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Abstract. While heterotrophic respiration (Ry) makes up about a quarter of gross global terrestrial carbon fluxes, it remains
among the least observed carbon fluxes, particularly outside the mid-latitudes. In situ measurements collected in the Soil
Respiration Database (SRDB) number only a few hundred worldwide. Similarly, only a single data-driven wall-to-wall
estimate of annual average heterotrophic respiration exists, based on bottom-up upscaling of SRDB measurements using an
assumed functional form to account for climate variability. In this study, we exploit recent advances in remote sensing of
terrestrial carbon fluxes to estimate global variations in heterotrophic respiration in a top-down fashion at monthly temporal
resolution and 4x5° spatial resolution. We combine net ecosystem productivity estimates from atmospheric inversions of the
NASA Carbon Monitoring System- Flux (CMS-Flux) with an optimally-scaled gross primary productivity dataset based on
satellite-observed solar-induced fluorescence variations to estimate total ecosystem respiration as a residual of the terrestrial
carbon balance. The ecosystem respiration is then separated into autotrophic and heterotrophic components based on a
spatially-varying carbon use efficiency retrieved in a model-data fusion framework (the CARbon DAta MOdel fraMework,
CARDAMOM). The resulting dataset is independent of any assumptions about how heterotrophic respiration responds to
climate or substrate variations. It estimates an annual average global average heterotrophic respiration flux of 43.6 + 19.3 Pg
C/yr. Sensitivity and uncertainty analyses showed that the top-down Ry are more sensitive to the choice of input GPP and NEP
datasets than to the assumption of a static CUE value, with the possible exception of the wet tropics. These top-down estimates
are compared to bottom-up estimates of annual heterotrophic respiration, with new uncertainty estimates that partially account
for sampling and model errors. Top-down heterotrophic respiration estimates are higher than those from bottom-up upscaling
everywhere except at high latitudes, and are 30% greater overall (43.6 Pg C/yr vs. 33.4 Pg C/yr). The uncertainty ranges of
both methods are comparable, except poleward of 45 degrees North, where bottom-up uncertainties are greater. The ratio of
top-down heterotrophic to total ecosystem respiration varies seasonally by as much as 0.6 depending on season and climate,
illustrating the importance of studying the drivers of autotrophic and heterotrophic respiration separately, and thus the

importance of data-driven estimates of Ry, such as those estimated here.
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1 Introduction

The terrestrial carbon cycle-climate feedback (together with atmospheric processes) is a dominant contributor to the
uncertainty of temperature projections in 2100 (Booth et al., 2012). The future effect of carbon-climate feedbacks depends on
the climate sensitivity of net terrestrial carbon fluxes, which are a close balance of net primary productivity, disturbance-related
fluxes, and heterotrophic respiration (Ry). The overall sensitivity of the terrestrial carbon uptake is thus dependent on the
climatic response of these fluxes. Model-based estimates of global Ry, vary by almost 50% and are highly uncertain (Shao et
al., 2013), especially in the tropics (Tian et al., 2015). The climatic sensitivity of Ry, is also the primary driver of the large
divergence across modeled global soil carbon pools (Tian et al., 2015; Todd-Brown et al., 2013), the largest terrestrial carbon

pool (Jobbagy and Jackson, 2000).

Few in situ measurements exist to constrain Ry, particularly in the tropics (Xu et al., 2016). For example, the
international Soil Respiration DataBase (SRDB), which aims to compile data from all published studies of soil and
heterotrophic respiration (Bond-Lamberty and Thomson, 2010), includes only 21 sites with Ry information in Central and
South America, and only 2 in Africa. The highly limited number of Ry data is likely affected by the relative difficulty and
uncertainty of methods for partitioning total soil respiration (Rs) fluxes — which can be easily measured using respiration
chambers — into autotrophic and heterotrophic components. Performing this partitioning requires isotopic measurements or
destructive techniques such as girdling or trenching (Ryan and Law, 2005). Like R, total ecosystem respiration Rec, is also
often considered as a counter-part to photosynthetic fluxes, but is rarely partitioned further. However, because most carbon
cycle and ecosystem models represent autotrophic and heterotrophic components separately, and because the climatic and soil
sensitivities of the autotrophic and heterotrophic components of soil respiration differ (Metcalfe et al., 2010; Scott-Denton et
al., 2006), it is challenging to translate soil or ecosystem respiration data to improvements of model representations for Ry.
Although meta-analyses using data such as the SRDB have been used to understand the sources of spatial variability in soil
respiration (Hursh et al., 2016) and heterotrophic respiration (Shao et al., 2013) rates, such studies are limited (by data
availability) to consideration of annual respiration fluxes and sparse, discrete points in space. Thus, while GPP is highly
uncertain (Anav et al., 2015), GPP and Rec, are far more constrained by observations than Ry, which must be considered
among the most uncertain fluxes in the carbon cycle. Temporally variable and spatially extensive estimates of Ry, are therefore

needed to better understand its drivers.

Starting several decades ago with Raich & Schlesinger (1992), several authors have tried to upscale sparse
measurements to estimate global Rs. Most commonly, this is performed using a spatially explicit exponential model of the
relationship between R and temperature, modified by land cover (Adachi et al., 2017), soil properties (Chen et al., 2013), or
soil moisture (Xu et al., 2016) limitations. Recent papers have also used machine learning methods to upscale the relationship
between R, and climate and biogeophysical properties, including random forest models (Jian et al., 2018) and artificial neural

networks (Zhao et al., 2017). However, no similar effort has been made for estimating global Ry. Only Hashimoto et al. (2015)
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have extended a rigorous estimate of global, upscaled R to an estimate of global Ry. This was achieved by employing a
previously noted apparent relationship between annual R and Ry, at a given site (Bond-Lamberty et al., 2004). However, the
Hashimoto et al approach assumes a specific functional form for the relationship between climate and Rs (and thus, Ry), so
that investigations of climatic sensitivities of Ry with this dataset are potentially circular. Furthermore, the approach assumes
that base respiration rates and sensitivity parameters for temperature and precipitation to soil moisture are constant across the
globe. This approach therefore cannot account for known dependencies of heterotrophic respiration on microbial biomass and
composition (Johnston and Sibly, 2018; Walker et al., 2018; Wieder et al., 2013; Zhou et al., 2011) and substrate type (Cornwell
etal., 2008). Modelling Ry, as a function of precipitation alone is also inconsistent with theoretical, laboratory, and field studies
that have found Ry to be a function of soil water potential (Manzoni et al., 2012; Moyano et al., 2012, 2013), which is non-

linearly related to precipitation depending on soil properties, vegetation cover, topography, and more.

