

Interactive comment on “Alkalinity and nitrate concentrations in calcareous watersheds: Are they linked, and is there an upper limit to alkalinity?” by Beat Müller et al.

Anonymous Referee #1

Received and published: 7 December 2018

To start with, I don't understand the title. Of course alkalinity is linked to NO₃(and many other parameters too). And, of course, there is an upper limit which is the solubility product.

The authors tried to link alkalinity with NO₃ which is OK in open systems albeit ignoring PO₄ leads to an systematic error of 7%(e.g., Chen et al., *Geochemical J.* 16,1,1982). In closed systems such as groundwater or soil water the problem is huge as NO₂ and NH₄ come into play. The biggest issue, however, is sulfate reduction which is orders of magnitude larger than the effect of NO₃(see Chen, *Deep-Sea Research II*, 49,5365,2002). The authors are encouraged to present dissolved oxygen data should

C1

they wish to resubmit so that the readers get a sense of the possible roles of NO₂, NH₄, and SO₄ etc.

Now the model. Eq 5 is valid only for phytoplankton, and is not a generic formula for organic matter as the authors claimed. Land plants have a much higher C/N ratio so the model is invalid. Should the authors wish to resubmit they should also try error analysis so that readers know how much uncertainty there is and how errors propagate.

Minor issues: 1. How is pH defined and in what scale? 2. Explain "CO₂ bound in HCO₃" in the caption for Fig. 3. 3. The groundwater has a pH range of 7.1-7.8 so I question the average value of 7.14 used for the model

Interactive comment on Biogeosciences Discuss., <https://doi.org/10.5194/bg-2018-461, 2018>.

C2