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Abstract. While heterotrophic respiration (Rh) makes up about a quarter of gross global terrestrial carbon fluxes, it remains 

among the least observed carbon fluxes, particularly outside the mid-latitudes. In situ measurements collected in the Soil 

Respiration Database (SRDB) number only a few hundred worldwide. Similarly, only a single data-driven wall-to-wall 10 

estimate of annual average heterotrophic respiration exists, based on bottom-up upscaling of SRDB measurements using an 

assumed functional form to account for climate variability. In this study, we exploit recent advances in remote sensing of 

terrestrial carbon fluxes to estimate global variations in heterotrophic respiration in a top-down fashion at monthly temporal 

resolution and 4x5o spatial resolution. We combine net ecosystem productivity estimates from atmospheric inversions of the 

NASA Carbon Monitoring System- Flux (CMS-Flux) with an optimally-scaled gross primary productivity dataset based on 15 

satellite-observed solar-induced fluorescence variations to estimate total ecosystem respiration as a residual of the terrestrial 

carbon balance. The ecosystem respiration is then separated into autotrophic and heterotrophic components based on a 

spatially-varying carbon use efficiency retrieved in a model-data fusion framework (the CARbon DAta MOdel fraMework, 

CARDAMOM). The resulting dataset is independent of any assumptions about how heterotrophic respiration responds to 

climate or substrate variations. It estimates an annual average global average heterotrophic respiration flux of 43.6 ± 19.3 Pg 20 

C/yr. Sensitivity and uncertainty analyses showed that the top-down Rh are more sensitive to the choice of input GPP and NEP 

datasets than to the assumption of a static CUE value, with the possible exception of the wet tropics. These top-down estimates 

are compared to bottom-up estimates of annual heterotrophic respiration, with new uncertainty estimates that partially account 

for sampling and model errors. Top-down heterotrophic respiration estimates are higher than those from bottom-up upscaling 

everywhere except at high latitudes, and are 30% greater overall (43.6 Pg C/yr vs. 33.4 Pg C/yr). The uncertainty ranges of 25 

both methods are comparable, except poleward of 45 degrees North, where bottom-up uncertainties are greater. The ratio of 

top-down heterotrophic to total ecosystem respiration varies seasonally by as much as 0.6 depending on season and climate, 

illustrating the importance of studying the drivers of autotrophic and heterotrophic respiration separately, and thus the 

importance of data-driven estimates of Rh such as those estimated here.  
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1 Introduction 

The terrestrial carbon cycle-climate feedback (together with atmospheric processes) is a dominant contributor to the 

uncertainty of temperature projections in 2100 (Booth et al., 2012). The future effect of carbon-climate feedbacks depends on 

the climate sensitivity of net terrestrial carbon fluxes, which are a close balance of net primary productivity, disturbance-related 

fluxes, and heterotrophic respiration (Rh). The overall sensitivity of the terrestrial carbon uptake is thus dependent on the 5 

climatic response of these fluxes. Model-based estimates of global Rh vary by almost 50% and are highly uncertain (Shao et 

al., 2013), especially in the tropics (Tian et al., 2015). The climatic sensitivity of Rh is also the primary driver of the large 

divergence across modeled global soil carbon pools (Tian et al., 2015; Todd-Brown et al., 2013), the largest terrestrial carbon 

pool (Jobbágy and Jackson, 2000).  

Few in situ measurements exist to constrain Rh, particularly in the tropics (Xu et al., 2016). For example, the 10 

international Soil Respiration DataBase (SRDB), which aims to compile data from all published studies of soil and 

heterotrophic respiration (Bond-Lamberty and Thomson, 2010), includes only 21 sites with Rh information in Central and 

South America, and only 2 in Africa. The highly limited number of Rh data is likely affected by the relative difficulty and 

uncertainty of methods for partitioning total soil respiration (Rs) fluxes – which can be easily measured using respiration 

chambers – into autotrophic and heterotrophic components. Performing this partitioning requires isotopic measurements or 15 

destructive techniques such as girdling or trenching (Ryan and Law, 2005). Like Rs, total ecosystem respiration Reco is also 

often considered as a counter-part to photosynthetic fluxes, but is rarely partitioned further.  However, because most carbon 

cycle and ecosystem models represent autotrophic and heterotrophic components separately, and because the climatic and soil 

sensitivities of the autotrophic and heterotrophic components of soil respiration differ (Metcalfe et al., 2010; Scott-Denton et 

al., 2006), it is challenging to translate soil or ecosystem respiration data to improvements of model representations for Rh. 20 

Although meta-analyses using data such as the SRDB have been used to understand the sources of spatial variability in soil 

respiration (Hursh et al., 2016) and heterotrophic respiration (Shao et al., 2013) rates, such studies are limited (by data 

availability) to consideration of annual respiration fluxes and sparse, discrete points in space. Thus, while GPP is highly 

uncertain (Anav et al., 2015), GPP and Reco are far more constrained by observations than  Rh, which must be considered 

among the most uncertain fluxes in the carbon cycle. Temporally variable and spatially extensive estimates of Rh are therefore 25 

needed to better understand its drivers.  

Starting several decades ago with Raich & Schlesinger (1992), several authors have tried to upscale sparse 

measurements to estimate global Rs. Most commonly, this is performed using a spatially explicit exponential model of the 

relationship between Rs and temperature, modified by land cover (Adachi et al., 2017), soil properties (Chen et al., 2013), or 

soil moisture (Xu et al., 2016) limitations. Recent papers have also used machine learning methods to upscale the relationship 30 

between Rs and climate and biogeophysical properties, including random forest models (Jian et al., 2018) and artificial neural 

networks (Zhao et al., 2017). However, no similar effort has been made for estimating global Rh. Only Hashimoto et al. (2015) 
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have extended a rigorous estimate of global, upscaled Rs to an estimate of global Rh. This was achieved by employing a 

previously noted apparent relationship between annual Rs and Rh at a given site (Bond-Lamberty et al., 2004). However, the 

Hashimoto et al approach assumes a specific functional form for the relationship between climate and Rs (and thus, Rh), so 

that investigations of climatic sensitivities of Rh with this dataset are potentially circular. Furthermore, the approach assumes 

that base respiration rates and sensitivity parameters for temperature and precipitation to soil moisture are constant across the 5 

globe. This approach therefore cannot account for known dependencies of heterotrophic respiration on microbial biomass and 

composition (Johnston and Sibly, 2018; Walker et al., 2018; Wieder et al., 2013; Zhou et al., 2011) and substrate type (Cornwell 

et al., 2008). Modelling Rh as a function of precipitation alone is also inconsistent with theoretical, laboratory, and field studies 

that have found Rh to be a function of soil water potential (Manzoni et al., 2012; Moyano et al., 2012, 2013), which is non-

linearly related to precipitation depending on soil properties, vegetation cover, topography, and more.  10 

In this paper, we introduce an alternative approach to estimating Rh at global or regional scales using remote sensing. 