In this paper, we introduce an alternative approach to estimating Ry, at global or regional scales using remote sensing.
Rather than a bottom-up approach to aggregating sparse point-based measurements, we propose a ‘top-down’ method that
naturally captures average values over large scales. The method derives Ry as the residual of satellite-constrained estimates of
the carbon balance: net ecosystem productivity (NEP), gross primary productivity (GPP) and R,. The NEP (the net difference
between photosynthetic and respiration fluxes: NEP = GPP - R, - Ry) is based on atmospheric inversions of satellite
observations of column xCO; and xCO, and GPP is based on upscaling solar-induced fluorescence (SIF). The R, is calculated
based on GPP and carbon-use efficiency estimates from a remote-sensing constrained model-data fusion framework. The top-
down approach is applied to the period 2010-2012. Coarse-resolution Ry estimates are difficult to validate using in situ
measurements because of representativeness errors. Instead, we rigorously compare the top-down method and its uncertainties

to those of bottom-up Ry, estimation, in this case as performed by Hashimoto et al. (2015).

2 Methods
2.1 Top-down Estimates
2.1.1 Top-down approach

As summarized in Fig. 1, the top-down Ry, at grid-scale is calculated as the residual of observationally-constrained estimates
of the carbon balance:
R, = GPP — NEP —R,, (1)

The combination of NEP and GPP allows calculation of the ecosystem respiration Reco, but an estimate of R, is required to
separate Rec, into Ry and Ry components. The R, is calculated based on the GPP and on carbon-use efficiency (CUE).
Specifically, the autotrophic respiration R, is assumed to be proportional to GPP according to a spatially variable but
temporally constant CUE, where CUE is defined as the ratio of net primary production (NPP) to GPP. Thus, CUE =1 —
R«/GPP. Eq. (1) then becomes:
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R, = GPP — NEP — (1 — CUE)GPP, 2)

The CUE is commonly assumed constant at a given location (Gifford, 2003; McCree and Troughton, 1966), but has been
found to vary depending on ecosystem type, stand age, and forest management (Collalti et al., 2018; Gifford, 2003; De Lucia
et al., 2007). Note that by calculating autotrophic respiration as proportional to GPP, we classify the release of CO, from
decomposition of root exudates by mycorrhizal fungi (Trumbore, 2006) as autotrophic rather than heterotrophic respiration.
This is arguably a misclassification, but is consistent with most in situ methods for measuring heterotrophic respiration (e.g.
girdling, trenching, or isotopic measurements) (Ryan and Law, 2005).

The use of this method to calculate spatio-temporal variations in Ry is enabled by the fact that estimates of each of
NEP, GPP, and CUE are available that are based on remote sensing and data assimilation. These datasets are further discussed

in the next Section.

2.1.2 Datasets used and implementation

The NEP is determined from an atmospheric inversion of remotely sensed columnar carbon dioxide and carbon
monoxide observations in the CMS-Flux system. It is described in detail in Bowman et al. (2017) and (Liu et al., 2017), but
summarized here for convenience. It has been validated using methods introduced in Liu and Bowman (2016). CMS-Flux
estimates carbon fluxes through a 4D-variational inversion approach that ingests columnar xCO, observations from the
Greenhouse gases Observing Satellite (GOSAT) and CO observations from the Measurement of Pollution in the Troposphere
Instrument (MOPITT) (Worden et al., 2010) into the GEOS-Chem atmospheric transport model and its adjoint (Bey et al.,
2001; Henze et al., 2007; Nassar et al., 2010; Suntharalingam et al., 2004). The net fluxes are further decomposed into biomass
burning, oceanographic, fossil fuel, chemical sources (including shipping, aviation, and others), and NEP components. The
biomass burning emissions are constrained by the MOPITT CO observations and published CO/CO> ratios. Anthropogenic
and oceanographic priors for the fluxes come from the Fossil Fuel Land Data Assimilation System (Asefi-Najafabady et al.,
2014; Rayner et al., 2010) and ECCO2-Darwin oceanographic model (Brix et al., 2015), respectively, and NEP flux priors
come from the Carnegie-Ames-Stanford-Approach (CASA) model simulations. As shown in Fig. S1, the posterior and prior
fluxes of NEP differ significantly almost everywhere — 42% of pixels have a normalized root-mean-square-difference between
the prior and posterior fluxes greater than 1, consistent with a previous observing system simulation experiment for the CMS-
Flux system (Liu et al., 2014). The total global NEP averages 5 + 13 Pg C/yr across 2010-2012, and the uncertainty of the NEP
estimates is assumed to be normally distributed with a spatially and temporally varying standard deviation estimated in the

atmospheric inversion via a Monte Carlo approach (Bousserez et al., 2015).

The GPP is determined based on an optimal rescaling of SIF observations. SIF is a by-product of photosynthesis and

therefore provides direct information about the magnitude of GPP (Porcar-Castell et al., 2014). The information content of SIF
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for photosynthesis has been demonstrated using field-scale measurements (Yang et al., 2015) and by comparing satellite-based
data to eddy-covariance towers (Guanter et al., 2014; Joiner et al., 2014; Sun et al., 2017; Wood et al., 2017; Zuromski et al.,
2018), carbon dioxide mole fractions in Amazonia (Parazoo et al., 2013), and machine-learning based estimates of GPP
(Alemohammad et al., 2017). Despite the abundance of evidence that SIF carries information about GPP, the linear constant
of proportionality between SIF and GPP depends on the light use efficiency of the vegetation in question as well as the satellite
efficiency at capturing photons and is difficult to estimate a priori. Here, we use GPP estimates from Parazoo et al. (2014),
which used a Bayesian approach to determine an optimal seasonally and spatially varying scaling parameter between SIF and
prior GPP along with explicit uncertainty estimates. Monthly GPP at each grid point is inferred from a precision-weighted
minimization of SIF, which is regressed against biome-specific GPP from upscaled flux tower data (Frankenberg et al., 2011;
Jung et al., 2011), and prior GPP from eight terrestrial ecosystem models in the TRENDY project (Sitch et al., 2015). This
approach has been used to examine regional GPP responses to climate variability and drought, and has been extensively
validated against flux tower data (Bowman et al., 2017; Liu et al., 2017; Parazoo et al., 2014, 2015), though it remains
uncertain. The average global GPP across 2010-2012 is 114 + 41 Pg C/yr, and the uncertainty of theGPP estimates is

determined as in Parazoo et al (2014) and assumed to follow a normal distribution.

