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Abstract. For an assessment of the roles of soil and vegetation in the climate system, a further understanding of the flux 20 

components of H2O and CO2 (e.g., transpiration, soil respiration) and their interaction with physical conditions and 

physiological functioning of plants and ecosystems is necessary. To obtain magnitudes of these flux components, we applied 

the source partitioning approaches after Scanlon and Kustas (2010; SK10) and after Thomas et al. (2008; TH08) to high 

frequency eddy covariance measurements of twelve study sites covering different ecosystems (croplands, grasslands, and 

forests) in different climatic regions. Both partitioning methods are based on higher-order statistics of the H2O and CO2 25 

fluctuations, but proceed differently to estimate transpiration, evaporation, net primary production, and soil respiration. We 

compared and evaluated the partitioning results obtained with SK10 and TH08 including slight modifications of both 

approaches. Further, we analyzed the interrelations between the performance of the partitioning methods, turbulence 

characteristics, and site characteristics (such as plant cover type, canopy height, canopy density, and measurement height). 

We were able to identify characteristics of a data set that are prerequisite for adequate performance of the partitioning 30 

methods. 

SK10 had the tendency to overestimate and TH08 to underestimate soil flux components. For both methods, the partitioning 

of CO2 fluxes was less robust than of H2O fluxes. Results derived with SK10 showed relatively large dependencies on 

estimated water use efficiency (WUE) at the leaf level, which is a required input. Measurements of outgoing longwave 
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radiation used for the estimation of foliage temperature (used in WUE) could slightly increase the quality of the partitioning 

results. A modification of the TH08 approach, by applying a cluster analysis for the conditional sampling of 

respiration/evaporation events, performed satisfactorily, but did not result in significant advantages compared to the original 

method versions developed by Thomas et al. (2008). The performance of each partitioning approach was dependent on 

meteorological conditions, plant development, canopy height, canopy density, and measurement height. Foremost, the 5 

performance of SK10 correlated negatively with the ratio between measurement height and canopy height. The performance 

of TH08 was more dependent on canopy height and leaf area index. In general, all site characteristics which increase 

dissimilarities between scalars appeared to enhance partitioning performance for SK10 and TH08. 

1 Introduction 

The eddy covariance (EC) method is a micrometeorological technique commonly used to measure the energy, water vapor, 10 

and carbon dioxide exchange between biosphere and atmosphere across a large range of scales in time and space (Baldocchi 

et al., 2001; Reichstein et al., 2012). The measurements help to understand the temporal and spatial variations of these fluxes 

at the land-atmosphere interface. However, the EC method quantifies only net fluxes of water vapor, i.e. evapotranspiration 

(ET), and the net ecosystem exchange of CO2 (NEE). Thus, for a better assessment of the role of soil and vegetation in the 

climate system, a further understanding of the flux components of H2O and CO2 and their interaction with physical 15 

conditions and physiological functioning of plants and ecosystems is necessary (Baldocchi et al., 2001). To obtain 

magnitudes of transpiration, evaporation, photosynthesis, and respiration by soil and vegetation, certain measurements with 

additional instrumentation independent of the EC technique can be conducted. Alternatively or additionally, so-called source 

partitioning approaches can be applied to the net fluxes obtained with the EC method. For instance, with the notion that 

during night no CO2 is assimilated by plants (and hence, observed NEE equals respiration), respiratory fluxes are often 20 

estimated based on semi-empirical models describing the relationship between a physical driver (e.g., temperature) and 

respiration (Lloyd and Taylor, 1994; Reichstein et al., 2005, 2012). To estimate soil surface fluxes of both H2O and CO2 

directly from high frequency EC data without assumptions on such drivers, two distinct partitioning approaches were 

developed by Scanlon and coauthors (Scanlon and Sahu, 2008; Scanlon and Kustas, 2010), and Thomas et al. (2008). Both 

approaches rely on the assumption that the presence of multiple sources and sinks in and below the canopy will lead to 25 

decorrelation of the high frequency scalar concentrations measured by the EC method above the canopy. This decorrelation 

contains information about the strength of these sinks and sources, which can be quantified by applying the flux-variance 

similarity theory or conditional sampling strategies. The scalar-scalar-correlations of H2O and CO2 are however not only 

influenced by the sink-source distribution, but also by height (atmospheric surface layer, roughness sublayer), surface 

heterogeneity (Williams et al., 2007), canopy density, and coherent structures (Edburg et al., 2012; Huang et al., 2013). 30 

The source partitioning approach after Scanlon and Sahu (2008) and Scanlon and Kustas (2010) has already been applied to 

data acquired above a corn field (eastern USA; Scanlon and Kustas, 2012), has been compared to an isotopic H2O flux 
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partitioning method (Good et al., 2014) and to the Noah Land Surface Model (Wang et al., 2016) both for grasslands, and 

has been evaluated on a forest site on a decadal time scale (Sulman et al., 2016). Zeeman et al. (2013) further investigated 

the partitioning approach after Thomas et al. (2008) in association with coherent structures. To better assess these two 

approaches and their theoretical background, an intercomparison at a variety of study sites is necessary (Anderson et al., 

2018). 5 

The objective of this study is to compare and evaluate the source partitioning approaches after Scanlon and Kustas (2010) 

and after Thomas et al. (2008) by applying them to high frequency scalar measurements of various study sites in different 

ecosystems. In addition to testing slight modifications of both partitioning methods, conditions and characteristics of study 

sites are identified under which the methods perform best. Based on findings of the above-mentioned authors and a large 

eddy simulation (LES) study (Klosterhalfen et al., 2019), we hypothesize that the methods’ performance is dependent on the 10 

canopy height (hc), which should represent the vertical separation of sinks and sources of H2O and CO2 between canopy top 

and soil surface, on the canopy density (leaf area index LAI, or expressed as the ratio LAI hc
-1

), and on the ratio between 

measurement height (z) and hc, respectively. All these factors affect the degree of mixing of the scalars detected by the EC 

sensors. With a high and sparse canopy and a low z hc
-1

, we hypothesize a larger dissimilarity between scalar fluctuations 

and a more precise partitioning result of both source partitioning approaches. To summarize, goals of this study are: 15 

- The comparison and evaluation of the partitioning results obtained with the approaches after Scanlon and Kustas (2010) 

and after Thomas et al. (2008) for various ecosystems, and testing slight modifications of the approaches 

- An analysis of the two approaches with respect to their dependence on their underlying assumptions 

- The description of the interrelations between performance of the partitioning methods, turbulence characteristics, and site 

characteristics (such as canopy type, hc, z hc
-1

, LAI, and LAI hc
-1

) 20 

- The identification of characteristics of a data set (i.e. of study site and period properties), which lead to a satisfactory 

performance of the partitioning methods, if such characteristics exist. 

2 Material and Methods 

2.1 Source Partitioning after Scanlon and Kustas (2010) - SK10 

To estimate the contributions of transpiration (T), evaporation (E), photosynthesis as net primary production (NPP), and soil 25 

respiration (Rsoil, autotrophic and heterotrophic sources) to the measured net fluxes, Scanlon and Sahu (2008) and Scanlon 

and Kustas (2010) proposed a source partitioning method using high frequency time series from a typical EC station. This 

method (SK10 in the following) is based on the spatial separation and relative strength of sinks and sources of water vapor 

and CO2 below the canopy (source of both water vapor and CO2), in the canopy (source of water vapor and sink of CO2 

during daylight), and the atmosphere. Assuming that air from those sinks and sources is not yet perfectly mixed before 30 

reaching the EC sensors, partitioning is estimated based on the separate application of the flux-variance similarity theory to 

the stomatal and non-stomatal components of the scalars, as well as an estimation of canopy water use efficiency (WUE). 
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The slope of the relationship between water vapor fluctuations (q’) and CO2 fluctuations (c’) originating from stomatal and 

non-stomatal processes usually differs from the WUE at the leaf level and the correlation between the two scalars (ρq’c’) 

usually deviates from -1 during daytime. This deviation of the slope of the q’ versus c’ relationship from WUE at leaf-level 

and the reduction of correlation are used to estimate the composition of the measured fluxes (Scanlon and Kustas, 2010; 

Scanlon and Sahu, 2008). For a detailed analytical description of SK10 see Scanlon and Albertson (2001), Scanlon and Sahu 5 

(2008), Scanlon and Kustas (2010, 2012), and Palatella et al. (2014). Furthermore, Skaggs et al. (2018) implemented SK10 

in the open source Python 3 module Fluxpart. In the present study, SK10 was applied to high frequency EC data and the flux 

components were estimated using the implementation of SK10 as described by Klosterhalfen et al. (2019). 