Rather than a bottom-up approach to aggregating sparse point-based measurements, we propose a ‘top-down’ method that 

naturally captures average values over large scales. The method derives Rh as the residual of satellite-constrained estimates of 

the carbon balance: net ecosystem productivity (NEP), gross primary productivity (GPP) and Ra. The NEP (the net difference 

between photosynthetic and respiration fluxes: NEP = GPP - Ra - Rh) is based on atmospheric inversions of satellite 15 

observations of column xCO2 and xCO, and GPP is based on upscaling solar-induced fluorescence (SIF). The Ra is calculated 

based on GPP and carbon-use efficiency estimates from a remote-sensing constrained model-data fusion framework. The top-

down approach is applied to the period 2010-2012. Coarse-resolution Rh estimates are difficult to validate using in situ 

measurements because of representativeness errors. Instead, we rigorously compare the top-down method and its uncertainties 

to those of bottom-up Rh estimation, in this case as performed by Hashimoto et al. (2015). 20 

2 Methods 

2.1 Top-down Estimates 

2.1.1 Top-down approach 

As summarized in Fig. 1, the top-down Rh at grid-scale is calculated as the residual of observationally-constrained estimates 

of the carbon balance: 25 

𝑅௛ = 𝐺𝑃𝑃 − 𝑁𝐸𝑃 − 𝑅௔, (1) 

The combination of NEP and GPP allows calculation of the ecosystem respiration Reco, but an estimate of Ra is required to 

separate Reco into Ra and Rh components. The Ra is calculated based on the GPP and on carbon-use efficiency (CUE). 

Specifically, the autotrophic respiration Ra is assumed to be proportional to GPP according to a spatially variable but 

temporally constant CUE, where CUE is defined as the ratio of net primary production (NPP) to GPP. Thus, CUE = 1 – 

Ra/GPP. Eq. (1) then becomes: 30 



4 
 

𝑅௛ = 𝐺𝑃𝑃 − 𝑁𝐸𝑃 − (1 − 𝐶𝑈𝐸)𝐺𝑃𝑃, (2) 

 The CUE is commonly assumed constant at a given location (Gifford, 2003; McCree and Troughton, 1966), but has been 

found to vary depending on ecosystem type, stand age, and forest management (Collalti et al., 2018; Gifford, 2003; De Lucia 

et al., 2007). Note that by calculating autotrophic respiration as proportional to GPP, we classify the release of CO2 from 

decomposition of root exudates by mycorrhizal fungi (Trumbore, 2006) as autotrophic rather than heterotrophic respiration. 

This is arguably a misclassification, but is consistent with most in situ methods for measuring heterotrophic respiration (e.g. 5 

girdling, trenching, or isotopic measurements) (Ryan and Law, 2005).  

 The use of this method to calculate spatio-temporal variations in Rh is enabled by the fact that estimates of each of 

NEP, GPP, and CUE are available that are based on remote sensing and data assimilation. These datasets are further discussed 

in the next Section.  

 10 

 

2.1.2 Datasets used and implementation 

The NEP is determined from an atmospheric inversion of remotely sensed columnar carbon dioxide and carbon 

monoxide observations in the CMS-Flux system. It is described in detail in Bowman et al. (2017) and (Liu et al., 2017), but 

summarized here for convenience. It has been validated using methods introduced in Liu and Bowman (2016). CMS-Flux 15 

estimates carbon fluxes through a 4D-variational  inversion approach that ingests columnar xCO2 observations from the 

Greenhouse gases Observing Satellite (GOSAT) and CO observations from the Measurement of Pollution in the Troposphere 

Instrument (MOPITT) (Worden et al., 2010) into the GEOS-Chem atmospheric transport model  and its adjoint (Bey et al., 

2001; Henze et al., 2007; Nassar et al., 2010; Suntharalingam et al., 2004). The net fluxes are further decomposed into biomass 

burning, oceanographic, fossil fuel, chemical sources (including shipping, aviation, and others), and NEP components. The 20 

biomass burning emissions are constrained by the MOPITT CO observations and published CO/CO2 ratios. Anthropogenic 

and oceanographic priors for the fluxes come from the Fossil Fuel Land Data Assimilation System (Asefi-Najafabady et al., 

2014; Rayner et al., 2010) and ECCO2-Darwin oceanographic model (Brix et al., 2015), respectively, and NEP flux priors 

come from the Carnegie-Ames-Stanford-Approach (CASA) model simulations. As shown in Fig. S1, the posterior and prior 

fluxes of NEP differ significantly almost everywhere – 42% of pixels have a normalized root-mean-square-difference between 25 

the prior and posterior fluxes greater than 1, consistent with a previous observing system simulation experiment for the CMS-

Flux system (Liu et al., 2014). The total global NEP averages 5 ± 13 Pg C/yr across 2010-2012, and the uncertainty of the NEP 

estimates is assumed to be normally distributed with a spatially and temporally varying standard deviation estimated in the 

atmospheric inversion via a Monte Carlo approach (Bousserez et al., 2015). 

The GPP is determined based on an optimal rescaling of SIF observations. SIF is a by-product of photosynthesis and 30 

therefore provides direct information about the magnitude of GPP (Porcar-Castell et al., 2014). The information content of SIF 
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for photosynthesis has been demonstrated using field-scale measurements (Yang et al., 2015) and by comparing satellite-based 

data to eddy-covariance towers (Guanter et al., 2014; Joiner et al., 2014; Sun et al., 2017; Wood et al., 2017; Zuromski et al., 

2018), carbon dioxide mole fractions in Amazonia (Parazoo et al., 2013), and machine-learning based estimates of GPP 

(Alemohammad et al., 2017). Despite the abundance of evidence that SIF carries information about GPP, the linear constant 

of proportionality between SIF and GPP depends on the light use efficiency of the vegetation in question as well as the satellite 5 

efficiency at capturing photons and is difficult to estimate a priori. Here, we use GPP estimates from Parazoo et al. (2014), 

which used a Bayesian approach to determine an optimal seasonally and spatially varying scaling parameter between SIF and 

prior GPP along with explicit uncertainty estimates. Monthly GPP at each grid point is inferred from a precision-weighted 

minimization of SIF, which is regressed against biome-specific GPP from upscaled flux tower data (Frankenberg et al., 2011; 

Jung et al., 2011), and prior GPP from eight terrestrial ecosystem models in the TRENDY project (Sitch et al., 2015). This 10 

approach has been used to examine regional GPP responses to climate variability and drought, and has been extensively 

validated against flux tower data (Bowman et al., 2017; Liu et al., 2017; Parazoo et al., 2014, 2015), though it remains 

uncertain. The average global GPP across 2010-2012 is 114 ± 41 Pg C/yr, and the uncertainty of theGPP estimates is 

determined as in Parazoo et al (2014) and assumed to follow a normal distribution.  

