Supplement

Figure S1. Overview of a cross-section of a *T. sacculifer* shell, measured at the GEOMAR in Kiel (Bertlich et al., 2018). Clearly, Mg is distributed in bands, whereas Na is more concentrated in the spine base regions.

Figure S2. Comparison between Na/Ca map-values for the same embedded *T. sacculifer* specimens measured with EPMA in Kiel (Bertlich et al., 2018), and line-scan and map values measured in Utrecht.

Figure S3. Spine base quantification model, showing: a) a schematic representation of a spinose planktonic foraminiferal shell cross section, including Na/Ca values of a spine (in red: 25 mmol/mol) sandwiched by two layers (in grey: 5 mmol/mol) of calcite with lower Na/Ca; b) the effect of differences in sampling volume on Na/Ca values measured (the 'EPMA-image'), obtained for hypothetical cross section 'a)'. Clearly, when increasing the sampling volume with a step-size of one at the time, the original signal can only be preserved at the center of the spine. However, when the sampling width is too large, the original spine base Na/Ca signal is no longer preserved (Y-axis). The different colors represent different sampling widths and the resulting Na/Ca values measured on the Y-axis, c) the effort to obtain the original spine base (red triangle) value by narrowing the surface area around the center of the spine base map, with the same colors indicating the same scenarios described in 'b)'.

Part 1: Multi-net specimens

Part 2: Core-tops and plankton pump specimens (Mezger et al., 2018)

Part 3: Cultured *T. sacculifer* (Bertlich et al., 2018;Bijma et al., 1990)

Part 1: Multi-net specimens

T. sacculifer_0002_7 Na/Ca (mmol/mol)

T. sacculifer_0002_6 Na/Ca (mmol/mol)

T. sacculifer 0002_13 Na/Ca (mmol/mol)

G. ruber_0004_11 Na/Ca (mmol/mol)

G. ruber_0004_10 Na/Ca (mmol/mol)

G. ruber_0004_14 Na/Ca (mmol/mol)

*G. ruber*_0004_16 Na/Ca (mmol/mol)

G. ruber_0004_19 Na/Ca (mmol/mol)

G. ruber_0004_17 Na/Ca (mmol/mol)

G. ruber_0004_20 Na/Ca (mmol/mol)

10

20

30

40

50

60

70

80

10 20 30

G. ruber_0004_22 Na/Ca (mmol/mol)

Part 2: Plankton pumps and core-tops

31_1	min	max	mean	median	SD	SE
shell	1.24	30.19	6.31	5.79	4.13	0.05
spine base	1.35	29.77	9.23	8.89	5.10	0.52

31_3	min	max	mean	median	SD	SE
shell	1.3	42.9	6.502	5.8893	4.3	0.1
spine base	1.5	27.5	10.1	8.7396	5.6	0.5

31_4	min	max	mean	median	20	SE	
shell	1.30	52.31	6.94	6.14	4.57	0.04	
spine							
base	1.41	31.37	10.66	10.04	6.40	0.60	

31_6	min	max	mean	median	20	SE	
shell	1.29	27.74	6.14	5.61	4.15	0.06	
spine base	1.55	27.36	9.69	9.71	5.60	0.57	

31_6	min	max	mean	median	SD	SE	
shell	1.29	27.74	6.14	5.61	4.15	0.06	
spine base	1.50	23.88	10.12	9.25	5.87	0.51	

31_/_1	min	max	mean	median	20	SE
shell	1.3	50.4	5.755	4.4945	3.9	0
spine						
base	1.4	26.9	9.243	7.7357	6.9	0.7

<u> </u>		шал	mean	meulan	30	JL
shell	1.3	50.4	5.755	4.4945	3.9	0
spine						
base	1.4	27.6	9.74	8.0704	6.5	0.9

21_/_2		IIIdX	mean	meulan	30	JE
shell	1.3	50.4	5.755	4.4945	3.9	0
spine						
base	1.4	34.3	10.2	9.1379	7	0.9

