show obvious variations with shadow fractions, except 

for the 100% shaded-leaf condition. Among the studied formulations of PRI, PRI3 based on reflectance at 512 nm as the 20 

reference band provided the most accurate estimates of RWC with varying shaded-leaf fractions, except for the 100% 

shaded-leaf condition. Furthermore, we applied the linear regression model derived from the PRI of the generally applicable 

sunlit/shaded leaves ratio of 50/50 to detect water stress using PRI of the varying shaded-leaf fractions, and found that the 

accuracy of RWC estimates did not vary significantly with shaded-leaf fractions. However, RWC estimated with PRI of 100% 

shaded leaves had the highest RMSE, implying that PRI of the pure shaded leaves may yield inaccurate estimates of plant 25 

water status. This study provides useful information on remote detection of water stress for accurate irrigation scheduling and 

yield forecast. Further research is indeed needed to understand the shaded-leaf effect on PRI and water stress detection, 

especially for crops with different canopy geometry from winter wheat.  
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