As mentioned before, the WUE at the leaf level has to be estimated for the application of SK10. WUE at the leaf level 

describes the relation between the amount of CO2 uptake through stomata (photosynthesis) and the corresponding amount of 10 

H2O loss (T). One way to derive WUE (without additional measurements at leaf-level) is to relate the difference in mean 

CO2 concentration between air outside and inside the leaf to the difference in mean water vapor concentration between air 

outside and inside the leaf including a factor that accounts for the difference in diffusion rate between H2O and CO2 through 

the stomatal aperture (Campbell and Norman, 1998; Scanlon and Sahu, 2008). The mean H2O and CO2 concentrations just 

outside the leaf can be inferred from EC measurements by considering logarithmic mean concentration profiles 15 

implementing the Monin-Obukhov similarity theory (MOST; Scanlon and Kustas, 2010, 2012; Scanlon and Sahu, 2008). For 

the internal CO2 concentration, a constant value of 270 or 130 ppm was presumed, typical for C3 or C4 plants, respectively 

(Campbell and Norman, 1998; Špunda et al., 2005; Williams et al., 1996; Xue et al., 2004). Values for the internal water 

vapor concentration were estimated based on 100% relative humidity at foliage temperature. Measurements of foliage 

temperature were not available at the study sites, so for the source partitioning foliage temperature was set equal to measured 20 

air temperature (WUEmeanT; Scanlon and Sahu, 2008). Additionally, to investigate the sensitivity of WUE, foliage 

temperature was also derived by means of measured outgoing longwave radiation (WUEOLR; with a surface emissivity of 

0.98), or calculated similar to the external concentrations by considering a mean profile based on MOST (WUEMOST). Thus, 

three different approaches of SK10 with differing inputs for WUE were applied to all study sites. 

2.2 Source Partitioning after Thomas et al. (2008) - TH08 25 

Thomas et al. (2008) presented a new method (TH08 in the following) to estimate daytime sub-canopy respiration of forests 

directly from EC raw data by conditional sampling. In an analogous way, evaporation can be quantified by exchanging c’ 

with q’ in the equations given by Thomas et al. (2008, equations 1-11, pages 1212-1215). The method assumes that 

occasionally air parcels moving upward (vertical wind fluctuations w’ > 0) carry unaltered H2O/CO2 concentration 

combinations of the sub-canopy. Looking at the fluctuations q’ and c’, both normalized with the corresponding standard 30 

deviation, respiration/evaporation signals should occur within the part of the joint probability distribution where w’, q’ and c’ 

are positive, i.e. in the first quadrant in the q’-c’ plane (where q’ > 0 and c’ > 0). Additionally, Thomas et al. (2008) 

introduced a hyperbolic threshold criterion within quadrant 1, in order to only sample all data points above this hyperbola. 
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Thomas et al. (2008) found realistic respiration estimates with a hyperbolic threshold of 0.25, which was also applied here. 

Subsequently, daytime evaporation and respiration can be determined from the conditionally sampled w’, q’, and c’ time 

series within quadrant 1 (Q1) or using the hyperbola threshold criterion (H). For the determination of the turbulent H2O and 

CO2 fluxes either the covariance between w’ and the corresponding scalar (CV) can be used, or the relaxed eddy 

accumulation (REA) technique (Businger and Oncley, 1990) using the coefficient β as described in equation 4, page 1213 5 

and statements on page 1215 in Thomas et al. (2008). Hence, Thomas et al. (2008) applied four different approaches to 

quantify the respiration/evaporation events, combining the two conditional sampling criteria (Q1 or H) and the two 

calculation strategies (CV or REA technique). 

For some averaging periods in our data, a potential respiration/evaporation ‘cloud’ was evident but did not occur 

(completely) within quadrant 1 (Fig. 1). As a modification of the conditional sampling strategy and a more tolerant detection 10 

of respiration/evaporation events, a distribution-based cluster analysis was conducted (fifth approach, GMM). With the 

Gaussian Mixture Model (Canty, 2010) using the Expectation-Maximization Algorithm, two clusters were defined for each 

averaging period: the respiration/evaporation ‘cloud’ and all further points associated with T and photosynthesis independent 

of the sign of w’. Soil surface fluxes were calculated by CV from data in the respiration/evaporation ‘cloud’, where the 

deviations from the averages of all sampled cluster data points (instead of all data points) were used for q’ and c’ (w’ kept 15 

unchanged). Because the sampled respiration/evaporation ‘cloud’ by GMM would not always lie within quadrant 1 (often in 

quadrant 1 and 4, or in 1 and 2), and q’ and/or c’ of the defined ‘cloud’ could correlate negatively with w’, the corresponding 

surface flux would often be negative (Fig. 1). If this was the case for H2O and/or CO2 soil fluxes, the corresponding flux was 

recalculated considering the deviations from the averages of all data points for w’, q’, and c’, and only including data points 

within quadrant 1 of the original q’-c’ plane and with w’ > 0. This recalculated flux represented only a minimal fraction of 20 

the corresponding flux component in the considered averaging period. Also, as a result of this procedure the number of data 

points could differ between H2O and CO2 for TH08 CV GMM depending on the calculation step used. 

2.3 Study Sites and Data Processing 

For the application and evaluation of the source partitioning methods, various study sites in a number of countries with 

differing cover types, canopy densities (represented by LAI), and measurement heights were chosen (Table 1). Almost all 25 

study sites are part of the FLUXNET network (Baldocchi et al., 2001). Detailed site and measurement descriptions can be 

found in the listed references. Besides coniferous and deciduous forests with closed canopy cover, grasslands, and croplands, 

some sites represent special canopy types: in Forest_SC (for site abbreviations see Table 1) EC measurements have been 

conducted above a Mediterranean oak savanna (dehesa; Andreu et al., 2018); in Wüstebach an area of about 9 ha was 

deforested in 2013 and so measurements were obtained above the still present spruce forest (Forest_WU) and the deforested 30 

area (Grass_WU) (Graf et al., 2014; Wiekenkamp et al., 2016), where grass, shrubs, and young deciduous trees have been 

regrowing swiftly; and in Forest_LA a coniferous forest has been regrowing gradually after a non-cleared windthrow in 2007 

(Matiu et al., 2017). These three study sites represent the most heterogeneous landcover types in this study. 
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For each study site, measurements from days with a high-productive state of the vegetation and fair-weather conditions were 

selected to exclude factors interfering with the performance of the partitioning method. Time periods with precipitation 

events were excluded. Furthermore, the quality assessment scheme after Mauder et al. (2013) was applied to each data set 

and source partitioning was only conducted for time periods with the highest or intermediate quality flag levels assigned by 

this scheme. We only considered partitioning results of daytime data, because both methods require the presence of 5 

photosynthesis. Here, daytime was determined by calculating sunrise and sunset times by means of local time. Additionally, 

the TH08 method was only applied to time periods with a negative ρq’c’, and if less than 1% of the total data points in one 

half-hour time period were sampled as the respiration/evaporation ‘event’, the partitioning result was disregarded. 

The high frequency H2O and CO2 time series of all study sites were pre-processed and prepared for the application of the 

source partitioning approaches as described by Klosterhalfen et al. (2019). For each study site, physically impossible values 10 

and spikes were excluded in the high frequency EC data of vertical wind, total H2O and CO2 concentrations. The time delay 

was corrected, missing raw data within a half-hour period were gap-filled by linear interpolation, and a planar-fit rotation 

was conducted, where the rotation matrix was calculated for only a maximum time period of two weeks. Further, the EC data 

was corrected for density fluctuations after Detto and Katul (2007). Then, the source partitioning approaches were applied to 

half-hourly time series of these pre-processed high frequency data, partitioning fractions (E/ET or Rsoil/NEE, respectively) 15 

were calculated, and applied to the post-processed half-hourly EC data. 