The CUE is determined from a 10-year (2001-2010) run of CARDAMOM (Bloom & Williams, 2015; Bloom et al., 15 

2016), in which uncertainties are explicitly represented as probability density functions computed from an ensemble. 

CARDAMOM is a model-data fusion system that uses a Bayesian framework to determine global ecological parameter 

combinations that minimize the mismatch with observations while still satisfying a set of ecological realism and dynamic 

stability constraints to regularize the inversion. CARDAMOM is built on the underlying Data Assimilation Linked Ecosystem 

Carbon model version 2, DALEC2 model (Bloom & Williams, 2015; Williams et al., 2005), with assimilation of observations 20 

of leaf area index, burned area, tropical biomass, and soil carbon (Bloom et al., 2016). Within CARDAMOM, a constant 

fraction fa of photosynthetic carbon gain is assumed to be allocated to autotrophic respiration (note that fa = 1-CUE). The 

fraction fa is directly linked to the allocation fractions of photosynthetic carbon to other pools (labile, wood, foliar, and fine 

root carbon) through conservation of mass. The allocation fractions directly influence the observed quantities used for 

CARDAMOM parameterization (e.g. LAI, tropical biomass, and soil carbon), and are subject to several ecological realism 25 

constraints. The resulting range of global CUE (between 0.35 and 0.6, shown in Fig. 2) is consistent with results found from 

meta-analyses (Gifford, 2003; De Lucia et al., 2007) and is also supported by theoretical considerations based on conservation 

of mass (Van Oijen et al., 2010) and plant carbon dynamics (Dewar et al., 1998). Average values of CARDAMOM CUE are 

generally lowest in the tropics, consistent with previous site-specific observations (Amthor, 2000; Chambers et al., 2004; De 

Lucia et al., 2007; Piao et al., 2010).  The zonal mean variation of CARDAMOM CUE (not shown) also compares favorably 30 

with that of a recently produced random forest derived global upscaling of in situ CUE measurements decreasing at low 
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latitudes and increasing at high latitudes to similar ranges (Tang et al., 2019) across a similar range (0.43 to 0.52 for 

CARDAMOM and 0.42 to 0.58 for the Tang et al (2019) estimates.  

Autotrophic respiration may depend on stored supplies of carbon, causing a decoupling between the seasonality of 

GPP and Ra and thus temporal variation in CUE. This is particularly common in deciduous trees in mid- and high-latitudes 

(Epron et al., 2012; Kuptz et al., 2011). Less is known about seasonal variations of CUE in tropics. Although small variations 5 

in CUE (e.g. <= 0.05) have been observed in both highland and lowland Amazonian sites, these variations were found to be 

small relative to seasonal variations in allocation rates to non-respiratory carbon pools (Doughty et al., 2015; Rowland et al., 

2014). Nevertheless, the assumption of constant CUE likely adds error to the top-down estimates of Rh. This error is partially 

accounted for by the wide uncertainty range used for CUE. We further performed a sensitivity analysis in which the Rh derived 

using an assumption of constant CUE was compared to the Rh with a systematic seasonal variability in CUE. Although little 10 

is known about the true temporal variation of CUE across the globe, we here assumed a seasonal cycle of CUE proportional 

to that of GPP, but re-normalized to have a mean equal to the constant CARDAMOM CUE and a standard deviation of 0.1 at 

each pixel. That is, 

𝐶𝑈𝐸(𝑥, 𝑦, 𝑡) = 𝐶𝑈𝐸஼஺ோ஽(𝑥, 𝑦) +
଴.ଵ

௦௧ௗ೟(ீ௉௉(௫,௬௧)ିீ௉തതതതതത)
(𝐺𝑃𝑃(𝑥, 𝑦, 𝑡) − 𝐺𝑃𝑃തതതതതത) ,     (3) 

where (x,y) determines a pixel location in space, t is the monthly time vector, CUECARD(x,y) is the constant CUE determined 15 

from CARDAMOM, std refers to standard deviation, and the overbar denotes a time-average over the entire period. The use 

of a CUE proportional to GPP is chosen so as to provide a structure to the temporal variability of CUE that is potentially 

realistic for each pixel (i.e. not completely random), even if little is known about the overall controls on temporal variability 

in CUE. The 0.1 standard deviation magnitude is fairly conservative unless true temporal variation in CUE is much larger than 

spatial variation – the spatial standard deviation of CARDAMOM CUE across all global land surfaces is 0.06. 20 

 Additional sensitivity analyses were also performed to test the sensitivity of Rh to errors in the GPP and NEP datasets. 

To test the sensitivity to GPP, we compared Rh with an alternative set of Rh estimates calculated using GPP from FLUXCOM 

(Tramontana et al., 2016). FLUXCOM estimates of GPP are derived as the median value across an ensemble of estimates from 

11 different machine learning models applied to meteorological drivers from reanalysis and remote sensing and trained on 

eddy covariance observations.  The uncertainty of the FLUXCOM GPP is calculated based on the standard deviation across 25 

the different machine learning methods. Note that FLUXCOM is a bottom-up method and thus carries many of the same 

uncertainties as other bottom-up methods (see Sec 4.1), particularly in globally under-sampled regions. For example, only 17 

of 225 eddy-covariance tower sites used to train the machine learning models are in the Southern Hemisphere. Furthermore, 

the FLUXCOM data are sensitive to the quality of the GPP partitioning of the observed tower NEE.  Nevertheless, we use the 

FLUXCOM dataset here to study the sensitivity of Rh to GPP because it is widely used, well-regarded, and cross-validated 30 

against withheld parts of the eddy-covariance record. While FLUXCOM also estimates NEP, its NEP predictions are of lower 

quality than those of other fluxes (Tramontana et al., 2016). Furthermore, it shows significant bias (Exbrayat et al., 2019). 
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Instead, taking advantage of the low magnitude of NEP, we test the sensitivity to NEP data quality by computing Rh assuming 

NEP is zero everywhere across the globe and across the timeseries. Because an uncertainty in NEP still needs to be assumed, 

we simply use the same uncertainties from the CMS-Flux product.  