The CUE is determined from a 10-year (2001-2010) run of CARDAMOM (Bloom & Williams, 2015; Bloom et al.,
2016), in which uncertainties are explicitly represented as probability density functions computed from an ensemble.
CARDAMOM is a model-data fusion system that uses a Bayesian framework to determine global ecological parameter
combinations that minimize the mismatch with observations while still satisfying a set of ecological realism and dynamic
stability constraints to regularize the inversion. CARDAMOM is built on the underlying Data Assimilation Linked Ecosystem
Carbon model version 2, DALEC2 model (Bloom & Williams, 2015; Williams et al., 2005), with assimilation of observations
of leaf area index, burned area, tropical biomass, and soil carbon (Bloom et al., 2016). Within CARDAMOM, a constant
fraction f, of photosynthetic carbon gain is assumed to be allocated to autotrophic respiration (note that f, = 1-CUE). The
fraction f; is directly linked to the allocation fractions of photosynthetic carbon to other pools (labile, wood, foliar, and fine
root carbon) through conservation of mass. The allocation fractions directly influence the observed quantities used for
CARDAMOM parameterization (e.g. LAI, tropical biomass, and soil carbon), and are subject to several ecological realism
constraints. The resulting range of global CUE (between 0.35 and 0.6, shown in Fig. 2) is consistent with results found from
meta-analyses (Gifford, 2003; De Lucia et al., 2007) and is also supported by theoretical considerations based on conservation
of mass (Van Oijen et al., 2010) and plant carbon dynamics (Dewar et al., 1998). Average values of CARDAMOM CUE are
generally lowest in the tropics, consistent with previous site-specific observations (Amthor, 2000; Chambers et al., 2004; De
Lucia et al., 2007; Piao et al., 2010). The zonal mean variation of CARDAMOM CUE (not shown) also compares favorably

with that of a recently produced random forest derived global upscaling of in situ CUE measurements decreasing at low
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latitudes and increasing at high latitudes to similar ranges (Tang et al., 2019) across a similar range (0.43 to 0.52 for

CARDAMOM and 0.42 to 0.58 for the Tang et al (2019) estimates.

Autotrophic respiration may depend on stored supplies of carbon, causing a decoupling between the seasonality of
GPP and R, and thus temporal variation in CUE. This is particularly common in deciduous trees in mid- and high-latitudes
(Epron et al., 2012; Kuptz et al., 2011). Less is known about seasonal variations of CUE in tropics. Although small variations
in CUE (e.g. <= 0.05) have been observed in both highland and lowland Amazonian sites, these variations were found to be
small relative to seasonal variations in allocation rates to non-respiratory carbon pools (Doughty et al., 2015; Rowland et al.,
2014). Nevertheless, the assumption of constant CUE likely adds error to the top-down estimates of Ry. This error is partially
accounted for by the wide uncertainty range used for CUE. We further performed a sensitivity analysis in which the R, derived
using an assumption of constant CUE was compared to the Ry with a systematic seasonal variability in CUE. Although little
is known about the true temporal variation of CUE across the globe, we here assumed a seasonal cycle of CUE proportional
to that of GPP, but re-normalized to have a mean equal to the constant CARDAMOM CUE and a standard deviation of 0.1 at
each pixel. That is,

0.1
std¢(GPP(x,yt)—GP )

CUE(x,y,t) = CUEcarp (x,y) + (GPP(x,y,t) — GPP) , 3)

where (x,y) determines a pixel location in space, ¢ is the monthly time vector, CUEc4rp(x,y) is the constant CUE determined
from CARDAMOM, std refers to standard deviation, and the overbar denotes a time-average over the entire period. The use
of a CUE proportional to GPP is chosen so as to provide a structure to the temporal variability of CUE that is potentially
realistic for each pixel (i.e. not completely random), even if little is known about the overall controls on temporal variability
in CUE. The 0.1 standard deviation magnitude is fairly conservative unless true temporal variation in CUE is much larger than
spatial variation — the spatial standard deviation of CARDAMOM CUE across all global land surfaces is 0.06.

Additional sensitivity analyses were also performed to test the sensitivity of Ry, to errors in the GPP and NEP datasets.
To test the sensitivity to GPP, we compared Ry with an alternative set of Ry estimates calculated using GPP from FLUXCOM
(Tramontana et al., 2016). FLUXCOM estimates of GPP are derived as the median value across an ensemble of estimates from
11 different machine learning models applied to meteorological drivers from reanalysis and remote sensing and trained on
eddy covariance observations. The uncertainty of the FLUXCOM GPP is calculated based on the standard deviation across
the different machine learning methods. Note that FLUXCOM is a bottom-up method and thus carries many of the same
uncertainties as other bottom-up methods (see Sec 4.1), particularly in globally under-sampled regions. For example, only 17
of 225 eddy-covariance tower sites used to train the machine learning models are in the Southern Hemisphere. Furthermore,
the FLUXCOM data are sensitive to the quality of the GPP partitioning of the observed tower NEE. Nevertheless, we use the
FLUXCOM dataset here to study the sensitivity of Ry to GPP because it is widely used, well-regarded, and cross-validated
against withheld parts of the eddy-covariance record. While FLUXCOM also estimates NEP, its NEP predictions are of lower

quality than those of other fluxes (Tramontana et al., 2016). Furthermore, it shows significant bias (Exbrayat et al., 2019).
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Instead, taking advantage of the low magnitude of NEP, we test the sensitivity to NEP data quality by computing R, assuming
NEP is zero everywhere across the globe and across the timeseries. Because an uncertainty in NEP still needs to be assumed,
we simply use the same uncertainties from the CMS-Flux product.