2.4 Evaluation of Source Partitioning Results 

The evaluation of the source partitioning performance was conducted in multiple ways for the various study sites depending 

on data-availability. At some study sites, Rsoil was measured additionally with closed-chamber measurements independently 

of the EC measurements. In Grass_RO and the cropland in Selhausen (Wheat_SE, Barley_SE, Intercrop_SE, 20 

SugarBeet_SE), continuous measurements of multiple longterm-chambers were available for the considered time periods 

(half-hourly at Selhausen and hourly interpolated to half-hourly at Grass_RO). In Maize_DI, Forest_WU, and Grass_WU, 

Rsoil was measured with survey-chambers at several measurement points on one day during the considered time periods, so 

spatial and temporal averages for the hours in question could be calculated. For all study sites, soil evaporation (Esoil) was 

estimated as a fraction of measured ET based on Beer’s law depending on LAI (Esoil = ET exp(-0.6 LAI); Campbell and 25 

Norman, 1998; Denmead et al., 1996). Thus, the root mean square error (RMSE) and the bias could be calculated between 

the partitioning results for E or Rsoil and the estimated Esoil or chamber measurements, respectively. RMSE was sensitive to 

bias and outliers, and the distribution of errors was skewed. The positive outliers/errors (overestimations) were larger than 

negative errors (underestimations). An overestimation of the flux component magnitude may result in a larger RMSE than an 

underestimation. Therefore, we also calculated a version of the RMSE based on log-transformed data (RMSEln; data 30 

transformed with ln(x +1)) before computing differences between estimated and reference E or Rsoil. Furthermore, one has to 

keep in mind that the measurements of Rsoil and LAI can also contain errors and that Esoil is only a rough model 

approximation and can only give an order of magnitude to expect. 
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In addition, partitioned CO2 fluxes were evaluated in reference to results of the established partitioning approach after 

Reichstein et al. (2005), if available; even though this approach targets other flux components (total ecosystem respiration 

TER and gross primary production GPP). For Forest_MMP and Forest_WA, results of this partitioning approach were not 

available, thus, we chose for these sites maximal margins for GPP and TER based on partitioning results of previous years 

and experience. For all sites, the estimated NPP and Rsoil for every time step were classified as reasonable if their magnitudes 5 

were smaller than the determined GPP or TER, respectively. Since all data sets were from the main growing season and for 

weather conditions favorable to high respiration, we assumed that Rsoil should additionally be larger than 1 μmol m
-2

 s
-1

. In 

the following, NPP and Rsoil estimates meeting these criteria (“hits in range”) will be counted as HiR GPP (magnitude of 

NPP smaller than magnitude of GPP) and HiR TER (Rsoil smaller than TER and larger than 1 μmol m
-2

 s
-1

). We calculated 

the percent fraction of HiR GPP and HiR TER in relation to the count of time steps with valid partitioning solutions. Within 10 

this evaluation step two source partitioning approaches (approach after Reichstein et al., 2005 versus SK10 or TH08) were 

examined and compared including their different assumptions and uncertainties, and the results have to be handled with care. 

An evaluation of the estimated flux magnitudes was also possible for some study sites by means of prior publications. 

2.5 Analysis of Source Partitioning Approaches 

To compare the strengths and limitations of SK10 and TH08 and to gain a better insight in their functionality and 15 

dependencies on turbulence and site characteristics, a correlation analysis was conducted between HiR GPP or HiR TER and 

the variables z, hc, z hc
-1

, LAI, or LAI hc
-1

. Here, we have chosen HiR GPP and HiR TER as the criteria of partitioning 

performance, because these could be calculated for all considered study sites, unlike the error metrics (RMSE, bias, etc.) 

regarding Rsoil. Different subsets of sites were considered for the calculation of the correlations: all study sites, only forest 

sites, or only cropland and grassland sites. 20 

SK10 was already thoroughly analyzed by means of synthetic high frequency data derived by LES (Klosterhalfen et al., 

2019). To obtain a better understanding of the strengths and limitations of TH08, we constructed a conceptual model to 

generate simple, synthetic data sets of w’, q’, and c’ (with sample sizes of N = 100) with different degrees of mixing between 

scalar sinks and sources from the soil, canopy, and boundary layer (Fig. 7, upper panels). We considered no mixing, 

complete mixing, and partial mixing between scalars originating from soil and canopy (with positive w’). For all three sets, 25 

mixing with scalars originating from the boundary layer (with negative w’) was excluded. Averages of fluctuations were all 

specified as zero, and each scalar sink/source strength was determined such that the net H2O flux equals to 1 mmol m
-2

 s
-1

 

and the net CO2 flux to -1 μmol m
-2

 s
-1

. To each generated data point of w’, q’ and c’ a random number, sampled from a 

standard normal distribution and rescaled to a standard deviation of 5% of the magnitude of the variable, was added to 

simulate additional sources of variance not related to the degree of mixing. TH08 was applied to these synthetic data sets and 30 

could be validated with the true known partitioning fractions 
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3 Results and Discussion 

For each study site, the number of half-hourly time steps during daylight per considered time period is shown in Table A1 in 

the Appendix. Also, the fraction of daylight time steps of high-quality (HQ) data which were used in the application of SK10 

and TH08 are shown, where for SK10 only a good or intermediate quality flag (after Mauder et al., 2013) and no 

precipitation were required, and for TH08 additionally a negative ρq’c’. Furthermore, the fraction of these HQ-time steps, for 5 

which partitioning solutions were found, is shown for each method version. Thus, from the original data, only a part 

remained for the partitioning, and for only a part of the remaining data a partitioning result could be obtained. 

3.1 Evaluation of Source Partitioning Results 

3.1.1 Flux Components Magnitudes 

In the following, figures are shown for some selected sites, which were deemed most representative for all study sites, and/or 10 

for some selected method versions of SK10 and TH08, which usually exhibited the best partitioning performance. In Fig. 2 

the source partitioning results for H2O and CO2 fluxes for Forest_LO are shown in half-hourly time steps as an example. The 

partitioning results for all sites and all method versions are shown in the Supplementary material, including Esoil estimations 

based on Beer’s law, chamber measurements of Rsoil, and/or partitioning results after Reichstein et al. (2005), depending on 

data-availability. Figures 3 and 4 show the mean diurnal variation of H2O and CO2 fluxes and their components. Figure 3 15 

shows data from one site (Forest_WA) and all method versions, whereas Fig. 4 shows results for all study sites and just two 

method versions: SK10 with WUEOLR and TH08 with REA H. In Fig. 5 the total averages of the flux components over the 

available time periods are shown. The top panel compares all method versions for a single site (Forest_MMP) whereas the 

lower two panels compare all sites for two method versions (SK10 with WUEOLR and TH08 with REA H). For the 

calculation of these mean diurnal variations as well as the total averages, large spikes in the estimated flux components 20 

(deviation from the mean by more than ten times of the standard deviation) were excluded. Figure 6 shows the error 

quantities, RMSEln and bias relative to Rsoil chamber measurements, HiR GPP, HiR TER, and Esoil estimation, for each site 

and method version. In all figures, timestamps are in local time. 

In general, the partitioned CO2 fluxes showed a higher variability and more spikes than the partitioned H2O fluxes for all 

sites (e.g., at Forest_HH, Fig. S2 in Supplementary material). Furthermore, SK10 and TH08 gave differing results for each 25 

study site and performed disparately between method versions. In Fig. 2-5, it is apparent that TH08 mostly resulted in lower 

magnitudes of the flux components originating from the soil surface or sub-canopy than SK10. The source partitioning 

results of Forest_LO (Fig. 2, 4, 5) were an exception to this rule. For this study site, the partitioning fractions of SK10 and 

TH08 were very similar and thus suggest a low uncertainty of the results. For the other study sites, larger discrepancies were 

observed between SK10 and TH08. Furthermore, the partitioning fractions E/ET and NPP/NEE varied much less between 30 

sites for TH08 than for SK10 (Fig. 5). Good et al. (2015) determined a global estimate for T/ET of 0.65 and Schlesinger and 

Jasechko (2014) an estimate of 0.61. Li et al. (2019) deduced mean annual partitioning fractions of 0.75, 0.62, and 0.56 for 
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evergreen coniferous forests, croplands, and grasslands, respectively. Our derived partitioning fractions had approximately 

the same magnitudes or assigned a larger fraction to transpiration, most likely due to the seasons chosen. We could not 

observe a clear difference in partitioning fractions between ecosystem types as Li et al. (2019). 