When calculating Rh in either the main or sensitivity analyses, all datasets are averaged to the same monthly temporal 

and 4o latitude x 5o longitude spatial resolution, the native resolution of flux estimates from CMS-Flux. We use NEP and GPP 5 

data over the period 2010-2012, when the CMS-Flux data have been validated in the most detail. However, even at 4o by 5o 

resolution, the precision of CMS-Flux data can still be poor. To reduce the random component of the error, all visual maps are 

presented after applying a 3 pixel by 3 pixel moving average smoother, as in (Liu et al., 2018). When calculating Rh, a 4000-

member ensemble is used for explicit simulation of the uncertainty distributions of each of the input variables. Additionally, a 

constraint on the signs of Rh, Ra, and GPP is used to ensure the estimated Rh is physically realistic (Bloom and Williams, 2015; 10 

Parazoo et al., 2018) – each of these three fluxes is required to be positive. A simple accept-reject sampling scheme is used 

that rejects ensemble members that violate this criterion. For each of these ensemble members, new samples of the uncertainty 

distribution of NEP, GPP, and CUE are drawn until each of Rh, Ra, and GPP for that ensemble member are positive.  Using 

such a constraint is equivalent to using a Bayesian scheme with prior distributions for Rh, Ra, and GPP that are 0 for negative 

values and 1 otherwise.  15 

The uncertainty of the resultant Rh is a combination of the uncertainty in the three input datsets: NEP, GPP, and CUE. 

There is some non-linearity to this combination because the positive flux constraints limit what uncertainty combinations are 

considered to lead to acceptable Rh. To estimate how much each of these datasets contributes to the overall Rh uncertainty, Rh 

is re-estimated three times, but in each case only one of the input datasets is given non-zero uncertainty. The resultant 

magnitude of the uncertainty in Rh is then compared.  20 

 

2.2 Bottom-up estimates 

2.2.1 Approach 

To the best of our knowledge, only Hashimoto et al. (2015) have previously estimated Rh based on upscaling in situ 

measurements.  Their method is based primarily on estimating Rs, for which a simple functional form adapted from Raich et 25 

al (2002) is used: 

𝑅௦ = 𝐹 × 𝑒௔்ି௕்
మ
×

ఈ௉೟ା(ଵିఈ)௉೟షభ

௄ାఈ௉೟ା(ଵିఈ)௉೟షభ
 ,         (4) 

where F [gC m-2 dy-1] is a base rate, a [oC-1] and b [oC-2] control the sensitivity to temperature T [oC]. The Rs also depends on 

the current-month precipitation Pt [cm mo-1] and the previous-month precipitation Pt-1 [C-1], with the relative weight of each 

determined by a [-]. The K [cm mo-1] parameter also controls the influence of precipitation.  For lack of more information, all 30 

parameters are assumed to be global constant, so that the only spatial variation is provided by variations in the climatic drivers. 
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Hashimoto et al (2015) used temperature and precipitation from the Climate Research (CRU) 3.21 (Harris et al., 2014) and fit 

the above function to observations from the SRDB using a Bayesian Markov Chain Monte Carlo scheme. To determine the 

annual average Rh at a location based on annual Rs, Hashimoto et al. (2015) employed a previously determined relationship 

between annual soil and heterotrophic respiration (Bond-Lamberty et al., 2000): 

ln(𝑅௛) = 𝑐 + 𝑑 ln(𝑅௦),            (5) 5 

where c = 1.22 and d = 0.73. While it is in theory possible to apply Eq. (5) to any number of recent bottom-up Rs estimation 

approaches, we here apply it only to the estimates from Hashimoto et al. (2015) in Eq. (4), both for consistency with the 

literature and since the data from Hashimoto et al. (2015) are among the most commonly used bottom-up Rs estimates. 

 

2.2.2 Parametrization and Implementation 10 

We implemented Eq. (4) using climate data from the CRU 4.01 and using the maximum a posteriori parameter values 

from Hashimoto et al. (2015) (that is, F = 1.68 gC m-2 dy-1, a = 0.0528 oC-1, b =0.000628 oC-2,  = 0.98, and K = 1.20 cm mo-

1) to determine monthly resolution estimates of Rs. The Rs estimates were then temporally aggregated to determine annual Rh 

using Eq. (5). These are referred to as the bottom-up estimates below.  

Extrapolating from a limited sample of parameters with multiple fitted parameters carries the risk of overfitting. 15 

Fortunately, several measurements of Rs and Rh have been added to the SRDB since the Hashimoto et al (2015) article; the 

number of Rs measurementss has increased by 20%, from 1638 to 1979. Similarly, the number of measurements of 

heterotrophic respiration has increased from 53 measurements when Bond-Lamberty et al (2004) originally derived Eq. (4) to 

362 measurements in the most recent SRDB version.  To test the applicability of the original parameters, we also implemented 

the bottom-up approach at the increased number of SRDB location-years available since Hashimoto et al (2015), i.e. all 20 

datapoints in SRDB v20180126. Consistent with the original study, for SRDB experiments for which the observed annual 

average was determined over a range of years, we used only the middle year in the range. We compared simulated to observed 

annual Rs and Rh for both the case of the maximum a posteriori parameters from the original Hashimoto et al (2015) study and 

for a set of updated model parameters determined by a non-linear least-square fit. For the updated parameters, the coefficients 

of the Rh-Rs relationship are also optimized. Because the updated parameters did not perform significantly better (see Sec. 3.2), 25 

the original parameters were used in the rest of this study. 

No uncertainty was considered in Hashimoto et al. (2015). To determine the uncertainty of the bottom-up estimates, 

we tested them against SRDB observations. Measurements in the SRDB are highly concentrated in the mid-latitudes – 74% of 

Rh measurements and 78% of Rs measurements were made at a latitude greater than 30 oN. The uncertainty of the bottom-up 

estimates is therefore likely to exhibit significant spatial and temporal variability due to sampling error alone, on top of errors 30 

related to the imposed functional form and its parameterization. To find one or more covariates between the expected 

uncertainty of Rh and other factors, the errors associated with bottom-up implements at the SRDB sites were linearly regressed 
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against the following possible predictors: latitude, longitude, mean and standard deviation of precipitation, mean and standard 

deviation of temperature, and mean predicted Rh. Several non-linear functions of latitude were also tested. Of these, the mean 

predicted Rh and latitude were chosen as predictors because they had the greatest explanatory power (R = 0.23 when used in 

combination). Adding more predictor variables does not further increase the adjusted R2.  