When calculating Ry, in either the main or sensitivity analyses, all datasets are averaged to the same monthly temporal
and 4° latitude x 5° longitude spatial resolution, the native resolution of flux estimates from CMS-Flux. We use NEP and GPP
data over the period 2010-2012, when the CMS-Flux data have been validated in the most detail. However, even at 4° by 5°
resolution, the precision of CMS-Flux data can still be poor. To reduce the random component of the error, all visual maps are
presented after applying a 3 pixel by 3 pixel moving average smoother, as in (Liu et al., 2018). When calculating Ry, a 4000-
member ensemble is used for explicit simulation of the uncertainty distributions of each of the input variables. Additionally, a
constraint on the signs of Ry, Ra, and GPP is used to ensure the estimated Ry, is physically realistic (Bloom and Williams, 2015;
Parazoo et al., 2018) — each of these three fluxes is required to be positive. A simple accept-reject sampling scheme is used
that rejects ensemble members that violate this criterion. For each of these ensemble members, new samples of the uncertainty
distribution of NEP, GPP, and CUE are drawn until each of Ry, R,, and GPP for that ensemble member are positive. Using
such a constraint is equivalent to using a Bayesian scheme with prior distributions for Ry, R,, and GPP that are 0 for negative
values and | otherwise.

The uncertainty of the resultant Ry, is a combination of the uncertainty in the three input datsets: NEP, GPP, and CUE.
There is some non-linearity to this combination because the positive flux constraints limit what uncertainty combinations are
considered to lead to acceptable Ry. To estimate how much each of these datasets contributes to the overall Ry, uncertainty, Ry,
is re-estimated three times, but in each case only one of the input datasets is given non-zero uncertainty. The resultant

magnitude of the uncertainty in Ry is then compared.

2.2 Bottom-up estimates
2.2.1 Approach

To the best of our knowledge, only Hashimoto et al. (2015) have previously estimated Ry based on upscaling in situ
measurements. Their method is based primarily on estimating R, for which a simple functional form adapted from Raich et

al (2002) is used:

aPi+(1—-a)Pe—q

_p72
R, = F x ePT" x ,
K+aPi+(1-a)Pi—q

“

where F [gC m?dy'] is a base rate, a [°C'] and b [°C?] control the sensitivity to temperature T [°C]. The R; also depends on
the current-month precipitation P, [cm mo™'] and the previous-month precipitation P, ; [C™'], with the relative weight of each
determined by a [-]. The K [cm mo™'] parameter also controls the influence of precipitation. For lack of more information, all

parameters are assumed to be global constant, so that the only spatial variation is provided by variations in the climatic drivers.
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Hashimoto et al (2015) used temperature and precipitation from the Climate Research (CRU) 3.21 (Harris et al., 2014) and fit
the above function to observations from the SRDB using a Bayesian Markov Chain Monte Carlo scheme. To determine the
annual average Ry at a location based on annual R, Hashimoto et al. (2015) employed a previously determined relationship

between annual soil and heterotrophic respiration (Bond-Lamberty et al., 2000):
In(R,) = ¢ + dIn(Ry), ()

where ¢ = 1.22 and d = 0.73. While it is in theory possible to apply Eq. (5) to any number of recent bottom-up R estimation
approaches, we here apply it only to the estimates from Hashimoto et al. (2015) in Eq. (4), both for consistency with the

literature and since the data from Hashimoto et al. (2015) are among the most commonly used bottom-up Rs estimates.

2.2.2 Parametrization and Implementation

We implemented Eq. (4) using climate data from the CRU 4.01 and using the maximum a posteriori parameter values
from Hashimoto et al. (2015) (that is, F = 1.68 gC m?2dy’!, a= 0.0528 °C"!, b =0.000628 °C2, o. = 0.98, and K = 1.20 cm mo"
1 to determine monthly resolution estimates of Rs. The R, estimates were then temporally aggregated to determine annual Ry,
using Eq. (5). These are referred to as the bottom-up estimates below.

Extrapolating from a limited sample of parameters with multiple fitted parameters carries the risk of overfitting.
Fortunately, several measurements of Ry and Ry have been added to the SRDB since the Hashimoto et al (2015) article; the
number of Ry measurementss has increased by 20%, from 1638 to 1979. Similarly, the number of measurements of
heterotrophic respiration has increased from 53 measurements when Bond-Lamberty et al (2004) originally derived Eq. (4) to
362 measurements in the most recent SRDB version. To test the applicability of the original parameters, we also implemented
the bottom-up approach at the increased number of SRDB location-years available since Hashimoto et al (2015), i.e. all
datapoints in SRDB v20180126. Consistent with the original study, for SRDB experiments for which the observed annual
average was determined over a range of years, we used only the middle year in the range. We compared simulated to observed
annual R and Ry, for both the case of the maximum a posteriori parameters from the original Hashimoto et al (2015) study and
for a set of updated model parameters determined by a non-linear least-square fit. For the updated parameters, the coefficients
of the Ri-R; relationship are also optimized. Because the updated parameters did not perform significantly better (see Sec. 3.2),
the original parameters were used in the rest of this study.

No uncertainty was considered in Hashimoto et al. (2015). To determine the uncertainty of the bottom-up estimates,
we tested them against SRDB observations. Measurements in the SRDB are highly concentrated in the mid-latitudes — 74% of
R, measurements and 78% of Ry measurements were made at a latitude greater than 30 °N. The uncertainty of the bottom-up
estimates is therefore likely to exhibit significant spatial and temporal variability due to sampling error alone, on top of errors
related to the imposed functional form and its parameterization. To find one or more covariates between the expected

uncertainty of Ry and other factors, the errors associated with bottom-up implements at the SRDB sites were linearly regressed

8
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against the following possible predictors: latitude, longitude, mean and standard deviation of precipitation, mean and standard
deviation of temperature, and mean predicted Ry. Several non-linear functions of latitude were also tested. Of these, the mean
predicted Ry, and latitude were chosen as predictors because they had the greatest explanatory power (R = 0.23 when used in
combination). Adding more predictor variables does not further increase the adjusted R2.