For a number of our sites, information on component fluxes is available from literature. For Forest_LO in 1997, Dolman et 

al. (2002) reported a peak respiration measurement of 12 μmol m
-2

 s
-1

, Falge et al. (2002) a seasonal maximum GPP 5 

of -24 μmol m
-2

 s
-1

 and seasonal maximum TER of 5.3 μmol m
-2

 s
-1

, and chamber measurements in June 2003 revealed a 

maximum soil respiration rate of 17.3 μmol m
-2

 s
-1

. Our partitioning results for Forest_LO based on SK10, TH08, and the 

approach after Reichstein et al. (2005) laid within the range of these reported flux magnitudes (Fig. 2, S1 in Supplementary 

material). For Forest_WA, SK10-derived partitioning fractions, with T/ET > 0.5 and NPP/NEE > 2, were relatively large. On 

8 July 2016, however, the CO2 flux components were smaller, with NPP/NEE < 1.4 and Rsoil < 10 μmol m
-2

 s
-1

 (Fig. S4 in 10 

Supplementary material). On this day no significant differences in weather conditions or scalar statistics were apparent in 

contrast to the other days. For Forest_MMP, Thomas et al. (2009) derived a T/ET ratio of 50% from sap flow measurements, 

which agrees well with the partitioning results obtained with the SK10 approach (Fig. 5, Fig. S6 in Supplementary material). 

Results of the TH08 approach and estimated Esoil imply a relatively larger fraction of T. At Forest_SC, the results of the 

different source partitioning methods were impacted by water stress. For a very dry period in August 2016, both partitioning 15 

approaches were not applicable, because transpiration and photosynthesis almost ceased due to water stress, and the 

correlations between H2O and CO2 fluxes were almost always positive (not shown). In April 2017, partitioning results were 

obtained showing an increase in Rsoil estimated with SK10 and a decrease in estimated E (Fig. S7 in Supplementary 

material). Spring 2017 was considered as relatively dry in this region, and the last precipitation event was five days before 

the respective time period, so that it can be assumed that water stress increased steadily in April 2017. No 20 

respiration/evaporation events were apparent in the q’-c’ planes, which could be caused by the sub-canopy in the oak 

savanna, thus, TH08 probably underestimated soil fluxes substantially. 

In Grass_RO the continuous chamber measurements of Rsoil and TER estimated with the approach after Reichstein et al. 

(2005) did not agree well. TER decreased steadily over the seven days (this could also be observed for Grass_FE) and was 

mostly lower than measured Rsoil (Fig. S8 in Supplementary material). In comparison to measured Rsoil, SK10 still 25 

overestimated and TH08 underestimated Rsoil fluxes. For Forest_WU and Grass_WU, TH08 yielded results matching 

comparatively well with the modeled estimate Esoil and the gap-filling approach after Reichstein et al. (2005) (Fig. S3, S9 in 

Supplementary material). As mentioned before, Grass_WU is a very heterogeneous site with regrowing vegetation of 

grasses, shrubs, and trees on dry and wet areas. Thus, the measured signals might display fluxes originating from different 

sinks and sources distributed horizontally rather than vertically. The present variety of plant types increased the uncertainty 30 

in the estimation of WUE. Usage of WUEOLR improved the partitioning by SK10 significantly, but could not avoid 

overestimation of Rsoil (in reference to chamber measurements and TER). For Forest_LA, we observed a behavior similar to 

Grass_WU (Fig. S5 in Supplementary material). Here, the forest is also regrowing, but spruce trees are already more 

abundant and larger. 



10 

 

For Maize_DI in 2007, Jans et al. (2010) reported a mean Rsoil flux of 3.16 μmol m
-2

 s
-1

 and a peak Rsoil of 23 μmol m
-2

 s
-1

. 

Rsoil estimates by SK10 were often as large as this peak, but the maximum observed by Jans et al. (2010) was triggered by 

precipitation, which does not apply in our case (Fig. S11 in Supplementary material). The partitioning results for the 

cropland in Selhausen (Wheat_SE, Barley_SE, Intercrop_SE, SugarBeet_SE) showed large differences between crops and 

were more robust for H2O fluxes than CO2 fluxes. 5 

3.1.2 Error Metrics 

Figure 6 shows the error metrics RMSEln and bias relative to chamber measurements of Rsoil, HiR GPP, HiR TER, and 

RMSEln and bias relative to Esoil estimation, for each site and method version. A clear pattern in the performance of the 

source partitioning depending on method version or on study site characteristics could not be identified in the error metrics 

(Fig. 6). However, the following general statements can be made: 10 

1) The RMSE in Rsoil was usually larger for SK10 than for TH08 (not shown). Considering RMSEln in Rsoil, SK10 performed 

better at forest sites than TH08, and slightly worse at crop- and grasslands (Fig. 6a). The bias in Rsoil was always positive for 

SK10 (except for Forest_WU) and often negative for TH08 (except for TH08 REA H; Fig. 6b); SK10 has the tendency to 

overestimate and TH08 to underestimate Rsoil compared to respiration chamber measurements. The lowest RMSE, RMSEln, 

and bias were found for the SK10 method versions in Forest_WU and for TH08 in Forest_WU, Grass_WU, and 15 

SugarBeet_SE_09. 

2) When using the gap-filling model after Reichstein et al. (2005) as a reference, high HiR GPP were relatively frequent for 

TH08, with a minimum of 66.7% for SugarBeet_SE_06, while HiR GPP for SK10 were considerably lower (Fig. 6c). For 

HiR TER, such a clear difference in performance could not be observed (Fig. 6d). While SK10 mostly overestimated TER, 

TH08 often estimated soil fluxes smaller than the minimum Rsoil threshold of 1 μmol m
-2

 s
-1

. TH08 REA H usually gave the 20 

best results for HiR TER and the worst for HiR GPP within the method versions of TH08. Also, the performance of SK10 

improved for CO2 in Maize_DI with increasing crop height and lower LAI (Fig. 4, 6). 

3) The RMSE (not shown), RMSEln, and bias of E (in reference to Esoil estimated using Beer’s law) were mostly similar or 

slightly larger for SK10 than for TH08 except for the low crop canopies, Forest_LO, Forest_MMP, and Forest_SC 

(Fig. 6e, f). These sites also had a relatively low LAI. The error metrics were low in Forest_WU and Grass_WU for SK10 25 

and TH08. The worst performance regarding E could be found in Forest_HH for SK10, and in Forest_SC, Maize_DI_06, and 

Intercrop_SE for TH08. The bias indicated that SK10 underestimated E for all canopies with a LAI lower than 2.3 

(Forest_LO, Forest_SC, Maize_DI_06, SugarBeet_SE_06, Intercrop_SE, the latter three have relatively short canopies). This 

could also be explained by the larger Esoil estimates based on Beer’s law due to the smaller LAIs, thus preventing an 

overestimation by SK10. 30 

To summarize, for TH08 the calculation of the fluxes via REA yielded larger fluxes than via CV (Fig. 2, 3, 5). Because 

averaging in the flux calculation is performed differently for CV and REA (i.e. equations 1, page 1212 and equation 8, page 

1214 in Thomas et al., 2008), and fewer data points are sampled with the hyperbolic threshold than using data from the entire 
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Q1, the largest magnitudes were obtained by using REA with the hyperbolic threshold (REA H). In some time steps, no 

respiration/evaporation ‘cloud’ was apparent in the q’-c’ plane, thus, the applied conditional sampling strategies were not as 

effective as intended, and an assessment of a correct sampling was not possible. Using GPP and TER estimated with the gap-

filling model after Reichstein et al. (2005) as reference, components estimated by TH08 almost always were within this 

prescribed range (i.e. magnitude of NPP smaller than magnitude of GPP, and Rsoil smaller than TER) because of their small 5 

resulting fluxes, whereby Rsoil was often below the assumed minimum threshold of 1 μmol m
-2

 s
-1

; thus, we assume these 

values to be underestimated (Fig. 6, S1-S13 in Supplementary material). Regarding the error metrics in Fig. 6, TH08 REA H, 

among all TH08 method versions, yielded the best result for the largest number of sites and error metrics. Partitioning results 

obtained by TH08 CV GMM were not systematically different from the other method versions, but showed no extreme 

spikes in the soil flux components. 10 

The SK10 approach had the tendency to produce very high values of the soil flux components. Considering the diurnal 

dynamics and averages (Fig. 3-5), results of SK10 were satisfactory, but still relatively large. For most of the study sites, the 

magnitudes and variability in the half-hourly results of the soil flux components were decreased by using WUEMOST or 

WUEOLR instead of WUEmeanT. The differing WUE inputs had a larger effect on the CO2 flux components than on H2O. The 

magnitudes of the estimated leaf-level WUEs agreed well with magnitudes stated by Good et al. (2014), Linderson et al. 15 

(2012), and Sulman et al. (2016). Considering the error metrics in Fig. 6, SK10 with WUEOLR very often gave the best 

results. 