31_8_1	mın	max	mean	median	SD	SE
shell	1.2	41.6	6.511	5.9515	4.3	0
spine						
base	1.4	26.9	11.55	10.723	6.4	1

31_8_2	min	max	mean	median	20	SE
shell	1.2	41.6	6.511	5.9515	4.3	0
spine						
base	1.4	22.1	8.685	7.325	5.9	0.7

31_8_3	min	max	mean	median	20	SE
shell	1.2	41.6	6.511	5.9515	4.3	0
spine						
base	1.6	27.9	9.535	7.6289	6.6	1.1

8

shell	1.2	41.6	6.511	5.9515	4.3	0
spine						
base	1.4	21.6	7.46	6.4506	4.9	0.7

21_9_1	min	max	mean	median	20	SE
shell	1.2	132	6.165	5.6414	4.6	0.1
spine						
base	1.5	35.2	11.61	9.6704	8.4	0.8

31_9_2	min	max	mean	median	20	SE
shell	1.2	132	6.165	5.6414	4.6	0.1
spine						
base	1.5	28.4	11.99	11.255	8.2	1.2

-						
shell	1.4	38.4	6.852	6.1887	4.4	0
spine						
base	1.5	28.4	9.345	8.4687	5.3	0.5

Part 3: Cultured *T. sacculifer* specimens

shell	1.3	108	5.969	5.3616	4.4	0
spine						
base	1.3	43	10.74	9.7348	7.1	0.3

1_1_2	min	max	mean	median	20	SE
shell	1.3	108	5.969	5.3616	4.4	0
spine						
base	1.4	28.7	8.159	6.5566	5.3	0.3

shell	1.3	114	6.321	5.8649	4.3	0
spine						
base	1.4	26.7	9.052	7.9622	5.5	0.4

1_4	min	max	mean	meulan	20	JE
shell	1.3	42.4	6.899	6.2465	4.8	0
spine						
base	1.4	42.4	13.14	11.275	8.4	0.4

		шал	mean	meanan	50	52
shell	1.3	29.8	6.474	5.9071	4.2	0
spine						
base	1.3	29.8	8.057	7.6801	4.9	0.2

2_2	min	max	mean	median	SD	SE
shell	1.2	60	6.865	5.9637	4.6	0
spine						
base	1.5	36.5	12.84	10.85	8.3	0.6

<u> </u>		IIIdX	mean	meulan	30	JE
shell	1.2	55.1	6.965	5.9897	4.9	0
spine						
base	1.3	26.5	9.728	8.3395	6.2	0.5

		-			-	-
shell	1.3	35.6	7.446	6.4843	4.7	0
spine						
base	1.4	35.6	11.69	11.014	6.4	0.6

<u> </u>		шал	mean	meanan	00	02
shell	1.3	35.6	7.446	6.4843	4.7	0
spine						
base	1.4	35.6	10.59	9.3772	6.2	0.5

Z_5	min	max	mean	median	20	SE
shell	1.2	50	7.683	6.6361	5.1	0.1
spine						
base	1.4	36.7	12.58	10.56	9.4	1

Bertlich, J., Nürnberg, D., Hathorne, E. C., de Nooijer, L. J., Mezger, E. M., Kienast, M., Nordhausen, S., Reichart, G.-J., Schönfeld, J., and Bijma, J.: Salinity control on Na incorporation into calcite tests of the planktonic foraminifera Trilobatus sacculifer–Evidence from culture experiments and surface sediments, Biogeosciences Discussions, 1-38, https://doi.org/10.5194/bg-15-5991-2018, 2018.

Bijma, J., Faber, W. W., and Hemleben, C.: Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory cultures, Journal of Foraminiferal Research, 20, 95-116, https://doi.org/10.2113/gsjfr.20.2.95, 1990.

Mezger, E. M., Nooijer, L. J., Siccha, M., Kucera, M., and Reichart, G. J.: Taphonomic and ontogenetic effects on Na/Ca and Mg/Ca in spinose planktonic foraminifera from the Red Sea, Geochemistry, Geophysics, Geosystems, https://doi.org/10.1029/2018GC007852 2018.