In order to determine a spatio-temporally variable uncertainty range we calculated the 25th and 75th percentile of all 5 

362 Rh errors associated with using the bottom-up model. These formed a baseline globally averaged confidence interval base 

that was then modified linearly based on the modelled Rh and latitude (consistent with the linear regression tests mentioned 

above): 

δ௜ = 𝛿௕௔௦௘,௜ ൬
ఊభାఊమோ೓

್ೠାఊయ௟௔௧

ఊర
൰,             (6) 

where i denotes either the 25th or 75th percent confidence interval, Rh
bu is the predicted mean bottom-up heterotrophic 10 

respiration rate, lat is the pixel latitude, 1-3 are regression parameters and 4 is the mean error of the bottom-up method across 

the SRDB dataset. Although the amount of variability in error captured using this method (R = 0.23) is still extremely low, no 

alternative ways of capturing the expected spatio-temporal variability in bottom-up Rh uncertainty exist, and poorly accounting 

for this variability is still expected to be more useful than not accounting for it at all. 

 15 

2.3 Comparison Analyses 

We compared the mean and uncertainty estimates of the top-down and bottom-up annual Rh across latitudes. Because 

no bottom-up estimates of the seasonal cycle of Rh are available, we further compared the seasonality of Rh in different regions 

to the seasonality of Rs from bottom-up estimates and Reco from the top-down estimates. Pixels are seasonally aggregated for 

simplicity and plotting and to reduce noise from the propagation of atmospheric inversion uncertainty. In particular, we 20 

consider high-latitude regions (latitude greater than 55 oN/S), mid-latitudes (latitude between 30 and 55 oN/S), dry tropics 

(latitude < 30 oN/S and mean annual precipitation less than 1500 mm/yr), and wet tropics (latitude < 30 oN/S and mean annual 

precipitation greater than 1500 mm/yr). To calculate the uncertainty of the bottom-up Rs estimates, a method analogous to that 

used for determining the 25th-75th confidence interval of bottom-up Rh was used.  

3 Results 25 

3.1 Annual average Rh from top-down and bottom-up estimates 

3.1.1 Top-down Rh 

The annual mean tropical Rh is 450  ± 200 gC/m2/yr. The spatial pattern of mean annual Rh is similar to that of GPP, 

(Fig. 3a, R2 = 0.97, p < 0.001), as expected. More complex dynamics are revealed by considering the coefficient of variation 
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(CV) of Rh (e.g. temporal standard deviation divided by mean per grid cell, Fig. 3b). The CV does not closely follow known 

spatial patterns in biomes, GPP, turnover times, or other carbon parameters (e.g. (Anav et al., 2015; Bloom et al., 2016; 

Carvalhais et al., 2014; Hiederer & Kochy, 2011)), as it reflects a combination of all these factors. More information about the 

temporal variability of substrate availability (e.g. litter and soil organic matter) is needed to disentangle the climatic and 

biogeophysical controls on Rh dynamics. This is left for a future investigation. Note that the high CV values in semi-arid 5 

regions are likely due to the near-zero mean Rh there.  

Fig. 4 shows the results of sensitivity analyses for each of GPP (by comparing the Rh estimates with those derived 

using GPP from FLUXCOM), NEP (by comparing with Rh estimates derived assuming zero NEP) and CUE (by comparing 

with Rh estimates derived assuming a seasonally varying CUE as described in Sec 2.1). When the GPP data source is changed 

to FLUXCOM (Fig. 4a-b), the temporal dynamics of Rh are most varied in the central American Plains, Australia, and in the 10 

tropics, especially in the Amazon. However, other hot spots for a mean difference exist, such as in Central Canada and Eastern 

Europe. Changing to using zero-value NEP (Fig. 4c-d) most significantly introduces a mean difference in the Southern Amazon 

and in Central Africa, though interestingly, the signs of the resulting difference are opposite between the continents. The 

temporal dynamics of these regions is also the most sensitive to inclusion of actual NEP estimates in the Rh calculation. Despite 

the fact that NEP’s global mean value is more than an order of magnitude smaller than that of GPP, neglecting NEP causes 15 

large changes to the estimated Rh over much of the globe, showing the value of including NEP estimates in the top-down Rh 

calculation. Note however that the mean deviation in Rh for either the NEP or GPP sensitivity analyses is still smaller than the 

mean difference between the top-down and bottom-up Rh over most of the world. The only exception to this is in the high 

latitudes were all differences between estimates are of a similar magnitude.  

Lastly, Fig. 4e-f shows the results of the sensitivity analysis assuming a temporally variable CUE. Overall, this 20 

sensitivity analysis leads to far smaller changes to Rh than those for GPP and NEP. The magnitude of the Rh change resulting 

from a change in CUE depends on whether the seasonality of GPP aligns with Rh and whether the changed CUE causes 

unrealistic flux combinations across any of the ensemble members. The difference in time-average Rh is relatively small - no 

more than 50 g C m-2 yr-1  for any pixel. Despite the change in seasonality of CUE, the temporal dynamics of the 36 months of 

estimated Rh also remain relatively similar in the sensitivity analysis. More than 90% of pixels have an R2 between the Rh from 25 

constant CUE and the Rh from seasonally variable CUE greater than 0.8. The largest difference in Rh seasonality occurs in the 

wet tropics. In these regions, the average GPP is largest, and a change in CUE seasonality corresponds to the greatest absolute 

change in Ra.  

 Fig. 5 maps the relative contributions of uncertainty in NEP, GPP, and CUE to Rh as calculated by consecutively re-

calculating Rh assuming in each case that all but one of the three datasets have zero uncertainty. The uncertainty in GPP is the 30 

dominant source of uncertainty in Rh across most of  the globe, except in parts of the Amazon. Consistent with the CUE 

sensitivity analysis (Fig 4e-f), the contribution of CUE to the Rh uncertainty is greatest in the tropics. In many high-latitude 

regions, NEP also contributes significantly to the overall Rh uncertainty. This contrasts with the results of the zero-NEP 

sensitivity analysis (Fig. 4c-d) in which NEP effects were no greater in the high-latitudes than elsewhere in the world, because 



11 
 

the CMS-Flux NEP is close to zero in mean magnitude in the high-latitudes, but nevertheless relatively uncertain there. Overall, 

future efforts to improve top-down approaches for Rh estimation would likely benefit most from reduced uncertainty in 

remotely sensed GPP and NEP estimates.   