3.2 Analysis of Source Partitioning Approaches 

3.2.1 Analysis by Means of Correlation Analysis 

We studied the interrelations between partitioning performance (expressed in HiR GPP and HiR TER) and site 20 

characteristics such as canopy height hc, LAI, canopy density (using LAI hc
-1

 as proxy), measurement height z, and the 

position of the measurements relative to the roughness sublayer (using z hc
-1

 as a proxy) by means of a correlation analysis 

(Tables 2, 3). Here, hc represents the vertical separation of sinks and sources of passive scalars between canopy top and soil 

surface. For the chosen study sites, LAI correlated with hc when considering a specific ecosystem type (forest, cropland, or 

grassland). Thus, LAI hc
-1

 was also considered to distinguish between their impacts on partitioning performance. The 25 

ecosystem type “cropland” included only two different sites, Maize_DI and Selhausen (Wheat_SE, Barley_SE, 

Intercrop_SE, SugarBeet_SE), and thus only two different measurement heights z, but a total of nine data sets resulting from 

the considered time periods and various crops (Table 1). Therefore, the correlation coefficients with z including this 

ecosystem type have to be handled with care. All these site characteristics contain some information about the characteristics 

of the observed turbulence and also affect the degree of mixing of the scalars when they reach the EC sensor. Furthermore, 30 

we assume that with increasing LAI, LAI hc
-1

 and z hc
-1

, and with decreasing hc the dissimilarity between q’ and c’ decreases 

and EC measurements contain less information for the partitioning approaches (Edburg et al., 2012; Huang et al., 2013; 
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Williams et al., 2007). Results of Klosterhalfen et al. (2019) suggest a decreasing performance of SK10 with increasing 

z hc
-1

. 

Correlation coefficients between partitioning performance and site characteristics were calculated for all sites together, for 

forests only, or for crop- and grasslands only, respectively (Tables 2, 3). For the SK10 method versions, the correlation 

coefficients showed similar relations between variables and partitioning results for both HiR GPP and HiR TER, because 5 

SK10 had the tendency to overestimate both NPP and Rsoil. For the TH08 method versions, relations slightly differ between 

HiR GPP and HiR TER, because TH08 had the tendency to underestimate Rsoil fluxes (< 1 μmol m
-2

 s
-1

), thus HiR TER were 

smaller than HiR GPP. For the forest sites, the correlations were relatively high between variables and partitioning 

performance, even though mostly not significantly different from zero. 

The performance of all SK10 method versions correlated negatively with LAI hc
-1

 and z hc
-1

, and positively with hc and z, 10 

where the correlation with z hc
-1

 was often significant. The correlation coefficients regarding LAI, despite being also 

positive, were the smallest. Therefore, partitioning performance of SK10 was mostly enhanced with a sparse canopy and 

measurements obtained close to the canopy (close to or within roughness sublayer). For the TH08 method versions, LAI had 

larger effects on partitioning performance than for SK10 method versions, and hc, z hc
-1

, and
 
LAI hc

-1
 had smaller effects. 

Correlation coefficients of LAI and LAI hc
-1

 were mostly positive with a few exceptions (e.g., regarding HiR TER for crop- 15 

and grasslands). For the TH08 method versions, all site characteristics correlated positively with HiR GPP, except for z hc
-1

 

considering all study sites. The correlations between site characteristics and HiR TER were weak while considering all study 

sites. For forest sites, HiR TER correlated negatively with LAI hc
-1

 and z hc
-1

 and positively with hc, LAI, and z. For 

crop- and grasslands, similar results were obtained, except the negative correlation between HiR TER and LAI. Also, the 

correlations with hc and z increased in significance. Apparently, a dense canopy yielded too low sub-canopy fluxes derived 20 

by TH08, but more reasonable canopy fluxes. 

The variable LAI mostly correlated positively with partitioning performance for TH08 method versions and very weak with 

partitioning performance for SK10 method versions, which contradicted our initial hypotheses. Also, the correlation between 

partitioning performance by TH08 and LAI hc
-1

 at forest sites contradicted our assumption that a higher plant density would 

have a strong negative effect. Next to canopy density, LAI could also be connected to larger sinks and sources of canopy 25 

fluxes (T and photosynthesis) relative to soil surface fluxes due to larger biomass, and to the appearance and frequency of 

coherent structures. A dense canopy prevents frequent ejections of air parcels from the sub-canopy, but provokes higher 

scalar concentrations in such air parcels because of a longer accumulation under the canopy. Respiration/evaporation events 

could occur less frequently but be of higher magnitude. Also, small gaps in an otherwise dense canopy can play an important 

role regarding ejection events. Thus, how canopy density affects scalar-scalar-correlation measured above the canopy (and 30 

associated with that the partitioning performance), cannot be easily assessed. In this study, canopy density (LAI and 

LAI hc
-1

) and partitioning performance (especially regarding HiR TER) correlated negatively at crop- and grassland sites and 

mostly positively at the forest sites for TH08. Assuming gaps in the canopy can be more frequent in forests than in crop- or 

grasslands, these results support the above-mentioned aspects. Zeeman et al. (2013) found a clear connection between the 
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appearance of coherent structures and the detection of respiration/evaporation events following the TH08 approach, where 

the best results were obtained for an open canopy (Forest_MMP). They found a temporal separation of 10-20 s between sub-, 

mid-, and above-canopy measurements. In order to assess to what extent these effects play a role in the current data sets, an 

estimate of the (large-scale) heterogeneity and density of the vegetation at all study sites (gap fraction, canopy openness) 

would be necessary, which is beyond the scope of this paper. 5 

3.2.2 Analysis by Means of a Conceptual Model 

SK10 was already thoroughly analyzed by means of the synthetic high frequency data derived by LES (Klosterhalfen et al., 

2019). In the present study, TH08 was applied to various synthetic w’-, q’-, and c’-data sets including soil, canopy, and 

boundary layer scalar sink/sources derived by a simple conceptual model as described above (Fig. 7, top panel). Defined by 

the conditional sampling concept, we hypothesized that TH08 would work perfectly with no mixing of the scalars from the 10 

three different origins, would not obtain any partitioning fractions in case of the complete mixing, and would underestimate 

the soil fluxes in case of partial mixing. 

TH08 behaved as hypothesized except for TH08 REA H (see below; Fig. 7, bottom panel). For the partial mixing, a small 

difference in TH08-derived partitioning fractions (especially for H2O) was observed between the sampling in Q1 and with H, 

because one data point was not sampled with the hyperbolic threshold, but was located within Q1. TH08 REA H did not 15 

yield any partitioning results in case of no or partial mixing. This is due to the different definitions of β in the application of 

REA with the sampling in Q1 or with H (Thomas et al., 2008, equation 4, page 1213 and statement on page 1215). β is an 

empirical constant and can be approximated by the ratio between the standard deviation of w’ (σw’) and the difference 

between the mean vertical velocities in updrafts and downdrafts (w+̅̅ ̅̅ - w-̅). For the conditional sampling approach within Q1, 

β is derived including all data points (disregarding the sign of q’ or c’). For the approach including the hyperbolic threshold 20 

criterion, β is derived from w’ data points which satisfy the hyperbolic threshold criterion for positive q’ and c’. In case of 

our conceptual model for the partial mixing, no data point with negative w’ satisfied this criterion, so without w-̅, β and a 

partitioning fraction could not be calculated. Figure 7 shows the partitioning fractions for TH08 REA H while applying β as 

calculated in TH08 REA Q1 (non-filled markers). TH08 CV GMM performed similar to the other method versions: it 

sampled the correct respiration/evaporation ‘cloud’ in case of no mixing and no ‘cloud’ in case of complete mixing. 25 