In order to determine a spatio-temporally variable uncertainty range we calculated the 25™ and 75" percentile of all
362 Ry, errors associated with using the bottom-up model. These formed a baseline globally averaged confidence interval Opase
that was then modified linearly based on the modelled R; and latitude (consistent with the linear regression tests mentioned
above):
8; = Opase,i (M) (6)

where i denotes either the 25" or 75" percent confidence interval, R,™

is the predicted mean bottom-up heterotrophic
respiration rate, lat is the pixel latitude, y;.3 are regression parameters and vy is the mean error of the bottom-up method across
the SRDB dataset. Although the amount of variability in error captured using this method (R = 0.23) is still extremely low, no
alternative ways of capturing the expected spatio-temporal variability in bottom-up Ry uncertainty exist, and poorly accounting

for this variability is still expected to be more useful than not accounting for it at all.

2.3 Comparison Analyses

We compared the mean and uncertainty estimates of the top-down and bottom-up annual Ry, across latitudes. Because
no bottom-up estimates of the seasonal cycle of Ry, are available, we further compared the seasonality of Ry, in different regions
to the seasonality of R from bottom-up estimates and R, from the top-down estimates. Pixels are seasonally aggregated for
simplicity and plotting and to reduce noise from the propagation of atmospheric inversion uncertainty. In particular, we
consider high-latitude regions (latitude greater than 55 °N/S), mid-latitudes (latitude between 30 and 55 °N/S), dry tropics
(latitude < 30 °N/S and mean annual precipitation less than 1500 mm/yr), and wet tropics (latitude < 30 °N/S and mean annual
precipitation greater than 1500 mm/yr). To calculate the uncertainty of the bottom-up R, estimates, a method analogous to that

used for determining the 25%-75" confidence interval of bottom-up Ry, was used.

3 Results
3.1 Annual average Rn from top-down and bottom-up estimates
3.1.1 Top-down Rn

The annual mean tropical R is 450 =+ 200 gC/m?/yr. The spatial pattern of mean annual R;, is similar to that of GPP,

(Fig. 3a, R?=0.97, p < 0.001), as expected. More complex dynamics are revealed by considering the coefficient of variation
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(CV) of Ry (e.g. temporal standard deviation divided by mean per grid cell, Fig. 3b). The CV does not closely follow known
spatial patterns in biomes, GPP, turnover times, or other carbon parameters (e.g. (Anav et al., 2015; Bloom et al., 2016;
Carvalhais et al., 2014; Hiederer & Kochy, 2011)), as it reflects a combination of all these factors. More information about the
temporal variability of substrate availability (e.g. litter and soil organic matter) is needed to disentangle the climatic and
biogeophysical controls on Ry dynamics. This is left for a future investigation. Note that the high CV values in semi-arid
regions are likely due to the near-zero mean Ry, there.

Fig. 4 shows the results of sensitivity analyses for each of GPP (by comparing the Ry estimates with those derived
using GPP from FLUXCOM), NEP (by comparing with Ry, estimates derived assuming zero NEP) and CUE (by comparing
with Ry estimates derived assuming a seasonally varying CUE as described in Sec 2.1). When the GPP data source is changed
to FLUXCOM (Fig. 4a-b), the temporal dynamics of Ry are most varied in the central American Plains, Australia, and in the
tropics, especially in the Amazon. However, other hot spots for a mean difference exist, such as in Central Canada and Eastern
Europe. Changing to using zero-value NEP (Fig. 4c-d) most significantly introduces a mean difference in the Southern Amazon
and in Central Africa, though interestingly, the signs of the resulting difference are opposite between the continents. The
temporal dynamics of these regions is also the most sensitive to inclusion of actual NEP estimates in the Ry, calculation. Despite
the fact that NEP’s global mean value is more than an order of magnitude smaller than that of GPP, neglecting NEP causes
large changes to the estimated R, over much of the globe, showing the value of including NEP estimates in the top-down Ry,
calculation. Note however that the mean deviation in Ry, for either the NEP or GPP sensitivity analyses is still smaller than the
mean difference between the top-down and bottom-up Ry, over most of the world. The only exception to this is in the high
latitudes were all differences between estimates are of a similar magnitude.

Lastly, Fig. 4e-f shows the results of the sensitivity analysis assuming a temporally variable CUE. Overall, this
sensitivity analysis leads to far smaller changes to Ry than those for GPP and NEP. The magnitude of the Ry, change resulting
from a change in CUE depends on whether the seasonality of GPP aligns with Ry and whether the changed CUE causes
unrealistic flux combinations across any of the ensemble members. The difference in time-average Ry is relatively small - no
more than 50 g C m2yr! for any pixel. Despite the change in seasonality of CUE, the temporal dynamics of the 36 months of
estimated Ry, also remain relatively similar in the sensitivity analysis. More than 90% of pixels have an R? between the Ry, from
constant CUE and the Ry, from seasonally variable CUE greater than 0.8. The largest difference in Ry seasonality occurs in the
wet tropics. In these regions, the average GPP is largest, and a change in CUE seasonality corresponds to the greatest absolute
change in R,.

Fig. 5 maps the relative contributions of uncertainty in NEP, GPP, and CUE to Ry, as calculated by consecutively re-
calculating Ry assuming in each case that all but one of the three datasets have zero uncertainty. The uncertainty in GPP is the
dominant source of uncertainty in Ry, across most of the globe, except in parts of the Amazon. Consistent with the CUE
sensitivity analysis (Fig 4e-f), the contribution of CUE to the Ry, uncertainty is greatest in the tropics. In many high-latitude
regions, NEP also contributes significantly to the overall Ry uncertainty. This contrasts with the results of the zero-NEP

sensitivity analysis (Fig. 4c-d) in which NEP effects were no greater in the high-latitudes than elsewhere in the world, because
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the CMS-Flux NEP is close to zero in mean magnitude in the high-latitudes, but nevertheless relatively uncertain there. Overall,
future efforts to improve top-down approaches for Ry estimation would likely benefit most from reduced uncertainty in

remotely sensed GPP and NEP estimates.