 

3.1.2 Bottom-up Rh 5 

The performance of the bottom-up approach at SRDB sites for both Rs and Rh is shown in Fig. 6. The influence of 

latitude on modelled Rh is stronger than on observed Rh (since the color patterns in Fig. 6 are largely horizontal).  The 

uncertainties of the bottom-up method are high. Indeed, for both the bottom-up Rs and Rh, the root-mean-square error (RMSE) 

(421 g C m-2 yr-1  for Rs, 306 g C m-2 yr -1  for Rh) is only less than 15% lower than the RMSE for a model that simply predicted 

the average observed respiration value everywhere (RMSE = 488 g C m-2 yr -1  for Rs, 333 g C m-2 yr -1  for Rh). The Rs RMSE 10 

= 421 g C m-2 yr -1 is also higher than the 376 g C m-2 yr -1 RMSE value reported by Hashimoto et al. (2015) when their equation 

was applied to a smaller subset of the current SRDB dataset. The performance of the bottom-up model may be even worse on 

a cross-validation dataset that is entirely independent.  

To test whether the bottom-up model can be improved, its parameters were optimized using a non-linear least squares 

fit. The resulting values (F = 1.30 gC m-2 dy-1, a = 0.0565 oC-1, b =0 oC-2,  = 9.8, K = 0.0008 cm mo-1, c = 0.92, and d = 0.75) 15 

were of a similar magnitude as the original parameters  (F = 1.68 gC m-2 dy-1, a = 0.0528 oC-1, b = 0.000628 oC-2,  = 0.98, K 

= 1.20 cm mo-1 , c = 1.22, and d = 0.73), for all values except K and , the two parameters controlling the relationship between 

precipitation and Rh. This suggests that precipitation is among the most uncertain controls of Rh, consistent with the fact that 

moisture limitations on Rh are mediated by soil water potential rather than precipitation. However, because using the optimized 

parameters led to only a 3% reduction in RMSE (from 306 g C m-2 yr -1 to 294 g C m-2 yr -1, Fig. S2), the original parameters 20 

were used elsewhere in the manuscript. Several constraints and alternative initial conditions were tested for fitting, but these 

did not lead to a better-performing fit (not shown). Some compensation between parameters is likely occurring when fitting to 

observations, reducing the quality of the fit.   

In the absence of additional information about the bottom-up model uncertainty, the SRDB implementation and the 

associated errors were also used to determine a model for the uncertainty of the global bottom-up estimates. As shown in Fig. 25 

7, the Rh experiments in the SRDB over-represent mid-latitudes but under-represent low and high latitudes relative to the 

distribution of global land area. This can also be seen visually in a map of the experimental locations (Fig. S3). As a result, 

pixels with low Rh (which are typical in the high-latitudes) are underrepresented in the SRDB, such that the bottom-up model 

has greater uncertainty there. These factors are accounted for by the dynamic uncertainty model in Eq. (5).  

 30 
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3.1.3 Comparison 

The top-down and bottom-up estimates and their uncertainties are compared in Fig. 8. Global maps of the two Rh 

estimates are also shown in Fig. S4. Except in boreal regions and in Australia, the top-down estimates are greater than the 

bottom-up estimates. This is reflected in their global averages, with mean Rh rates of 452 g C m-2 yr -1 for top-down vs. 353 g 

C m-2 yr -1 for bottom-up estimates (43.6 Pg C yr -1 and 33.4 Pg C yr -1 respectively, summed across the globe). The highest 5 

magnitude fluxes are in the low-latitude tropics, consistent with findings for Rs by Zhao et al. (2017), and the monotonic Rh -

Rs relationship  in Eq. (5). The difference between the two estimates is also largest in this region - top-down estimates are an 

average of 281 g C m-2 yr -1  larger than bottom-up ones between 30 oS and 30 oN, but are only 10 g C m-2 yr -1 larger than 

bottom-up estimates between 30 and 45 oN/oS. When compared against SRDB observations (Fig. 6b), the bottom-up estimates 

were 500-2000 g C m-2 yr -1 or more lower than observations at several low-latitude sites, suggesting the bottom-up estimates 10 

may be underrepresenting Rh across the region. The tropics is also the region where the relative uncertainties in both top-down 

(57% median relative 25-75th confidence interval width) and bottom-up (76% median relative 25-75th confidence interval 

width) estimates are highest. For the bottom-up estimation, this is due to a lack of representative in situ observations, while 

for the top-down estimates, this is likely driven by uncertainties in NEP from atmospheric diffusion and satellite sampling in 

the atmopsheric inversions (Liu et al., 2014) and GPP (Parazoo et al., 2014).  Remarkably, although uncertainty estimates for 15 

both the bottom-up and top-down approaches were conservative, the two estimates are so different at low latitudes that there 

is almost no overlap in their uncertainty ranges. 

The greatest overlap between the two datasets and their uncertainty range occurs between 30 and 50 degrees North, 

where more than 48% of SRDB observations fall and the bottom-up estimates are likely the most reliable. At high-latitudes 

(above o55 N), the top-down uncertainty narrows but the bottom-up uncertainty does not. In this region, bottom-up 20 

uncertainties are about 30% greater than the uncertainties of the top-down Rh.  

 

3.2 Seasonal cycle of respiration components 

The bottom-up estimates only provide Rh at annual timescales. To gain insight into the realism of the seasonal cycle 

of the top-down Rh estimates, they are compared to the seasonal cycle of bottom-up Rs and top-down Reco in several regions 25 

in Fig. 9. Consistent with the low values of bottom-up Rs (Sec 3.1.3), the top-down Rs are not much lower than Rh. There is 

significant overlap between the uncertainty ranges of both in many region-month combinations, despite the fact that true Rh is 

always lower than (or equal to) Rs due to the occurrence of belowground autotrophic respiration.  Indeed, the bottom-up Rs 

and top-down Rh nearly overlap in the period January-March in the wet tropics. Remarkably, during boreal winter at high 

latitudes, the top-down Reco, Rs, and Rh all agree. This is likely because the constant CUE assumption assumes that Ra is near-30 

zero in boreal winter when GPP shuts down, which may not be realistic. Previous studies have found that winter-time Rs can 

provide as much as 20% or more of total boreal soil CO2 fluxes (see overview in Hobbie et al., 2000), but only 5.2% of bottom-
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up estimated Rs and 8.8% of top-down estimated Rh  here occurs between December and February. In the dry tropics, the 

seasonal cycle of top-down Rh is remarkably flat, and flatter than that of bottom-up Rs. This could be explained by the fact that 

temperature, moisture, and substrate variabilities do not vary the same way across the seasons and may partially compensate 

for one another. However, more research is needed to determine what controls dry tropical variations in Rh and a detailed 

investigation of this issue is beyond the scope of this paper. 5 

The ratio of estimated Rh to Reco spans between close to 1 in high-latitude winters and 0.4 in the wet tropics. Similarly, 

the ratio of Rh to Rs varies from 0.75 to 0.94 for different month-region combinations.  