However, in case of the partial mixing all data points with q’ > 0 were sampled by TH08 CV GMM, thus, considering also 

the fraction originating from the canopy. For the latter, the covariances applying the averages of q or c of the sampled 

cluster, and considering only data points with w’ > 0, were negative for H2O and CO2 (not shown). Thus, E and Rsoil were 

recalculated with the covariance taking the deviations of the average of q or c considering all data points, and including only 

data points with w’ > 0, within quadrant 1, and within the sampled cluster. This way of correcting the sampling by GMM 30 

resulted in a similar partitioning fraction as the other method versions. 
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4 Summary and Conclusions 

For all sites and all applied method versions, the partitioned CO2 fluxes generally showed a higher variability and more 

spikes than the partitioned H2O fluxes. Mean diurnal cycles averaged over each site’s specific time period yielded 

satisfactory results. The partitioning approaches after Scanlon and Kustas (2010; SK10) and after Thomas et al. (2008; 

TH08) gave differing results and performed disparately between method versions. TH08 mostly resulted in lower 5 

magnitudes of the flux components originating from the soil surface than SK10. In addition, TH08 had the tendency to 

underestimate these flux components in reference to soil respiration flux measurements and estimates of Esoil based on Beer’s 

law. SK10 usually had the tendency to overestimate soil flux components and yielded larger error metrics (RMSE and bias). 

The RMSE depends on the bias and the error distribution was asymmetric. The positive errors (overestimations) were larger 

than negative errors (underestimations). Decreasing the weight of outliers by log-transforming Rsoil data from chamber 10 

observations and partitioning estimations revealed a lower RMSEln for SK10 at forest sites than for TH08. 

SK10 was used with a variety of estimates of WUE. Estimating input WUE using foliage temperature derived from the 

observed outgoing longwave radiation often improved the partitioning performance. For TH08, various options were tested 

regarding the conditional sampling and flux calculation. Applying a Gaussian Mixture Model for the conditional sampling 

approach in TH08 did not improve partitioning performance significantly, because obtaining a positive and correct flux 15 

estimation was difficult for data points outside quadrant 1 in the q’-c’ plane. For TH08, conditional sampling including a 

hyperbolic threshold and calculating flux components based on the relaxed eddy accumulation technique yielded the best 

partitioning results. 

The dependencies of the partitioning performance on turbulence and site characteristics were analyzed based on a correlation 

analysis and the application of TH08 to synthetic, conceptual data sets of scalar fluctuations. Foremost, the performance of 20 

SK10 was improved for sparse canopies and especially with a low ratio between measurement height and canopy height. The 

performance of TH08 was more dependent on canopy height and leaf area index. Partitioning performance of TH08 

improved with increasing canopy density for forests, whereas the opposite was observed for grass and crops. In general, site 

characteristics which increase dissimilarities between scalars (due to less mixing, large sink-source separation, coherent 

structures, ejections, etc.) appeared to enhance partitioning performance for SK10 and TH08. 25 

For the forest site Loobos in The Netherlands, SK10 and TH08 obtained similar partitioning results and sufficient error 

metrics suggesting a low uncertainty. At this site with a relatively low leaf area index, high canopy, and low ratio between 

measurement and canopy height, conditions for both partitioning approaches seemed to be appropriate. 

Appendix A 

In Table A1 the number of half-hourly time steps during daylight per considered time period is shown for each study site. 30 

Also, the fraction of daylight time steps of high-quality (HQ) which were used in the application of SK10 and TH08 are 

shown, where for SK10 only a good or intermediate quality flag (after Mauder et al., 2013) and no precipitation were 
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required, and for TH08 additionally a negative ρq’c’. Furthermore, the fraction of these HQ-time steps, for which partitioning 

solutions were found, is shown for each method version. With TH08 by sampling in the first quadrant (Q1) a partitioning 

result could be obtained for almost every time step (minimum of 98.2%). With the hyperbolic threshold criterion and with 

GMM fewer solutions could be found, because quite often the number of sampled data points was less than 1% of the total 

number in one half-hour time period. SK10 sometimes could not find a partitioning solution, when the measured and 5 

estimated ρq’c’ were not equal and removing large-scale processes by Wavelet-transform could not help either to solve the 

system of equations. The most solutions were found for Forest_MMP and the least for Grass_RO, suggesting a dependence 

on vegetation height. For crop sites Maize_DI and SugarBeet_SE, the number of solutions with SK10 increased with 

development stage of the maize or sugar beet, respectively, while the ratio between measurement height and hc decreased. At 

the same sites the number of solutions for TH08 with hyperbolic threshold and GMM decreased (the conditional sampling in 10 

Q1 was not affected). Generally, for the grasslands and the lower crop canopies more solutions were obtained with TH08 

than SK10. An exception was the low intercrop in Selhausen (Intercrop_SE). 
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Figure 1: Exemplary scatterplots of w’, q’, and c’ from the Wüstebach study site (forest), 18 May 2015, 12:00-12:30 p.m. including 

results of the cluster analysis by Gaussian Mixture Model (orange data points) for the conditional sampling. Also shown are the 

hyperbolic threshold (H = 0.25, green line) after Thomas et al. (2008), the averages of q and c only considering data points of the 

respiration/evaporation ‘cloud’ (red lines), and reduced major axis regression lines after Webster (1997) for all data points (blue 5 
dashed lines) and only ‘cloud’ data points (red dashed lines). 

In this example, calculating the covariance for w and c considering the CO2 average of the ‘cloud’ yielded a negative soil flux 

(negative correlation). Thus, only ‘cloud’ data points within quadrant 1 in the original q’-c’ plane were considered for flux 

calculation using averages of all data points.  
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Figure 2: Source partitioning results of H2O (left) and CO2 (right) fluxes in half-hourly time steps for the Loobos study site (forest) 

in The Netherlands. The figure shows four days out of the considered time period and selected method versions (see text for 

description). Results of all days and for every method version are shown in the supplementary material. Grey areas show the 

measured water and CO2 fluxes. Soil evaporation estimates derived based on Beer’s law and CO2 flux estimates by Reichstein et 5 
al. (2005; RE05) are also included (LE: latent heat flux; E: evaporation; Esoil: estimated soil evaporation; GPP: gross primary 

production; NPP: net primary production; TER: total ecosystem respiration; Rsoil: soil respiration; z: measurement height; hc: 

canopy height; LAI: leaf area index).  
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Figure 3: Diurnal dynamics of source partitioning results of H2O (left) and CO2 (middle) fluxes and water use efficiency (WUE, 

right) for the Waldstein study site (forest) in Germany for 4-10 July, 2016 and for selected method versions (see text for 

description; LE: latent heat flux; E: evaporation; NPP: net primary production; Rsoil: soil respiration; z: measurement height; hc: 

canopy height; LAI: leaf area index). Error bars indicate the 95% confidence intervals of the mean values.  5 



24 

 

 