3.1.2 Bottom-up Rx

The performance of the bottom-up approach at SRDB sites for both Ry and Ry, is shown in Fig. 6. The influence of
latitude on modelled Ry is stronger than on observed Ry (since the color patterns in Fig. 6 are largely horizontal). The
uncertainties of the bottom-up method are high. Indeed, for both the bottom-up R, and Ry, the root-mean-square error (RMSE)
(421 gCm2yr! forRs, 306 g Cm2yr!' for Ry) is only less than 15% lower than the RMSE for a model that simply predicted
the average observed respiration value everywhere (RMSE =488 g C m?2yr-! for R, 333 gCm2yr™!' for Ry). The Ry RMSE
=421 g C m?yr-! is also higher than the 376 g C m yr ' RMSE value reported by Hashimoto et al. (2015) when their equation
was applied to a smaller subset of the current SRDB dataset. The performance of the bottom-up model may be even worse on
a cross-validation dataset that is entirely independent.

To test whether the bottom-up model can be improved, its parameters were optimized using a non-linear least squares
fit. The resulting values (F = 1.30 gC m2dy"', a = 0.0565 °C"', b =0 °C2, a.= 9.8, K = 0.0008 cm mo', ¢ = 0.92, and d = 0.75)
were of a similar magnitude as the original parameters (F=1.68 gC m2dy", a=0.0528 °C", b= 0.000628 °C2, a.= 0.98, K
=1.20cmmo™', ¢=1.22, and d = 0.73), for all values except K and ¢, the two parameters controlling the relationship between
precipitation and Ry. This suggests that precipitation is among the most uncertain controls of Ry, consistent with the fact that
moisture limitations on Ry, are mediated by soil water potential rather than precipitation. However, because using the optimized
parameters led to only a 3% reduction in RMSE (from 306 g C m?yr ! to 294 ¢ C m? yr !, Fig. S2), the original parameters
were used elsewhere in the manuscript. Several constraints and alternative initial conditions were tested for fitting, but these
did not lead to a better-performing fit (not shown). Some compensation between parameters is likely occurring when fitting to
observations, reducing the quality of the fit.

In the absence of additional information about the bottom-up model uncertainty, the SRDB implementation and the
associated errors were also used to determine a model for the uncertainty of the global bottom-up estimates. As shown in Fig.
7, the Ry experiments in the SRDB over-represent mid-latitudes but under-represent low and high latitudes relative to the
distribution of global land area. This can also be seen visually in a map of the experimental locations (Fig. S3). As a result,
pixels with low Ry, (which are typical in the high-latitudes) are underrepresented in the SRDB, such that the bottom-up model

has greater uncertainty there. These factors are accounted for by the dynamic uncertainty model in Eq. (5).

11



10

15

20

25

30

3.1.3 Comparison

The top-down and bottom-up estimates and their uncertainties are compared in Fig. 8. Global maps of the two Ry
estimates are also shown in Fig. S4. Except in boreal regions and in Australia, the top-down estimates are greater than the
bottom-up estimates. This is reflected in their global averages, with mean Ry, rates of 452 g C m™ yr ! for top-down vs. 353 g
C m?yr-! for bottom-up estimates (43.6 Pg C yr ' and 33.4 Pg C yr ! respectively, summed across the globe). The highest
magnitude fluxes are in the low-latitude tropics, consistent with findings for Rs by Zhao et al. (2017), and the monotonic Ry, -
R, relationship in Eq. (5). The difference between the two estimates is also largest in this region - top-down estimates are an
average of 281 g C m?yr-! larger than bottom-up ones between 30 °S and 30 °N, but are only 10 g C m2 yr ! larger than
bottom-up estimates between 30 and 45 °N/°S. When compared against SRDB observations (Fig. 6b), the bottom-up estimates
were 500-2000 g C m? yr ! or more lower than observations at several low-latitude sites, suggesting the bottom-up estimates
may be underrepresenting Ry, across the region. The tropics is also the region where the relative uncertainties in both top-down
(57% median relative 25-75" confidence interval width) and bottom-up (76% median relative 25-75% confidence interval
width) estimates are highest. For the bottom-up estimation, this is due to a lack of representative in situ observations, while
for the top-down estimates, this is likely driven by uncertainties in NEP from atmospheric diffusion and satellite sampling in
the atmopsheric inversions (Liu et al., 2014) and GPP (Parazoo et al., 2014). Remarkably, although uncertainty estimates for
both the bottom-up and top-down approaches were conservative, the two estimates are so different at low latitudes that there
is almost no overlap in their uncertainty ranges.

The greatest overlap between the two datasets and their uncertainty range occurs between 30 and 50 degrees North,
where more than 48% of SRDB observations fall and the bottom-up estimates are likely the most reliable. At high-latitudes
(above °55 N), the top-down uncertainty narrows but the bottom-up uncertainty does not. In this region, bottom-up

uncertainties are about 30% greater than the uncertainties of the top-down Rp.

3.2 Seasonal cycle of respiration components

The bottom-up estimates only provide Ry, at annual timescales. To gain insight into the realism of the seasonal cycle
of the top-down Ry, estimates, they are compared to the seasonal cycle of bottom-up Rs and top-down Rec, in several regions
in Fig. 9. Consistent with the low values of bottom-up R (Sec 3.1.3), the top-down R, are not much lower than Ry. There is
significant overlap between the uncertainty ranges of both in many region-month combinations, despite the fact that true Ry, is
always lower than (or equal to) R due to the occurrence of belowground autotrophic respiration. Indeed, the bottom-up Ry
and top-down Ry nearly overlap in the period January-March in the wet tropics. Remarkably, during boreal winter at high
latitudes, the top-down Reeo, Rs, and Ry, all agree. This is likely because the constant CUE assumption assumes that R, is near-
zero in boreal winter when GPP shuts down, which may not be realistic. Previous studies have found that winter-time R can

provide as much as 20% or more of total boreal soil CO, fluxes (see overview in Hobbie et al., 2000), but only 5.2% of bottom-
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up estimated R, and 8.8% of top-down estimated Ry here occurs between December and February. In the dry tropics, the
seasonal cycle of top-down Ry, is remarkably flat, and flatter than that of bottom-up Rs. This could be explained by the fact that
temperature, moisture, and substrate variabilities do not vary the same way across the seasons and may partially compensate
for one another. However, more research is needed to determine what controls dry tropical variations in Ry and a detailed
investigation of this issue is beyond the scope of this paper.