4 Discussion 

4.1 Top-down and bottom-up approaches are both uncertain 

Top-down estimates of Rh are 30% higher, on average, than bottom-up estimates. At low-latitudes, the top-down 10 

estimates of Rh are so much larger than the bottom-up ones that there is almost no overlap between their respective 25th-75th 

uncertainty intervals, despite efforts to create conservative uncertainty intervals in each case. Consistent with these results, the 

bottom-up Rh were previously shown to be biased low relative to models from the Climate Model Intercomparison Project 5 

(CMIP5) (Taylor et al., 2012) in the low-latitudes, though it is unclear whether this is because CMIP5 models are biased high 

or because the bottom-up estimates are biased low relative to true Rh (Hashimoto et al., 2015, Fig.. 10). Zhou et al. (2009) 15 

found that attributing a globally uniform Q10 value decreases model-simulated average Rh by 40%, and a similar dynamic may 

be causing the bottom-up Rh estimates to be too low. It should also be noted that the global average Rs estimates of the bottom-

up approach are 10-20 Pg lower than the six other estimates of global Rs published in the last decade (Bond-Lamberty, 2018), 

and that a lower bottom-up Rs leads to a lower bottom-up Rh (Eq. 5).  

The top-down and bottom-up approaches to estimation of Rh have complementary strengths and weakness, as detailed 20 

in Table 1. Top-down estimates are indirect, and errors and uncertainties in any of the source datasets can propagate to errors 

and uncertainties in the retrieved Rh. These include the assumption of a temporally constant CUE, which among others, can 

lead to unrealistically low Rh in boreal winters. Additional uncertainties also include, for example, choices made in the 

atmospheric inversion (Peylin et al., 2013) or the retrieval of SIF and its scaling to GPP (e.g. whether a constant set of values 

is used, or whether this scaling is dynamic as in the Parazoo et al (2014) data used here). GPP is the most uncertain of the input 25 

fluxes (Fig. 5). Despite their uncertainties, the top-down estimates are globally representative. By contrast, bottom-up 

upscaling starts with more accurate, direct observations of Rh, but suffers from a lack of representativeness: direct observations 

are often temporal snapshots covering only a single or few years at a given site, with the time period observed varying 

dramatically between sites. More importantly, they under-represent boreal and tropical regions, and may over- or under-sample 

disturbed sites in different regions.  While the uncertainties of the remote sensing datasets used for top-down estimation show 30 

some variations across different parts of the globe, remote-sensing based estimates of vegetation properties such as 
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photosynthesis and biomass   have previously been argued to contain significantly lower representativeness error than bottom-

up estimates (Saatchi et al., 2015; Schimel et al., 2015). A similar dynamic is at play for Rh.  

The top-down approach introduced here is dependent on the quality of the input datasets used. Among the sensitivity 

analyses performed, NEP and GPP generally had a greater effect on the resulting Rh than the assumed values of CUE. The 

primary GPP and NEP datasets used here (those from Parazoo et al (2014) and CMS-Flux, respectively) are sensitive to both 5 

observational error (e.g. due to cloud cover) and uncertainties in the retrieval algorithms (including, but not limited to, 

uncertainties in the relationship between SIF and GPP and, for NEP, in the inversion of atmospheric transport models). As 

shown in Fig. 4, uncertainties in top-down GPP and NEP can have significant effects on the mean and temporal variability of 

Rh estimated. Nevertheless, the sensitivity of Rh to alternative GPP and NEP assumptions was still lower than the difference 

between the top-down and bottom-up Rh estimates everywhere outside the high-latitudes. Thus, despite the large sensitivity of 10 

the top-down Rh to the quality of the input datasets (and to a lesser degree, to the assumption of constant CUE), our new 

approach still provides meaningful new constraints on Rh not available from bottom-up estimation alone. 

For the bottom-up approach, the errors associated with sampling bias are likely also exacerbated by the uncertainty 

in parametrizing a single functional model and the difficulty of parameter optimization. When the model parameters were re-

fit on a version of the SRDB that was slightly expanded from that used in Hashimoto et al. (2015), the precipitation-sensitivity 15 

parameterization changed dramatically, while the error statistics remained similar, suggesting possible overfitting. 

Furthermore, even comparing against an SRDB dataset that was similar to that used to derive the original parameters, the 

bottom-up approach barely had improved error statistics (RMSE of 306 g C m-2 yr -1 ) relative to a model that simply ignores 

spatial variations and everywhere assigns the same value (RMSE of 333 g C m-2 yr -1). Such results suggest a structural problem 

with the underlying modelling approach (no good parameters exist), but also call into question whether currently used 20 

parameters are truly optimal given the model structure. In a recent study, machine-learning based approaches for estimating 

Rs were able to explain 60-70% of the Rs variability (Zhao et al., 2017), considerably more than the 35% variability explained 

in this study using the Hashimoto et al. (2015) approach. If the robustness of machine learning based bottom-up upscaling 

methods can be further established, they may form a path forward for improved fidelity of bottom-up estimation of Rh, and for 

allowing estimation of Rh at a temporal resolution finer than the current annual timescales. However, the number of Rh 25 

observations in the SRDB - and presumably the literature as a whole - is 5 times smaller than the number of Rs sites. Thus, 

additional measurements of Rh are needed for this approach, and they must include under-sampled areas. This is unlikely to 

be possible in the foreseeable future. 