Figure 4: Diurnal dynamics of source partitioning results of H2O (upper panels) and CO2 (lower panels) fluxes for all study sites 

and for the approach after Scanlon and Kustas (2010; SK10) with WUEOLR and after Thomas et al. (2008; TH08) with REA H (see 

text for description; LE: latent heat flux; E: evaporation; NPP: net primary production; Rsoil: soil respiration). Error bars indicate 

the 95% confidence intervals of the mean values.  5 
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Figure 5: Averages of source partitioning results (a) of H2O and CO2 fluxes, for the Metolius Mature Pine study site (forest) in US 

and for all method versions, (b) of CO2 fluxes, for all study sites and for the approaches after Scanlon and Kustas (2010; SK10) 

with WUEOLR and after Thomas et al. (2008; TH08) with REA H, and (c) of H2O fluxes and the partitioning fraction E/ET, for all 

study sites and for the approaches SK10 WUEOLR and TH08 REA H (see text for description; LE: latent heat flux; E: evaporation; 5 
NPP: net primary production; Rsoil: soil respiration; z: measurement height; hc: canopy height; LAI: leaf area index). Error bars 

indicate the 95% confidence intervals of the mean values. For each study site, net fluxes (evapotranspiration and net ecosystem 

exchange) differ between method versions, because each method version found a different number of partitioning solutions, thus, 

the averages were taken from different subsets of the original data.  
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Figure 6: Error metrics of source partitioning results for each study site and method version (see text for description). (a)-(b) Root 

mean square error in log-transformed data (RMSEln) and bias considering soil respiration (Rsoil) chamber measurements, (c)-(d) 

percent fraction of time steps with partitioning results in range (HiR) of estimated gross primary production (GPP) and total 

ecosystem respiration (TER) by the approach after Reichstein et al. (2005), (e)-(f) RMSEln and bias considering soil evaporation 5 
(Esoil) estimated based on Beer’s law.  
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Figure 7: Top: Setup of conceptual model for synthetic fluctuations (q’ and c’) originating from soil, canopy, or boundary layer 

with differing degrees of mixing (no, complete, or partial mixing between soil and canopy sink/source) including water use 

efficiency (WUE = -1.444 μmol mmol-1 = -3.53 mg g-1; blue line), reduced major axis regression (red line) after Webster (1997), 

hyperbolic threshold criterion after Thomas et al. (2008; TH08) (H = 0.25; green dashed line) and correlation coefficient between 5 
q’ and c’ (ρq’c’). Bottom: True known partitioning ratios (dashed line) and source partitioning results of all TH08 method versions 

(see text for description) for each degree of mixing. 
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Table 1: Study sites and their characteristics (organized by first canopy type and second latitude; FR: forest; GL: grassland; CL: cropland). 

 

abbrevi- 

ation 
site 

Latitude 

Longitude 
elevation canopy type period LAI 

canopy 

height 

EC 

meas 

height 

mean 

annual 

Temp 

mean 

annual P 

sum 

prevail-

ing wind 

direction 

references 

 
  

(m a.s.l.) 
 

 (m2 m-2) (m) (m) (°C) (mm a-1) 
 

 

 
    

 
      

 

Forest_LO Loobos 52.1666 25 FR (pine) 08.-14. July 2003 1.9 18.6 24.0 10.0 966 W-SW Dolman et al., 2002 

 Netherlands 5.7436 
  

 
      

Elbers et al., 2011 
             

Forest_HH Hohes Holz 52.0853 210 FR (deciduous 03.-09. July 2016 6.0 33.0 49.0 9.8 516 SW Wollschläger et al., 2017 

 Germany 11.2222 
 

broadleaf)  
      

 
             

Forest_WU Wüstebach (forest) 50.5049 610 FR (spruce) 18.-24. May 2015 3.9 25.0 38.0 7.5 1220 SSW Ney et al., in review 

 Germany 6.3310 
  

 
      

Graf et al., 2014 
             

Forest_WA Waldstein 50.1419 775 FR (spruce) 04.-10. July 2016 5.5 25.0 36.0 5.8 885 SSW Babel et al., 2017 

 Germany 11.8669 
  

 
      

Foken et al., 2017 
             

Forest_LA Lackenberg 49.0996 1308 FR (spruce/grass) 24.-30. September 2017 6.0* 3.0 9.0 3.7 1480 SSW Lindauer et al., 2014 

 Germany 13.3047 
  

 
      

Matiu et al., 2017 
             

Forest_MMP Metolius Mature Pine 44.4523 1253 FR (pine) 06.-12. June 2014 2.4 17.0 33.5 6.3 523 SSW Thomas et al., 2009 

 Oregon, USA -121.5574 
  

 
      

Vickers et al., 2012 
             

Forest_SC Sta. Clotilde 38.2101 736 FR (oak savanna) 01.-07. April 2017 1.0 8.5 18.0 15.3 720 SW Andreu et al., 2018 

 Spain -4.2875 
  

 
      

 
             

Grass_RO Rollesbroich 50.6219 515 GL 15.-21. July 2013 5.9 0.19 2.6 7.7 1033 SSW Borchard et al., 2015 

 Germany 6.3041 
  

   
 

 
  

Gebler et al., 2015 
             

Grass_WU Wüstebach (clear cut) 50.5030 610 GL (deforested 18.-24. May 2015 < 2.5 0.25 2.5 7.5 1220 SSW Ney et al., in review 

 Germany 6.3359 
 

area)  
 

 
    

Wiekenkamp et al., 2016 
             

Grass_FE Fendt 47.8329 595 GL 11.-17. July 2015 3.5 0.25 3.5 8.4 1081 SW Zeeman et al., 2017 

 Germany 11.0607 
  

 
      

 
             

Maize_DI_06 Dijkgraaf 51.9921 9 CL (maize) 14.-16. June 2007 0.35 0.35 4.0 10.5 803 S-SW Jans et al., 2010 

Maize_DI_07 Netherlands 5.6459 
  

14.-16. July 2007 3.5 1.70 
    

 

Maize_DI_08 
    

04.-06. August 2007 3.0 2.80 
 

 
  

 
             

Wheat_SE Selhausen 50.8658 103 CL (winter wheat) 03.-05. June 2015 6.1 0.79 2.4 9.9 698 WSW Eder et al., 2015 

Barley_SE Germany 6.4474 
 

(barley) 27.-29. May 2016 5.1 0.95 
    

Ney and Graf, 2018 

Intercrop_SE 
   

(intercrop) 23.-25. September 2016 1.0 0.22 
 

 
  

 

SugarBeet_SE_06 
   

(sugar beet) 20.-22. June 2017 2.3 0.37 
    

 

SugarBeet_SE_08 
    

02.-04. August 2017 5.2 0.46 
 

 
  

 

SugarBeet_SE_09 
    

04.-06. September 2017 4.3 0.50 
 

 
  

 
             

LAI: leaf area index; EC: eddy covariance; meas: measurement; T: temperature; P: precipitation 

* LAI estimated based on remotely sensed plant phenology index (PPI; Matiu et al., 2017) and approach after Jin and Eklundh (2014) 



29 

 

Table 2: Correlation coefficients between partitioning performance of each method version regarding HiR GPP (see text for 

description) and study site characteristics (hc: canopy height; LAI: leaf area index; z: measurement height) considering different 

sets of sites: all, only forest, or only crop- and grassland sites. Bold lettering indicates highest positive and highest negative 

correlation. Underlined lettering indicates highest magnitude of correlation and italic lettering lowest magnitude of correlation. 

Also, the statistical significance of the correlations is indicated with one asterisk for p ≤ 0.1 and two asterisks for p ≤ 0.05. 5 

  

 
variable 

SK10 

WUEmeanT 

SK10 

WUEMOST 

SK10 

WUEOLR 

TH08 

CV Q1 

TH08 

CV H 

TH08 

REA Q1 

TH08 

REA H 

TH08 

CV GMM 

 

 
  

 
              

 

 all                  

 hc 0.52 ** 0.56 ** 0.44 * 0.21  0.27  0.28  0.45 * 0.23   

 LAI 0.04  0.01  -0.08  0.44 * 0.25  0.45 * 0.17  0.30   

 z 0.48 ** 0.52 ** 0.40 * 0.23  0.27  0.31  0.48 ** 0.25   

 z hc
-1 -0.51 ** -0.60 ** -0.45 * -0.11  -0.15  -0.13  -0.15  -0.10   

 LAI hc
-1 -0.38  -0.47 ** -0.41 * 0.18  0.03  0.09  -0.13  0.09   

 

  
 

 
   

 
 

 
   

 
 

 
 

 

 forests                  

 hc 0.64  0.63  0.56  0.20  0.21  0.21  0.27  0.11   

 LAI -0.03  -0.07  -0.10  0.61  0.77 ** 0.68 * 0.69 * 0.69 *  

 z 0.62  0.60  0.55  0.37  0.31  0.36  0.41  0.27   

 z hc
-1 -0.74 * -0.75 * -0.68 * 0.27  0.25  0.28  0.20  0.37   

 LAI hc
-1 -0.59  -0.61  -0.59  0.19  0.38  0.26  0.22  0.36   

 

  
 

 
   

 
 

 
   

 
 

 
 

 

 croplands, grasslands               

 hc 0.54 * 0.64 ** 0.33  0.07  0.23  0.12  0.31  0.16   

 LAI 0.07  0.05  -0.10  0.40  0.10  0.37  -0.03  0.15   

 z 0.02  0.07  -0.29  -0.44  -0.11  -0.17  0.37  -0.23   

 z hc
-1 -0.58 ** -0.71 ** -0.51 * -0.01  -0.01  0.03  0.17  0.03   

 LAI hc
-1 -0.37  -0.49  -0.46  0.37  0.21  0.32  0.16  0.28   
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Table 3: Correlation coefficients between partitioning performance of each method version regarding HiR TER (see text for 

description) and study site characteristics (hc: canopy height; LAI: leaf area index; z: measurement height) considering different 

sets of sites: all, only forest, or only crop- and grassland sites. Bold lettering indicates highest positive and highest negative 

correlation. Underlined lettering indicates highest magnitude of correlation and italic lettering lowest magnitude of correlation. 