The ratio of estimated Ry to Reco Spans between close to 1 in high-latitude winters and 0.4 in the wet tropics. Similarly,

the ratio of Ry, to R varies from 0.75 to 0.94 for different month-region combinations.

4 Discussion

4.1 Top-down and bottom-up approaches are both uncertain

Top-down estimates of Ry are 30% higher, on average, than bottom-up estimates. At low-latitudes, the top-down
estimates of Ry are so much larger than the bottom-up ones that there is almost no overlap between their respective 25M-75®"
uncertainty intervals, despite efforts to create conservative uncertainty intervals in each case. Consistent with these results, the
bottom-up Ry, were previously shown to be biased low relative to models from the Climate Model Intercomparison Project 5
(CMIP5) (Taylor et al., 2012) in the low-latitudes, though it is unclear whether this is because CMIP5 models are biased high
or because the bottom-up estimates are biased low relative to true Ry (Hashimoto et al., 2015, Fig.. 10). Zhou et al. (2009)
found that attributing a globally uniform Q1o value decreases model-simulated average Ry, by 40%, and a similar dynamic may
be causing the bottom-up Rj, estimates to be too low. It should also be noted that the global average R; estimates of the bottom-
up approach are 10-20 Pg lower than the six other estimates of global R published in the last decade (Bond-Lamberty, 2018),
and that a lower bottom-up R leads to a lower bottom-up Ry, (Eq. 5).

The top-down and bottom-up approaches to estimation of R, have complementary strengths and weakness, as detailed
in Table 1. Top-down estimates are indirect, and errors and uncertainties in any of the source datasets can propagate to errors
and uncertainties in the retrieved Ry. These include the assumption of a temporally constant CUE, which among others, can
lead to unrealistically low Ry in boreal winters. Additional uncertainties also include, for example, choices made in the
atmospheric inversion (Peylin et al., 2013) or the retrieval of SIF and its scaling to GPP (e.g. whether a constant set of values
is used, or whether this scaling is dynamic as in the Parazoo et al (2014) data used here). GPP is the most uncertain of the input
fluxes (Fig. 5). Despite their uncertainties, the top-down estimates are globally representative. By contrast, bottom-up
upscaling starts with more accurate, direct observations of Ry, but suffers from a lack of representativeness: direct observations
are often temporal snapshots covering only a single or few years at a given site, with the time period observed varying
dramatically between sites. More importantly, they under-represent boreal and tropical regions, and may over- or under-sample
disturbed sites in different regions. While the uncertainties of the remote sensing datasets used for top-down estimation show

some variations across different parts of the globe, remote-sensing based estimates of vegetation properties such as
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photosynthesis and biomass have previously been argued to contain significantly lower representativeness error than bottom-
up estimates (Saatchi et al., 2015; Schimel et al., 2015). A similar dynamic is at play for Ry.

The top-down approach introduced here is dependent on the quality of the input datasets used. Among the sensitivity
analyses performed, NEP and GPP generally had a greater effect on the resulting Ry than the assumed values of CUE. The
primary GPP and NEP datasets used here (those from Parazoo et al (2014) and CMS-Flux, respectively) are sensitive to both
observational error (e.g. due to cloud cover) and uncertainties in the retrieval algorithms (including, but not limited to,
uncertainties in the relationship between SIF and GPP and, for NEP, in the inversion of atmospheric transport models). As
shown in Fig. 4, uncertainties in top-down GPP and NEP can have significant effects on the mean and temporal variability of
Ry estimated. Nevertheless, the sensitivity of Ry to alternative GPP and NEP assumptions was still lower than the difference
between the top-down and bottom-up Rj, estimates everywhere outside the high-latitudes. Thus, despite the large sensitivity of
the top-down Ry to the quality of the input datasets (and to a lesser degree, to the assumption of constant CUE), our new
approach still provides meaningful new constraints on Ry not available from bottom-up estimation alone.

For the bottom-up approach, the errors associated with sampling bias are likely also exacerbated by the uncertainty
in parametrizing a single functional model and the difficulty of parameter optimization. When the model parameters were re-
fit on a version of the SRDB that was slightly expanded from that used in Hashimoto et al. (2015), the precipitation-sensitivity
parameterization changed dramatically, while the error statistics remained similar, suggesting possible overfitting.
Furthermore, even comparing against an SRDB dataset that was similar to that used to derive the original parameters, the
bottom-up approach barely had improved error statistics (RMSE of 306 g C m2yr-!) relative to a model that simply ignores
spatial variations and everywhere assigns the same value (RMSE of 333 g C m2 yr!). Such results suggest a structural problem
with the underlying modelling approach (no good parameters exist), but also call into question whether currently used
parameters are truly optimal given the model structure. In a recent study, machine-learning based approaches for estimating
R were able to explain 60-70% of the R; variability (Zhao et al., 2017), considerably more than the 35% variability explained
in this study using the Hashimoto et al. (2015) approach. If the robustness of machine learning based bottom-up upscaling
methods can be further established, they may form a path forward for improved fidelity of bottom-up estimation of Ry, and for
allowing estimation of Ry, at a temporal resolution finer than the current annual timescales. However, the number of Ry,
observations in the SRDB - and presumably the literature as a whole - is 5 times smaller than the number of R, sites. Thus,
additional measurements of Ry are needed for this approach, and they must include under-sampled areas. This is unlikely to
be possible in the foreseeable future.