Despite the complementary sources of uncertainties in both top-down and bottom-up Rh estimates, the strong overlap 

between the two estimates and their uncertainty ranges in latitude range 30-50oN (the same latitude range where SRDB 30 

observations are most common, Fig. 7) is encouraging. Indeed, if the uncertainty of top-down estimates can be reduced, they 

could be used to constrain or help parameterize bottom-up models similar to those compared to here, allowing creation of a 

longer record than may be possible with top-down observational data alone.  
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4.2 General applicability of the carbon balance inversion method 

This paper introduced a new method for top-down estimation of Rh by calculating it as the residual of the carbon 

balance. The propagation of uncertainty under realism constraints (in the form of the correct sign on each of the respiration 

components and GPP) is key to avoiding large errors in this approach. In this paper, we used large-scale, regionally available 

estimates for the carbon balance components, including recently developed atmospheric inversion-based NBE and NEP 5 

estimates from CMS-Flux. However, the approach could also be applied at finer resolutions, for example using regional scale 

atmospheric inversions. If the local carbon use efficiency can be determined (Tang et al., 2019), the method could also be 

applied at smaller spatial and temporal scales, such as to data from eddy covariance towers. For example, constraints based on 

estimates of Rh from a carbon balance inversion could be useful in upscaling chamber-based soil respiration measurements to 

the tower scale, which could help explain inconsistencies between tower and chamber measurements of respiration fluxes  10 

(Barba et al., 2017; Phillips et al., 2016). 

 

4.3 Implications for carbon climate feedbacks 

The response of terrestrial net carbon fluxes to climate changes is likely to feed back to future climate (Bodman et 

al., 2013), but the sign and magnitude of this feedback is highly uncertain (Friedlingstein et al., 2014). The tropics likely form 15 

a dominant control on global carbon-climate feedbacks (Cox et al., 2000; Schimel et al., 2015). However, in the period 2010-

2015, GPP explained less than 1/3rd of variations in tropical NEP, suggesting an important role for Ra and Rh in controlling net 

terrestrial carbon uptake and its climate sensitivity (Sellers et al., 2018). A recent modeling study also suggested that Rh forms 

a dominant control on NBP at multi-decadal timescales (Zhang et al., 2018). Studies of climate-carbon feedbacks commonly 

consider either Reco or Rs, but in doing so they conflate two separate respiration components (total Ra and Rh, or belowground 20 

Ra and Rh, respectively), which have different biogeophysical controls and responses to climate. The large spatial and temporal 

variations in the ratio of top-down heterotrophic to Reco and Rs in Fig. 8 act as a reminder that heterotrophic respiration should 

be studied separately from other respiration fluxes in this context.  

 The recent launch of TROPOMI, which has daily coverage and approximately 7 x 3.5 km pixel resolution, will greatly 

increase measurements of SIF, and hence will also greatly increase the number of estimates of GPP (Kohler et al., 2018), the 25 

largest source of uncertainty in the global Rh estimates (Fig. 5).  Increased data density from OCO-2 (Crisp et al., 2004) and 

in the future GeoCarb (Polonsky et al., 2014) should also provide better regional estimates of NEP. With these and other 

improvements to remote sensing-driven estimates of GPP and NEP, top-down estimation of Rh may be a promising avenue to 

better understand the role of Rh fluxes in carbon-climate feedbacks. However, because the temporal variability of the derived 

Rh varies depending on the quality of the GPP, NEP, and CUE datasets (as well as, to a lesser degree, the assumed constancy 30 

of the CUE assumptions), any studies using top-down Rh should carefully consider uncertainty propagation in any hypothesis 
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testing. Nevertheless, with careful consideration of uncertainty, top-down estimation may be a promising approach for 

understanding or bounding the role of Rh in carbon-climate feedbacks.  
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Tables 

 

 Top-down Bottom-up 

Advantages Inherently global Based on direct, high-resolution measurements 

Disadvantages Uncertainty in constant CUE assumption 

Uncertainty in NEP and GPP data 

Sparse, non-representative sampling 

Based on temporal snapshots in non-consecutive years 

 

Table 1: Advantages and disadvantages of top-down vs. bottom-up estimation methods.  
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Figure Captions 

 

Figure 1: Schematic diagram of process used to calculate heterotrophic respiration Rhe. Input datasets are outlined in red, and data sources 
are described in blue italics. Arrows indicate one flux is used to calculate another. Data sources are described in detail in Section 2.1.2 

 5 

Figure 2: Global variations in mean carbon use efficiency from CARDAMOM 

 

Figure 3: Spatial variability in top-down Rh. Maps of a) mean Rh [gC m2 yr-1] and right) temporal coefficient of variation of top-down Rh, 
calculated based on monthly data over 2010-2012.  

 10 

Figure 4: Results of sensitivity analyses for three input datasets. (left) Mean difference [gC m2 yr-1]  between baseline top-down Rh and 
alternate-input top-down Rh and (right) R2 between baseline top-down Rh and alternate-input top-down Rh. Sensitivity analyses performed 
include using FLUXCOM GPP (top row), assuming uniformly zero values of NEP (middle row) and assuming CUE varies temporally in a 
manner proportional to GPP (bottom row). 
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Figure 5: RGB map of relative contributions to Rh uncertainty in each of the input datasets, NEP (red), CUE (blue), and GPP (green). Note 
that a yellow color signifies similarly sized uncertainties for GPP and NEP, which are much larger than the uncertainty for CUE.  

 

Figure 6: Comparison of observed annual respiration terms at SRDB sites vs. bottom-up estimates at the same sites for (left) 1979 soil 
respiration sites and (right) 362 heterotrophic respiration sites. Each point denotes a single experiment and is colored by the experiment’s 20 
latitude. 

 

Figure 7: Distribution of all SRDB experiments (red dashed lines) and global land points where top-down retrievals were possible in terms 
of (left) latitude and (right) bottom-up modelled Rh. Modelled Rh rather than observed Rh were used for the SRDB data in the comparison to 
isolate the differences due to the representativeness of the SRDB experiments relative to the entire global land area, and remove any possible 25 
effects of biases in modelled global values and observed SRDB values. 

Figure 8: Longitudinally-averaged Rh as estimated from top-down (black solid line) and bottom-up (blue dashed line) estimates, respectively. 
Shaded areas represent the average 25th-75th uncertainty bars at each latitude.  

 

Figure 9: Comparison between regionally and temporally averaged seasonal cycle of different respiration components: top-down Rh (black 30 
solid line and area), bottom-up Rs (blue dashed line and area), and top-down Reco (red dash-dotted line and area). Shaded areas represent the 
average 25th-75th uncertainty bars at each latitude. (top left) high latitudes (latitude > 55 N/S) (top right) mid-latitudes (30 N/S < latitude < 
55 N/S), (bottom left) dry tropics (latitude < 30 N/S and mean annual precipitation < 1500 mm/yr), and (bottom right) wet tropics (latitude 
< 30 N/S and mean annual precipitation > 1500 mm/yr). 
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