Also, the statistical significance of the correlations is indicated with one asterisk for p ≤ 0.1 and two asterisks for p ≤ 0.05. 5 

  

 
variable 

SK10 

WUEmeanT 

SK10 

WUEMOST 

SK10 

WUEOLR 

TH08 

CV Q1 

TH08 

CV H 

TH08 

REA Q1 

TH08 

REA H 

TH08 

CV GMM 

 

 
  

 
              

 

 all                  

 hc 0.52 ** 0.52 ** 0.47 ** -0.12  -0.18  0.17  0.01  -0.23   

 LAI 0.01  0.06  -0.03  -0.20  0.04  -0.01  0.24  -0.12   

 z 0.48 ** 0.47 ** 0.44 * -0.17  -0.24  0.12  -0.06  -0.27   

 z hc
-1 -0.47 ** -0.57 ** -0.42 * 0.08  -0.01  -0.14  -0.15  0.30   

 LAI hc
-1 -0.37  -0.44 * -0.41 * -0.06  0.06  -0.21  -0.04  0.18   

 

 
                

 

 forests                  

 hc 0.63  0.63  0.63  0.59  0.68 * 0.56  0.76 ** 0.43   

 LAI -0.02  0.02  0.05  0.43  0.31  0.61  0.65  0.28   

 z 0.60  0.59  0.64  0.46  0.60  0.41  0.72 * 0.30   

 z hc
-1 -0.72 * -0.73 * -0.66  -0.48  -0.52  -0.39  -0.47  -0.35   

 LAI hc
-1 -0.56  -0.54  -0.53  -0.07  -0.26  0.09  -0.13  0.01   

 

 
                

 

 croplands, grasslands               

 hc 0.54 * 0.59 ** 0.34  0.42  0.61 ** 0.50 * 0.85 ** -0.25   

 LAI 0.01  0.06  -0.13  -0.49  -0.04  -0.33  0.03  -0.32   

 z 0.04  0.01  -0.23  0.64 ** 0.59 ** 0.70 ** 0.48  -0.03   

 z hc
-1 -0.48  -0.66 ** -0.47  -0.16  -0.45  -0.20  -0.59 ** 0.12   

 LAI hc
-1 -0.34  -0.47  -0.47  -0.36  -0.30  -0.31  -0.37  -0.06   

 
                 

 



31 

 

Table A1: Count of half-hourly time steps during daylight (CoD) per considered time period for each study site, corresponding 

percent fractions of CoD of high-quality (HQ) and percent fractions of these HQ-time steps with a found partitioning solution for 

each method version. Bold (italic) lettering indicates the highest (lowest) fraction of solutions for each site. Plus (minus) indicates 

the highest (lowest) fraction for each method version. 
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SK10 WUEmeanT  

231 

91.8 

84.4   

99 

84.8 

26.2  

SK10 WUEMOST  82.1   34.5  

SK10 WUEOLR Forest_LO 65.6  Maize_DI_06 23.8 - 

TH08 CV Q1, REA Q1 08.-14.07.2003 

68.0 
99.4  14.-16.06.2007 

63.6 
98.4  

TH08 CV H, REA H  86.0   82.5  

TH08 CV GMM  59.2   57.1  
 

    
      

SK10 WUEmeanT  

231 

89.2 

75.7   

96 

97.9 

90.4  

SK10 WUEMOST  76.2   88.3  

SK10 WUEOLR Forest_HH 74.8  Maize_DI_07 77.7  

TH08 CV Q1, REA Q1 03.-09.07.2016 
59.7 

100.0 + 14.-16.07.2007 
78.1 

98.7  
TH08 CV H, REA H  55.8   50.7  

TH08 CV GMM  51.4   52.0  
 

    
      

SK10 WUEmeanT  

218 

78.0 
80.6   

91 

94.5 
95.3 + 

SK10 WUEMOST  78.8   94.2  

SK10 WUEOLR Forest_WU 70.6  Maize_DI_08 89.5  

TH08 CV Q1, REA Q1 18.-24.05.2015 
55.5 

100.0 + 04.-06.08.2007 
80.2 

100.0 + 
TH08 CV H, REA H  74.4   45.2  

TH08 CV GMM  51.2   57.5  
 

    
      

SK10 WUEmeanT  

222 

92.8 

88.3   

96 

92.7 

57.3  

SK10 WUEMOST  91.7   57.3  
SK10 WUEOLR Forest_WA 89.3  SugarBeet_SE_06 52.8  

TH08 CV Q1, REA Q1 04.-10.07.2016 

75.2 
100.0 + 20.-22.06.2017 

76.0 
98.6  

TH08 CV H, REA H  65.9   58.9  
TH08 CV GMM  50.3   47.9  
 

    
      

SK10 WUEmeanT  

164 

84.1 

33.3   

90 

77.8 

72.9  

SK10 WUEMOST  38.4   71.4  
SK10 WUEOLR Forest_LA 56.5  SugarBeet_SE_08 72.9  

TH08 CV Q1, REA Q1 24.-30.09.2017 

54.9 
100.0 + 02.-04.08.2017 

62.2 
100.0 + 

TH08 CV H, REA H  93.3 +  37.5  

TH08 CV GMM  58.9   41.1  
 

    
      

SK10 WUEmeanT  

211 

84.8 

95.0   

78 

92.3 

80.6  

SK10 WUEMOST  95.0 +  81.9  

SK10 WUEOLR Forest_MMP 93.3 + SugarBeet_SE_09 81.9  

TH08 CV Q1, REA Q1 06.-12.06.2014 
73.0 

100.0 + 04.-06.09.2017 
76.9 

98.3  

TH08 CV H, REA H  70.8   25.0 - 

TH08 CV GMM    60.4     16.7 - 
           

SK10 WUEmeanT  

175 

87.4 

73.9   

96 

93.8 

56.7  

SK10 WUEMOST  75.2   52.2  

SK10 WUEOLR Forest_SC 77.1  Wheat_SE 46.7  

TH08 CV Q1, REA Q1 01.-07.04.2017 

77.7 
99.3  03.-05.06.2015 

77.1 
98.6  

TH08 CV H, REA H  47.1   25.7  

TH08 CV GMM  40.4   32.4  
           

       (continued)  
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Table A1 continued: 
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SK10 WUEmeanT  

217 

91.7 

21.1 -  

96 

82.3 

50.6  

SK10 WUEMOST  32.7 -  51.9  

SK10 WUEOLR Grass_RO 28.6  Barley_SE 58.2  

TH08 CV Q1, REA Q1 15.-21.07.2013 

73.3 
100.0 + 27.-29.05.2016 

67.7 
98.5  

TH08 CV H, REA H  53.5   26.2  

TH08 CV GMM  53.5   27.7  
           

SK10 WUEmeanT  

218 

82.1 

31.3   

71 

91.5 

64.6  

SK10 WUEMOST  38.0   70.8  
SK10 WUEOLR Grass_WU 40.8  Intercrop_SE 73.8  

TH08 CV Q1, REA Q1 18.-24.05.2015 

58.7 
100.0 + 23.-25.09.2016 

80.3 
98.2 - 

TH08 CV H, REA H  90.6   35.1  
TH08 CV GMM  88.3 +  28.1  
           

SK10 WUEmeanT  

217 

82.0 

34.8       

SK10 WUEMOST  36.0       

SK10 WUEOLR Grass_FE 39.9       

TH08 CV Q1, REA Q1 11.-17.07.2015 

58.5 
100.0 +      

TH08 CV H, REA H  46.5       

TH08 CV GMM  65.4       
           