Despite the complementary sources of uncertainties in both top-down and bottom-up Ry, estimates, the strong overlap
between the two estimates and their uncertainty ranges in latitude range 30-50°N (the same latitude range where SRDB
observations are most common, Fig. 7) is encouraging. Indeed, if the uncertainty of top-down estimates can be reduced, they
could be used to constrain or help parameterize bottom-up models similar to those compared to here, allowing creation of a

longer record than may be possible with top-down observational data alone.
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4.2 General applicability of the carbon balance inversion method

This paper introduced a new method for top-down estimation of Ry by calculating it as the residual of the carbon
balance. The propagation of uncertainty under realism constraints (in the form of the correct sign on each of the respiration
components and GPP) is key to avoiding large errors in this approach. In this paper, we used large-scale, regionally available
estimates for the carbon balance components, including recently developed atmospheric inversion-based NBE and NEP
estimates from CMS-Flux. However, the approach could also be applied at finer resolutions, for example using regional scale
atmospheric inversions. If the local carbon use efficiency can be determined (Tang et al., 2019), the method could also be
applied at smaller spatial and temporal scales, such as to data from eddy covariance towers. For example, constraints based on
estimates of Ry, from a carbon balance inversion could be useful in upscaling chamber-based soil respiration measurements to
the tower scale, which could help explain inconsistencies between tower and chamber measurements of respiration fluxes

(Barba et al., 2017; Phillips et al., 2016).

4.3 Implications for carbon climate feedbacks

The response of terrestrial net carbon fluxes to climate changes is likely to feed back to future climate (Bodman et
al., 2013), but the sign and magnitude of this feedback is highly uncertain (Friedlingstein et al., 2014). The tropics likely form
a dominant control on global carbon-climate feedbacks (Cox et al., 2000; Schimel et al., 2015). However, in the period 2010-
2015, GPP explained less than 1/3™ of variations in tropical NEP, suggesting an important role for R, and Ry in controlling net
terrestrial carbon uptake and its climate sensitivity (Sellers et al., 2018). A recent modeling study also suggested that Ry, forms
a dominant control on NBP at multi-decadal timescales (Zhang et al., 2018). Studies of climate-carbon feedbacks commonly
consider either Rec, or R, but in doing so they conflate two separate respiration components (total R, and Ry, or belowground
R, and Ry, respectively), which have different biogeophysical controls and responses to climate. The large spatial and temporal
variations in the ratio of top-down heterotrophic to Reco and R; in Fig. 8 act as a reminder that heterotrophic respiration should
be studied separately from other respiration fluxes in this context.

The recent launch of TROPOMI, which has daily coverage and approximately 7 x 3.5 km pixel resolution, will greatly
increase measurements of SIF, and hence will also greatly increase the number of estimates of GPP (Kohler et al., 2018), the
largest source of uncertainty in the global Ry estimates (Fig. 5). Increased data density from OCO-2 (Crisp et al., 2004) and
in the future GeoCarb (Polonsky et al., 2014) should also provide better regional estimates of NEP. With these and other
improvements to remote sensing-driven estimates of GPP and NEP, top-down estimation of Ry may be a promising avenue to
better understand the role of Ry fluxes in carbon-climate feedbacks. However, because the temporal variability of the derived
Ry varies depending on the quality of the GPP, NEP, and CUE datasets (as well as, to a lesser degree, the assumed constancy

of the CUE assumptions), any studies using top-down Ry should carefully consider uncertainty propagation in any hypothesis
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testing. Nevertheless, with careful consideration of uncertainty, top-down estimation may be a promising approach for

understanding or bounding the role of Ry, in carbon-climate feedbacks.
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Tables

Uncertainty in NEP and GPP data

Top-down Bottom-up
Advantages Inherently global Based on direct, high-resolution measurements
Disadvantages | Uncertainty in constant CUE assumption Sparse, non-representative sampling

Based on temporal snapshots in non-consecutive years

Table 1: Advantages and disadvantages of top-down vs. bottom-up estimation methods.
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Figure Captions

Figure 1: Schematic diagram of process used to calculate heterotrophic respiration Rpe. Input datasets are outlined in red, and data sources
are described in blue italics. Arrows indicate one flux is used to calculate another. Data sources are described in detail in Section 2.1.2

Figure 2: Global variations in mean carbon use efficiency from CARDAMOM

Figure 3: Spatial variability in top-down Ri. Maps of a) mean R, [gC m? yr''] and right) temporal coefficient of variation of top-down Ry,
calculated based on monthly data over 2010-2012.

Figure 4: Results of sensitivity analyses for three input datasets. (left) Mean difference [gC m? yr'!] between baseline top-down Rh and
alternate-input top-down Rh and (right) R2 between baseline top-down Rh and alternate-input top-down Rh. Sensitivity analyses performed
include using FLUXCOM GPP (top row), assuming uniformly zero values of NEP (middle row) and assuming CUE varies temporally in a
manner proportional to GPP (bottom row).

Figure 5: RGB map of relative contributions to Ri uncertainty in each of the input datasets, NEP (red), CUE (blue), and GPP (green). Note
that a yellow color signifies similarly sized uncertainties for GPP and NEP, which are much larger than the uncertainty for CUE.

Figure 6: Comparison of observed annual respiration terms at SRDB sites vs. bottom-up estimates at the same sites for (left) 1979 soil
respiration sites and (right) 362 heterotrophic respiration sites. Each point denotes a single experiment and is colored by the experiment’s
latitude.

Figure 7: Distribution of all SRDB experiments (red dashed lines) and global land points where top-down retrievals were possible in terms
of (left) latitude and (right) bottom-up modelled Rx. Modelled R; rather than observed R, were used for the SRDB data in the comparison to
isolate the differences due to the representativeness of the SRDB experiments relative to the entire global land area, and remove any possible
effects of biases in modelled global values and observed SRDB values.

Figure 8: Longitudinally-averaged R; as estimated from top-down (black solid line) and bottom-up (blue dashed line) estimates, respectively.
Shaded areas represent the average 25"-75" uncertainty bars at each latitude.

Figure 9: Comparison between regionally and temporally averaged seasonal cycle of different respiration components: top-down R; (black
solid line and area), bottom-up Ry (blue dashed line and area), and top-down Reco (red dash-dotted line and area). Shaded areas represent the
average 25M-75" uncertainty bars at each latitude. (top left) high latitudes (latitude > 55 N/S) (top right) mid-latitudes (30 N/S < latitude <
55 N/S), (bottom left) dry tropics (latitude <30 N/S and mean annual precipitation < 1500 mm/yr), and (bottom right) wet tropics (latitude
<30 N/S and mean annual precipitation > 1500 mm/yr).
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